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Abstract. We consider partial symmetric Toeplitz matrices where a pos-
itive definite completion exists. We characterize those patterns where
the maximum determinant completion is itself Toeplitz. We then ex-
tend these results with positive definite replaced by positive semidefinite,
and maximum determinant replaced by maximum rank. These results
are used to determine the singularity degree of a family of semidefinite
optimization problems.
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1. Introduction

In this paper we study the positive definite completion of a partial symmetric
Toeplitz matrix, T . The main contribution of this paper is in Theorem 1.1,
where we present a characterization of those Toeplitz patterns for which the
maximum determinant completion is Toeplitz, whenever the partial matrix is
positive definite completable. Part of this result answers a conjecture about
the existence of a positive Toeplitz completion with a specific pattern. A con-
sequence of the main result is an extension to the maximum rank completion
in the positive semidefinite case, and an application to the singularity degree
of a family of semidefinite programs, (SDPs). In the following paragraphs
we introduce relevant background information, state the main result, and
motivate our pursuit.
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A partial matrix is a matrix in which some of the entries are assigned
values while others are unspecified and may be treated as variables. For in-
stance,

M :=


6 1 x 1 1
1 6 1 y 1
u 1 6 1 z
1 v 1 6 1
1 1 w 1 6

 (1.1)

is a real partial matrix, where the unspecified entries are indicated by letters.
A completion of a partial matrix T is obtained by assigning values to the
unspecified entries. In other words, a matrix T (completely specified) is a
completion of T if it coincides with T over the specified entries: Tij = Tij ,
whenever Tij is specified. A matrix completion problem seeks to answer the
question: can the partial matrix be completed so as to satisfy a desired prop-
erty? This type of problem has enjoyed considerable attention in the literature
due to applications in numerous areas, e.g., [2,27]. For example this is used in
sensor network localization [22,23], where the property is that the completion
is a Euclidean distance matrix with a given embedding dimension. Related
references for matrix completion problems are e.g., [1, 7, 13,16,17].

The pattern of a partial matrix is the set of specified entries. For exam-
ple, the pattern ofM is all of the elements in diagonals −4,−3,−1, 0, 1, 3, 4.
Whether a partial matrix is positive definite completable to some property
may depend on the values assigned to specified entries (the data) and it
may also depend on the pattern of specified entries. A question pursued
throughout the literature is whether there exist patterns admitting comple-
tions whenever the data satisfy some assumptions. Consider, for instance, the
property of positive definiteness. A necessary condition for a partial matrix
to have a positive definite completion is that all completely specified prin-
cipal submatrices are positive definite. We refer to such partial matrices as
partially positive definite. Now we ask: what are the patterns for which a pos-
itive definite completion exists whenever a partial matrix having the pattern
is partially positive definite? In [12] the set of such patterns is shown to be
fully characterized by chordality of the graph of the matrix.

In this work the desired property is symmetric Toeplitz positive definite.
In particular, we consider the completion with maximum determinant over
all positive definite completions. Recall that a real symmetric n × n matrix
T is Toeplitz if there exist real numbers t0, . . . , tn−1 such that Tij = t|i−j|
for all i, j ∈ {1, . . . , n}. A partial matrix is said to be partially symmetric
Toeplitz if the specified entries consist of entire diagonals and the data is
constant over each diagonal. The pattern of such a matrix indicates which
diagonals are known and hence is a subset of {0, . . . , n− 1}. Here 0 refers to
the main diagonal, 1 refers to the super diagonal and so on. The subdiagonals
need not be specified in the pattern since they are implied by symmetry. In
fact, since positive definite completions are trivial when the main diagonal
is not specified (and the determinant is unbounded), we assume throughout
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that the main diagonal is specified. We therefore only consider patterns of
increasing integers in the set {1, . . . , n− 1}. The pattern ofM, for instance,
is {1, 3, 4}.

For a partial matrix T with pattern P and k ∈ P , we let tk denote the
value of T on diagonal k and we refer to {tk : k ∈ P ∪ {0}} as the data of T .
For M the data is {t0, t1, t3, t4} = {6, 1, 1, 1}.

We say that a partial Toeplitz matrix T is positive definite completable if
there exists a positive definite completion of T . In this case we denote by T ?,
the unique positive definite completion of T that maximizes the determinant
over all positive definite completions. We now state the main contribution
of this paper, a characterization of the Toeplitz patterns where the maxi-
mum determinant completion is itself Toeplitz, whenever the partial matrix
is positive definite completable.

Theorem 1.1. Let ∅ 6= P ⊆ {1, . . . , n− 1} denote a pattern of increasing
integers. The following are equivalent.

1. Let T be a partial Toeplitz matrix have pattern P, and let T be positive
definite completable. Then T ? is Toeplitz.

2. There exist r, k ∈ N such that P has one of the three forms:
• P1 := {k, 2k, . . . , rk},
• P2 := {k, 2k, . . . , (r − 2)k, rk}, where n = (r + 1)k,
• P3 := {k, n− k}.

The proof of Theorem 1.1 is presented in Section 2. Note that for the par-
tial Toeplitz matrixM in (1.1), we can set all the unspecified entries to 1 and
obtain a positive definite completion. However, the maximum determinant
completion is given, to four decimal accuracy, when x = z = u = w = 0.3113
and y = v = 0.4247. But, this completion is not Toeplitz. Indeed, the pattern
of M is not among the patterns of Theorem 1.1.

Positive definite Toeplitz matrices play an important role throughout
the mathematical sciences. Correlation matrices of data arising from time
series, [25], and solutions to the trigonometric moment problem, [19], are two
such examples. Among the early contributions to this area is the following
sufficient condition and characterization, for a special case of pattern P1.

Theorem 1.2 ( [9]). If T is a partially positive definite Toeplitz matrix with
pattern P1 and k = 1, then T ? exists and is Toeplitz.

Theorem 1.3 ( [19, Theorem 1.1]). A partially positive definite Toeplitz matrix
is positive definite Toeplitz completable if, and only if, it has a pattern of the
form P1.

