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Abstract
We introduce a novel approach for robust principal component analysis (RPCA) for 
a partially observed data matrix. The aim is to recover the data matrix as a sum of a 
low-rank matrix and a sparse matrix so as to eliminate erratic noise (outliers). This 
problem is known to be NP-hard in general. A classical approach to solving RPCA is 
to consider convex relaxations. One such heuristic involves the minimization of the 
(weighted) sum of a nuclear norm part, that promotes a low-rank component, with 
an �

1
 norm part, to promote a sparse component. This results in a well-structured 

convex problem that can be efficiently solved by modern first-order methods. How-
ever, first-order methods often yield low accuracy solutions. Moreover, the heuristic 
of using a norm consisting of a weighted sum of norms may lose some of the advan-
tages that each norm had when used separately. In this paper, we propose a novel 
nonconvex and nonsmooth reformulation of the original NP-hard RPCA model. The 
new model adds a redundant semidefinite cone constraint and solves small subprob-
lems using a PALM algorithm. Each subproblem results in an exposing vector for a 
facial reduction technique that is able to reduce the size significantly. This makes the 
problem amenable to efficient algorithms in order to obtain high-level accuracy. We 
include numerical results that confirm the efficacy of our approach.
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1  Introduction

Principal component analysis (PCA) seeks a low-rank approximation to an input 
data matrix. It is arguably the most popular statistical tool in data analysis and is 
very effective for handling the effect of small random Gaussian noise. PCA can be 
accomplished easily via the singular value decomposition (SVD). However, it is also 
well-known that PCA lacks robustness with respect to large erratic noise, i.e., a sin-
gle corrupted entry can result in an approximation that is far away from the true 
solution. Robust PCA has been proposed to remove the effect of sparse gross errors. 
In e.g., Candes et al. (2010), Chandrasekaran et al. (2009), Cheng et al. (2015), the 
intractable RPCA problem and its convex relaxation are introduced. It is shown that 
the two problems are equivalent, with high probability, under certain conditions of 
the input data. Specifically, RPCA aims to express a given data matrix Z ∈ ℝ

m×n as 
the sum Z = L∗ + S∗ , where L∗ is the low-rank approximation to Z, and S∗ is a sparse 
matrix that captures the additive erratic noise. Throughout this paper, we assume 
that r = rank (L∗) ≪ min(m, n) , and 𝜇 > 0 is a given positive parameter. RPCA is 
in a sense a multicriteria (two criteria) problem in that it attempts to find a low rank 
approximation as well a sparse approximation. Finding Pareto optimal points can be 
formulated as the following weighted optimization problem:

where the cardinality function ‖S‖0 counts the number of nonzeros of S. This prob-
lem is NP-hard due to the combinatorial nature of the rank and the cardinality func-
tions. It is shown in e.g., Candes et  al. (2010), Chandrasekaran et  al. (2009), that 
under certain conditions (1) is equivalent, with high probability, to the following 
convex program:

Here ‖L‖∗ is the nuclear norm of L, the sum of the singular values of L, and the (vec-
tor) �1-norm is ‖S‖1 ∶= ∑

ij �Sij� . The convex program (2) is known as robust princi-
pal component pursuit, RPCP.

In practice, it is possible that the matrix Z is only partially observed. That is, 
there exists a subset Ê of the indices such that only entries Zij for (i, j) ∈ Ê are given. 
In this case, RPCA (1) and RPCP (2) need to be changed, respectively, to

and

(1)
min rank (L) + �‖S‖0
s.t. L + S = Z,

(2)
min‖L‖∗ + �‖S‖1
s.t. L + S = Z.

(3)(����)
F1(L, S) ∶= min rank (L) + 𝜇‖S‖0

s.t. PÊ(L + S) = z,
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where PÊ ∶ ℝ
m×n

→ ℝ
Ê denotes the projection onto the components with indices in 

Ê , and the data z = PÊ(Z).
The convex relaxations (2) and (4) can be reformulated as semidefinite program-

ming problems (SDP), e.g., Recht et al. (2010), Candes et al. (2010). Thus, they can 
be efficiently solved by e.g.,  interior point methods. However, RPCA arising from 
real applications is usually of huge scale and interior point methods generally do 
not scale well. As a result, current research on algorithms for RPCA and RPCP is 
focused on first-order methods, see e.g.,  the recent survey papers (Bouwmans and 
Zahzah 2014; Aybat 2016; Ma and Aybat 2018). But, it is also known that the first-
order methods cannot generally provide high accuracy solutions.

1.1 � Main contributions

In this paper we propose a new approach to solve RPCA with partially observed 
data, (3). We use semidefinite programming and a novel cone facial reduction (FR) 
technique applied to a reformulation of (3). As a result, the size of the feasible region 
is significantly reduced and an efficient algorithm is used to obtain highly accurate 
solutions. This extends the approach in Huang and Wolkowicz (2018) for low-rank 
matrix completions where no sparse gross errors are considered. In addition, our 
facial reduction technique is applied on the non-convex model (3) directly, rather 
than within a nuclear norm mimimization model as done in Huang and Wolkowicz 
(2018). A key ingredient here is the use of the exposing vector approach for charac-
terizing faces of the semidefinite cone, Sn

+
 . see Drusvyatskiy and Wolkowicz (2017), 

Drusvyatskiy et al. (2017), Huang and Wolkowicz (2018). Here we develope a new 
technique to grow bicliques by submatrix completion. Our tests show that this new 
technique greatly increases the speed of the completion process and allows us to 
find more missing entries. In particular, we see that in many cases, and even under 
relatively low density for the sampled data, we get exact recovery without using 
any SDP solver. This provides a distinct improvement over simply using the convex 
relaxation approach, RPCP.

