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Abstract—Let V be the set of real solutions of a system of multivari-
ate polynomial equations with real coefficients. The real radical ideal
(RRI) of V is the infinite set of multivariate polynomials that vanish
on V . We give theoretical results that yield a finite step numerical
algorithm for testing if a given polynomial is a member of this RRI.

The paper exploits recent work that connects solution sets of such
real polynomial systems with solution sets of semidefinite program-
ming, SDP, problems involving moment matrices. We take advantage
of an SDP technique called facial reduction. This technique regularizes
our problem by projecting the feasible set onto the so-called minimal
face. Also, we use the Douglas-Rachford iterative approach which has
advantages over traditional interior point methods for our application.

If V has finitely many real solutions, then our method yields known
results: a basis and membership test for the RRI. In the case where the
set V has real solution components of positive dimension, and given
an input polynomial of degree d, our method can also decide RRI
membership via a truncated geometric involutive basis of degree d.

Examples are given to illustrate our approach and its advan-
tages that remove multiplicities and sums of squares that cause ill-
conditioning for real solutions of polynomial systems.

Keywords-real radical, moment matrix, facial reduction, Douglas-
Rachford, semidefinite programming, geometric involutive basis.

I. INTRODUCTION

The fundamental objects of real polynomial solving are sets
of their real solutions (varieties) and their associated real radical
ideals, RRI. In comparison to the less realistic but theoretically
easier case of complex solution sets and radical ideals over C,
much less is known about the real case. In a remarkable series of
recent papers it was shown that (generators of) the RRI of a real
polynomial system with finitely many solutions can be determined
by computing the kernel of so-called moment matrices arising from
a semidefinite programming, SDP, e.g., [19], [25]. This RRI is
generated by a feasibility problem of a system of real polynomials
having only real roots that are free of multiplicities. The RRI is
thus useful for regularizing numerical solutions of such systems
and avoiding the cost of computing non-real roots.

Our work, similar to that of [21], [22] is motivated by the
important open problem for the positive dimensional case. In this
paper we show that certain aspects of such generating sets, namely
their members up to any truncated degree, can be determined in
the positive dimensional case. We also show that facial reduction
combined with the Douglas-Rachford iterative scheme can be used
to significantly improve efficiency and accuracy.

We note that the determination of real solutions of polynomial
equations is frequently required in many applications such as
mechanical design, chemistry, robotics, etc. For such problems,
people usually care only about the real solutions. The real radical
ideal is free of sum of squares and multiplicities; and ensures

that its generators accurately reflect the geometry of its associated
real solution set. Thus when applying Newton’s method or critical
point methods, the Jacobian matrix is non-singular and numerical
difficulties are substantially reduced. Hence a main motivation is
to reduce and regularize a given polynomial system without losing
the real solutions that are of interest.

A. Preliminaries

Suppose x = (x1, ..., xn) ∈ Rn and consider a system
of m multivariate polynomials with real coefficients: P =
{p1(x), p2(x), ..., pm(x)} ⊆ R[x], the ring of polynomials over
R. Its solution set or variety is

VR(p1, ..., pm) = {x ∈ Rn : pj(x) = 0, 1 ≤ j ≤ m}.

The ideal generated by P = {p1, ..., pm} ⊆ R is:

〈P 〉R = {f1p1 + ...+ fmpm : fj ∈ R[x], 1 ≤ j ≤ m},

and its associated radical ideal over R is defined as

R
√
〈P 〉R := {f ∈ R[x] : ∃ qj ∈ R[x], t ∈ N+with f2t+Σsj=1q

2
j ∈ 〈P 〉R}

Example I.1. For P = {(x2 + y2)(x− y − 1)2} the solution set
is easily computed as VR(P ) = {(0, 0)} ∪ {(x, x − 1) : x ∈ R}
and R

√
〈P 〉R = 〈x(x− y − 1), y(x− y − 1)〉R.

Another approach recently developed by Hauenstein et al. [8]
is based on verifying the completeness of a real solution set S.
Suppose I = 〈P 〉R and S ⊆ VR(I), then the vanishing ideal of S,
denoted by I(S), satisfies R√I ⊆ I(S). If we can verify I(S) ⊆
R√I , then I(S) = R√I and S is complete. In other words, a real

radical membership verification is needed. However, in [8] one
can not certify I(S) 6⊆ R√I and the membership verification is
not guaranteed to terminate in finitely many steps. In this paper,
we propose an effective approach for the real radical membership
verification motivated by the above open problem.

Our approach also builds on the method of moment matrices. A
key step is to solve the problem of the following type for X

A(X) = b, X ∈ Sk+ , X is maximum rank, (I.1)

where Sk+ denotes the convex cone of k×k real symmetric positive
semidefinite matrices, and A : Sk+ → Rl is a linear transformation
which enforces the moment matrix structure for X .

The standard regularity assumption for (I.1) is the Slater con-
straint qualification or strict feasibility assumption:

there exists X with A(X) = b, X ∈ intSk+ =: Sk++ . (I.2)



We let X � 0,� 0 denote X ∈ Sk+ ,∈ intSk+ , respectively. It
is well known that the Slater condition for SDP holds generically,
e.g., [15]. Surprisingly, many SDP problems arising from particular
applications, and in particular our polynomial system applications,
are marginally infeasible, i.e., fail to satisfy strict feasibility. This
is exactly the case for our moment matrices approach. This creates
difficulties with numerical algorithms such as interior point solvers
and the maximum rank cannot be computed accurately.

