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1 Introduction58

We consider the intractable low-rank matrix completion problem, LRMC, i.e., the problem of find-59

ing the missing elements of a given partial matrix so that the completion has low-rank. This problem60

can be relaxed using the nuclear norm that can be then solved using a semidefinite programming,61

SDP, model. Though the resulting SDP and its dual satisfy strict feasibility, we show that it is62

implicitly highly degenerate and amenable to facial reduction, FR. This is done by taking advan-63

tage of the special structure at the optimum and by using the exposing vector approach, see [4].64

The exposing vector approach is particularly amenable to the noisy case. Moreover, from FR we65

get a significant reduction in the size of the variables and a corresponding decrease in the possible66

rank of the solution. If the data is exact, then FR results in redundant constraints that we remove67

before solving for the low-rank solution. While if the data is contaminated with noise, FR yields an68

overdetermined semidefinite least squares problem. We flip this problem to minimize the nuclear69

norm using a Pareto frontier approach. Instead of removing constraints from the overdetermined70

problem, we exploit the notion of sketch matrix to reduce the size of the overdetermined problem.71

The sketch matrix approach is studied in e.g., [18].72

The problem of LRMC has many applications to real applications in data science, model73

reduction, collaborative filtering (the well known Netflix problem) sensor network localization,74

pattern recognition and various other machine learning scenarios, e.g., [21,22]. See also the recent75

work in [1, 19, 23] and the references therein. Of particular interest is the case where the data is76

contaminated with noise. This falls into the area of compressed sensing or compressive sampling.77

An extensive collection of papers, books, codes is available at the Compressive Sensing Resources,78

http://dsp.rice.edu/cs.79

The convex relaxation of minimizing the rank using the nuclear norm, the sum of the singular80

values, is studied in e.g., [9, 10, 19]. The solutions can be found directly by subgradient methods81

or by using SDP with interior point methods or low-rank methods, again see [19]. Many other82

methods have been developed, e.g., [16]. The two main approaches for rank minimization, convex83

relaxations and spectral methods, are discussed in [3,14] along with a new algebraic combinatorial84

approach. A related analysis from a different viewpoint using rigidity in graphs is provided in [20].85

1.1 Outline86

We continue in Section 2 with the basic notions for LRMC using the nuclear norm and with87

the graph framework that we employ. Then in Section 3 we include preliminaries on cone facial88

structure and the details on how to exploit FR, for the SDP model to minimize the nuclear norm89

problem. The main result for the reduction is in Lemma 3.1.90

The results for the noiseless case are given in Section 4. This includes an outline of the basic91

approach in Algorithm 3.1 and empirical results from randomly generated problems. The noisy92

case follows in Section 5 with empirical results and a comparison with results in [23]. Concluding93

remarks are given in Section 6.94

2 Background on LRMC, NNM, SDP95

We now consider our problem within the known framework on relaxing the low-rank matrix com-96

pletion problem using the nuclear norm minimization and then using SDP to solve the relaxation.97

For the standard results we follow and include much of the known development in the literature98
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e.g., [9,10,19]. In this section we also include several useful tools and a graph theoretic framework99

that allows us to exploit FR at the optimum.100

2.1 Models101

Suppose that we are given a (random) low rank m × n real matrix Z ∈ Rm×n where a subset of
entries are sampled. The LRMC can be modeled as follows:

(LRMC)
min rank(M)
s.t. PÊ(M) = z,

(2.1) ?basicsetting?

where Ê is the set of indices containing the known (sampled) entries of Z, PÊ(·) : Rm×n → R|Ê|102

is the projection onto the corresponding entries in Ê, and z = PÊ(Z) is the vector of known103

entries formed from Z. However, the rank function is not a convex function and the LRMC is104

computationally intractable, e.g., [13].105

To set up the problem as a convex optimization problem, we can relax the rank minimization
using nuclear norm minimization, NNM:

(NNM)
min ‖M‖∗
s.t. PÊ(M) = z,

(2.2) ?basicnuclear?

where the nuclear norm ‖ · ‖∗ is the sum of the singular values, i.e., ‖M‖∗ =
∑

i σi(M). The
general primal-dual pair of problems for the NNM problem is

minM ‖M‖∗
s.t. A(M) = z,

maxy 〈z, y〉
s.t. ‖A∗(y)‖ ≤ 1,

(2.3) ?eq:pdpairnuclnorm?

where A : Rm×n → Rt is a linear mapping, z ∈ Rt, A∗ is the adjoint of A, and ‖ · ‖ is the operator106

norm of a matrix, i.e., the largest singular value. The matrix norms ‖ · ‖∗ and ‖ · ‖ are a dual pair107

of matrix norms akin to the vector `1, `∞ norms on the vector of singular values. Without loss of108

generality, we further assume that A is surjective. In general, the linear equality constraint is an109

underdetermined linear system. In our case, we restrict to the case that A = PÊ .1110

Proposition 2.1. Suppose that, in the primal-dual pair (2.3), there exists M̂ with A(M̂) = z.111

Then the pair of programs in (2.3) are a convex primal-dual pair and they satisfy both primal and112

dual strong duality, i.e., the optimal values are equal and both values are attained.113

Proof. This is shown in [19, Prop. 2.1]. That primal and dual strong duality holds can be seen from114

the fact that the generalized Slater condition trivially holds for both programs using M = M̂, y = 0,115

respectively.116

Corollary 2.1. The optimal sets for the primal-dual pair in (2.3) are nonempty, convex, compact117

sets.118

Proof. This follows since both problems are regular, i.e., since A is surjective, we conclude that119

the primal satisfies the Mangasarian-Fromovitz constraint qualification; while y = 0 shows that the120

dual satisfies strict feasibility. It is well known that this constraint qualification is equivalent to the121

dual problem having a nonempty, convex, compact optimal set, e.g., [11].122

1Note that the linear mapping A = PÊ corresponding to sampling is surjective as we can consider A(M)ij∈Ê =
trace(EijM), where Eij is the ij-unit matrix.
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The following proposition shows that the nuclear norm minimization problem is SDP representable,123

i.e., we can embed the problem into an SDP and solve it efficiently. Here Y � 0 denotes the Löwner124

partial order that Y is symmetric and positive semidefinite, denoted Y ∈ Sm+n
+ . We let � 0,Sn++125

denote positive definite.126

Proposition 2.2. The optimal primal-dual solution set in (2.3) is the same as that in the SDP primal-
dual pair:

min 1
2 trace (W1 +W2)

s.t. Y =

[
W1 M
MT W2

]
� 0

A(M) = z

maxy 〈z, y〉

s.t.

[
Im A∗(y)
A∗(y)T In

]
� 0.