1.2 � Connections and differences with previous work

Our work is an extension of the previous work in Huang and Wolkowicz (2018) that 
only considers facial reduction on the convex approximation of the rank minimiza-
tion problem. In this paper, we show in Lemma 1 that the nonconex RPCA problem 
(3) is equivalent to the nonconvex SDP problem (5). And in Proposition 1 we get the 
exposing vectors for the optimal face of the nonconvex SDP problem, rather than 
the convex approximation in Huang and Wolkowicz (2018). Note that our goal is to 
solve the nonconvex problem in order to recover the true matrices. It is clear after 
facial reduction that the optimal solution lies in a smaller space. Hence the convex 
relaxation of the now smaller-size problem generally has a better chance to recover 

(4)(����)
min ‖L‖∗ + 𝜇‖S‖1
s.t. PÊ(L + S) = z,
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the true matrices than the convex relaxation of the original large-size problem. 
This is validated by the numerical tests in Sect. 6. Secondly, we extend the method 
in Huang and Wolkowicz (2018) to include the sparse component S and we show we 
can reduce the size of S using exposing vectors obtained from the low rank compo-
nent L. Thirdly, we proposed a novel approach of growing bicliques in Sect. 5. The 
technique to grow bicliques is much more efficient when compared to the previous 
work in the literature.

1.2.1 � Organization

Further background on RPCA is given in Sect. 2; this includes SDP reformulations 
and graph representations. In Sect. 3 we discuss how to obtain accurate solutions for 
small fully sampled submatrices. This is the key in obtaining high accurate exposing 
vectors for faces used in reducing the size of the complete problem, while still main-
taining low error growth that could arise due to noise. Section 4 presents the main 
results used in the paper. This includes facial reduction, bicliques and exposing vec-
tors, as well as the algorithm for solving the RPCA problem accurately. In Sect. 5 
we discuss a heuristic on growing the size of bicliques using a submatrix approach. 
We present the numerical results in Sect. 6 for both noiseless and noisy data. We 
conclude in Sect. 7.

2 � Background

In this paper we focus on the nonconvex and nonsmooth model RPCA    in  (3). 
Our approach starts with a reformulation using an additional semidefinite cone 
constraint.

2.1 � Reformulating RPCA with SDP

In this section we show that (3) is equivalent to the following nonconvex and nons-
mooth SDP problem:

Lemma 1  Problems (3) and (5) are equivalent in the sense that they have the same 
optimal solution pair (L∗, S∗) and the same optimal objective value. In particular, 
the optimal L∗ is a submatrix of the optimal Y∗.

Proof  Suppose (L∗, S∗) is the optimal solution of (3) with rank (L∗) = r < min(m, n) , 
and the compact SVD of L∗ is given by L∗ = U𝛴V⊤ , where both U ∈ ℝ

m×r and 

(5)

F2(Y , S) ∶=min
Y ,S

rank (Y) + 𝜇‖S‖0
s.t. PÊ(L + S) = z

Y =

�
W1 L

L⊤ W2

�
⪰ 0.
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V ∈ ℝ
n×r have orthonormal columns, and � ∈ ℝ

r×r
++

 is a diagonal matrix with the 
positive singular values of L∗ on its diagonal. We now see that this is equivalent to 
(Y∗, S∗) is an optimal solution pair of (5) with

from which we get that rank (Y∗) = rank (L∗) = r , and L∗ is the upper right corner 
block of Y∗ . This shows that for an optimal Y∗ we have rank (Y∗) = rank (L∗) = r ; 
and it emphasizes that the only change in the two problems is the addition of the 
semidefinite constraint.

The equivalence follows from: if there exists a better solution (Ŷ , Ŝ) , with the 
spectral decomposition of Ŷ  given by

then we have

where the first inequality is due to the fact rank (Û𝛴̂V̂⊤) ≤ rank (𝛴̂) = rank (Ŷ) . 
This is a contradiction. 	�  ◻

Remark 1  Lemma 1 indicates that, in order to solve (3), we can solve (5) instead to 
obtain (Y∗, S∗) . Then (L∗, S∗) solves (3), where L∗ is obtained from the upper right 
corner block of Y∗ . It appears that (5) is harder than (3) as it is much larger. How-
ever, the fact that the optimal L∗ and Y∗ are both of low rank enables us to reduce 
the size of (5) greatly to a new problem whose size is much smaller than (3). This is 
done by pursuing the facial structure of the semidefinite cone in (5). This is the main 
motivation for our approach.

2.2 � Outline of our algorithm

We now present a brief outline of our algorithm based on the graph representation 
of the partially observed matrix Z and the facial reduction of the reformulation (5).

For a given partially observed data matrix Z ∈ ℝ
m×n , we aim to find the low-rank-

plus-sparse decomposition Z = L∗ + S∗ with r = rank (L∗) ≪ min(m, n) . The main 
steps of our algorithm are as follows:

	 (i)	 Associate a bipartite graph to Z using the observed entries, and find a biclique 
associated to a completely determined submatrix of Z. Denote this submatrix 
as Z̄ ∈ ℝ

p×q , where p, q are generally much smaller than m, n, respectively.
	 (ii)	 Find the low-rank-plus-sparse decomposition for Z̄ , i.e., Z̄ = L̄ + S̄ . Note that 

since p ≪ m, q ≪ n , this problem is much easier than the original problem.

(6)Y∗ =

[
U

V

]
𝛴

[
U

V

]⊤
=

[
U𝛴U⊤ U𝛴V⊤

V𝛴U⊤ V𝛴V⊤

]
=

[
U𝛴U⊤ L∗

(L∗)⊤ V𝛴V⊤

]
,

Ŷ =

[
Û

V̂

]
𝛴̂

[
Û

V̂

]⊤
=

[
Û𝛴̂Û⊤ Û𝛴̂V̂⊤

V̂𝛴̂Û⊤ V̂𝛴̂V̂⊤

]
,

F1(Û𝛴̂V̂⊤, Ŝ) ≤ F2(Ŷ , Ŝ) < F2(Y
∗, S∗) = r + 𝜇‖S∗‖0 = F1(L

∗, S∗),
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	 (iii)	 From L̄ we are able to find an exposing vector for a face of the SDP cone that 
contains an optimal Y∗ that solves (5), i.e., an exposing vector of the optimal 
face. Note that L̄ is a submatrix of L∗ and thus a submatrix of Y∗.

