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1 Introduction

We consider the intractable low-rank matriz completion problem, LRMC, i.e., the problem of find-
ing the missing elements of a given partial matrixz so that the completion has low-rank. This problem
can be relaxed using the nuclear norm that can be then solved using a semidefinite programming,
SDP, model. Though the resulting SDP and its dual satisfy strict feasibility, we show that it is
implicitly highly degenerate and amenable to facial reduction, FR. This is done by taking advan-
tage of the special structure at the optimum and by using the ezposing vector approach, see [4].
The exposing vector approach is particularly amenable to the noisy case. Moreover, from FR we
get a significant reduction in the size of the variables and a corresponding decrease in the possible
rank of the solution. If the data is exact, then FR results in redundant constraints that we remove
before solving for the low-rank solution. While if the data is contaminated with noise, FR. yields an
overdetermined semidefinite least squares problem. We flip this problem to minimize the nuclear
norm using a Pareto frontier approach. Instead of removing constraints from the overdetermined
problem, we exploit the notion of sketch matriz to reduce the size of the overdetermined problem.
The sketch matrix approach is studied in e.g., [18].

The problem of LRMC has many applications to real applications in data science, model
reduction, collaborative filtering (the well known Netflix problem) sensor network localization,
pattern recognition and various other machine learning scenarios, e.g., [21,22]. See also the recent
work in [1,/19,23] and the references therein. Of particular interest is the case where the data is
contaminated with noise. This falls into the area of compressed sensing or compressive sampling.
An extensive collection of papers, books, codes is available at the Compressive Sensing Resources,
http://dsp.rice.edu/cs.

The convex relaxation of minimizing the rank using the nuclear norm, the sum of the singular
values, is studied in e.g., [9,/10,19]. The solutions can be found directly by subgradient methods
or by using SDP with interior point methods or low-rank methods, again see [19]. Many other
methods have been developed, e.g., |[16]. The two main approaches for rank minimization, convex
relaxations and spectral methods, are discussed in [3,/14] along with a new algebraic combinatorial
approach. A related analysis from a different viewpoint using rigidity in graphs is provided in [20].

1.1 Outline

We continue in Section [2| with the basic notions for LRMC using the nuclear norm and with
the graph framework that we employ. Then in Section [3| we include preliminaries on cone facial
structure and the details on how to exploit FR, for the SDP model to minimize the nuclear norm
problem. The main result for the reduction is in Lemma [3.1

The results for the noiseless case are given in Section [4] This includes an outline of the basic
approach in Algorithm and empirical results from randomly generated problems. The noisy
case follows in Section [5| with empirical results and a comparison with results in [23]. Concluding
remarks are given in Section [6]

2 Background on LRMC, NNM, SDP

We now consider our problem within the known framework on relaxing the low-rank matrix com-
pletion problem using the nuclear norm minimization and then using SDP to solve the relaxation.
For the standard results we follow and include much of the known development in the literature


http://dsp.rice.edu/cs

©
©

100

101

102

103

104

105

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

e.g., [9,10,[19]. In this section we also include several useful tools and a graph theoretic framework
that allows us to exploit FR at the optimum.

2.1 Models

Suppose that we are given a (random) low rank m x n real matrix Z € R™*" where a subset of
entries are sampled. The LRMC can be modeled as follows:

min rank(M)
(LRMC) st. Pp(M) =z,
where E is the set of indices containing the known (sampled) entries of Z, Pp(-) s R — RIZI
is the projection onto the corresponding entries in E, and z = Pp(Z) is the vector of known
entries formed from Z. However, the rank function is not a convex function and the LRMC is
computationally intractable, e.g., |13].

To set up the problem as a convex optimization problem, we can relax the rank minimization
using nuclear norm minimization, NINM:

min 7],

(NNM) st. Pp(M) =z,

where the nuclear norm || - ||, is the sum of the singular values, i.e., |M|, = >, 0;(M). The
general primal-dual pair of problems for the NINM problem is

miny; || M]|« max, (2,9)
st.  AM) =z, st [JA*(y)] <1,
where A : R™*" — R! is a linear mapping, z € R?, A* is the adjoint of A, and | - || is the operator
norm of a matrix, i.e., the largest singular value. The matrix norms || - ||« and || - || are a dual pair

of matrix norms akin to the vector 1, o, norms on the vector of singular values. Without loss of
generality, we further assume that A is surjective. In general, the linear equality constraint is an
underdetermined linear system. In our case, we restrict to the case that A = PEH

Proposition 2.1. Suppose that, in the primal-dual pair 1) there exists M with A(M) = z.
Then the pair of programs in (2.3) are a convexr primal-dual pair and they satisfy both primal and
dual strong duality, i.e., the optimal values are equal and both values are attained.