(2.4) ?eq:pdpairnuclnormSDP?

127

This means that after ignoring the 1
2 we can further transform the NNM problem as:

min ‖Y ‖∗ = trace(Y )
s.t. PĒ(Y ) = z

Y � 0,
(2.5) ?sdpnuclear?

where Ē is the set of indices in Y that correspond to Ê, the known entries of the upper right block128

of

[
0 Z
ZT 0

]
∈ Sm+n.129

When the data is contaminated with noise, we reformulate the strict equality constraint by
allowing the observed entries in the output matrix to be perturbed within a tolerance δ for the
norm, where δ is normally a known noise level of the data, i.e.,

min ‖Y ‖∗ = trace(Y )
s.t. ‖PĒ(Y )− z‖ ≤ δ

Y � 0.
(2.6) ?sdpnuclearinexact?

We emphasize that there is no constraint on the diagonal blocks of Y in (2.4) or in (2.5).130

Therefore, we can always obtain a positive definite feasible solution in this exact case by setting131

the diagonal elements of Y to be large enough. Therefore strict feasibility, the Slater constraint132

qualification, always holds.133

2.2 Graph Representation of the Problem134

Our sampling yields elements z = PÊ(Z). With the matrix Z and the sampled elements we can

associate a bipartite graph GZ = (Um, Vn, Ê), where

Um = {1, . . . ,m}, Vn = {1, . . . , n}.

Our algorithm exploits finding complete bipartite subgraphs, bicliques, in GZ . We now relate this135

approach to finding cliques by using the larger symmetric matrix Y in (2.4). This allows us to136

exploit FR and apply the clique algorithms from [4, 15]. However, we keep the biclique notation137

as much as possible.138
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Therefore, for our needs we associate Z with the undirected graph, G = (V,E), with node set
V = {1, . . . ,m,m+ 1, . . . ,m+ n} and edge set E that satisfies{
{ij ∈ V × V : i < j ≤ m} ∪ {ij ∈ V × V : m+ 1 ≤ i < j ≤ m+ n}

}
⊆ E ⊆ {ij ∈ V × V : i < j}.

Note that as above, Ē is the set of edges excluding the trivial ones, that is,

Ē = E\
{
{ij ∈ V × V : i ≤ j ≤ m} ∪ {ij ∈ V × V : m+ 1 ≤ i ≤ j ≤ m+ n}

}
.

Recall that a biclique α in the graph GZ is a complete bipartite subgraph in GZ with corre-
sponding complete submatrix z[α]. This corresponds to a nontrivial2 clique in the graph G, a
complete subgraph in G. The cliques of interest are C = {i1, . . . , ik} with cardinalities

|C ∩ {1, . . . ,m}| = p 6= 0, |C ∩ {m+ 1, . . . ,m+ n}| = q 6= 0. (2.7) ?eq:cardspq?

The submatrix z[α] of Z for the corresponding biclique from the clique C is

z[α] ≡ X ≡ {Zi(j−m) : ij ∈ C}, sampled p× q rectangular submatrix. (2.8) ?eq:Xspecif?

These non-trivial cliques in G that correspond to bicliques of GZ are at the center of our algorithm.139

Example 2.1 (biclique for X). Let the m× n data matrix of rank r with m = 7, n = 6, r = 2 be

Z =



−5 15 10 −20 −21 −6
4 0 4 4 6 6
−3 −35 −38 32 27 −8
5 −5 0 10 12 7
0 −30 −30 30 27 −3
3 −5 −2 8 9 4
5 5 10 0 3 8


.

After sampling we have unknown entries denoted by NA and known entries in

−5 NA 10 −20 NA −6
4 0 4 4 6 6
−3 NA NA 32 27 NA
5 NA 0 10 12 NA

NA −30 NA NA 27 NA
3 −5 −2 8 NA 4
5 5 NA 0 3 NA


.

Then z = PÊ(Z) denotes a vector representation of the known entries. Ē denotes the corresponding140

indices for Ê when Z is considered in the big matrix Y and E is formed from Ē by adding on the141

indices corresponding to the diagonal blocks.142

Suppose that our algorithm found a biclique α with indices

Ūm = {6, 1, 2}, V̄n = {1, 4, 3, 6}.
2For G we have the additional trivial cliques of size k, C = {i1, . . . , ik} ⊂ {1, . . . ,m} and C = {j1, . . . , jk} ⊂

{m + 1, . . . ,m + n}, that are not of interest to our algorithm.
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The corresponding submatrix is

z[α] ≡ X =

 3 8 −2 4
−5 −20 10 −6
4 4 4 6

 .
The sampled large matrix Y containing the sampled Z is filled in with the word free on the di-
agonal blocks to emphasize that these blocks are free during the algorithm. Then the clique CX

corresponding to the biclique and the corresponding principal submatrix of Y corresponding to X
are, respectively,

CX = {6, 1, 2|, |1 + 7, 4 + 7, 3 + 7, 6 + 7} = {6, 1, 2|, |8, 11, 10, 13}, 3

and 

FREE
3 8 −2 4
−5 −20 10 −6
4 4 4 6

3 −5 4
8 −20 4
−2 10 4
4 −6 6

FREE


3 Facial Reduction, Bicliques, Exposing Vectors143

In this section we look at the details of solving the SDP formulation of the nuclear norm relaxation144

for LRMC. In particular we show how to exploit bicliques in the graph GZ and the special structure145

at the optimum. We note again that though strict feasibility holds for the SDP formulation, we146

can take advantage of facial reduction and efficiently obtain low-rank solutions.147

3.1 Preliminaries on faces148

We now present some of the geometric facts we need. More details can be found in e.g., [4, 15,17].149

Suppose that K ⊆ Rn. Then K is a cone if λK ⊆ K,∀λ ≥ 0. It is a proper closed convex cone,
if it is a closed set and

K +K ⊆ K, λK ⊆ K,∀λ ≥ 0, int (K) 6= ∅, K ∩ (−K) = {0}.

The dual cone, K∗, is defined by

K∗ = {φ ∈ Rn : 〈φ, k〉 ≥ 0, ∀k ∈ K}.

A subcone F ⊆ K is a face, F �K, of the convex cone K if

x, y ∈ K,x+ y ∈ F =⇒ x, y ∈ F.

The conjugate face, F ∗, is defined by F ∗ = F⊥∩K∗, where F⊥ denotes the orthogonal complement
of F . A face F � K is an exposed face if there exists φ ∈ K∗ such that F = φ⊥ ∩ K; and

3We have a bar | to emphasize the end/start of the row/column indices.
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φ is an exposing vector . Let S be a subset of the convex cone K, then face(S) is the smallest
face of K containing S. It is known that: a face of a face is a face; an intersection of faces is a
face; and essential for our algorithm is the following for finding an intersection of exposed faces
Fi �K, i = 1, . . . , k, see [4],

Fi = K ∩ φ⊥i ,∀i =⇒ ∩ki=1Fi =

(
k∑

i=1

φi

)⊥
∩K.