	 (iv)	 We use the fact that the sum of exposing vectors of faces is an exposing vector 
of the intersection of the faces, see (9) below. We can then reformulate (5) into 
a new problem whose size is much smaller than (3). This new problem can 
then be solved efficiently and accurately.

2.3 � Graph representation of a partially observed matrix Z

We associate a bipartite graph GZ((Um,Vn), Ê) to Z, whose node set corresponds to 
the union of the two sets of rows and columns of Z

and there is an edge (i, j) ∈ Ê , with i ∈ Um and j ∈ Vn if Zij is observed. Note that a 
biclique of GZ corresponds to a submatrix of Z whose entries are all observed. To 
find a biclique of GZ((Um,Vn), Ê) , we can relate it to finding cliques in the graph 
G = (V ,E) whose node set is V = {1,… ,m,m + 1,… ,m + n} and the edge set E is

Suppose we find a non-trivial clique of G denoted by C = {i1,… , ik} whose cardi-
nality k = p + q satisfies

By removing the edges in C that have both nodes in {1,… ,m} or {m + 1,… ,m + n} , 
we obtain a biclique of GZ . We use C̄ to denote this biclique. This biclique then cor-
responds to a submatrix of Z, with entries corresponding to edges in C̄ being kept 
and other entries of Z are removed. We use Z̄ to denote this matrix whose size is 
p × q . Note that Z̄ is a submatrix of Z, and all entries of Z̄ are observed. Moreover, 
we generally maintain the size of Z̄ much smaller than the size of Z, p ≪ m and 
q ≪ n.

2.4 � Heuristics for finding cliques

Finding all the cliques from a graph is a NP-hard problem, (Blair and Peyton 1993); 
the clique decision problem is one of Karp’s 21 NP-complete problems,  (Karp 
1972). Moreover, the cost of finding the SVD needed for each submatrix corre-
sponding to each clique found becomes expensive for large cliques and large sub-
matrices. Therefore, we use a heuristic algorithm that is proposed in Krislock and 
Wolkowicz (2010) and  Drusvyatskiy et  al.  (2017, Algorithm  2) to efficiently find 
many small cliques. This heuristic algorithm is briefly outlined in Algorithm 1.

Um = {1,… ,m}, Vn = {1,… , n},

E ∶= {(i, j) ∈ V × V ∶ (i, j − m) ∈ Ê} ∪ {(i, j) ∈ V × V ∶ 1 ≤ i < j ≤ m}

∪ {(i, j) ∈ V × V ∶ m + 1 ≤ i < j ≤ m + n}.

|C ∩ {1,… ,m}| = p ≠ 0, |C ∩ {m + 1,… ,m + n}| = q ≠ 0.
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Algorithm 1 is very efficient in practice because it only goes through each node in 
the graph G once. In total, we need to add at most Kmax|V| nodes which corresponds 
to Kmax|V| row operations on the adjacency matrix of the graph. Since it is a heu-
ristic, it is not guaranteed that all the cliques are found. However, if we need more 
cliques, we could apply a random permutation to V and use Algorithm 1 again.

3 � Decomposing the submatrix Z̄ using PALM

From Sects. 2.3 and 2.4 we know that by finding a biclique of GZ , we get a sub-
matrix of Z, denoted by Z̄ ∈ ℝ

p×q with Kmin ≤ p + q ≤ Kmax , whose entries are all 
known (sampled). Now we want to find a low-rank-plus-sparse decomposition of Z̄ . 
This problem can be formulated as

where r̄ and s̄ are given parameters to control the rank of L̄ and sparsity of S̄ , respec-
tively. There are two reasons that (7) is much easier to solve than (3). The first rea-
son is that all entries of Z̄ are known, while those in Z are only partially known. The 
second reason is that the size of Z̄ is much smaller than the size of Z. We adopt the 
proximal alternating linearization method (PALM) (Bolte et al. 2014) to solve (7). 
This is summarized in Algorithm 2.

(7)
min
L̄,S̄

1

2
‖L̄ + S̄ − Z̄‖2

F

s.t. rank (L̄) ≤ r̄, ‖S̄‖0 ≤ s̄,
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By introducing indicator functions, (7) can be equivalently written as

where the indicator function �(X ∣ X) equals 0 if X ∈ X  , and equals +∞ other-
wise. It is easy to verify that the objective function 𝛹 (L̄, S̄) satisfies the so-called 
Kurdyka-̌ojasiewicz property (Kurdyka 1998; Łojasiewicz 1963; Bolte et al. 2014). 
As a result, we have the following convergence result for Algorithm 2 that follows 
directly from Bolte et al. (2014, Theorem 1).

Theorem 1  The sequence {L̄k, S̄k}k∈ℕ generated by Algorithm 2 converges to a criti-
cal point of problem (7).

Suppose we solve (7) and obtain the optimal value zero that guarantees a global 
optimum. To ensure the correct L̄ is recovered, we need this global optimum to be 
unique. This happens with high probability when the rank of L̄ is much smaller than 
the size of the matrix, and the incoherence conditions hold, see e.g., Candes et al. 
(2010), Chandrasekaran et al. (2009). Therefore, we make the following assumption 
throughout the remainder of the paper.

Assumption  We assume that r̄ ≪ min(p, q) and, in addition, that (7) has a unique 
global optimal solution L̄ that is a submatrix of L∗ and has the same rank as L∗.