Proof. This is shown in [19, Prop. 2.1]. That primal and dual strong duality holds can be seen from
the fact that the generalized Slater condition trivially holds for both programs using M = M,y = 0,
respectively. O

Corollary 2.1. The optimal sets for the primal-dual pair in (2.3) are nonempty, convex, compact
sets.

Proof. This follows since both problems are regular, i.e., since A is surjective, we conclude that
the primal satisfies the Mangasarian-Fromovitz constraint qualification; while y = 0 shows that the
dual satisfies strict feasibility. It is well known that this constraint qualification is equivalent to the
dual problem having a nonempty, convex, compact optimal set, e.g., [11]. O

'Note that the linear mapping A = Py corresponding to sampling is surjective as we can consider A(M)
trace(Es; M), where E;j is the ij-unit matrix.

ijeE —

(2.1) ?vasicsetting?

(2.2) ?basicnuclear?

(2 .3) ?eq:pdpairnucln
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The following proposition shows that the nuclear norm minimization problem is SDP representable,
i.e., we can embed the problem into an SDP and solve it efficiently. Here Y > 0 denotes the Léwner
partial order that Y is symmetric and positive semidefinite, denoted Y € ST+". We let = 0,87,
denote positive definite.

Proposition 2.2. The optimal primal-dual solution set in (2.3)) is the same as that in the SDP primal-
dual pair:

: 1
min 5 trace (W + Wy) max, (z,Y)

s.t. Y= W; M =0 Iy A*(y) (2.4) 7eq:pdpairnucln
M+ Wy 8.1. A )T I = 0. —_—
AM) =z Y n
O

This means that after ignoring the % we can further transform the NINM problem as:

min ||Y||. = trace(Y)
st. PpY)==z (2.5) ?sdpnuclear?
Y =0,

where E is the set of indices in Y that correspond to E, the known entries of the upper right block
0 Z
i min,
When the data is contaminated with noise, we reformulate the strict equality constraint by
allowing the observed entries in the output matrix to be perturbed within a tolerance ¢ for the
norm, where § is normally a known noise level of the data, i.e.,

min [|Y]|x = trace(Y)
st. ||Pp(Y)—2z|| <9 (2.6) ?sdpnuclearinex
Y = 0.

We emphasize that there is no constraint on the diagonal blocks of Y in or in .
Therefore, we can always obtain a positive definite feasible solution in this exact case by setting
the diagonal elements of Y to be large enough. Therefore strict feasibility, the Slater constraint
qualification, always holds.

2.2 Graph Representation of the Problem

Our sampling yields elements z = P;(Z). With the matrix Z and the sampled elements we can
associate a bipartite graph Gz = (Up,, Vi, E), where

Un=A{1,....m}, V,={1,...,n}.

Our algorithm exploits finding complete bipartite subgraphs, bicliques, in Gz. We now relate this
approach to finding cliques by using the larger symmetric matrix Y in . This allows us to
exploit FR and apply the clique algorithms from [4,/15]. However, we keep the biclique notation
as much as possible.



Therefore, for our needs we associate Z with the undirected graph, G = (V, E), with node set
V={l,....mym+1,...,m+n} and edge set E that satisfies

{{ijeVxVii<j<m}u{ijeVxV:m+1<i<j<m+n}} CEC{ijeV xV:i<j}
Note that as above, E is the set of edges excluding the trivial ones, that is,

E—E\{{ijerV:iSjSm}U{ijerV:m—i—lgigjSm—i—n}}.

Recall that a bicligue o in the graph Gz is a complete bipartite subgraph in Gz with corre-

sponding complete submatrix z[a]. This corresponds to a nontriviaﬂ clique in the graph G, a
complete subgraph in G. The cliques of interest are C' = {iy, ..., i} with cardinalities
ICNn{l,....om} =p#0, |CNn{m+1,....m+n} =q#0. (2.7) 7eq: cardspq?

The submatrix z[a] of Z for the corresponding biclique from the clique C' is
zla] = X ={Z;j_p) 1 ij € C}, sampled p x ¢ rectangular submatrix. (2.8) 7eq:Xspecif?
130 These non-trivial cliques in GG that correspond to bicliques of Gz are at the center of our algorithm.