In this paper, we use facial reduction first introduced by Borwein
and Wolkowicz [6], [7]. This effectively regularizes the SDP mo-
ment problem associated with the input polynomial system so that
it satisfies the strict feasibility constraint. We then use the geometric
involutive basis to check if the kernel of the moment matrix is a
truncated ideal (ideal-like). This leads to a method to compute the
generators of real radicals up to any given degree d. Therefore we
can numerically determine the real radical membership as well as
the completeness of the real solution subset S.

II. REAL RADICAL AND MOMENT MATRICES

A fundamental result e.g., [2] is:

Theorem II.1 (Real nullstellensatz). For any ideal I ⊆ R[x] we
have R√I = I(VR(I)). Equivalently

R
√
〈P 〉R = {f(x) ∈ R[x] : f(x) = 0 for all x ∈ VR(P )}.

Remark II.1. An ideal I ⊆ R[x] is real radical if and only if for
all p1, · · · , pm ∈ R[x]:

p2
1 + · · ·+ p2

m ∈ I =⇒ p1, · · · , pm ∈ I. (II.1)

For these and related results see e.g., [2] and the references
therein. Next we introduce moment matrices, which are central for
the computation of RRI.

Definition II.1 (Moment matrix [20]). Let λ ∈ R[x]∗ be a linear
form that maps a polynomial to a real number. The symmetric
matrix

M(λ) := (λ(xαxβ))α,β∈Nn (II.2)

is called the moment matrix of λ where N = {0, 1, 2, · · · }.

Similarly, we define the truncated moment matrix.

Definition II.2 (Truncated moment matrix [20]). Given a linear
form λd ∈ (R[x]2d)

∗, the truncated moment matrix of λd is:

M(λd) := (λd(x
αxβ))α,β∈Nn

d
(II.3)

where Nnd = {γ ∈ Nn : |γ| = Σnj=1γj ≤ d}.

Example II.1. Suppose λ1 ∈ R[x, y]∗2d for d = 1. Then

M(λ1) =

u00 u10 u01

u10 u20 u11

u01 u11 u02

 . (II.4)

Without loss, we assume u00 = 1 throughout this paper.

The kernel of a positive semidefinite truncated moment matrix
has the following real radical type property:

Lemma II.1. [20] Assume M(λd) � 0 and let p, qj ∈ R[x],
f := p2m+

∑
j q

2
j with m ∈ N, m ≥ 1. Then, f ∈ kerM(λd)⇒

p ∈ kerM(λd).

We note that there is a bijective correspondence between vec-
tors v ∈ kerM(λd) and polynomials given by v 7→ P(v) =
vT (xα)α∈Nn where (xα)α∈Nn is the vector of all monomials of
degree ≤ d ordered in the same way as the rows of the moment
matrix. We now introduce the following important theorems about
the kernel of a positive semidefinite moment matrix.

Theorem II.2 ( [18, Lemma 3.1]). Suppose that the ideal I =
〈f1, . . . fm〉R with maxi(deg(fi)) = d and let B be the coefficient
matrix of {f1, . . . fm} ⊆ R[x]. Let M(λd) be a truncated moment
matrix such that BT ·M(λd) = 0 and M(λd) � 0. If the rank of
M(λd) is maximum then

P(kerM(λd)) ⊆ R√
I. (II.5)

Theorem II.3 (Flat extension [11]). Assume M(λd) � 0. Then
the following statements are equivalent:

• There exists an extension moment matrix M(λd+1) � 0 such
that rankM(λd) = rankM(λd+1).

• kerM(λd) is ideal-like.

Finally, in the zero-dimensional case, we have the following
important result that relates the real radical ideal and moment
matrices.

Lemma II.2 ( [18, Theorem 3.4, Corollary 3.8]). Assume
M(λd) � 0 and rankM(λd) = rankM(λd−1) = r. Then we
have J = 〈P(kerM(λd))〉R is real radical and zero-dimensional.
One can extend λd to λ =

∑r
i=1 αiλvi ∈ R[x]∗ where αi > 0 and

{v1, . . . , vr} = VR(P(kerM(λd))). Furthermore λ = λd when λ
is restricted to R[x]2d.

Example II.2. Consider the polynomial p = x4−2 of degree 4. In
matrix form, the polynomial is represented by its coefficient matrix
B = [−2, 0, 0, 0, 1]T .

The truncated moment matrix is the following:

M(λ2) =


u0 u1 u2 u3 u4

u1 u2 u3 u4 u5

u2 u3 u4 u5 u6

u3 u4 u5 u6 u7

u4 u5 u6 u7 u8

 (II.6)

Then we solve the following semidefinite programming problem:

BT ·M = 0,M � 0, rank(M) is maximum. (II.7)

The solution moment matrix is:

M(λ2) =


1 0

√
2 0 2

0
√

2 0 2 0√
2 0 2 0 2

√
2

0 2 0 2
√

2 0

2 0 2
√

2 0 4

 . (II.8)

The kernel corresponds to the generating set

{
√

2− x2, 2− x4,
√

2x− x3} (II.9)

The moment matrix satisfies rankM(λ1) = rankM(λ2) = 2 and
the kernel generates the correct real radical ideal.