The uniqueness also happens with higher probability when the sparsity param-
eter s̄ is smaller. Let DS denote the density of the sparse matrix S∗ . We vary s̄ from 
1 to max{1, pqDS} to control the sparsity in problem (7). We also set the target rank 
r̄ = r . Thus we have the following algorithm:

(8)min
L̄,S̄

𝛹 (L̄, S̄) ∶=
1

2
‖L̄ + S̄ − Z̄‖2

F
+ �(L̄ ∣ rank (L̄) ≤ r̄) + �(S̄ ∣ ‖S̄‖0 ≤ s̄),
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4 � Facial reduction, bicliques and exposing vectors

4.1 � Preliminaries on faces

We now present some of the geometric facts we need. More details can be found in 
e.g., Drusvyatskiy and Wolkowicz (2017), Pataki (2000), Krislock and Wolkowicz 
(2010), Drusvyatskiy et al. (2017). Recall that the set K is a proper convex cone if

The dual cone, K∗ , is defined by

A subcone F ⊆ K is a face, F ⊴ K , of the convex cone K if

The conjugate face, F∗ , is defined by F∗ = F⟂ ∩ K∗ , where F⟂ denotes the orthogo-
nal complement of F. A face F ⊴ K is an exposed face if there exists � ∈ K∗ such 
that F = �⟂ ∩ K ; and � is an exposing vector. Let T be a subset of the convex cone 
K, then face (T) is the smallest face of K containing T. It is known that: a face of a 
face is a face; an intersection of faces is a face; and essential for our algorithm is the 
following for finding an intersection of exposed faces Fi ⊴ K, i = 1,… , k , see Drus-
vyatskiy et al. (2017),

If K = S
n
+
 , i.e., the positive semidefinite cone, then the facial structure is well under-

stood. Faces are characterized by the ranges or nullspaces of the matrices in the face. 
Let X ∈ S

n
+
 be rank r and

K + K ⊆ K, 𝜆K ⊆ K,∀𝜆 ≥ 0, int (K) ≠ �.

K∗ = {� ∈ ℝ
n ∶ ⟨�, k⟩ ≥ 0,∀k ∈ K}.

x, y ∈ K, x + y ∈ F ⟹ x, y ∈ F.

(9)Fi = K ∩ �⟂

i
,∀i ⟹ ∩k

i=1
Fi =

(
k∑

i=1

�i

)⟂

∩ K.

X =
[
P Q

] [D 0

0 0

] [
P Q

]⊤
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be the (orthogonal) spectral decomposition with D ∈ S
r
++

 being a diagonal matrix. 
Then the smallest face of Sn

+
 containing X is

The matrix QQ⊤ is an exposing vector for face (X) . Moreover, the relative interior 
satisfies

i.e., the face and the exposing vectors are characterized by the eigenspace of any X̂ 
in the relative interior of the face.

For our application we use the following view of facial reduction and exposed 
faces.

Theorem 2  (Drusvyatskiy et al. 2015, Theorem 4.1; Drusvyatskiy and Wolkowicz 
2017) Consider a linear transformation M ∶ S

n
→ ℝ

m and a nonempty feasible set

for some b ∈ ℝ
m . Then a vector v exposes a proper face of M(Sn

+
) containing b if, 

and only if, v satisfies the auxiliary system

Let N denote the smallest face of M(Sn
+
) containing b. Then the following state-

ments are true.

1.	 We always have Sn
+
∩M

−1N = face (F) , the smallest face containing F .
2.	 For any vector v ∈ ℝ

m the following equivalence holds:

The result in (10) details the facial reduction process for the matrix completion 
problem using exposing vectors. More precisely, if B ⪰ 0 is a principal submatrix 
of the data and trace (VB) = 0,V ⪰ 0,V ≠ 0 , then V provides an exposing vector 
for the image of the coordinate projection onto the submatrix. We can then com-
plete V with zeros (adjoint of the coordinate projection) to get Y ∈ S

n
+
 , an expos-

ing vector for F  . Define the triangular number, t(n) = n(n + 1)∕2 , and the isometry 
s2vec ∶ S

n
→ ℝ

t(n) that vectorizes the upper-triangular part of a symmetric matrix 
columnwise.

Corollary 1  Suppose that 1 < k < n and M in Theorem  2 is the coordi-
nate projection onto the leading principal submatrix of order k,m = t(k) . Let 
B ∈ S

k
+
, b = s2vec (B) ∈ ℝ

t(k) , i.e., for X ∈ S
n , we have

face (X) = PSr
+
P⊤ = S

n
+
∩ (QQ⊤)⟂.

relint ( face (X)) = PSr
++

P⊤ = relint ( face (X̂)), ∀X̂ ∈ relint ( face (X)),

F ∶= {X ∈ S
n
+
∶ M(X) = b},

0 ≠ M
∗v ∈ S

n
+

and ⟨v, b⟩ = 0.

(10)vexposesN ⟺ M
∗vexposes face (F).
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Let

Then Y = M
∗v is an exposing vector for the feasible set F  , i.e.,

Proof  The proof follows immediately from Theorem  10 as v exposes N and 
Y = M

∗v is an exposing vector for face (F) . 	� ◻

4.2 � Exposing vector

The following lemma shows a generic rank property of a matrix with its submatrix.

Lemma 2  (Generic rank property, Lemma 3.6 in Huang and Wolkowicz (2018)) Let 
r be a positive integer and Z1 ∈ ℝ

m×r and Z2 ∈ ℝ
n×r be continuous random vari-

ables with i.i.d. entries. Set Z = Z1Z
⊤
2
 and let X ∈ ℝ

p×q be any submatrix of Z with 
min(p, q) ≥ r . Then rank (X) = r with probability 1.

Based on Lemma 2, we can assume that L̄ returned by Algorithm 3 has the same 
rank as the targeting low-rank matrix L∗ if min(p, q) > r , i.e.,

That is, we solved (7) to global optimality with objective value being 0.

Proposition 1  Under Assumption 3, suppose that PALM (Algorithm 2) returns L̄ and 
S̄ such that (11) holds. Without loss of generality, we further assume the targeting 

low-rank matrix L∗ can be partitioned as L∗ =
[
L1 L2
L̄ L3

]
 (after a permutation if 

needed), where L̄ ∈ ℝ
p×q and r ≤ min(p, q) , and the SVD of L̄ is given by

By adding appropriate blocks of zeros to ŪŪ⊤ and V̄V̄⊤ (after a permutation if 
needed), we get the following matrix W, which is an exposing vector for face (Y∗) , 
i.e., trace (Y∗W) = 0 , where Y∗ is the optimal solution of (5).

M(X)ij = bij, ∀1 ≤ i ≤ j ≤ k.