In these two results the assumption on the partial matrix is that it is
partially positive definite, whereas in Theorem 1.1 we make the stronger as-
sumption that a positive definite completion exists. As a consequence, our
characterization includes the patterns P2 and P3. To the best of our knowl-
edge pattern P2 has not been addressed in the literature. A special case of
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pattern P3, with k = 1, was considered in [3], where the authors character-
ize the data for which the pattern is positive definite completable. In [14]
the result is extended to arbitrary k and sufficient conditions for Toeplitz
completions are provided. Moreover, the authors conjecture that whenever
a partially positive definite Toeplitz matrix with pattern P3 is positive def-
inite completable then it admits a Toeplitz completion. This conjecture is
confirmed true in Theorem 1.1 and more specifically in Theorem 3.4.

Our motivation for the maximum determinant completion comes from
optimization and the implications of the optimality conditions for completion
problems (see Theorem 2.1). In particular, a positive definite completion
problem may be formulated as an SDP. The central path of standard interior
point methods used to solve SDPs consists of solutions to the maximum
determinant problem. In the recent work [28], the maximum determinant
problem is used to find feasible points of SDPs when the usual regularity
conditions are not satisfied. A consequence of Theorem 1.1 is that when a
partially Toeplitz matrix having one of the patterns of the theorem admits a
positive semidefinite completion, but not a positive definite one, then it has a
maximum rank positive semidefinite completion that is Toeplitz. This result,
as well as further discussions on the positive semidefinite case, are presented
in Section 3. The application to finding the singularity degree of a family of
SDPs is presented in Section 4.

2. Proof of Main Result with Consequences

To simplify the exposition, the proof of Theorem 1.1 is broken up into a
series of results. Throughout this section we assume that every pattern P is
a non-empty subset of {1, . . . , n−1}, consisting of strictly increasing integers,
and T denotes an n× n partial symmetric Toeplitz matrix with pattern (or
form) P . We begin by presenting the optimality conditions for the maximum
determinant problem.

Theorem 2.1. Let T be of the form P and positive definite completable. Then
T ? exists, is unique, and satisfies (T ?)−1i,j = 0, whenever |i− j| /∈ P .

Proof. This result is proved for general positive definite completions in [12].
See also [28]. �

For general positive definite completion problems, this result simply
states that the inverse of the completion of maximum determinant has ze-
ros in the unspecified (or free) entries. Since we are interested in Toeplitz
completions, we may say something further using a permutation under which
Toeplitz matrices are invariant. Let K be the symmetric n× n anti-diagonal
matrix defined as:

Kij :=

{
1 if i+ j = n+ 1,

0 otherwise,
(2.1)

i.e., K is the permutation matrix that reverses the order of the sequence
{1, 2, . . . , n}.
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Lemma 2.2. Let T be of the form P and be positive definite completable. Let
T ? be the maximum determinant completion, and let K be the anti-diagonal
permutation matrix in (2.1). Then the following hold.

1. T ? = KT ?K.
2. If P is of the form P2 with k = 1, i.e., P = {1, 2, . . . , n−3, n−1}, then
T ? is Toeplitz.

Proof. For Item 1, it is a simple exercise to verify that the permutation
reverses the order of the rows and columns and we have

[KT ?K]ij = T ?n+1−i,n+1−j , ∀i, j ∈ {1, . . . , n}.
Moreover,

|n+ 1− i− (n+ 1− j)| = |i− j|.
Therefore, it follows that

[KT ?K]ij = T ?n+1−i,n+1−j = T ?ij = t|i−j|, ∀|i− j| ∈ P ∪ {0}.
Hence KT ?K is a completion of T . Moreover, K · K is an automorphism
of the cone of positive definite matrices. Hence KT ?K is a positive definite
completion of T , and since K is a permutation matrix, we conclude that
det(KT ?K) = det(T ?). By Theorem 2.1, T ? is the unique maximizer of the
determinant. Therefore T ? = KT ?K, as desired.

For Item 2, we let T be as in the hypothesis and note that the only
unspecified entries are (1, n−1) and (2, n), and their symmetric counterparts.
Therefore it suffices to show that T ?1,n−1 = T ?2,n. By applying Item 1 we
get

T ?1,n−1 = [KT ?K]1,n−1 = T ?n+1−1,n+1−(n−1) = T ?n,2 = T ?2,n,

as desired. �

The pattern {1, 2, . . . , n − 3, n − 1} in Lemma 2.2, above, is a special
case of pattern P2 with k = 1. In fact, we show that a general pattern P2

may always be reduced to this special case. A further observation is that this
specific pattern is nearly of the form P1. Indeed, if the diagonal n − 2 were
specified, the pattern would be of the form P1. In fact, for any pattern of the
form P2, if the diagonal (r + 1)k were specified, the pattern would be of the
form P1. We now state a useful lemma for proving that Theorem 1.1, Item 2
implies Theorem 1.1, Item 1, when P is of the form P1 or P2.

Lemma 2.3. Let S be a partial n× n positive definite completable symmetric
matrix and Q a permutation matrix of order n such that

QTSQ =


S1

S2
. . .

S`

 ,
for some ` ∈ N. Here each block Si is a partial symmetric matrix for i ∈
{1, . . . , `}, and the elements outside of the blocks are all unspecified. Then
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the maximum determinant completion of Si, denoted S?i , exists and is unique.
Moreover, the unique maximum determinant completion of S is given by

S? = Q


S?1 0 · · · 0
0 S?2 · · · 0
...

...
. . .

...
0 0 · · · S?`

QT .
Proof. Since QT ·Q is an automorphism of the positive definite matrices, with
inverse Q·QT , we have that QTSQ is positive definite completable and admits
a unique maximum determinant completion, say Ŝ. Moreover, under the map
Q · QT , every completion of QTSQ corresponds to a unique completion of
S, with the same determinant, since the determinant is invariant under the
transformation Q ·QT . Therefore, we have S? = QŜQT . Now we show that Ŝ
has the block diagonal form. Observe that Si is positive definite completable,
take for instance the positive definite submatrices of Ŝ corresponding to the
blocks Si. Thus S?i is well defined, and by the determinant Fischer inequality,
e.g., [18, Theorem 7.8.3], we have

Ŝ =


S?1 0 · · · 0
0 S?2 · · · 0
...