III. COMPUTATION OF GENERATORS OF THE REAL RADICAL UP

TO A GIVEN DEGREE

Based on the maximum rank moment matrix, the geometric invo-
lutive form [24], the results of Curto and Fialkow [11] and Lasserre
et al. [18] we give an algorithm for computing the real radical up
to a given degree d. Throughout this section we consider a system
of multivariate polynomials {f1, · · · , fm} ⊆ R[x1, x2, ..., xn] of
degree d = maxi(deg(fi)). The associated real ideal is denoted

I := 〈f1, f2, ..., fm〉R (III.1)

and its associated real radical ideal is denoted by R√I .
In particular we solve the following problem:

Problem III.1. Given a system of multivariate polynomials P =
{f1, · · · , fm} ⊆ R[x1, x2, ..., xn] with associated ideal I = 〈P 〉R
and an integer d we give an algorithm to compute:(

R√
I
)

(≤d)
:= {f ∈ R√

I : deg(f) ≤ d}. (III.2)

We will represent
(

R√I
)

(≤d)
by polynomials corresponding

to vectors in kerM(λd) where M(λd) is the truncated moment
matrix to degree d as defined in Definition II.2. In order to obtain
our main result we will require that kerM(λd) is ideal-like as
defined by Curto and Fialkow [11].

Definition III.1 (Ideal-like truncated moment matrix [11]). The
kernel of a truncated moment matrix M(λd) is ideal-like of degree
d if the following two conditions are satisfied:

• If f1, f2 ∈ P(kerM(λd)) then f1 + f2 ∈ P(kerM(λd)).
• If f ∈ P(kerM(λd)) and g ∈ R[x] has deg(fg) ≤ d, then
fg ∈ P(kerM(λd)).

The ideal-like property is denoted as RG in [11].

Our main result which relates the real radical and the kernel of
the moment matrix in the positive dimensional case is:

Theorem III.1. Suppose an ideal I = 〈f1, . . . fm〉R is given
with maxi(deg(fi)) = d and let B be the coefficient matrix of
{f1, . . . fm} ⊆ R[x]. Let M(λd) be a truncated moment matrix
such that BT ·M(λd) = 0 and M(λd) � 0. If the rank of M(λd)
is maximum and kerM(λd) is ideal-like then

P(kerM(λd)) =
(

R√
I
)

(≤d)
. (III.3)

To prove the above theorem, we will need Theorem II.2, Theo-
rem II.3 and Lemma II.2.

Proof: Suppose kerM(λd) is ideal-like, M(λd) � 0 and
M(λd) has maximum rank together with the other assumptions
in Theorem III.1. Our goal is to show that

P(kerM(λd)) =
(

R√
I
)

(≤d)
.

First by Theorem II.2, the following direction is obvious:

P(kerM(λd)) ⊆
(

R√
I
)

(≤d)
.

So we only need to show

P(kerM(λd)) ⊇
(

R√
I
)

(≤d)
.

By Theorems II.3 and II.2, λd can be extended to λd+1 such that
J = 〈P ker(M(λd+1))〉R is real radical and zero-dimensional.
Since I ⊆ J , we have R√I ⊆ J . By Theorem II.2, one can
extend λd to λ =

∑r
i=1 αiλvi ∈ R[x]∗ where αi > 0 and

{v1, . . . , vr} = VR(P(kerM(λd+1))) = VR(J) and λvi is
an evaluation mapping at vi such that λvi(f) = f(vi). Thus
λd =

∑r
i=1 αiλ

(d)
vi where λ

(d)
vi is the truncated linear form of

λvi . Since R√I ⊆ J , we have {v1, . . . , vr} ⊆ VR( R√I).
Now we can prove the other inclusion:

P(kerM(λd)) ⊇
(

R√
I
)

(≤d)
.

So we let g ∈
(

R√I
)

(≤d)
and we want to show that g ∈

P(kerM(λd)), that is to show that vec(g)TM(λd) = 0.
Since g ∈ R√I with deg(g) ≤ d, we can conclude g(vi) = 0, i =

1, . . . , r. Therefore, we have g2(vi) = vec(g)TM(λ
(d)
vi )vec(g) =

0. Since M(λ
(d)
vi ) � 0, we have vec(g)TM(λvi) = 0 for i = 1, . . .

, r. Hence
∑r
i=1 αivec(g)TM(λ

(d)
vi ) = 0, so vec(g)TM(λd) = 0

and g ∈ P kerM(λd) which is what we wanted to show.
By Theorem III.1, the “ideal-like” property is important. Given

a polynomial system P , we can compute its geometric involutive
form, GIF, which returns an involutive basis of the ideal generated
by P . The symbolic-numeric version of the geometric involutive
form algorithm, denoted as GIF, was first described and imple-
mented in Wittkopf and Reid [29]. Note the GIF algorithm obtains
polynomials in a form that satisfies the ideal-like property, so
P = GIF(P ) implies P is “ideal-like”. The details of the GIF
algorithm, including, prolongations and projections, can be found
in our earlier work [24]. The algorithm for computing the maximum
rank solution will be discussed in the next section. We now state
our complete algorithm to Problem III.1:

Algorithm 1: RealRadical(P, d)
Input(P = {f1, . . . , fm} ⊆ R[x], x ∈ Rn, an integer
d ≥ deg(P ).)
Set P ′ to be the prolongation of P to degree d.
repeat

B := CoeffMtx(P ′).
Solve for maximum rank moment matrix M(λd) such
that BTM(λd) = 0,M(λd) � 0 using Algorithm 2
described in the next section.
P ′′ := P(kerM(λd)).
Compute GIF(P ′′).
Project/ Prolong GIF(P ′′) to degree d:
P ′ := GIF(P ′′)(≤d).

until dimP ′ = dimP ′′;
Output(P ′, a basis for {f ∈ R

√
〈P 〉R : deg(f) ≤ d}.)

Lemma III.1. Algorithm 1 is correct.

Proof: By lemma II.2, at each iteration, we have
P ′′ ⊆

(
R
√
〈P 〉R

)
(≤d)

. Therefore P ′ := GIF(P ′′)(≤d) ⊆(
R
√
〈P 〉R

)
(≤d)

. When Algorithm 1 stops, P ′ = P ′′ = GIF(P ) is

“ideal-like”. So by Theorem III.1, we have P ′ =
(

R
√
〈P ′〉R

)
(≤d)

.



Since 〈P 〉R ⊆ 〈P ′〉R, we have
(

R
√
〈P 〉R

)
(≤d)

⊆ P ′. Therefore,

we proved
(

R
√
〈P 〉R

)
(≤d)

= P ′.

Remark III.1 (Real radical membership verification). Given a
polynomial g ∈ R[x] with deg(g) ≤ d and a polynomial system
P , the problem for determining whether g ∈ R

√
〈P 〉R or not is

equivalent to checking if g lies in RealRadical(P, d) which can be
done using simple linear algebra. The termination of Algorithm
1 is guaranteed by the finite descending chain property of the
Noetherian ring R[x].

IV. SDP AND FACIAL REDUCTION

Semidefinite programming and facial reduction are important
tools for efficiently obtaining the accurate maximum rank moment
matrix as required by Algorithm 1 in Section III.

Recall that we denote positive semidefinite and positive definite
matrices using A � 0, A � 0, respectively.

Definition IV.1 (Trace inner product). Given A,B ∈ Sk , the trace
inner product is 〈A,B〉 = trace(AB) =

∑
ij AijBij .

Definition IV.2. Suppose A1, ..., Al ∈ Sk . The constraint linear
map A : Sk → Rl is

A(X) :=
(
〈A1, X〉, ..., 〈Al, X〉

)T ∈ Rl, X ∈ Sk . (IV.1)

The adjoint operator of A, denoted A∗ : Rl → Sk , is the unique
linear map that satisfies

〈A∗(y), X〉 = 〈y,A(X)〉, ∀X ∈ Sk , ∀y ∈ Rl, (IV.2)

and is explicitly given by: A∗(y) :=
∑l
i=1 yiAi.

1

Definition IV.3. Given a matrix H = (aij)1≤i,j≤k ∈ Rk×k, define
vec(H) to be the vectorization of H columnwise, i.e.,

vec(H) =
(
a11, a12, . . . , a1k, a21, a22, . . . , ak1, . . . , akk

)T ∈ Rk
2

.

The matrix representation of the linear operator A, denoted as
A, is A = [vec(A1), ..., vec(Al)]

T ∈ Rl×k
2

.

A. Facial structure and minimal face

The following results can be found in e.g., [6], [7], [9], [14],
[23].

Definition IV.4. Given convex cones F,K and F ⊆ K, we call
F a face of K, and write F �K if

x, y ∈ K,x+ y ∈ F =⇒ x, y ∈ F.

Given a nonempty convex subset S of K, the minimal face of K
containing S is defined to be the intersection of all faces of K
containing S and is denoted face(S).

Definition IV.5. Let F be a face of Sk+. The conjugate face of F
is F c := {Z ∈ Sk+ : Z ·X = 0, ∀X ∈ F}. The dual cone of F ,
is F ∗ := {Z ∈ Sk : Z ·X � 0,∀X ∈ F}.

The following classical results about facial structure can be found
in e.g., [30].

1Here 〈y,A(X)〉 = yTA(X) is the standard vector inner product.

Lemma IV.1. Let F � Sk+ and X ∈ relintF . Let X =[
U V

] [Dr 0
0 0

] [
U V

]T
, Dr ∈ Sr++ be the orthogonal

spectral decomposition. Then

F = USr+UT , F c = V Sn−r+ V T .

Lemma IV.2. Let F � Sk+ and W ∈ Sk+. Then both Sk+ ∩ {W}⊥
and F ∩ {W}⊥ are faces of Sk+.2

B. Facial reduction

We consider our feasible SDP set FP := {X ∈ Sk : A(X) =
b,X � 0}. Clearly FP is a convex subset of Sk. The following
theorem gives information on the facial structure of FP .