0 ≠ V ∈ S
k
+
, trace (VB) = 0, v = s2vecV .

trace (Y(F)) = 0.

(11)Z̄ = L̄ + S̄, rank (L̄) = r.

(12)L̄ =
[
P̄ Ū

] [𝛴r 0

0 0

] [
Q̄ V̄

]⊤
, 𝛴r ∈ S

r
++

.

W =

⎡
⎢⎢⎢⎣

0 0 0 0

0 ŪŪ⊤ 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 V̄V̄⊤ 0

0 0 0 0

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

0 0 0 0

0 ŪŪ⊤ 0 0

0 0 V̄V̄⊤ 0

0 0 0 0

⎤
⎥⎥⎥⎦
.
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Proof  Lemma 1 shows the property

Without loss of generality, after a permutation if needed, we assume that

Now, since PDQ⊤ = L̄ , we have Range (L̄) ⊆ Range (P) , Range (L̄⊤) ⊆ Range (Q) . 
Next, from L̄ = P̄𝛴rQ̄

⊤ , we have Range (L̄) ⊆ Range (P̄) , Range (L̄⊤) ⊆ Range (Q̄) . 
Therefore, since P̄,P, Q̄,Q all have only r columns and rank (L̄) = r . It follows that 
Range (P) = Range (P̄) = Range (L̄) and Range (Q) = Range (Q̄) = Range (L̄⊤) . 
We conclude that P⊤ŪŪ⊤ = P̄⊤ŪŪ⊤ = 0 and Q⊤V̄V̄⊤ = Q̄⊤V̄V̄⊤ = 0 , i.e.,  that 
Y∗

⋅W = 0 . Therefore W is an exposing vector of the optimal face, the face that con-
tains Y∗ , the optimal solution of (5). 	�  ◻

Remark 2  The reason we apply facial reduction to (5) (or equivalently (3)) is 
because applying facial reduction to (5) is better than applying facial reduction to 
the convex relaxation formulation. Since the goal is to solve the nonconvex problem 
(5) to recover the true matrices, when we apply facial reduction to (5), we can show 
that the exposing vector is actually the optimal face of the nonconvex problem (5) 
in Proposition 1, therefore the optimal solution lies in a smaller space and we have 
a better chance to obtain the optimal solution of the nonconvex problem (5). If we 
apply facial reduction to the convex approximation, we may not obtain the exposing 
vector of the “optimal face”.

4.3 � Reducing problem size using FR

From Proposition  1, we get Algorithm  4 to find an exposing vector Yexpo for 
face (Y∗).

rank (Y∗) = rank (L∗) = r.

Y∗ =

⎡
⎢⎢⎢⎣

U

P

Q

V

⎤
⎥⎥⎥⎦
D

⎡
⎢⎢⎢⎣

U

P

Q

V

⎤
⎥⎥⎥⎦

⊤

=

⎡
⎢⎢⎢⎣

UDU⊤ UDP⊤ UDQ⊤ UDV⊤

PDU⊤ PDP⊤ PDQ⊤ PDV⊤

QDU⊤ QDP⊤ QDQ⊤ QDV⊤

VDU⊤ VDP⊤ VDQ⊤ VDV⊤

⎤
⎥⎥⎥⎦
,

L∗ =

�
UDQ⊤ UDV⊤

PDQ⊤ PDV⊤

�
, with PDQ⊤ = L̄ andD ∈ S

r
++

.
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Remark 3  We emphasize that the size of the bicliques in � are small. A large 
biclique means an expensive SVD when finding the corresponding exposing vector. 
Adding many exposing vectors results in one exposing vector corresponding to the 
union of the bicliques after completion.

From Yexpo we can also find the basis for Null (Yexpo) which is given by the col-
umns of

where VP ∈ ℝ
m×rp and VQ ∈ ℝ

n×rq . We denote rv = rp + rq < m + n . Therefore Y∗ 
(optimal solution of (5)) can be expressed as

From Lemma 1 and (13) we have rank (Y∗) = rank (VPRpqV
⊤
Q
) = rank (Rpq) . There-

fore, (5) reduces to the following problem which has a much smaller size for the 
low-rank component:

4.4 � Further reducing the size of the problem

Note that the size of S in (15) can be further reduced. In the decomposition (11), we 
know that L̄ and S̄ are exactly recovered by PALM when successful. Therefore, there is 

(13)V = Null (Yexpo) =

[
VP 0

0 VQ

]
, V⊤

P
VP = Irp , V

⊤
Q
VQ = Irq ,

(14)Y∗ = VRV⊤ =

[
VPRpV

⊤
P

VPRpqV
⊤
Q

VQR
⊤
pq
V⊤
P

VQRqV
⊤
Q

]
, for some R =

[
Rp Rpq

R⊤
pq

Rq

]
∈ S

rv .

(15)
min

Rpq∈ℝ
rp×rq ,S∈ℝm×n

rank (Rpq) + 𝜇‖S‖0
s.t. PÊ(VPRpqV

⊤

Q
) + PÊ(S) = z.
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a subset of entries of S∗ that has been successfully recovered. We can remove this sub-
set of entries from the linear constraints in (15). We let ÊS denote the set of indices of 
entries of S∗ that are exactly recovered by PALM, and let ÊSc ∶= Ê�ÊS to get:

Moreover, the number of linear constraints in (16) can, and should, be further 
reduced to remove any redundant linear constraints that arose. We use A and B to 
denote the matrix representations of the coefficient matrices in PÊS

(VPRpqV
⊤
Q
) and 

PÊSc
(VPRpqV

⊤
Q
) , respectively. If the ith row of B (denoted by Bi ) is in the row space 

of A, then Bi can be removed so the size of B gets smaller. The algorithm that we use 
for this purpose is outlined in Algorithm 5.

Since FR typically results in very small values of rp and rq in (13), the first set of 
linear constraints in (16) , i.e.,

is usually an overdetermined linear system. As a result, we can obtain L∗ by only 
solving this linear system.

Lemma 3  The target matrix L∗ is unique if PÊS
(VPRpqV

⊤
Q
) = zÊSc

 in (16) has a unique 
solution.