Example 2.1 (biclique for X). Let the m x n data matriz of rank r with m = 7,n = 6,r = 2 be

-5 1, 10 -20 -21 -6
4 0 4 4 6 6
-3 -3 -38 32 27 -8
-5 0 10 12 7
-30 =30 30 27 =3
-5 =2 8 9 4
) 10 0 3 8

Tt W O Ut

After sampling we have unknown entries denoted by NA and known entries in

5 NA 10 —-20 NA —6
4 0 4 4 6 6
~3 NA NA 32 27 NA
5 NA 0 10 12 NA
NA —-30 NA NA 27 NA
3 -5 -2 8 NA 4
5 5 NA 0 3 NA]

wo  Then z = Pp(Z) denotes a vector representation of the known entries. E denotes the corresponding

11 indices for E when Z is considered in the big matriz Y and E is formed from E by adding on the
12 indices corresponding to the diagonal blocks.
Suppose that our algorithm found a biclique o with indices

Um = {6’ 172}a Vn = {1,4,3,6}.

2For G we have the additional trivial cliques of size k, C = {i1,...,ix} C {1,...,m} and C = {j1,...,4x} C
{m+1,...,m+n}, that are not of interest to our algorithm.
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The corresponding submatrix is

3 8 -2 4
Zlo]=X=|-5 —20 10 —6
4 4 4 6

The sampled large matriz Y containing the sampled Z is filled in with the word free on the di-
agonal blocks to emphasize that these blocks are free during the algorithm. Then the clique Cx
corresponding to the biclique and the corresponding principal submatriz of Y corresponding to X
are, respectively,

Cx ={6,1,2|,1+ 7,4+ 7,3+ 7,6+ 7} ={6,1,2],]8,11,10,13}[7]

and

3 § -2 4
FREE -5 —20 10 -6
4 4 4 6

3 =5 4
8 —20 4
9 10 4 FREE
4 —6 6

3 Facial Reduction, Bicliques, Exposing Vectors

In this section we look at the details of solving the SDP formulation of the nuclear norm relaxation
for LRMC. In particular we show how to exploit bicliques in the graph GGz and the special structure
at the optimum. We note again that though strict feasibility holds for the SDP formulation, we
can take advantage of facial reduction and efficiently obtain low-rank solutions.

3.1 Preliminaries on faces

We now present some of the geometric facts we need. More details can be found in e.g., [4,|15/17].
Suppose that K C R™. Then K is a cone if AK C K,VA > 0. It is a proper closed convex cone,
if it is a closed set and

K+KCK, AKCK,VA>0, int(K)#0, KN (—K) ={0}.
The dual cone, K*, is defined by
K*={peR":(¢,k) >0,Vk € K}.
A subcone F' C K is a face, F' < K, of the convex cone K if
r,yeK,e+yeF = z,y€ F.

The conjugate face, F*, is defined by F* = FL-NK*, where F'+ denotes the orthogonal complement
of F. A face F < K is an exposed face if there exists ¢ € K* such that F = ¢+ N K; and

3We have a bar | to emphasize the end/start of the row/column indices.



¢ is an exposing vector. Let S be a subset of the convex cone K, then face(S) is the smallest
face of K containing S. It is known that: a face of a face is a face; an intersection of faces is a
face; and essential for our algorithm is the following for finding an intersection of exposed faces
F,<K,i=1,...,k,see |4,

1
k
Fi=KnNe¢i,Vi = Nk F= <Z¢>> nkK.
=1

If K = 8%, then the facial structure is well understood. Faces are characterized by the ranges
or nullspaces of the matrices in the face. Let X € ST be rank r and

x=[r qlfg ol @

]T

be the (orthogonal) spectral decomposition with D € §" . Then the smallest face containing X is
face(X) = PSTPT = 8" n(QQ")*.
The matrix QQ7 is an exposing vector for face(X). Moreover, the relative interior satisfies
relint(face(X)) = PS}, PT = relint(face(X)), VX € relint(face(X)),

10 i.e. the face and the exposing vectors are characterized by the eigenspace of any X in the relative
151 interior of the face.
152 For our application we use the following view of facial reduction and exposed faces.