...
. . .

...
0 0 · · · S?`

 ,
as desired. �

In [19] it is shown that a partial Toeplitz matrix of the form P1 with
rk = n − 1 can be permuted into a block diagonal matrix as in Lemma 2.3.
We use this observation and extend it to all patterns of the form P1, as well
as patterns of the form P2, in the following.

Proposition 2.4. Let T be positive definite completable and of the form P1 or
P2. Then T ? is Toeplitz.

Proof. Let T be of the form P1 with data {t0, tk, t2k, . . . , trk} and let p ≥ r
be the largest integer so that pk ≤ n−1. As in [19], there exists a permutation
matrix Q of order n such that

QTT Q =



T0
. . .

T0
T1

. . .

T1


,

where T0 is a (p + 1) × (p + 1) partial Toeplitz matrix occuring n − pk
times and and T1 is a p × p partial Toeplitz. Moreover, T0 and T1 are both
partially positive definite. Let us first consider the case p = r. Then T0
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and T1 are actually fully specified, and the maximum determinant comple-
tion of QTT Q, as in Lemma 2.3, is obtained by fixing the elements outside
of the blocks to 0. After permuting back to the original form, T ? has ze-
ros in every unspecified entry. Hence it is Toeplitz. Now suppose p > r.
Then T0 is a partial Toeplitz matrix with pattern {1, 2, . . . , r} and data
{t0, tk, t2k, . . . , trk} and T1 is a partial Toeplitz matrix having the same pat-
tern and data as T0, but one dimension smaller. That is, T1 is a partial
principal submatrix of T0. By Theorem 1.2 both T0 and T1 are positive defi-
nite completable and their maximum determinant completions, T ?0 and T ?1 ,
are Toeplitz. Let {a(r+1)k, a(r+2)k, . . . , apk} be the data of T ?0 corresponding
to the unspecified entries and let {b(r+1)k, b(r+2)k, . . . , b(p−1)k}, be the data
corresponding to the unspecified entries of T1. By the permanence princi-
ple of [10], T1 is a principle submatrix of T0 and therefore bi = ai, for all
i ∈ {(r + 1)k, (r + 2)k, . . . , (p − 1)k}. By Lemma 2.3, the maximum deter-
minant completion of QTT Q is obtained by completing T0 and T1 to T ?0 and
T ?1 respectively, and setting the entries outside of the blocks to zero. After
permuting back to the original form we get that T ? is Toeplitz with data
a(r+1)k, a(r+2)k, . . . , apk in the diagonals (r + 1)k, (r + 2)k, . . . , pk and zeros
in all other unspecified diagonals.

Now suppose that T is of the form P2. By applying the same permuta-
tion as above, and by using the fact that n = (r + 1)k and each block T0 is
of size r+ 1, we see that the submatrix consisting only of blocks T0 is of size

(n− rk)(r + 1) = ((r + 1)k − rk)(r + 1) = k(r + 1) = n.

Hence,

QTT Q =

T0 . . .

T0

 ,
where T0 is a partial matrix with pattern {1, 2, . . . , r − 2, r} and data

{t0, tk, t2k, . . . , t(r−2)k, trk}.
The unspecified elements of diagonal (r − 1)k of T are contained in the un-
specified elements of diagonal r−1 of the partial matrices T0. By Lemma 2.2,
the maximum determinant completion of T0 is Toeplitz with value t(r−1)k in

the unspecified diagonal. As in the above, after completing QTT Q to its max-
imum determinant positive definite completion and permuting back to the
original form, we obtain the maximum determinant Toeplitz completion of T
with value t(r−1)k in the diagonal (r−1)k and zeros in every other unspecified
diagonal, as desired. �

We now turn our attention to patterns of the form P3. Let J denote
the n × n lower triangular Jordan block with eigenvalue 0. That is, J has
ones on diagonal −1 and zeros everywhere else. We also let e1, . . . , en ∈ Rn
denote the columns of the identity matrix, i.e., the canonical unit vectors.
With this notation we have J =

∑n−1
j=1 ej+1e

T
j . We state several technical

results regarding J in the following lemma.
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Lemma 2.5. With J defined as above and k, l ∈ {0, 1, . . . , n−1}, the following
hold.

1. Jk =
∑n−k
j=1 ej+ke

T
j .

2. Jk(JT )l has nonzero elements only in the diagonal l − k.
3. If k < l, then

Jk(JT )l − Jn−l(JT )n−k = 0 ⇐⇒ l = n− k.

Proof. For Item 1 the result clearly holds when k ∈ {0, 1}. Now observe that
for integers of suitable size (eke

T
l )(eie

T
j ) 6= 0 if, and only if, l = i in which

case the product is eke
T
j . Thus we have

J2 =

n−1∑
j=1

ej+1e
T
j

n−1∑
j=1

ej+1e
T
j

 =

n−1∑
j=2

(ej+1e
T
j )(eje

T
j−1) =

n−2∑
j=1

ej+2e
T
j .

Applying an induction argument yields the desired expression for arbitrary
k.

For Item 2, we use the result of item 1 to get

Jk(JT )l =

n−k∑
j=1

ej+ke
T
j

n−l∑
j=1

eje
T
j+l

 ,

=

n−max {k,l}∑
j=1

(ej+ke
T
j )(eje

T
j+l),

=

n−max {k,l}∑
j=1

ej+ke
T
j+l.

The nonzero elements of this matrix are contained in the diagonal j + l −
(j + k) = l − k.

Finally, for Item 3 we have

Jk(JT )l − Jn−l(JT )n−k =

n−l∑
j=1

ej+ke
T
j+l −

k∑
j=1

ej+n−le
T
j+n−k.