If K = Sn+, then the facial structure is well understood. Faces are characterized by the ranges
or nullspaces of the matrices in the face. Let X ∈ Sn+ be rank r and

X =
[
P Q

] [D 0
0 0

] [
P Q

]T
be the (orthogonal) spectral decomposition with D ∈ §r++. Then the smallest face containing X is

face(X) = PSr+P T = Sn+ ∩ (QQT )⊥.

The matrix QQT is an exposing vector for face(X). Moreover, the relative interior satisfies

relint(face(X)) = PSr++P
T = relint(face(X̂)), ∀X̂ ∈ relint(face(X)),

i.e. the face and the exposing vectors are characterized by the eigenspace of any X̂ in the relative150

interior of the face.151

For our application we use the following view of facial reduction and exposed faces.152

Theorem 3.1 ( [5, Theorem 4.1]). Consider a linear transformationM : Sn → Rm and a nonempty
feasible set

F := {X ∈ Sn+ :M(X) = b},

for some point b ∈ Rm . Then a vector v exposes a proper face of M(Sn+ ) containing b if, and only
if, v satisfies the auxiliary system

0 6=M∗v ∈ Sn+ and 〈v, b〉 = 0.

Let N denote the smallest face of M(Sn+ ) containing b. Then the following are true.153

1. We always have Sn+ ∩M−1N = face(F), the smallest face containing F .154

2. For any vector v ∈ Rm the following equivalence holds:

v exposes N ⇐⇒ M∗v exposes face(F). (3.1) ?eq:exposnonunique?

155

The result in (3.1) details the facial reduction process for the matrix completion problem using156

exposing vectors. More precisely, if B � 0 is a principal submatrix of the data and traceV B =157

0, V � 0, then V provides an exposing vector for the image of the coordinate map. We can then158

complete V with zeros to get Y ∈ Sn+ an exposing vector for F . Define the triangular number,159

t(n) = n(n+ 1)/2, and the projection vec: Sn → Rt(n) that vectorizes the upper-triangular part of160

a symmetric matrix columnwise. We let Mat: Rt(n) → Sn denote the inverse mapping.161
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Corollary 3.1. Suppose that 1 < k < n and M in Theorem 3.1 is the coordinate projection onto
the leading principal submatrix of order k,m = t(k). Let B ∈ Sk+, b = vec(B) ∈ Rt(k), i.e., for
X ∈ Sn, we have

M(X)ij = bij , ∀1 ≤ i ≤ j ≤ k.

Let
V ∈ Sk+, trace(V B) = 0, v = vecV.

Then Y =M∗v is an exposing vector for the feasible set F , i.e.,

trace(Y (F)) = 0.

Proof. The proof follows immediately from Theorem 3.1 as v exposes N and Y = M∗v is an162

exposing vector for face(F).163

3.2 Structure at Optimum164

The results in Section 2 can now be used to prove the following special structure at the optimum.165

This structure is essential in our FR scheme.166

Corollary 3.2. Let M∗ be optimal for the primal in (2.4) with rank(M∗) = rM . Let M∗ = UDV T

be the compact SVD, D ∈ SrY++. Define

W1 = UDUT , W2 = V DV T , (3.2) ?eq:Winorm?

and

Y =

[
W1 M∗

(M∗)T W2

]
=

[
U
V

]
D

[
U
V

]T
. (3.3) ?eq:YDUV?

Then we have Y � 0 and optimal in (2.4) with rank(Y ) =: rY = rM and

‖M∗‖∗ =
1

2
trace(Y ) = trace(D).

Proof. The matrices U, V have orthonormal columns. Therefore trace(Y ) = 2 trace(D) = 2‖M‖∗.167

168

Now suppose that there is a biclique α of GZ and a corresponding sampled submatrix, z[α] ≡
X ∈ Rp×q, of Z ∈ Rm×n, with rank(X) = rX . Without loss of generality, after row and column
permutations if needed, we can assume that

Z =

[
Z1 Z2

X Z3

]
. (3.4) ?eq:ZX?

Let the SVD be

X =
[
U1 UX

] [Σ 0
0 0

] [
V1 VX

]T
, Σ ∈ Sr++; (3.5) ?eq:svdX?

and we have a full rank factorization X = P̄ Q̄T obtained using the compact SVD

X = P̄ Q̄T = U1ΣV T
1 , P̄ = U1Σ1/2, Q̄ = V1Σ1/2.
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We see below that such a desirable X (after a permutation if needed), that corresponds to a biclique
α ∈ GZ , z[α] ≡ X, and at least one nontrivial exposing vector, is characterized by

CX = {m− p+ 1, . . . ,m,m+ 1, . . . ,m+ q}, r ≤ min{p, q} < max{p, q}. (3.6) ?eq:suffbig?

Here we use the target rank, r. We can exploit the information using these bicliques to obtain169

exposing vectors of the optimal face, F ∗, i.e., the smallest face of Sm+n
+ that contains the set of170

optimal solutions of (2.4).171

By abuse of notation, we can rewrite the optimal Y as in (3.3) in Corollary 3.2 and get

0 � Y =


U
P
Q
V

D

U
P
Q
V


T

=


UDUT UDP T UDQT UDV T

PDUT PDP T PDQT PDV T

QDUT QDP T QDQT QDV T

V DUT V DP T V DQT V DV T

 . (3.7) ?eq:Ypartit?

We see that X = PDQT = P̄ Q̄T . Since we assume that X satisfies (3.6) and so is big enough, we
conclude that generically rX = rY = r, see Lemma 3.2 below, and that the ranges satisfy

Range(X) = Range(P ) = Range(P̄ ) = Range(U1),
Range(XT ) = Range(Q) = Range(Q̄) = Range(V1).

(3.8) ?eq:PQbar?