Theorem IV.1 ( [23, SDP version of Lemma 28.4] ). Let

Fmin := face(FP ) � F � Sk+ .

Then{
I. A(X) = b,X ∈ F

II. bT y = 0, Z = A∗y ∈ F∗\ F⊥

}
⇒ X ∈ {Z}⊥ ∩ F ⊂ F.

In addition, F = Fmin if and only if (II) has no solution.

The matrix Z is called an exposing vector. Each time (II)
is solved, an exposing vector Z is obtained and can be used
to update F ← {Z}⊥ ∩ F . Repeating this process until (II)
is infeasible yields a finite sequence of faces containing FP :
F0 ⊃ F1 ⊃ F2 ⊃ · · · ⊃ Fmin ⊃ Fp, where F0 = Sk+ and
Fi+1 = Fi ∩ {Zi}⊥. This iteration process to find the minimal
face Fmin is called facial reduction and is guaranteed to terminate
in at most k − 1 iterations [28]. The minimal number of facial
reductions is called the singularity degree, [27].

C. Facial reduction maximum rank algorithm

Our facial reduction algorithm follows from Theorem IV.1. We
use the following Lemmas to convert (I), (II) of Theorem IV.1
to equivalent problems that are easier and more practical to solve.
The proofs of these Lemmas can be found in Appendix A, page 8.

Lemma IV.3. Let F := USr+UT � Sk+ , U ∈ Rk×r , and U full
column rank. Then

∃X ∈ F, A(X) = b ⇐⇒ ∃X̄ ∈ Sr+, UTAU(X̄) = b,

where UTAU is a linear operator from Sr to Rl defined as

(UTAU)(X̄) =
(
〈UTA1U,X〉, ..., 〈UTAlU,X〉

)T
, X̄ ∈ Sr.

Lemma IV.4. Let F := USr+UT � Sk+ , U ∈ Rk×r , and U full
column rank. Then the following two statements are equivalent:

∃y : Z = A∗(y) ∈ F ∗\ F⊥, bT y = 0 (IV.3)

∃y : 0 6= Z̄ = (UTAU)∗(y) � 0, bT y = 0. (IV.4)

Lemma IV.5. Let Z be an exposing vector as in (IV.3) and let Z̄ be
as in (IV.4). Let V be full column rank with range(V ) = null(Z̄).
Let F := USr+UT � Sk+ , U ∈ Rk×r . Then

{Z}⊥ ∩ F = UV S r̄+V TUT .

Recall in Algorithm 1, we need to find M(λd) such that
BTM(λd) = 0,M(λd) � 0. All such moment matrices form a

2Here {W}⊥ denotes the orthogonal complement.



convex subset of Rk×k, the moment matrices M(λd) form an affine
subspace defined by A(X) = b. The construction of A is described
in [24]. So the set {M(λd) : BTM(λd) = 0,M(λd) � 0} can be
converted to a convex set Fp := {X ∈ Sk : A(X) = b,BTX =
0, X � 0}. The algorithm to find maximum rank solutions of Fp
needed in Algorithm 1 is summarized in the following Algorithm 2.

Algorithm 2: Facial reduction on the primal.
Input(A : Sk → Rl, b ∈ Rl,B ∈ Rk×m, j = 1.)
repeat

If j = 1, set Z = BBT , U = I . Else,

find 0 6= Z =

l∑
i=1

Aiyi � 0, bT y = 0 : y ∈ Rl. (IV.5)

Find a basis V for null(Z).
Update A by setting Ai ← V TAiV, i = 1 . . . l.
Update U by setting U ← U · V .
j = j + 1.

until (IV.5) has unique solution Z = 0;
Solve A(P ) = b, P � 0. Set X := UPUT .
Output(a maximum rank solution X)

Lemma IV.6 (Maximum rank). Algorithm 2 returns a maximum
rank solution of Fp.

Proof: (We outline a proof. More details for a similar facial
reduction approach can be found in e.g., [7].) Each nonzero
exposing vector results in a reduction to an equivalent SDP of
smaller dimension. This is done until no further progress can be
made. The finite convergence uses the above results in Lemmas
IV.3, IV.4, IV.5 and Theorem IV.1.

Remark IV.1 (Singularity degree). Recall that the minimum num-
ber of facial reduction steps is called the singularity degree. In
Section VII below we show that instances with singularity degree
greater than 1 can be accurately solved with the facial reduction
heuristic. For more details, see e.g., [13], [27].