Lemma 4  If L∗ is the unique optimal solution of (3), then (16) has a unique optimal 
solution R∗

pq
 that recovers L∗:

When we have enough bicliques, our numerical tests generally successfully 
recover L∗ by solving the linear system (17). If we do not have enough bicliques, 
then we have to solve the nonconvex and nonsmooth problem (16). In this case, we 
can solve the following convex relaxation of (16):

(16)

min rank (Rpq) + 𝜇‖s‖0
s.t. PÊS

(VPRpqV
⊤

Q
) = zÊS

PÊSc
(VPRpqV

⊤
Q
) + s = zÊSc

Rpq ∈ ℝ
rp×rq , s ∈ ℝ

ÊSc .

(17)PÊS
(VPRpqV

⊤
Q
) = zÊS

,

L∗ = VPR
∗
pq
V⊤

Q
.
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Standard first-order methods such as alternating direction method of multipliers can 
be used to solve (18). Moreover, since the size of (18) is very small, we can also use 
interior point methods to solve it. The convex relaxation (18) after facial reduction is 
usually tighter than (4) and is more likely to successfully recover L∗ . We do not go 
into more details in this paper.

4.5 � Detecting the target rank

So far we have assumed that we know the target rank in advance, while in practice 
we may not know the target rank. We now assume that we know a range of the target 
rank and the density of the sparse part.

To obtain the correct target, we can just sample many submatrices from the observed 
data and run Algorithm 6. We then choose the rank which appears most correct. We 
tested Algorithm  6 on random instances with different size, ranks and density of 

(18)

min
Rpq∈ℝ

rp×rq ,s∈ℝÊSc

‖Rpq‖∗ + 𝜇‖s‖1
s.t. PÊS

(VPRpqV
⊤

Q
) = zÊS

PÊSc
(VPRpqV

⊤
Q
) + s = zÊSc

.

Table 1   Rank estimation; 
average of 100 instances

Specifications True r = Percent of estimated ranks

m n D
S

r − 1 r r + 1 r + 2 r + 3

10 10 0.01 2 0 100 0 0 0
15 15 0.01 2 0 96 4 0 0
20 20 0.01 2 0 85 12 3 0
10 10 0.02 3 0 90 9 1 0
15 15 0.02 3 0 71 15 7 7
20 20 0.02 3 0 61 13 12 14
10 10 0.03 4 0 56 18 17 9
15 15 0.03 4 0 55 20 11 14
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sparsity. The results are presented in Table 1. For example, the third row of Table 1 
presents average results for 100 instances of size 20 × 20 , density DS = 0.01 and orig-
nal rank r = 2 . Algorithm 6 found estimated ranks r = [1, 2, 3, 4, 5] in [0, 85, 12, 3, 0] 
percent, respectively. We conclude that Algorithm 6 estimates the correct rank in most 
cases.

Fig. 1   Growth of set of bicliques; 3 iterations for sufficient growth
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5 � Growing bicliques by submatrix completion

We observe that when there are not enough bicliques, we may have many zero rows 
and zero columns in the exposing vector Yexpo . Let the set of indices for nonzero 
rows and columns in the upper-left block of Yexpo be J1 and the set of indices for 
nonzero rows and columns in the bottom-right block of Yexpo be J2 . Now, if we con-
sider the submatrix ZJ1,J2 which is obtained by taking the rows of Z whose indices 
are in J1 and columns of Z whose indices are in J2 , we see that the size of the prob-
lem (16) is much smaller, i.e., since we remove all the zero rows and columns, we 
observe that the exposing vectors now cover all the remaining rows and columns, 
i.e.,those of ZJ1,J2 . Hence we have a better chance of recovering ZJ1,J2 . In fact, we 
often get a unique solution.

Fig. 2   Growth of Y
expo
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After we recover the submatrix ZJ1,J2 , we can add the indices for all the entries in 
ZJ1,J2 to the sampled indices set Ê . The sampled indices set Ê contains a larger biclique 
J1 × J2 and has more elements. We then use Algorithm 1 again to find more bicliques. 
This process can be repeated until all the rows and columns in Z are recovered.

We illustrate the growth of bicliques and the exposing vector Yexpo with an exam-
ple. We choose the size of Z to be 200 × 200 , the density for the sampled data is 0.18 
and the minimum size for the bicliques is 4 × 4 with the target rank r = 2 . The origi-
nal low rank matrix L is recovered after 3 iterations by our algorithm. The example 
is shown in Figs. 1 and 2.

Our main algorithm for recovering the low rank matrix is summarized in 
Algorithm 7.

Remark 4  The motivation to grow bicliques arises from the desire to improve effi-
ciency. We note that Algorithm 1 is only a heuristic and finding all the bicliques in a 
graph is an NP-hard problem. If there are not enough bicliques being identified, the 
equation in (17) may be underdetermined. Therefore we have to solve the convex 
approximation which can lead to a failure to recover the true low-rank matrix. The 
growing bicliques approach uses the existing bicliques to grow a big biclique. And 
when we add this big biclique to the sampled elements and run Algorithm 1 again, 
we are able to find many more bicliques efficiently. We note that the heuristic Algo-
rithm 1 performs well when a big biclique exists. Our experiments show that this 
process is much more efficient than simply running Algorithm 1 many times. In fact 
this process is critical for the success of the method. Without the biclique growing 
procedure the proposed method takes much longer and will often fail to recover the 
target matrices if the density of the samplings is low.
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6 � Numerical experiments

6.1 � Noiseless case

We applied our Algorithm 7 to solving random noiseless instances of (3). The input 
data were generated in the following manner. The low-rank matrix L∗ was integer 
valued and obtained using L∗ = round(LrL

⊤
c
) , where Lr ∈ ℝ

m×r and Lc ∈ ℝ
r×n are 

from the standard normal distribution, N(0,  10). The density of the sparse matrix 
S∗ ∈ ℝ

m×n is denoted by DS , and the nonzero elements were integer valued and 
obtained by rounding the uniformly distributed random elements. Matrix Z is set as 
Z = L∗ + S∗ . We then randomly sample elements in Z using the density � , i.e.,  the 
ratio of the observed components of Z is � . We use L̂ to denote the recovery returned 
by our Algorithm 7.