This is the key for facial reduction as we can use an exposing vector formed as UXU
T
X as well as172

VXV
T
X .173

Lemma 3.1 (basic FR). Let Y be an optimal solution of the primal problem in (2.4) with rank(Y ) =
r = rZ , i.e., the NNM heuristic yields an optimal Y that successful solves the LRMC problem.
Let X ∈ Rp×q be a sampled submatrix of Z be as in (3.4) (after a permutation if needed) with
rank(X) = rX = rZ ≤ min{p, q} < max{p, q}, and with SVD as in (3.5). We now add appropriate
blocks of zeros to the block exposing vectors UXU

T
X , VXV

T
X and get

WX =


0 0 0 0

0 UXU
T
X 0 0

0 0 0 0

0 0 0 0

+


0 0 0 0

0 0 0 0
0 0 VXV

T
X 0

0 0 0 0

 =


0 0 0 0

0 UXU
T
X 0 0

0 0 VXV
T
X 0

0 0 0 0

 .
Then all three matrices are exposing vectors for the optimal face, i.e., for WX we have 0 6= WX �
0,WXY = 0. Moreover, if T is a full column rank matrix with the columns forming a basis for
Null(WX), the nullspace of WX , then a facial reduction step for the optimal face, F ∗, the minimal
face containing the optimal set, yields

F ∗ � TS(n+m)−(p+q−2r)
+ T T .

Proof. That UXU
T
X , VXV

T
X provide exposing vectors is by construction based on the argument for174

(3.8). The result follows from the fact that the sum of exposing vectors is an exposing vector.175

Moreover, the block diagonal structure of the exposing vectors guarantees that the ranks add up176

to get the size of the smaller face containing F ∗.177
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Example 3.1 (pair of exposing vectors). We now present a matrix Y ∈ S11
+ with rank(Y ) = 2.

Here (m,n) = (6, 5).

Y =


0.0059877 0.10551 −0.011994 −0.036276 −0.073807 −0.049863 −0.049795 −0.02602 0.01314 0.022035 −0.012187

0.10551 2.1638 0.035252 −0.6439 −1.5417 −0.77074 −1.9215 −0.13496 −0.23004 0.13318 0.239
−0.011994 0.035252 0.22366 0.068878 −0.04733 0.18725 −0.74543 0.31405 −0.39999 −0.25065 0.39174
−0.036276 −0.6439 0.068878 0.21984 0.45085 0.30043 0.31772 0.15267 −0.072518 −0.12958 0.066865
−0.073807 −1.5417 −0.04733 0.45085 1.1006 0.52923 1.4401 0.064661 0.20335 −0.069711 −0.2089
−0.049863 −0.77074 0.18725 0.30043 0.52923 0.45348 0.044817 0.33131 −0.27295 −0.27387 0.26224
−0.049795 −1.9215 −0.74543 0.31772 1.4401 0.044817 3.9923 −0.89251 1.4727 0.69104 −1.4538
−0.02602 −0.13496 0.31405 0.15267 0.064661 0.33131 −0.89251 0.45673 −0.54736 −0.3667 0.53491
0.01314 −0.23004 −0.39999 −0.072518 0.20335 −0.27295 1.4727 −0.54736 0.72824 0.43489 −0.71429

0.022035 0.13318 −0.25065 −0.12958 −0.069711 −0.27387 0.69104 −0.3667 0.43489 0.29471 −0.42483
−0.012187 0.239 0.39174 0.066865 −0.2089 0.26224 −1.4538 0.53491 −0.71429 −0.42483 0.7007


We sample the elements in rows 4, 5, 6 and columns 7, 8, 9, 10 to obtain the (p = 3)× (q = 4) matrix
X. We let UX , VX , denote orthonormal bases for the nullspaces of X,XT , respectively, i.e.,

XUX = 0, XTVX = 0.

Then the two exposing vectors are UXU
T
X and VXV

T
X , filled in with zeros. After adding them

together, we get

W =


0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.81985 −0.17015 −0.34459 0 0 0 0 0
0 0 0 −0.17015 0.035313 0.071516 0 0 0 0 0
0 0 0 −0.34459 0.071516 0.14483 0 0 0 0 0
0 0 0 0 0 0 0.023237 −0.058066 −0.12587 0.059006 0
0 0 0 0 0 0 −0.058066 0.57988 0.34589 0.34729 0
0 0 0 0 0 0 −0.12587 0.34589 0.68409 −0.28395 0
0 0 0 0 0 0 0.059006 0.34729 −0.28395 0.71279 0
0 0 0 0 0 0 0 0 0 0 0

 .

We see that
‖WY ‖ = 7.67638e−16,

thus verifying to 15 decimals that the sum of the two exposing vectors is indeed an exposing vector178

for face(Y ).179

We emphasize that here we knew the two principal diagonal blocks of Y that corresponded to the180

clique C = {4, 5, 6, 7, 8, 9, 10}. But in general we do not and only know the sampled X. However,181

generically (Lemma 3.2, below), we get the exposing vectors correctly as done here. Moreover, here182

we only had a single sampled X and could permute it to an easy position to illustrate the exposing183

vector. In general, we will have many of these that are identified by the indices determining the184

corresponding clique. We then add them up to get a final exposing vector which is used for the185

FR step.186

3.3 Bicliques, Weights and Final Exposing Vector187

Given a partial matrix Z ∈ Rm×n, we need to find nontrivial bicliques α and corresponding sampled188

submatrices z[α] = X according to the properties in (2.7) and (2.8). Intuitively, we may want to189

find bicliques with size as large as possible so that we can expose Y immediately. However, we do190

not want to spend a great deal of time finding large bicliques. Instead we find it is more efficient191

to find many medium-size bicliques, satisfying the size-rank condition r ≤ min{p, q} < max{p, q}.192

This rank condition guarantees that at least one of the two exposing vectors found from the biclique193

is not zero. We can then add the exposing vectors obtained from the equivalent cliques for these194

bicliques to finally expose a small face containing the optimal Y . This is equivalent to dealing with195

a small number of large bicliques. This consideration also comes from the expense of the singular196
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value decomposition for the sampled submatrix z[α] = X for UX , VX in (3.5) when the biclique is197

large.198

The following lemma shows that, generically, we can restrict the search to bicliques correspond-199

ing to a sampled submatrix X ∈ Rp×q that satisfies the rank condition r ≤ min{p, q} < max{p, q}200

without losing rank magnitude.201

Lemma 3.2 (generic rank property). Let r be a positive integer and Z1 ∈ Rm×r and Z2 ∈ Rn×r
202

be continuous random variables with i.i.d. elements. Set Z = Z1Z
T
2 and let X ∈ Rp×q be any203

submatrix of Z with min{p, q} ≥ r. Then rank(X) = r with probability 1.204

Proof. Without loss of generality, we can assume that X is the top left corner of Z. Therefore,205

X = Z̄1Z̄2 for appropriate (top part) submatrices Z̄i of Zi, i = 1, 2. By the rank condition, we206

have that X = Z̄1Z̄
T
2 is a full rank factorization of X generically.207

Remark 3.1. In our numerical tests we generate our matrices Z = Z1Z
T
2 as done in the above208