This matrix is the zero matrix if, and only if, l = n− k. �

We now state a special case of the Schur-Cohn Criterion using the matrix
J . We let Sn denote the Euclidean space of symmetric matrices, Sn++ the cone
of positive definite matrices, and SnT the subset of symmetric, positive definite,
Toeplitz matrices.

Theorem 2.6 (Schur-Cohn Criterion, [21]). Let f(z) = a0 + a1z + · · ·+ anz
n

be a polynomial with real coefficients a := (a0, . . . , an). Let

A(a) :=

n−1∑
j=0

ajJ
j , B(a) :=

n−1∑
j=1

aj
(
JT
)n−j

.
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Then every root of f(z) satisfies |z| > 1 if, and only if,

Bez(a) := A(a)A(a)T −B(a)TB(a) ∈ Sn++,

where the matrix Bez(a) is the Toeplitz Bezoutian. Moreover Bez(a)−1 is
Toeplitz.

The Schur-Cohn criterion is usually stated for the case where the roots
are contained within the interior of the unit disk, but a simple reversal of the
coefficients, as described in Chapter X of [24], leads to the above statement.
For further information on the Toeplitz Bezoutian Bez(a), and for a proof of
the fact that Bez(a)−1 is Toeplitz, see e.g., [15].

We now present a result on the maximum determinant completion of
partial Toeplitz matrices with pattern P3.

Proposition 2.7. Let T be positive definite completable and of the form P3.
Then T ? is Toeplitz.

Proof. Let T be as in the hypothesis with pattern of the form P3 defined the
integer k. Furthermore, let O ⊂ R++ × R2 consist of all triples (t0, tk, tn−k)
so that the partial Toeplitz matrix with pattern P3 and data {t0, tk, tn−k} is
positive definite completable. Then it can be verified that O is an open convex
set, and thus in particular connected. We let U ⊆ O consist of those triples
(t0, tk, tn−k) for which the corresponding maximum determinant completion
is Toeplitz and we claim that U = O. Clearly U 6= ∅ as (tk, 0, 0) ∈ U for all
tk > 0. We show that U is both open and closed in O, which together with
the connectedness of O yields that U = O.

First observe that the map F : O → Sn++ that takes (t0, tk, tn−k)
to its corresponding positive definite maximum determinant completion is
continuous; see, for instance, [30]. Next, the Toeplitz positive definite ma-
trices, Sn++ ∩ SnT , form a closed subset of Sn++ since SnT is closed. Thus
U = F−1(Sn++ ∩ SnT ) is closed in O.

To show that U is also open, we introduce the set,

P := {(p, q, r) ∈ R++ × R2 : p+ qzk + rzn−k has all roots satisfy |z| > 1}.

Since the region |z| > 1 is an open subset of the complex plane, P is an open
set. We consider the map G : P → R3 defined as

G(p, q, r) = ([Bez(p, q, r)−1]11, [Bez(p, q, r)−1]k1, [Bez(p, q, r)−1]n−k,1),

where by abuse of notation Bez(p, q, r) is the Toeplitz Bezoutian of Theo-
rem 2.6:

Bez(p, q, r) = (pJ0 + qJk + rJn−k)(pJ0 + qJk + rJn−k)T

− (rJk + qJn−k)(rJk + qJn−k)T .

Then G is continuous and we show that its image is exactly U . By Theo-
rem 2.6, for any (p, q, r) ∈ P we have

Bez(p, q, r) ∈ Sn++, Bez(p, q, r)−1 ∈ Sn++ ∩ SnT .
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Thus Bez(p, q, r)−1 is a completion of the partial matrix having pattern
P3 and data {[Bez(p, q, r)−1]11, [Bez(p, q, r)−1]k1, [Bez(p, q, r)−1]n−k,1}. It fol-
lows that G(P) ⊆ O. Moreover, expanding Bez(p, q, r) we obtain diagonal
terms as well as terms of the form J0(JT )k and J0(JT )n−k, where the co-
efficients have been omitted. By Lemma 2.5, Bez(p, q, r) has non-zero values
only in entries of the diagonals 0, k, n − k. Note that the term Jk(JT )n−k

cancels out in the expansion. Thus by Theorem 2.1, Bez(p, q, r)−1 is a maxi-
mum determinant completion of the partial matrix with pattern P3 and data
{[Bez(p, q, r)−1]11, [Bez(p, q, r)−1]k1, [Bez(p, q, r)−1]n−k,1} and G(P) ⊆ U . To
show equality, let (t0, tk, tn−k) ∈ U and let F (t0, tk, tn−k), as above, be the
maximum determinant completion of the partial matrix with pattern P3

and data {t0, tk, tn−k} which is Toeplitz. Let f0, fk, and fn−k be the (1, 1),
(k + 1, 1) and (n − k + 1, 1) elements of F (t0, tktn−k)−1 respectively. Then
by the Gohberg-Semencul formula for the inversion of a symmetric Toeplitz
matrix (see [11,20]) we have

F (t0, tktn−k)−1 =
1

f0
(f0J

0 + fkJ
k + fn−kJ

n−k)(f0J
0 + fkJ

k + fn−kJ
n−k)T

− 1

f0
(fn−kJ

k + fkJ
n−k)(fn−kJ

k + fkJ
n−k)T ,

= Bez

(√
f0,

fk√
f0
,
fn−k√
f0

)
.

Since F (t0, tktn−k)−1 ∈ Sn++, it follows that
(√

f0,
fk√
f0
, fn−k√

f0

)
∈ P and

G

(√
f0,

fk√
f0
,
fn−k√
f0

)
= (t0, tk, tn−k).

Therefore G(P) = U . Moreover, from the above we have that

G−1(t0, tk, tn−k) =

(√
f0,

fk√
f0
,
fn−k√
f0

)
,

with f0, fk, and fn−k defined above. Since G−1 is continuous, G−1(U) = P,
and P is an open set, we conclude that U is open, as desired. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The direction (2) =⇒ (1) follows from Proposition 2.4
and Proposition 2.7.