For each set of data parameters (m, n, �) , we randomly generated 20 instances and 
reported the averaged performance in Tables  2 and  3. In these tables, DS = 0.01 , 
� = c∕(�

√
m) where c is a chosen constant in [1,  10], the cpu times are in sec-

onds, Kmin denotes the smallest size of the cliques we found, Kmax denotes the larg-
est size of the cliques we found, r̂ = rank (L̂) and “Succ” denotes the number of 

Table 2   Results of Algorithm 7 
for solving (3) with target rank 
r = 2

Specifications Succ CPU r̂ K
min

K
max

�

m n �

800 800 0.18 14 11.55 2 10 50 0.88
1000 1000 0.18 19 14.55 2 10 50 0.79
1200 1200 0.18 18 23.52 2 10 50 0.29
1500 1500 0.18 17 27.77 2 10 50 0.26
1800 1800 0.18 17 33.43 2 10 50 0.12
2100 2100 0.18 19 37.84 2 10 50 0.11
3000 3000 0.18 17 54.61 2 10 50 0.09
5000 5000 0.18 16 106.87 2 10 50 0.07

Table 3   Results of Algorithm 7 
for solving (3) with target rank 
r = 3

Specifications Succ CPU r̂ K
min

K
max

�

m n �

800 800 0.26 18 17.74 3 10 60 0.12
1000 1000 0.26 14 21.20 3 10 60 0.11
1500 1500 0.26 14 30.32 3 10 60 0.09
2000 2000 0.26 18 41.83 3 12 60 0.07
2500 2500 0.26 18 48.74 3 12 60 0.07
3000 3000 0.26 19 67.17 3 12 60 0.06
4000 4000 0.26 16 97.61 3 12 60 0.05
5000 5000 0.26 16 119.99 3 12 60 0.05
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successfully recovered instances out of 20 randomly generated ones. Here we claim 
that matrix L∗ is successfully recovered if there is no difference between L̂ and L∗ , 
i.e., ‖L̂ − L∗‖F = 0 . Note that this is possible because all entries of L∗ are integer 
valued. From these results we see that we can get exact recovery with very low den-
sity. Moreover, our algorithm is very efficient, and for very large problems with size 
5000 × 5000 , we can solve it in about two minutes.

We also compare our method with the fast alternating linearization method 
(FALM) proposed in Goldfarb et al. (2013). The results are reported in Table 4, 
where DS = 0.01 . From these results we see that after preprocessing by facial 
reduction, our reduced model (16) has a higher probability for recovering the 
low-rank matrix than solving the convex relaxation (4) by FALM. Moreover, our 
algorithm, although using a second-order interior point solver, is significantly 
faster than the first order method FALM. Our code is available at http://www.
math.uwate​rloo.ca/~hwolk​owi//henry​/repor​ts/Codef​orthe​table​s.

Recently there has been a trend to use matrix factorization to solve the low-
rank problem, such as Sun and Luo (2016), Yi et  al. (2016). Therefore we also 
compared our method with the methods based on matrix factorization. Since in 
Sun and Luo (2016) no sparse gross errors are considered, we only compare the 
fast gradient descent method in Yi et al. (2016)denoted as FGD with our method. 
We note that in Yi et  al. (2016) only the noiseless cases are considered there-
fore we only consider the noiseless case in the comparisons. We note in Yi et al. 
(2016), the authors make two assumptions about the data: (i) The low rank matrix 

Table 4   Comparison of Algorithm 7 and FALM

Specifications Succ FR Succ FALM CPU FR CPU FALM

m n � r

500 500 0.33 4 18 0 15.88 11.07
500 500 0.36 4 19 0 9.33 11.11
500 500 0.45 4 20 8 5.00 10.92
500 500 0.5 4 20 18 5.38 11.66
600 600 0.22 3 18 0 25.62 15.03
1000 1000 0.22 3 16 0 18.16 72.22
1000 1000 0.33 3 17 0 23.81 72.61
1000 1000 0.45 3 20 20 11.73 76.22
1000 1000 0.36 5 20 1 29.36 75.49
1000 1000 0.39 5 20 14 27.88 77.53
2000 2000 0.28 5 14 6 67.76 615.62
2000 2000 0.33 5 20 18 56.74 651.81
2000 2000 0.26 3 18 0 41.83 662.70
2000 2000 0.36 3 20 20 36.74 673.05
2100 2100 0.18 2 19 0 37.84 728.17
3000 3000 0.18 2 17 0 54.61 2216.66

http://www.math.uwaterloo.ca/%7ehwolkowi//henry/reports/Codeforthetables
http://www.math.uwaterloo.ca/%7ehwolkowi//henry/reports/Codeforthetables
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M needs to be �-incoherent. (ii) The entries of the sparse component S are “spread 
out”, i.e., for � ∈ [0, 1) , S contains at most �-fraction nonzero entries per row and 
column. In this paper, we don’t make these assumptions. Therefore we first com-
pare our method with their method when these assumptions hold, secondly, we 
compare our method with their method without these assumptions being hold. 
The results are in Table 5 and 6. From the results in the tables we can see that the 
fast gradient descent method usually works better for large scale problems when 
these two assumptions hold. However when these two assumptions do not hold, 

Table 5   Comparison of 
Algorithm 7 and FGD without 
assumptions (i), (ii)

Specifications Succ FR Succ FGD CPU FR CPU FGD

m n � r

800 800 0.18 2 18 0 13.85 0.692172
1000 1000 0.18 2 20 0 18.53 1.293400
1200 1200 0.18 2 20 0 36.27 1.878267
1500 1500 0.18 2 16 0 41.98 2.596376
1800 1800 0.18 2 18 0 53.83 3.587537
2100 2100 0.18 2 18 0 63.12 5.182643
3000 3000 0.18 2 16 0 101.09 9.338740

Table 6   Comparison of 
Algorithm 7 and FGD with 
assumptions (i), (ii)