Lemma 3.2. Therefore, it clear generically that submatrices X with the specified size restriction209

have rank(X) = rank(Z) generically. It is not clear if the converse is true, i.e., whether a given210

random matrix Z with rank(Z) = r and full rank factorization Z = Z1Z
T
2 implies that Z1, Z2 have211

random elements.4212

With the existence of noise (e.g., Gaussian), we know that generically the X found can only213

have a higher rank but not a lower rank than r. In this case, since we assume that we know the214

target rank of X, we can adjust the exposing vector so that it will not over-expose the completion215

matrix. If the target rank is not known, then it can be estimated during the algorithm up to a216

given tolerance, i.e., for a give sampled p× q submatrix X we estimate the rank. If the estimated217

rank r < min{p, q}, then by our (generic) Lemma 3.2, we can assume that we have found our target218

rank for Z. If this is not the case, then we need to look for bicliques of larger size. As soon as we219

find r = rank(X) < min{p, q} then we have found our estimated target rank r.220

After finding a biclique α corresponding to a sampled submatrix X and its full rank factorization221

X = P̄ Q̄T , we then construct biclique weights uPX and uQX to measure how noisy the corresponding222

exposing vectors are. We essentially use the Eckart-Young distance [7] to the nearest matrix of223

rank r and include the size of the submatrix. If the problem is noiseless and we know the target224

rank for Z, then these distances for the submatrices are 0.225

Definition 3.1 (biclique noise). Suppose that X ∈ Rp×q, with singular values σ1 ≥ . . . ≥ σmin{p,q},
is a given sampled submatrix corresponding to a biclique of the graph of the partial matrix Z. Let
r be the target rank. Define the biclique noise

uPX :=

∑min{p,q}
i=r+1 σ2

i

0.5p(p− 1)
, uQX :=

∑min{p,q}
i=r+1 σ2

i

0.5q(q − 1)
.

Definition 3.2 (biclique weights). Let Θ be the set of all bicliques. For each biclique X ∈ Θ of
the partial matrix Z, let p, q, uPX , u

Q
X be defined as in Definition 3.1. Let

S =
∑
X∈Θ

(uPX + uQX).

4The authors thank Dmitriy Drusvyatskiy for the simplification of our original proof of Lemma 3.2. Further
discussions are given in [6].
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Define the biclique weight

wP
X = 1−

uPX
S
, wQ

X = 1−
uQX
S
.

Using Lemma 3.1, we now present Algorithm 3.1, page 13, to find an exposing vector Yexpo for
the optimal face, i.e., we get the block diagonal

0 6=
[ ∑

X∈Θw
P
XUXU

T
X 0

0
∑

X∈Θw
Q
XVXV

T
X

]
= Yexpo � 0, YexpoY

∗ = 0, ∀ optimal Y ∗.

Note that if

Yexpo =
[
U V

] [Λ 0
0 0

] [
U V

]T
,

is the (orthogonal) spectral decomposition of Yexpo, with Λ ∈ §re++, then the optimal face satisfies

F ∗ � V Sm+n−re
+ V T , V =

[
VP 0
0 VQ

]
.

Thus this FR process reduces the size of the problem.

Algorithm 3.1 (finding the final exposing vector)

1: INPUT: partial matrix Z ∈Mm×n, target rank r;
2: OUTPUT: final blocked exposing vector Yexpo that exposes the optimal face for (2.5)
3: PREPROCESSING:

find a set of bicliques Θ of size within the given range {minsize, maxsize} with r < minsize;
4: for each biclique α ∈ Θ and corresponding z[α] = X do
5: [UX , VX ]← from SVD of X in 3.5
6: WP

X ← UXU
T
X ;

calculate biclique noise uPX ;

7: WQ
X ← VXV

T
X ;

calculate biclique noise uQX ;
8: end for
9: calculate all the biclique weights wi

X , i = P,Q, α ∈ Θ, from biclique noise;
10: sum over bicliques the weighted blocked matrices filled in with appropriate zeros.

0 6= Yexpo ←
[ ∑

X∈Θw
P
XW

P
X 0

0
∑

X∈Θw
Q
XW

Q
X

]
.

11: return Yexpo

226

Remark 3.2. We do not need to look for large bicliques in Algorithm 3.1 since we can take ad-227

vantage of the fact that adding exposing vectors results in an exposing vector. Moreover, finding a228

biclique is equivalent to finding a clique in G. Therefore, we use the algorithms for finding cliques229

given in [15] and [4, Algorithm 2].230
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4 Noiseless Case231

In the noiseless case, the biclique noise is 0 and the weights are all 1 and so ignored. The FR step
finds the blocked exposing vector Yexpo and the blocked basis for Null(Yexpo)

5 given by the columns
of

V =

[
VP 0
0 VQ

]
, V T

P VP = Irp , V
T
Q VQ = Irq ,

thus defining the dimensions rp + rq = rv. Therefore an original feasible Y can be expressed as

Y = V RV T =

[
VPRpV

T
P VPRpqV

T
Q

VQR
T
pqV

T
P VQRqV

T
Q

]
(4.1) ?eq:VRVT?

where the blocked

R =

[
Rp Rpq

RT
pq Rq

]
∈ Srv , rv < m+ n.

This means the problems (2.4) and (2.5) are in general reduced to the much smaller dimension232

Rrp×rq . And if we find enough bicliques we expect a reduction to rp = rq = r, rv = 2r, twice the233

target rank. If this is the case then we have exact recovery that can be obtained by a simple least234

squares solution. Otherwise, we have to rely on the NNM heuristic.235

The reduced model for Y after FR with NNM is

min trace(R) (= trace(V RV T ))
s.t. PĒ(VPRpqV

T
Q ) = z (= PÊ(Z))

R =

[
Rp Rpq

RT
pq Rq

]
� 0.

(4.2) ?frnuclearnoiseless?

The FR typically results in low values for rp, rq and in the exact data case many of the linear
equality constraints become redundant, i.e., we generally end up with an overdetermined linear
system. We use the compact QR decomposition6 to identify which constraints to choose that result
in a linearly independent set with a relatively low condition number. Thus we have eliminated a
portion of the sampling and we get the linear system

M(Rpq) := PẼ(VPRpqV
T
Q ) = z̃, for some Ẽ ⊆ Ê, (4.3) ?eq:smallsyst?

and z̃ is the vector of corresponding elements in z.236

1. We first solve the simple semidefinite constrained least squares problem

min
R∈Srv+

‖PẼ(VPRpqV
T
Q )− z̃)‖.