For the direction (1) =⇒ (2), let T be positive definite completable with
pattern P = {k1, . . . , ks}, k0 = 0, and data {t0, t1, . . . , ts}. Assume there
exists data tj for the diagonal kj , j ∈ {0, . . . , s}, and that T ? is Toeplitz.
Then by Theorem 2.1, (T ?)−1 has nonzero entries only in the diagonals P∪{0}
(and their symmetric counterparts). We denote by aj the value of the first
column of (T ?)−1 in the row kj + 1 for all j ∈ {0, . . . , s}, and define

A :=

s∑
j=0

ajJ
kj , B :=

s∑
j=1

aj
(
JT
)n−kj

.
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The Gohberg-Semencul formula gives us that T−1 = 1
a0

(AAT −BTB). Sub-

stituting in the expressions for A and B and expanding, we obtain (T ?)−1 is a
linear combination of the following types of terms, along with their symmetric
counterparts:

Jkj (JT )kj , Jk0(JT )kj , Jkj (JT )kl − Jn−kj (JT )n−kl , j 6= l.

By Lemma 2.5, the first type of term has nonzero entries only on the main
diagonal, and the second type of term has nonzero entries only on the di-
agonals belonging to P . The third type of term has nonzero entries only
on the diagonals ±|kj − kl|. As we have already observed in the proof of
Proposition 2.7, the set of data for which T is positive definite completable
is an open set. We may therefore perturb the data of T so that the entries
a0, . . . , aj of the inverse do not all lie on the same proper linear manifold.
Then terms of the form Jkj (JT )kl − Jn−kj (JT )n−kl with j 6= l do not cancel
each other out. We conclude that, for each pair j < l, we have kj − kl ∈ P
or Jkj (JT )kl − Jn−kj (JT )n−kl = 0. By Lemma 2.5 the second alternative is
equivalent to l = n− j. Using this observation we now proceed to show that
P has one of the specified forms.

Let 1 ≤ r ≤ s be the largest integer such that {k1, . . . , kr} is of the form
P1, i.e., k2 = 2k1, k3 = 3k1, etc. . . . If r = s, then we are done. Therefore we
may assume s ≥ r + 1. Now we show that in fact s = r + 1. We have that
kr+1 − k1 ∈ P or kr+1 = n − k1. We show that the first case does not hold.
Indeed if kr+1 − k1 ∈ P , then it follows that kr+1 − k1 ∈ {k1, . . . , kr}. This
implies that

kr+1 ∈ {2k1, . . . , rk1, (r + 1)k1} = {k2, . . . , kr, (r + 1)k1}.

Clearly kr+1 /∈ {k2, . . . , kr}, and if kr+1 = (r+1)k1, then r is not maximal, a
contradiction. Therefore kr+1 = n−k1. To show that s = r+1, suppose to the
contrary that s ≥ r+2. Then kr+2−k1 ∈ P or kr+2 = n−k1. The latter does
not hold since then kr+2 = kr+1. Thus we have kr+2−k1 ∈ {k1, . . . , kr, kr+1},
which implies that

kr+2 ∈ {2k1, . . . , rk1, (r + 1)k1, kr+1 + k1} = {k2, . . . , kr, kr + k1, n}.

Since kr+2 /∈ {k2, . . . , kr, n}, we have kr+2 = kr + k1. Therefore, since kr <
kr+1 < kr+2, we have that 0 < kr+2−kr+1 < k1, and moreover, kr+2−kr+1 /∈
P . It follows that kr+2 = n− kr+1 = k1, a contradiction.

We have shown that P = {k1, 2k1, . . . , rk1, ks} with ks = n − k1. If
r = 1, then P is of the form P3. On the other hand if r ≥ 2, then we observe
that {ks − kr, . . . , ks − k2} ⊆ P , or equivalently,

{ks − kr, . . . , ks − k2} ⊆ {k2, . . . , kr}.

Since the above sets of identical cardinality, distinct increasing elements, we
conclude that ks − k2 = kr. Rearranging, we obtain that ks = (r + 2)k1 and
P is of the form P2, as desired. �
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Remark 2.8. The results of this section have been stated for the symmetric
real case for simplicity and for application to SDP in the following Section 3.
With obvious modifications, our results extend to the Hermitian case.

3. Semidefinite Toeplitz Completions

In this section we extend the results of Theorem 1.1 to positive semidefinite
completions. In the case where all completions are singular, the maximum
determinant is not useful for identifying a Toeplitz one, however, a recent
result of [28] allows us to extend our observations to the semidefinite case.
Given a partial symmetric Toeplitz matrix, T , a positive semidefinite com-
pletion of T may be obtained by solving an SDP feasibility problem. Indeed,
if T has pattern P and data {tk : k ∈ P ∪{0}}, then the positive semidefinite
completions of T are exactly the set

F := {X ∈ Sn+ : A(X) = b}, (3.1)

where A is a linear map and b a real vector in the image space of A satisfying

[A(X)]ik = 〈Ei,i+k, X〉, bik = tk, i ∈ {1, 2, . . . , n− k}, k ∈ P ∪ {0}.

Here Ei,j is the symmetric matrix having a one in the entries (i, j) and (j, i)
and zeros everywhere else and we use the trace inner product: 〈X,Y 〉 =
tr(XY ). The maximum determinant is used extensively in SDP, for example,
the central path of interior point methods is defined by solutions to the
maximum determinant problem. If F is nonempty but does not contain a
positive definite matrix, the maximum determinant may still be applied by
perturbing F so that it does intersect the set of positive definite matrices.
Consider the following parametric optimization problem

X(α) := arg max {det(X) : X ∈ F(α)},

where F(α) := {X ∈ Sn+ : A(X) = b + αA(I)} and α > 0. For each α > 0,
the solution X(α) is contained in the relative interior of F(α). It is somewhat
intuitive that if the limit of these solutions is taken as α decreases to 0, we
should obtain an element of the relative interior of F(0) = F . Indeed, the
following result confirms this intuition. We denote by A∗ the adjoint of A.