V. A SPECIAL CASE FOR DETERMINING THE POSITIVE

DIMENSIONAL REAL RADICAL

An important open problem in real algebraic geometry is to
determine an integer d such that

(
R√I
)

(≤d)
actually generates the

whole real radical R√I . Our theorem on the determination of the
real radical up to finite degree is illustrated graphically in Figure
V.1. Here suppose F = {f1, ..., fm} ⊂ R[x] and we applied
Algorithm 1 RealRadical(F, d) for a given d, and that the resulting
system has leading monomials shown as the corners of the black
monomial staircase. See [10] for the description of such diagrams.
Then the system is prolonged and the kernel of its moment matrix
is examined for new generators at degrees d + 1, d + 2, . . .. The
only way that this is not a complete generating set for the real
radical (and that our conjecture fails), is that there is a minimum
degree d′ > d where after prolongation to d′ new generators
are determined that lie outside simple prolongations of the black
leading generators. These have leading monomials shown in red.
Sometimes the completeness of the generating set at degree d
can be checked by a critical point calculation. For example, if

Figure V.1. In the Figure, the black monomial staircase represents the
leading monomials of the generators of the real radical determined to degree
d by RealRadical(P, d). The only way these can fail to be a complete set
of generators for the real radical is that there is a minimum degree d′ > d
where additional generators with leading monomials of exactly degree d′

shown in red are found outside black monomial staircase.

the critical point method shows that the variety is real positive
dimensional, then this could rule out the existence of the red
staircase predicting a 0-dimensional real variety. In particular, if
the number of red circles in Figure V.1 is 1 and the variety of
F is real positive dimensional, then RealRadical(F, d) returns the
generators of R

√
〈F 〉R. We get the following

Theorem V.1. Given a system of multivariate polynomials F =
{f1, · · · , fm} ⊆ R[x1, x2, ..., xn] with associated ideal I = 〈F 〉
and an integer d. Let G = {g1, ..., gk} ⊂ R[x] be the output
of Algorithm 1 RealRadical(F, d) applied to F and let s be the
number of linearly independent polynomials of degree d in G. If
s =

(
d+n−1
n−1

)
−1 and the variety of F is real positive dimensional,

then we have
R
√
〈F 〉R = 〈G〉R. (V.1)

Proof: By Theorem III.1, we get
(

R
√
〈F 〉R

)
(≤d)

= spanRG.

Now suppose that the result fails, i.e., suppose that R
√
〈F 〉R ⊃

〈G〉R, and there exists a d′ > d such that (〈H〉R)(≤d′) ⊂(
R
√
〈F 〉R

)
(≤d′)

, where H is the prolongation of G to degree

d′. Therefore there exists a polynomial g̃ ∈ spanR Ḡ but with
g /∈ spanRH and with deg(g̃) = d′ > d, where Ḡ = {ḡ1, ..., ḡl}
spans

(
R
√
〈F 〉R

)
(≤d′)

.

Now assume the number of linearly independent polynomials
of degree d′ in H is t and the number of linearly independent
polynomials of degree d′ in Ḡ is t̄. Then t < t̄ because of the
existence of g̃. By a simple combinatorial argument, the number of
distinct monomials of degree d in n variables is

(
d+n−1
n−1

)
. Since G

is already involutive and s =
(
d+n−1
n−1

)
−1, we have t =

(
d′+n−1
n−1

)
−

1 as well. Also clearly t̄ ≤
(
d′+n−1
n−1

)
. Therefore we conclude that

t̄ =
(
d′+n−1
n−1

)
. This means that R

√
〈F 〉R is a 0-dimensional real

variety, a contradiction with the assumption that the variety of F
is real positive dimensional.

VI. NUMERICAL COMPUTATIONAL ISSUES

In Algorithm 2, we need to solve two subproblems: the auxiliary
problem (IV.5); and the primal problem after facial reduction
A(P ) = b, P � 0. Essentially, we need to find the intersection



between an affine subspace (linear constraints) and a positive
semidefinite cone. The two problems can be solved efficiently
by well-known interior point solvers. However, these interior-
point solvers are not the appropriate choice for our problem as
illustrated by the examples in Section VII, below. When solving
the auxiliary problem (IV.5), interior point based methods can yield
small positive eigenvalues which makes the facial reduction steps
very unstable as it is difficult to distinguish which eigenvalues are
zero.

We consider the Douglas-Rachford reflection-projection (DR)
method e.g., [1], [5], [12]. This method involves projections and
reflections between two convex sets. These two convex sets are
the affine subspace and the positive semidefinite cone in our case.
There are also other projection-based methods, such as the simpler
method of alternating projection [16]. We prefer the DR method
for our application as it displayed better convergence properties in
our tests. Moreover, we can project onto the semidefinite cone with
a specific rank of our choice in order to avoid small eigenvalues in
the solution of the auxiliary problem (IV.5). The convergence rate
of the DR method is studied by Bauschke et al [3], [4]. Also, unlike
the alternating projection method, which is likely to converge to
the boundary of the cone, the DR method is likely to converge to
the interior of the cone which is needed in Algorithm 2 for solving
A(P ) = b, P � 0.

VII. NUMERICAL RESULTS

We used MATLAB version 2015a. The computations were
carried out on a desktop with ubuntu 12.04 LTS, Intel CoreTM2
Quad CPU Q9550 @ 2.83 GHz × 4, 8GB RAM, 64-bit OS, x64-
based processor.

In Examples VII.1, VII.2 we see that the algorithm solves
the problems of singularity degree 2. The next two examples
VII.3,VII.4 of higher singularity degree were not solved accurately
in previous attempts [24]. We show here that additional facial
reductions steps resulted in accurate solutions. In all our examples
tested, d is chosen to be the degree of the input system. Only one
iteration of Algorithm 1 is needed. Therefore GIF is only called
once. We conjecture that this is true in general.