If the optimal R has attained the target rank, then the exactness of the data implies that237

necessarily the optimal value is zero; and we are done. (In fact, the SDP constraint is238

redundant here as R can always be completed using an SVD decomposition of Rpq.)239

5The MATLAB command null was used to find an orthonormal basis for the nullspace. However, this requires an
SVD decomposition and fails for huge problems. In that case, we used the Lanczos approach with eigs.

6The MATLAB economical version function [∼, R,E] = qr(Φ, 0) finds the list of constraints for a well conditioned
representation, where Φ denotes the matrix of constraints.
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2. If R does not have the target rank in Item 1 above, then we solve (4.2) for our minimum240

nuclear norm solution. We note that the linear transformation M in (4.3) is not one-one.241

Therefore, we often need to add a small regularizing term to the objective, i.e., we use242

min trace(R) + γ‖R‖F with small γ > 0.243

4.1 Numerics Noiseless Case244

We now present experiments with the algorithm on random noiseless instances. Averages (computer245

times, rank, residuals) on twenty random instances are included in the tables7.246

The tests were run with MATLAB version R2016a, and Windows 8, on a Dell Optiplex 9030,247

Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and 16 GB RAM. 8 The times we present are the248

wall-clock times in seconds. For the semidefinite constrained least squares problems we used the249

MATLAB addon CVX [12] for simplicity. This means our computer times could be improved if we250

replaced CVX with a recent SDP solver.251

We generate the instances as done in the recent work [8]. The target matrices are obtained
from Z = ZLZ

T
R , where ZL ∈ Rm×r and ZR ∈ Rr×n. Each entry of the two matrices ZL and ZR is

generated independently from a standard normal distribution N(0, 1). We then generate a sparse
m × r matrix to obtain the random indices that are sampled. We evaluate our results using the
same measurement as in [8], which we call “Residual” in our tables. It is calculated as:

Residual =
‖Ẑ − Z‖F
‖Z‖F

,

where Z is the target matrix, Ẑ is the output matrix that we find, and ‖·‖F is the Frobenius norm.252

253

We observe that we far outperform the results in [8] both in accuracy and in time; and we254

solve much larger problems. We are not as competitive for the low density problems as our method255

requires a sufficient number of cliques in G (bicliques in GZ). We could combine our preprocessing256

approach using the bicliques before the method in [8] is applied.257

In Tables 1 to 7 we present the results with noiseless data with target ranks ranging from r = 2258

to r = 6. We see that we get efficient high accuracy recovery in every instance. The accuracy is259

significantly higher than what one can expect from an SDP interior point solver. The computer260

time is almost entirely spent on finding the matrix representation and on its QR factorization that261

is used as a heuristic for finding a correct subset of well-conditioned linear constraints. However,262

we do not use any refinement steps for these tests. For higher rank and sparse problems we end263

up with a larger FR problem and a a large matrix representation. This can be handled using264

the sketch matrix and refinement described in the noisy case. For the lower density problems, we265

remove the rows and columns of the original data matrix corresponding to zero diagonal elements266

of the final exposing matrix. These rows and columns have no sampled entries in them and so it267

does not make sense to include them in the algorithm. We include the percentage of the number of268

elements of the original data matrix that are recovered and the corresponding percentage residual.269

Since the accuracy is high for this recovered submatrix, it can then be used with further sampling270

to recover the complete original matrix.271

7The density p in the tables are reported as “mean(p)” because the real density obtained is usually not the same
as the one set for generating the problem. We report the mean of the real densities over the five instances.

8The Tables 4 with rank 6 and 5 with rank 8 were done using a MacBookPro12,1, Intel Core i5, 2.7 GHz with two
cores and 8 GB RAM. The version of MATLAB was the same R2016a.
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These problems involved relatively low target ranks r = 2 to r = 8. Larger ranks mean that we272

need to find larger bicliques/cliques, e.g., r = 20 means that the cliques need to be of size bigger273

than 40. This means that the values for rp, rq can be large and we need to solve a large SDP least274

squares problem. We include a purify step to do this in the noisy case discussed below.275

Note that the largest problems in the last of the noiseless tables, 6 and 7, have, respectively,276

48, 000, 000 and 50, 000, 000 data entries in Z with approximately 35, 000, 000 unknown values that277

were recovered successfully with extremely high accuracy. The target rank was recovered in every278

instance. We used the MATLAB command null in Table 6 to find the nullspaces to derive V in279

(4.1). This is based on an SVD decomposition of a full matrix and is expensive. We used MATLAB280

eigs rather than null in Table 7 which resulted in lower computer times but lower accuracy. We281

could not use null in the noisy case as this results in essentially full rank each time due to the noise.282

We changed to a sparse QR decomposition which estimates the rank, has the lowest computer times283

while still maintaining high accuracy.284

Table 1: noiseless: r = 2; m× n size; density p; mean 20 instances.
Specifications

rv Rcvrd (%Z) Time (s) Rank Residual (%Z)
m n mean(p)

2100 4000 0.33 4.00 100.00 46.35 2.0 1.4298e-13

2100 4000 0.26 4.00 100.00 44.69 2.0 4.3546e-14

2100 4000 0.22 4.00 100.00 43.43 2.0 9.8758e-14

2100 4000 0.18 4.00 100.00 42.66 2.0 1.4409e-13

2100 4000 0.14 4.00 99.78 42.16 2.0 8.9667e-14

Table 2: noiseless: r = 3; m× n size; density p; mean 20 instances.
Specifications

rv Rcvrd (%Z) Time (s) Rank Residual (%Z)
m n mean(p)

2100 4000 0.33 6.00 100.00 50.46 3.0 8.6855e-13

2100 4000 0.26 6.00 100.00 49.88 3.0 1.0738e-12

2100 4000 0.22 6.00 100.00 48.56 3.0 1.1436e-12

2100 4000 0.18 6.00 99.81 47.90 3.0 2.5695e-12

2100 4000 0.14 6.20 95.15 46.69 3.0 8.5525e-12

Table 3: noiseless: r = 5; m× n size; density p; mean 20 instances.
Specifications

rv Rcvrd (%Z) Time (s) Rank Residual (%Z)
m n mean(p)

2100 4000 0.45 10.00 100.00 52.48 5.0 2.2232e-10

2100 4000 0.42 10.00 100.00 53.16 5.0 2.3748e-11

2100 4000 0.39 10.00 100.00 52.45 5.0 1.5950e-10

2100 4000 0.36 10.00 99.99 49.78 5.0 4.5280e-11

2100 4000 0.33 10.00 99.79 47.60 5.0 2.5057e-10
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Table 4: noiseless: r = 6; m× n size; density p; mean 20 instances.
Specifications

rv Rcvrd (%Z) Time (s) Rank Residual (%Z)
m n mean(p)