Theorem 3.1. Let F 6= ∅ and X(α) be as above. Then there exists X̄ in
the relative interior of F such that limα↘0X(α) = X̄. Moreover, Z̄ :=
limα↘0 α(X(α))−1 exists and satisfies X̄Z̄ = 0 and Z̄ ∈ range(A∗).

Proof. See Section 3 of [28]. �

An immediate consequence of this result is the following.

Corollary 3.2. Let T be an n × n partial symmetric Toeplitz matrix of the
form P1, P2, or P3. If T admits a positive semidefinite completion then it
admits a maximum rank completion that is Toeplitz.
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Proof. Let T be as in the hypothesis with data {t0, t1, . . . , ts} and let F be
the set of positive semidefinite completions, as above. If F ∩ Sn++ 6= ∅, then
the maximum determinant completion is Toeplitz by Theorem 1.1 and is of
maximum rank. Now suppose F ∈ Sn+\Sn++ and observe that for every α > 0,
F(α) consists of solutions to to the completion problem having pattern P1,
P2, or P3 with data {t0 + α, t1, . . . , ts} and there exists a positive definite
completion. Thus X(α) is Toeplitz for each α > 0 and since the Toeplitz
matrices are closed, the limit point X̄, of Theorem 3.1, is Toeplitz. The
relative interior of F corresponds to those matrices having maximum rank
over all of F , hence X̄ has maximum rank, as desired. �

Remark 3.3. In Theorem 2.2 of [26] the author gives in the case of two pre-
scribed diagonals (in the strict lower triangular part) necessary and sufficient
conditions on the data for the existence of a Toeplitz positive semidefinite
completion. In Theorem 10 of [14] the authors give in the case of pattern P3

necessary and sufficient conditions for the existence of a positive semidefinite
completion. If one is able to verify that the conditions are the same, which
will require some tenacity, then one would have an alternative proof that for
the pattern P3 positive semidefinite completability implies the existence of a
Toeplitz positive semidefinite completion. Their results are all stated for the
real case, so one advantage of the approach here is that it readily generalizes
to the complex Hermitian case.

While Theorem 1.1 characterizes patterns for which the maximum deter-
minant completion is automatically Toeplitz and Corollary 3.2 addresses the
maximum rank completions, one may merely be interested in the existence of
a Toeplitz completion when a positive semidefinite one exists. Obviously, the
patterns in Theorem 1.1 fall in this category, but as we see in the following
result, there are more.

Theorem 3.4. Let T be an n×n partial Toeplitz matrix with a positive semi-
definite completion. Define the patterns

• P ′2 := {k, 2k, . . . , (r − 2)k, rk},
• P ′3 := {k, r} where n ≥ k + r.

Let T have a pattern in the set {P1, P
′
2, P

′
3}. Then T has a Toeplitz positive

semidefinite completion.

Proof. For pattern P1 this is a consequence of Corollary 3.2. Note that P ′2
and P ′3 are obtained from P2 and P3, respectively, by relaxing the restriction
on n, i.e., allowing n to be larger. Using the results we already have for P2

and P3 we fill in some of the diagonals of T to obtain a new partial matrix
of the form P1. We show the proof only for patterns of the form P ′2 since the
same approach may be used for patterns of the form P ′3.

Suppose T has pattern P ′2 and consider the partial submatrix containing
the first (r + 1)k rows and columns. This partial matrix is Toeplitz, has a
positive semidefinite completion, and has pattern P2. Let U := {1, . . . , (r +
1)k − 1} \ P2. The elements of U correspond to the unspecified diagonals of
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the submatrix. By Corollary 3.2, there exists a Toeplitz completion for this
submatrix that assigns the value ai for every i ∈ U . Now U is a subset of the
unspecified diagonals of T . We assign the value ai to the unspecified diagonals
of T for every i ∈ U thereby obtaining a new partial positive semidefinite
Toeplitz matrix, say T ′, with pattern {1, 2, . . . , (r + 1)k}. Since T and T ′
agree on the diagonals of P ′2, every completion of T ′ is also a completion of
T . The pattern of T ′ is of the form P1, hence it admits a positive semidefinite
Toeplitz completion, which is also a completion of T , as desired. �

Whether or not Theorem 3.4 gives a full characterization of all patterns
for where there is always a Toeplitz completion among all positive semidefinite
completions, is an open question.

4. The Singularity Degree of Some Toeplitz Cycles

The Slater condition holds for the feasible set of an SDP if it contains a
positive definite matrix. If the Slater condition does not hold for an SDP
then there is no guarantee of convergence to an optimal solution using any
known algorithm, moreover, it may not be possible to verify if a given ma-
trix is optimal or not. One way to regularize an SDP that does not satisfy
the Slater condition is by restricting the problem to the smallest face of Sn+
containing the feasible set. Since every face of Sn+ is a smaller dimensional
positive semidefinite cone, every SDP may be transformed into an equivalent
(possibly smaller dimensional) SDP for which the Slater condition holds. This
transformation is referred to as facial reduction, see for instance [4,5,8]. The
challenge, of course, is to obtain the smallest face. Most facial reduction algo-
rithms look for exposing vectors, i.e., non-zero, positive semidefinite matrices
that are orthogonal to the minimal face. Exposing vectors are guaranteed
to exist by the following theorem of the alternative. Here we let F be the
feasible set of an SDP that is defined by the affine equation A(X) = b, as in
(3.1).

Theorem 4.1 ( [6]). Exactly one of the following holds.