Example VII.1 (Reducible cubic).

(x+ y)(x2 + y2 + 2). (VII.1)

Note that the second factor has no real roots, so it is discarded
and the real radical is generated by (x+ y). The moment matrix
corresponding to (VII.1) is a 10×10 matrix. The coefficient matrix
B is [0, 2, 2, 0, 0, 0, 1, 1, 1, 1]T . Using Algorithm 1, after two facial
reduction steps, we obtain a maximum rank 4 moment matrix with
residual less than 10−14 in less than 200 DR iterations.3 The output
approximates the real radical ideal generated by (x + y) and its
prolongations to degree 3.

Example VII.2 (Reducible quintic).

(1 + x+ y)(x4 + y4 + 2). (VII.2)

The moment matrix corresponding to (VII.2) is a 21× 21 matrix.
We solve this problem using Algorithm 1. Algorithm 1 can get 14

3Note that each DR iteration is extremely inexpensive relative to interior
point iterations.

decimal accuracy and a maximum rank moment matrix of rank 6 in
about 1300 DR iterations with 2 facial reduction steps. The output
approximates the real radical ideal generated by (1 + x+ y) and
its prolongations to degree 5.

Example VII.3 (Two variable geometric polynomial with 3 facial
reductions).

1 + (x+ y) + (x+ y)2 + (x+ y)3. (VII.3)

The moment matrix corresponding to (VII.3) is a 10× 10 matrix.
The coefficient matrix B is [2, 2, 2, 1, 0, 1, 1, 1, 1, 1]T .

After 3 facial reductions, the face is reduced to dimension 4
and the moment matrix is obtained with residual 10−13. The
eigenvalues of the final moment matrix are 4.70, 3.48, 0.89, 0.59,
0, 0, 0, 0, 0, 0 which gives the correct maximum rank of 4.

Application of Algorithm 1 yields the correct generators of the
real radical 〈1 + x+ y〉 up to degree 3.

Example VII.4 ( [8]).

f = {2yz − y, 2y2 + y, xy, 4x2z + 4z3 + y}. (VII.4)

The generators of the real radical is [8]:

{z2 + y/2, yz − y/2, y2 + y/2, xz, xy, y + z},

which is the same as the output of Algorithm 1. The moment
matrix of this problem is a 20× 20 matrix. We use Algorithm 2 to
solve for the maximum rank moment matrix. The sizes of the SDP
problem are {20, 16, 14, 8} after 3 facial reductions. The residual
of the auxiliary problem at each facial reduction is 10−15, 10−14.
(The first facial reduction is done using a MATLAB eigenvalue
decomposition so we do not include the residual.) The moment
matrix is solved with residual 10−13 and the maximum rank is 8.

min # FR rank (FR) sing. deg. Res(FR) Res(CVX)
Ex VII.1 2 10, 9, 4 2 10−14 10−9

Ex VII.2 2 21, 20, 6 2 10−14 10−9

Ex VII.3 3 10, 9, 7, 4 3 10−13 10−9

Ex VII.4 3 20, 16, 14, 8 3 10−13 10−9

Table VII.1: Comparison between facial reduction and SeDuMi (1)
Here: ”min (max) # FR” means minimal (maximum) number of facial
reductions in our tests; ”rank(FR)” means the size of the problem after
each facial reduction, the first one is the size of the original problem;
”Singlty deg” is the singularity degree of the SDP problem after the 1st
facial reduction; ”Res(FR)” is the residual of the final moment matrix
using facial reduction and DR iterations (Algorithm 2); ”Res(CVX)”
is the residual of the final moment matrix using CVX(SeDuMi).

We then compare Algorithm 2 with the traditional interior point
solver SeDuMi using CVX, e.g., [17]. In the computations for

max rank res each FR # DR each FR Time
Ex VII.1 4 10−15, 10−15 120, 7 0.11s
Ex VII.2 6 10−15, 10−14 267, 6 0.26s
Ex VII.3 4 10−15, 10−14, 10−15 260, 143, 1 0.16s
Ex VII.4 8 10−15, 10−14, 10−14 625, 437, 29 0.48s

Table VII.2: Comparison between facial reduction and SeDuMi (2)
”max rank” is the maximum rank of the moment matrix; ”res each FR”
is the residual of solving the corresponding SDP problem by DR after
each facial reduction; ” # DR each FR” is the number of DR iterations
to solve the corresponding SDP problem after each facial reduction.



min # FR rank (FR) Run time # DR each FR Res(FR)
Ex VII.5 2 10, 9, 4 0.09s 120, 7 10−14

Ex VII.6 2 21, 20, 6 0.23s 245, 6 10−13

Ex VII.7 3 10, 9, 7, 4 0.30s 260, 146, 1 10−13

Ex VII.8 3 20, 16, 14, 8 0.58s 616, 452, 29 10−13

Table VII.3: Perturbations

the above examples and Table VII.1,VII.2, the traditional interior
point SDP solver SeDuMi(CVX) performed relatively poorly in
computing the maximum rank moment matrices. In contrast, with
facial reduction and the DR method, we get much better accuracy
and also the correct maximum rank.