Specifications Succ FR Succ FGD CPU FR CPU FGD

m n � r

800 800 0.18 2 20 0 12.14 0.761310
1000 1000 0.18 2 20 0 15.54 1.196388
1200 1200 0.18 2 20 10 30.32 1.729541
1500 1500 0.18 2 20 18 32.78 2.624523
1800 1800 0.18 2 20 20 39.92 3.770775
2100 2100 0.18 2 20 20 48.48 4.905493
3000 3000 0.18 2 12 20 51.20 10.816730

Table 7   Comparison of Algorithm 7 and FALM ( � = 10
−4 , D

S
= 0.01 , CPU times in seconds)

Specifications CPU FR CPU FALM Rank Res (FR) Res (FALM)

m n Mean(p)

600 600 0.33 7.19 17.55 2 1.730694e−04 1.478195e−03
800 800 0.33 10.56 38.00 2 1.189773e−04 1.005278e−03
1000 1000 0.26 14.30 78.66 2 1.123756e−04 2.154113e−03
1500 1500 0.26 21.28 280.05 2 1.853607e−04 9.815458e−04
2000 2000 0.26 50.63 687.00 2 1.120183e−04 1.388883e−04
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our method can recover the true low rank matrix with a high success rate while 
the fast gradient descent method fails to recover any of them.

6.2 � Noisy case

In the noisy case, we consider Z = L + S + E where L, S are no longer integer and 
all the elements of the matrix E are from random noise, generated from a Gauss-
ian distribution with standard deviation � . We still assume S is sparse, with den-
sity DS.

The results are in Tables 7 and 8. Each row in the tables presents the average 
of 20 instances.

We see that when the noise level is small ( � = 10−4 or 10−5 ), the CPU time of our 
Algorithm 7 is significantly smaller than that of FALM; and the residual is smaller 
as well which is pa great advantage of our algorithm.

In the case when the noise level is relatively large, our algorithm does not per-
form as well as FALM. This appears to be due to the failure of recovering the cor-
rect submatrices L̄, S̄ from Z̄ . However in general, if Algorithm 7 succeeds in finding 
a solution with the correct target rank, then our algorithm generally has a smaller 
residual than the first order method FALM. If Algorithm 7 fails to find the solution 
with the correct target rank, FALM is generally better. We conclude that we should 
use Algorithm 7 first and check if the correct target rank is achieved with a satisfac-
tory tolerance. If not, then we should fall back on the first order method FALM.

We note there are popular algorithms such as the stochastic gradient descent 
method (SGD) (Gemulla et al. 2011; Recht and Ré 2013; Zhuang et al. 2013) and 
block coordinate descent type methods (Pilászy et al. 2010; Yu et al. 2012) to solve 
the large scale low-rank matrix completion problems. Our method proposed in the 
paper can be modified to solve the low-rank matrix completion problems as well 
and in the future it will be very interesting to compare our methods to those meth-
ods for quality improvement when solving the general low-rank matrix completion 
problems. Also in Sun and Luo (2016), a regularization term is added to control 

Table 8   Comparison of Algorithm 7 and FALM ( � = 10
−5 , D

S
= 0.01 , CPU times in seconds)

Specifications CPU FR CPU FALM Rank Res (FR) Res (FALM)

m n Mean(p)

600 600 0.33 9.44 17.49 3 6.600662e−05 1.837060e−03
600 600 0.36 6.53 18.25 3 1.808533e−05 1.156141e−03
800 800 0.33 9.70 39.08 3 2.187891e−05 1.033397e−03
800 800 0.36 8.65 38.29 3 1.240057e−05 8.217820e−04
1000 1000 0.33 11.98 80.09 3 1.523253e−05 5.252964e−04
1000 1000 0.36 11.38 79.56 3 1.125439e−05 3.015739e−04
1500 1500 0.33 19.89 284.93 3 1.220386e−05 7.854144e−05
1500 1500 0.36 23.08 302.34 3 1.022679e−05 5.251847e−05
2000 2000 0.33 43.87 728.43 3 1.088412e−05 2.258433e−05
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incoherence in the iterates, it will be very interesting to study whether a regulariza-
tion term will help to improve the recovery quality for RPCA problems.

7 � Conclusion

In this paper we have shown that we can apply a facial reduction approach in com-
bination with the nuclear norm heuristic to efficiently solve the robust PCA problem 
with partially observed data. This exploits the implicit degeneracy at the optimal 
solution resulting from the low-rank and sparse structure.

Specifically, whenever enough complete bipartite subgraphs in the data are avail-
able, we are able to find a proper face of the semidefinite cone that contains the 
optimal solution and results in a significant reduction in dimension. If we cannot 
find enough bicliques, the matrix can still be partially completed. Having an insuf-
ficient number of bicliques is indicative of not having enough initial data to recover 
the unknown elements for our algorithm. This is particularly true for large rank r, 
where larger bicliques are needed. Throughout we see that the facial reduction both 
regularizes the problem and reduces the size and often allows for a solution without 
any refinement or need for an SDP solver.

Our preliminary numerical results are promising as they efficiently and accurately 
recover large scale problems. The numerical tests are ongoing with improvements in 
using biclique algorithms rather than clique algorithms. At the current stage, we are 
only testing randomly generated examples. In practice most of the problems from 
the real world, for example from surveillance video with moving objects, the gross 
errors are not sparse enough, or in other words, the random noise is not significantly 
smaller than the sparse gross errors. To solve practical problems from the real world, 
we need to further refine our algorithm to better separate the random noise from the 
sparse gross errors, which is part of our current ongoing work.

Theoretical results on exact recovery are discussed in many papers, e.g.,  Can-
des et al. (2010), Chandrasekaran et al. (2009). They use the so-called incoherence 
conditions, which are difficult to verify. It appears from our work above that exact 
recovery guarantees can be found from rigidity results in the graph of Z, i.e., in the 
number and density of the bicliques. Moreover, there are interesting questions on 
how to extend these results from the simple matrix completion to general solutions 
of linear equations, A(Z) = b , where A is some linear transformation.
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