1. F ∩ Sn++ 6= ∅.
2. There exists Z ∈ Sn+ ∩ range(A∗) such that ZX = 0 for all X ∈ F .

This result guarantees the existence of exposing vectors when the Slater
condition does not hold. By restricting the feasible set of an SDP to the kernel
of an exposing vector, the dimension of the SDP is reduced. By repeatedly
finding exposing vectors and reducing the size of the SDP, eventually the
problem is reduced to the minimal face and the Slater condition holds. If the
exposing vector obtained at each iteration is as in Item 2 of Theorem 4.1 and
of maximal rank over all such exposing vectors, then the number of times
the original SDP needs to be reduced in order to obtain a regularized SDP
is referred to as the singularity degree. This notion and the connection to
error bounds for SDP was introduced in [29, Sect. 4]. For instance, if an
SDP satisfies the Slater condition, then it has singularity degree 0 and the
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singularity degree is 1 if and only if there exists an exposing vector Z ∈
Sn+ ∩ range(A∗) such that rank(Z) + rank(X) = n for all X in the relative
interior of F .

In [31, Lemma 3.4] it is shown that for n ≥ 4, there exists a partial
matrix (not Toeplitz) with all entries of the diagonals 0, 1, n− 1 specified so
that the singularity degree of the corresponding SDP is at least 2. Here we
apply the results of the previous sections to derive the singularity degree (or
bounds for it) of a family of symmetric partial Toeplitz matrices with pattern
P = {1, n − 1}. As in much of the matrix completion literature the partial
matrix is viewed as arising from a graph and the pattern P corresponds to
the graph of a cycle with loops. The following result is useful throughout.

Proposition 4.2. Let T = (ti−j)
n
i,j=1 be a positive definite Toeplitz matrix,

and suppose that (T−1)k,1 = 0 for all k ∈ {3, . . . , n − 1}. Then T−1 has the
form 

a c 0 d

c b c
. . .

0 c b
. . . 0

. . .
. . .

. . . c
d 0 c a


, (4.1)

with b = 1
a (a2 + c2 − d2).

Proof. Let us denote the first column of T by
[
a c 0 · · · 0 d

]T
. By

the Gohberg-Semencul formula we have that

T−1 =
1

a
(AAT −BTB),

where

A =



a 0 0 0

c a 0
. . .

0 c a
. . . 0

. . .
. . .

. . . 0
d 0 c a


, B =



0 d 0 c

0 0 d
. . .

0 0 0
. . . 0

. . .
. . .

. . . d
0 0 0 0


.

�

Example 4.3. Let n = 4 and consider the partial matrix with pattern P =
{1, 3} and data {t0, t1, t3} = {1 + α, cos( θ3 ), cos(θ)} for θ ∈ [0, π] and α ≥ 0.
Let F(α) denote the set of positive semidefinite completions for each α > 0
as in Section 3, let F = F(0), and let sd(F) denote the singularity degree
of any SDP for which F is the feasible set. By Corollary 6 of [3] there exists
a positive definite completion whenever α > 0 and there exists a positive
semidefinite completion (but not a positive definite one) when α = 0. Then
by Theorem 1.1 the maximum determinant completion is Toeplitz whenever
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α > 0 and there exists a maximum rank positive semidefinite completion
that is Toeplitz when α = 0 by Corollary 3.2. Let X(α) denote the maximum
determinant positive definite completion when α > 0. Then

X(α) =:


1 + α cos( θ3 ) x(α) cos(θ)
cos( θ3 ) 1 + α cos( θ3 ) x(α)
x(α) cos( θ3 ) 1 + α cos( θ3 )

cos(θ) x(α) cos( θ3 ) 1 + α

 .

Here x(α) denotes the value of the unspecified entry. Using the symbolic
package in MATLAB, we obtain

x(α) =
1

2

(√
α(α+ 2) + (4 cos2(

θ

3
)− 1)2 − (1 + α)

)
.

Taking the limit as α decreases to 0, we get

X̄ := lim
α↘0

X(α) =


1 cos( θ3 ) cos( 2θ

3 ) cos(θ)
cos( θ3 ) 1 cos( θ3 ) cos( 2θ

3 )
cos( 2θ

3 ) cos( θ3 ) 1 cos( θ3 )
cos(θ) cos( 2θ

3 ) cos( θ3 ) 1

 .

This matrix has maximum rank over all positive semidefinite completions
when α = 0 due to Corollary 3.2. Specifically, X̄ has rank 2 whenever θ ∈
(0, π] and rank 1 when θ = 0. To derive the singularity degree of F we
need to find the maximal rank of an exposing vector having the properties
of Theorem 4.1. To this end let Z(α) := αX(α)−1 and let Z̄ = limα↘0 Z(α).
By Theorem 3.1, Z̄ exists and is an exposing vector for F (as long as it is
not the zero matrix) as in Theorem 4.1. By Proposition 4.2 we have

Z(α) =:


a(α) c(α) 0 d(α)
c(α) b(α) c(α) 0

0 c(α) b(α) c(α)
d(α) 0 c(α) a(α)

 , (4.2)

where b(α) = 1
a(α) (a(α)2+c(α)2−d(α)2). Let a, b, c, and d be the limit points

of a(α), b(α), c(α), and d(α) respectively, as α decreases to 0. Then

Z̄ =


a c 0 d
c b c 0
0 c b c
d 0 c a

 .

We observe that if b 6= 0, then rank(Z̄) ≥ 2 and if b = 0 then rank(Z̄) ≤ 1.
The first observation is trivial, while for the second observation, suppose
Z̄ 6= 0 from which we get that a > 0. Then since Z̄ is positive semidefinite,
we have c = 0 and from the equation b = 1

a (a2 + c2 − d2) we get

0 =
1

a
(a2 − d2),
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which implies that a = d and rank(Z̄) = 1. Now since X(α)Z(α) = αI we
have

X(α)


c(α)
b(α)
c(α)

0

 = α


0
α
0
0

 .
Solving for b(α) we obtain the expression

b(α) =


α(cos( θ3 )+cos(θ))

(1+α)(cos( θ3 )+cos(θ))−2x(α) cos( θ3 )
, θ ∈ [0, π], θ 6= 3π

4 ,
α(1+α+x(α))

(1+α)(1+α+x(α))−2 cos2(θ) , θ = 3π
4 .