2100 4000 0.48 12.00 100.00 84.83 6.0 4.4311e-10

2100 4000 0.45 12.00 99.98 78.81 6.0 7.2856e-10

2100 4000 0.42 12.00 99.78 76.11 6.0 1.3813e-11

2100 4000 0.39 12.00 98.46 73.48 6.0 2.8688e-10

2100 4000 0.36 13.65 92.08 74.52 6.0 5.6545e-08

Table 5: noiseless: r = 8; m× n size; density p; mean 20 instances.
Specifications

rv Rcvrd (%Z) Time (s) Rank Residual (%Z)
m n mean(p)

1000 3000 0.53 16.10 96.39 37.29 8.0 1.1072e-10

1000 3000 0.50 17.65 88.99 36.50 8.0 4.6569e-10

1000 3000 0.48 32.15 71.66 72.14 8.5 2.0413e-07

Table 6: noiseless: r = 3; m× n size; density p; mean 20 instances.
Specifications

rv Rcvrd (%Z) Time (s) Rank Residual (%Z)
m n mean(p)

700 2000 0.33 6.00 100.00 5.58 3.0 2.6857e-13

1000 5000 0.33 6.00 100.00 58.31 3.0 3.0256e-12

1400 9000 0.33 6.00 100.00 296.91 3.0 1.4185e-12

1900 14000 0.33 6.00 100.00 1043.46 3.0 1.9995e-12

3000 16000 0.33 6.00 100.00 1758.76 3.0 2.5250e-12

Table 7: noiseless: r = 4; 100% recovered; nullspace with eigs; mean 5 instances.
Specifications

Time (s) Rank Residual (%Z)
m n mean(p)

700 2000 0.36 12.80 4.0 1.5217e-12

1000 5000 0.36 49.66 4.0 1.0910e-12

1400 9000 0.36 131.53 4.0 6.0304e-13

1900 14000 0.36 291.22 4.0 3.4847e-11

2500 20000 0.36 798.70 4.0 7.2256e-08

5 Noisy Case285

This case is similar to the noiseless case but with the addition of a refinement step. (The refinement286

step can also be used for the noiseless case when the FR problem dimension rv is too large.)287

We include the rank and residual outputs for both before refinement and the total of both after288

refinement. We see that in most cases when the graph is sufficiently dense, refinement is not289

needed, and near perfect completion (recovery) is obtained relative to the noise. In particular, the290

low target rank was attained most times.291
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We generate the data as in the noiseless case and then perturb the known entries by additive
noise, i.e.,

Zij ← Zij + σξt‖Z‖∞, ∀ij ∈ Ē,

where ξt ∼ N(0, 1) and σ is a noise factor that can be changed. The computer and software were292

similar as in the noiseless case. The tests were run on MATLAB version R2016a as above, but on293

a Dell Optiplex 9030, with Windows 8, Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and 16 GB294

RAM.295

As above we proceed to first complete FR in order to reduce the dimension of Y , i.e., the296

dimension of R, rv, is dramatically smaller. In the low density and/or high rank cases it is difficult297

to find enough cliques and in this case the final exposing vector Yexpo contains many zero rows.298

This essentially means that we have not sampled rows and/or columns of Z. In these cases we have299

ignored the rows and columns that used no sampled entries.300

After FR we first solve the simple semidefinite constrained least squares problem

δ0 = min
R∈Srv+

‖PÊ(VPRpqV
T
Q )− z‖, z = PÊ(Z).

However, unlike in the noiseless case, we cannot remove redundant constraints, even though there
may be many. This problem is now highly overdetermined and may also be ill-posed in that the
constraint transformation may not be one-one. We use the notion of sketch matrix to reduce the
size of the system, e.g., [18]. The matrix A is a random matrix of appropriate size with a relatively
small number of rows in order to dramatically decrease the size of the constrained least squares
problem

δ0 = min
R∈Srv+

∥∥A (PÊ(VPRpqV
T
Q )− z

)∥∥ .
As noted in [18], this leads to surprisingly good results. If s is the dimension of R, then we use a
random sketch matrix of size 2t(s) × |Ê|, where t(·) is the number of variables on and above the
diagonal of a symmetric matrix, i.e., the triangular number

t(s) =
s(s+ 1)

2
.

If the optimal R has the correct target rank, then we are done.301

5.1 Refinement Step with Dual Multiplier302

If the result from the constrained least squares problem does not have the target rank, we now use
this δ0 as a best target value for our parametric approach as done in [4]. Our NNM problem can
be stated as:

min trace(R)

s.t.
∥∥∥A(PÊ(VPRpqV

T
Q )− z

)∥∥∥ ≤ δ0

R � 0.

(5.1) ?frsdpnuclear?

To attempt to find a lower rank solution, we use the approach in [4] and flip this problem:

ϕ(τ) := min
∥∥∥A(PÊ(VPRpqV

T
Q )− z

)∥∥∥+ γ‖R‖F
s.t. trace(R) ≤ τ

R � 0.

(5.2) ?eq:flipNoisyfinalFRSDP?
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As in the noiseless case, the least squares problem may be underdetermined. We add a regularizing303

term +γ‖R‖F to the objective with γ > 0 small. The starting value of τ is obtained from the304

unconstrained least squares problem, and from which we can reduce the value of the trace of R305

to reduce the nuclear norm and so heuristically reduce the rank. We refer to this process as the306

refinement step.307

This process requires a tradeoff between low-rank and low-error. Specifically, the trace con-308

straint may not be tight at the starting value of τ , which means we can lower the trace of R309

without sacrificing accuracy, however, if the trace is pushed lower than necessary, the error starts310

to get larger. To detect the balance point between low-rank and low-error, we exploit the role as311

sensitivity coefficient for the dual multiplier of the inequality constraint. The value of the dual312

variable indicates the rate of increase of the objective function. When the the dual multiplier be-313

comes positive then we know that decreasing τ further will increase the residual value. We have314

used the value of .01 to indicate that we should stop decreasing τ .315

5.2 Numerics Noisy Case316

The noisy case results with increasing ranks 2, 3, 4 and various sizes and densities follow in Tables317

8, 9, 10. With the densities we use the recovery is essentially 100%. We consider problems with318

relatively high density to ensure that we can find enough cliques. We have not included tests with319

higher rank as those are done in the noiseless case and are similar here.320

Table 8: noisy: r = 2; m× n size; density p; mean 20 instances.