A. Perturbed examples

In this subsection, we study how small perturbations affect our
Algorithm 2. The computational results are shown in Table VII.3.

Example VII.5 (Perturbed Reducible cubic).

(x+ y)(x2 + y2 + 0.000001xy + 2). (VII.5)

Example VII.6 (Perturbed Reducible quintic).

(1 + x+ y)(x4 + y4 + 0.000001xy + 2). (VII.6)

Example VII.7.

1 + 1.000001(x+ y) + 0.999999(x+ y)2 + 1.000001(x+ y)3.
(VII.7)

Example VII.8.

f = {2yz−y+ε, 2y2+y−ε, xy+ε, 4x2z+4z3+y−ε}, (VII.8)

where ε = 1× 10−14.

In examples VII.5 VII.6 and VII.5 where the coefficients of
the real radical ideal change continuously with respect to the
changes of the input polynomial system, Algorithm 2 has the same
performance on the examples as on the ones without perturbation.
For example VII.8 where theoretically the real radical ideal can be
very different under small perturbations, Algorithm 2 still works
very well if the perturbation is smaller than the residual of the final
moment matrix.

VIII. CONCLUSION

SDP feasibility problems typically involve the intersection of
the convex cone of semidefinite matrices with a linear manifold.
Their importance in applications has led to the development of
many specific algorithms. However these feasibility problems are
often marginally infeasible, i.e., they do not satisfy strict feasibility
as is the case for our polynomial applications. Such problems are
ill-posed and ill-conditioned.

This paper is part of a series in which we exploit facial reduction
and apply it to finding real solutions to systems of real polynomial
and differential equations. The current work is directed at guaran-
teeing the maximal rank property and the ideal-like condition to
ensure all the generators of the real radical up to a given degree are
captured. It also establishes the first examples of additional facial
reduction that are effective in practice for polynomial systems.

This builds on our work in [24] in which we introduced facial
reduction, for the class of SDP problems arising from analysis
and solution of systems of real polynomial equations for real

solutions. Facial reduction yields an equivalent smaller regularized
problem for which there are strictly feasible points. Facial reduction
also reduces the size of the moment matrices occurring in the
application of SDP methods. For example the determination of a
k × k moment matrix for a problem with m linearly independent
constraints is reduced to a (k−m)× (k−m) moment matrix by
one facial reduction. The high accuracy required by facial reduction
and also the ill-conditioning commonly encountered in numerical
polynomial algebra [26] motivated us to implement the Douglas-
Rachford appproach [24].

A fundamental open problem is to generalize the work of [19],
[25] to positive dimensional ideals. In essence, this requires the
determinations of a degree bound d such that

(
R√I
)

(≤d)
actually

generates the whole real radical R√I . At the current stage, there is
no practical degree bound when I is real positive dimensional. In
section V, we only give an answer for a special case.

Recently, Hauenstein et al [8] have made progress on this
fundamental open problem by using sample points determined by
Hauenstein critical point algorithm. This is able to certify the
generators of the real radical ideal in some cases. Our results
Theorem III.1 enables the determination of the generators up to a
given degree. Thus we give an answer to the open problem of real
radical ideal membership test left in [8]. Potentially, the efficiency
for computing the sample points can also be improved which will
be described in a subsequent work.
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APPENDIX

A. Proof of Lemma IV.3

First suppose there exists X = UMUT satisfying A(X) = b,
then we have UTAU(M) = A(UMUT ) = b due to the cyclic
property of the trace product.

For the other direction, suppose there exists X̄ satisfying
UTAU(X̄) = b, let X = UX̄TUT then it is easy to see
A(X) = b as well.

B. Proof of Lemma IV.4

Suppose (IV.3) holds, there exists Z =
∑l
i=1 Aiy ∈ F

∗ which
means 〈Z,UMUT 〉 � 0 for all M ∈ Sr+ and 〈UTZU,M〉 � 0
for all M ∈ Sr+. Also Z /∈ F⊥ which means 〈UTZU,M〉 6= 0
for some M ∈ Sr+ which indicates UTZU 6= 0.

Now suppose (IV.4) holds, since Z̄ = UTZU � 0, we have
〈Z,UMUT 〉 = 〈UTZU,M〉 � 0 for all M ∈ Sr+. Hence Z ∈
F ∗. Since Z̄ 6= 0, we have Z /∈ null(UT ) so Z /∈ F⊥.

C. Proof of Lemma IV.5

First suppose X = UV M̄V TUT , then we have 〈Z,X〉 =
〈UTZU, V M̄V T 〉 = 0 which means ZX = 0 since Z � 0, X �
0. So X ∈ {Z}⊥ and X ∈ F .

For the other direction, if X ∈ F , then X = UMUT for some
M ∈ Sr+. If X ∈ {Z}⊥, then XZ = 0 which means 〈X,Z〉 =
〈M,UTZU〉 = 〈M, Z̄〉 = 0 ⇒ MZ̄ = 0. Hence M = V M̄V T

for V = null(Z̄) and X = UV M̄V TU for some M̄ ∈ S r̄+.

http://cvxr.com/cvx
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