Evaluating the limits we get that b = 0 if θ = π and b is non-zero for all
other values of θ in [0, π]. It follows that rank(Z̄) ≥ 2 when θ ∈ (0, π) and
since rank(X̄) = 2 for these values of θ, we conclude that sd(F) = 1 when
θ ∈ (0, π). When θ = 0 it can be derived that a = b = 3

4 and c = d = − 3
8 .

Then Z̄ is a rank 3 matrix and sd(F) = 1. For the case θ = π we have that
rank(Z̄) ≤ 1 and now we show that every exposing vector for F that lies in
Sn+ ∩ range(A∗) has rank at most 1. Indeed, for θ = π we have

X̄ =


1 1

2 − 1
2 −1

1
2 1 1

2 − 1
2

− 1
2

1
2 1 1

2
−1 − 1

2
1
2 1

 .

Now a basis for the kernel of X̄ is formed by the vectors

v :=


1
0
0
−1

 , u :=


1
−1
1
0

 .
Observe that range(A∗) consists of all the matrices with entries (1, 3) and
(2, 4) identically 0. Now if Z is any exposing vector for F , we have X̄Z =
0 and hence Z = λ(vvT ) + µ(uuT ) for some λ, µ ∈ R. But since uuT /∈
range(A∗), it follows that rank(Z) ≤ 1 and sd(F) ≥ 2. We conclude this
example by summarizing our observations:

sd(F) =

{
1, θ ∈ [0, π),

≥ 2, θ = π.

Some of the observations of this example extend to general n ≥ 4.
First we show that the partial matrix admits a unique positive semidefinite
completion, which is Toeplitz.

Proposition 4.4. Consider the partial symmetric n × n Toeplitz matrix with
pattern P = {1, n− 1} and data

{t0, t1, tn−1} = {1, cos θ, cos((n− 1)θ)},
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where θ ≤ π
n−1 . Then the unique positive semidefinite completion is

(cos ((i− j)θ))n−1i,j=0 = BTB,

where

B =

(
1 cos θ cos(2θ) · · · cos((n− 1)θ)
0 sin θ sin(2θ) · · · sin((n− 1)θ)

)
.

Proof. Let us denote the first column of a positive semidefinite completion

by
(
cos θ0 cos θ1 cos θ2 · · · cos θn−1

)T
, where θ0 = 0, θ1 = θ, θn−1 =

(n − 1)θ and θ2, . . . , θn−2 ∈ [0, π]. If we look at the principal submatrix in
rows and columns 1, n− 1 and n, we get the positive semidefinite submatrix 1 cos(θn−2) cos((n− 1)θ)

cos(θn−2) 1 cos(θ)
cos((n− 1)θ) cos(θ) 1

 .

[3, Proposition 2] yields that (n− 1)θ ≤ θn−2 + θ. Thus

θn−2 ≥ (n− 2)θ. (4.3)

Next, consider the (n− 1)× (n− 1) upper left corner with data

{t0, t1, tn−2} = {1, cos θ, cos θn−2}.
By [3, Corollary 2] we have that

2 max{θn−2, θ} ≤ (n− 2)θ + θn−2. (4.4)

This implies that
θn−2 ≤ (n− 2)θ. (4.5)

Combining this with (4.3) we have θn−2 = (n − 2)θ. If instead we looked at
the principal submatrix in rows and columns 1,2, and m and combine it with
the (n − 1) × (n − 1) lower right corner, we obtain that also in the (n, 2)th
position we necessarily have cos((n− 2)θ). Thus along the (n− 2)th diagonal
the value is cos((n− 2)θ).

One can repeat this argument for smaller matrices (or invoke induction)
and obtain that in the kth diagonal necessarily all entries equal cos θk =
cos(kθ), k = 2, . . . , n− 2. �

Now we show that in case θ = π
n−1 , we have rank(X̄)+rank(Z̄) ≤ 3 < n

for all n ≥ 4.

Example 4.5. Let n ≥ 4 and consider the n×n symmetric partial Toeplitz ma-
trix with pattern P = {1, n−1} and data {t0, t1, tn−1} = {1+α, cos( π

n−1 ),−1}
where α > 0. As in Example 4.3, we let F denote the set of positive semi-
definite completions when α = 0 and we let X(α) denote the maximum
determinant completion when α > 0. By Proposition 4.4, F is the rank 2
matrix

X̄ :=

(
cos

(
(i− j)π
n− 1

))n−1
i,j=0

,

and by Theorem 3.1, X̄ = limα↘0X(α). If Z(α) = αX(α)−1 and Z̄ is the
limit of Z(α) as α decreases to 0, we show that rank(Z̄) ≤ 1. Let a, b, c, and
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d be the limit points of a(α), b(α), c(α), and d(α) respectively. By Proposi-
tion 4.2, Z(α) is as in (4.2). We claim that if a = 0 then Z̄ = 0. Indeed, by
the fact that Z̄ is positive semidefinite we have c = d = 0. Moreover,

0 = tr(X̄Z̄) = (n− 2)b,

which implies that b = 0 and consequently Z̄ = 0. Thus we may assume a > 0
and the equation

b =
1

a
(a2 + c2 − d2),

holds. From X̄Z̄ = 0 and the above equation, we obtain

2 cos

(
π

n− 1

)
c+ b = 0, a+ cos

(
π

n− 1

)
c− d = 0.

This gives c = −b/(2 cos( π
n−1 )), d = a− b

2 , and thus

b = a+
1

a

b2

4 cos2( π
n−1 )

− 1

a

(
a− b

2

)2

.

After rearranging, we obtain

b2

a

(
1

4
− 1

4 cos2( π
n−1 )

)
= 0.

Consequently b = 0, and rank(Z̄) ≤ 1 follows.
Numerical experiments suggest that Z̄ is a rank 1 matrix with (Z̄)11 =

(Z̄)nn = (Z̄)1n = (Z̄)n1 = n−1
4 and all other entries equal to 0.
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