Specifications
Rcvd (%Z)

Time (s) Rank Residual (%Z)
m n % noise p initial refine initial refine initial refine

1100 3000 0.50 0.33 100.00 33.72 48.53 2.00 2.00 8.53e-03 8.53e-03

1100 3000 1.00 0.33 100.00 33.67 49.09 2.00 2.00 2.70e-02 2.70e-02

1100 3000 2.00 0.33 100.00 34.13 48.84 2.00 2.00 9.75e-02 9.75e-02

1100 3000 3.00 0.33 100.00 36.34 92.73 5.00 5.00 5.48e-01 1.40e-01

1100 3000 4.00 0.33 100.00 51.45 186.28 11.00 8.00 1.25e+00 1.28e-01

Table 9: noisy: r = 3; m× n size; density p; mean 20 instances.

Specifications
Rcvd (%Z)

Time (s) Rank Residual (%Z)
m n % noise p initial refine initial refine initial refine

700 1000 1.00 0.33 99.99 2.58 16.54 3.35 3.35 1.29e+00 1.07e+00

800 2000 1.00 0.33 100.00 10.72 29.59 3.75 3.75 1.15e+00 1.07e+00

900 4000 1.00 0.33 100.00 61.92 94.40 3.25 3.20 1.47e+00 1.07e+00

1000 8000 1.00 0.33 100.00 404.26 672.60 8.70 6.45 3.94e+00 7.11e-01

1100 16000 1.00 0.33 100.00 3553.81 4230.73 9.00 6.65 4.00e+00 6.66e-01

6 Conclusion321

In this paper we have shown that we can apply facial reduction through the exposing vector322

approach used in [4] in combination with the nuclear norm heuristic to efficiently find low-rank323
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Table 10: noisy: r = 4; m× n size; density p; mean 20 instances.

Specifications
Rcvd (%Z)

Time (s) Rank Residual (%Z)
m n % noise p initial refine initial refine initial refine

1100 3000 0.00 0.36 100.00 30.27 42.44 4.00 4.00 9.04e-13 9.04e-13

1200 3500 1.00 0.33 100.00 52.48 198.22 8.20 6.70 6.45e+00 1.08e+00

1300 4000 2.00 0.32 100.00 81.09 388.68 11.80 7.85 1.88e+01 1.28e+00

1400 4500 3.00 0.31 100.00 117.40 573.87 12.00 7.40 2.51e+01 1.45e+00

1500 5000 4.00 0.31 100.00 142.86 699.06 12.00 6.90 2.42e+01 1.61e+00

matrix completions. This exploits the degenerate structure of the optimal solution set even though324

the nuclear norm heuristic problem itself satisfies strict feasibility.325

Specifically, whenever enough complete bipartite subgraphs are available for the graph of the326

matrix of the problem, we are able to find a proper face with a significantly reduced dimension that327

contains the optimal solution set. We then solve this smaller minimum trace problem by flipping328

the problem and using a refinement with a parametric point approach. If we cannot find enough329

bicliques, the matrix can still be partially completed. Having an insufficient number of bicliques330

is indicative of not having enough initial data to recover the unknown elements for our algorithm.331

This is particularly true for large r where larger bicliques are needed. Throughout we see that the332

facial reduction both regularizes the problem and reduces the size and often allows for a solution333

without any refinement.334

Our preliminary numerical results are promising as they efficiently and accurately recover large335

scale problems. The numerical tests are ongoing with improvements in using biclique algorithms336

rather than clique algorithms thus exploiting the block structure of the cliques; and with solving337

the lower dimensional flipped problems. In our paper we have started our tests with knowing the338

target rank r. In forthcoming tests we plan on using estimating the target rank using sampled339

submatrices.340

In addition, theoretical results on exact recovery are discussed in many papers, e.g., [2, 3, 19].341

They use the so-called restricted isometry property, RIP, for vectors extended to the matrix case.342

However, the RIP condition is difficult to verify. It appears from our work above that exact recovery343

guarantees can be guaranteed from rigidity questions in the graph of Z, i.e., in the number and344

density of the bicliques. Moreover, there are interesting questions on how to extend these results345

from the simple matrix completion to general solutions of linear equations, A(Z) = b, where A is346

some linear transformation.347
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CX = {m− p+ 1, . . . ,m,m+ 1, . . . ,m+ q}, 10352

F �K, face, 7353

F ∗, optimal face, 10354

G = (V,E), undirected graph, 6355

GZ = (Um, Vn, Ê), 5356

K∗, dual cone, 7357

P -biclique weight, wP
X , 13358

Rp, 14359

Rq, 14360

Rpq, 14361

X ∈ Rp×q, sampled submatrix, 9362

Y � 0, positive semidefinite, 5363

Yexpo, 13364

Mat, 8365

Sn, space of real symmetric matrices, 5366

Sn+, positive semidefinite matrices, 5367

Sn++, positive definite matrices, 5368

Ē, indices in Y of sampled entries of Z, 5369

Ê, indices of sampled entries of Z, 4370

vec, 8371

‖·‖∗, nuclear norm, 4372

‖·‖F , Frobenius norm, 15373

r, target rank, 10374

rX , 9375

rY , 9376

rp, 14377

rq, 14378

t(k) = k(k + 1)/2, triangular number, 8379

uPX , biclique noise, 12380

uPX , biclique weight, 12381

wP
X , P -biclique weight, 13382

z[α], complete submatrix, 6383

FR, facial reduction, 3384

LRMC, low-rank matrix completion problem,385

3, 4386

NNM, nuclear norm minimization, 4387

RIP, restricted isometry property, 20388

SDP, semidefinite programming, 3389

adjoint of A, 4390

biclique, 5, 6391

biclique noise, uPX , 12392

biclique weight, uPX , 12393

clique, 6394

complete submatrix, z[α], 6395

conjugate face, F ∗, 7396

dual cone, K∗, 7397

dual multiplier, 19398

Eckart-Young distance, 12399

exposed face, 7400

exposing vector, 3, 8, 10401

face, F �K, 7402

x FR, 3403

Frobenius norm, ‖·‖F , 15404

indices in Y of sampled entries of Z, Ē, 5405

indices of sampled entries of Z, Ê, 4406

low-rank matrix completion problem, LRMC, 4407

x LRMC, 3408

Mangasarian-Fromovitz constraint qualification,409

4410

x NNM, 4411

nuclear norm, ‖·‖∗, 4412

optimal face, F ∗, 10413

orthogonal complement, 7414

partial matrix, 3415

positive definite matrices, Sn++, 5416

positive semidefinite matrices, Sn+, 5417

x RIP, 20418

sampled submatrix, z[α] ≡ X ∈ Rp×q, 9419

x SDP, 3420

sketch matrix, 3, 18421

Slater constraint qualification, 5422

space of real symmetric matrices, Sn, 5423

target rank, r, 10424

triangular number, t(n) = n(n+ 1)/2, 8425

undirected graph, G = (V,E), 6426
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