Theorem 3.1 ( |5, Theorem 4.1]). Consider a linear transformation M: 8™ — R™ and a nonempty
feasible set

Fi={X eS8 M(X) =0},

for some point b € R™ . Then a vector v exposes a proper face of M(SY ) containing b if, and only
if, v satisfies the auxiliary system

0#MveS? and (v,b)=0.
153 Let N denote the smallest face of M(S? ) containing b. Then the following are true.
154 1. We always have ST N M™IN = face(F), the smallest face containing F.
2. For any vector v € R™ the following equivalence holds:

v exposes N <= M v exposes face(F). (3.1) 7eq: exposnonuni

155 D

156 The result in details the facial reduction process for the matrix completion problem using
157 exposing vectors. More precisely, if B > 0 is a principal submatrix of the data and trace VB =
158 0,V = 0, then V provides an exposing vector for the image of the coordinate map. We can then
159 complete V' with zeros to get Y € S an exposing vector for F. Define the triangular number,
w0 t(n) =n(n +1)/2, and the projection vec: S® — R™ that vectorizes the upper-triangular part of
161 a symmetric matrix columnwise. We let Mat: RY™ — 8™ denote the inverse mapping.
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Corollary 3.1. Suppose that 1 < k < n and M in Theorem [3.] is the coordinate projection onto
the leading principal submatriz of order k,m = t(k). Let B € S_’ﬁ, b = vec(B) € R*¥), je., for
X € 8™, we have

M(X)ij:bij, VlSZSJSk‘

Let
Ve S_]f_, trace(VB) =0, v = vec V.

Then Y = M*v is an exposing vector for the feasible set F, i.e.,

trace(Y (F)) = 0.
Proof. The proof follows immediately from Theorem as v exposes N and Y = M™ v is an
exposing vector for face(F). O

3.2 Structure at Optimum

The results in Section [2| can now be used to prove the following special structure at the optimum.
This structure is essential in our FR scheme.

Corollary 3.2. Let M* be optimal for the primal in (2.4) with rank(M*) = ry;. Let M* = UDVT
be the compact SVD, D € S"Y_. Define

Wy =UDUT, W,=vDVT, (3.2) eq:Winorm?
and .
[ wy M+ (U] LU ‘
Y = [(M*)T WJ = [V} D [V] . (3.3) 7eq: YDUV?

Then we have Y > 0 and optimal in (2.4]) with rank(Y) =: ry = ryr and

1
|M*| = B trace(Y') = trace(D).
Proof. The matrices U,V have orthonormal columns. Therefore trace(Y) = 2trace(D) = 2||M]||..
O

Now suppose that there is a biclique a of Gz and a corresponding sampled submatriz, z[a] =
X € RPX4 of Z € R™*" with rank(X) = rx. Without loss of generality, after row and column
permutations if needed, we can assume that

ARV,
Z = [Xl Zz] : (3.4) 7eq:2x?
Let the SVD be
X = [Ul UX] |:§ 8:| [Vl Vx]T, DINS S_TH_; (3.5) 7eq:svdX?

and we have a full rank factorization X = PQT obtained using the compact SVD

X=pPQ"=uxv{, P=Ux"? Q=wnx"2
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We see below that such a desirable X (after a permutation if needed), that corresponds to a biclique
a € Gz, z[a] = X, and at least one nontrivial exposing vector, is characterized by

Cx={m—-p+1,...omm+1,... m+q}, r < min{p, ¢} < max{p, q}. (3.6) 7eq:suffbig?

Here we use the target rank, r. We can exploit the information using these bicliques to obtain
exposing vectors of the optimal face, F*, i.e., the smallest face of S_TJr" that contains the set of

optimal solutions of (2.4)).
By abuse of notation, we can rewrite the optimal Y as in (3.3]) in Corollary and get

U U1’ upUT |UDPT UDQT | UDVT
P P pPDUT | PDPT PDQT | PDVT

0xRY = 0 D 0 e QDUT QDPT QDQT QDVT . (3.7) ?eq:Ypartit?
1% 1% vDUT | vDPT vDQT | vDVT

We see that X = PDQT = PQT. Since we assume that X satisfies (3.6) and so is big enough, we
conclude that generically rx = ry = r, see Lemma below, and that the ranges satisfy

Range(X) = Range(P) = Range(P) = Range(U;),

~ (3.8) ?eq:PQbar?

Range(XT) = Range(Q) = Range(Q) = Range(Vq).

This is the key for facial reduction as we can use an exposing vector formed as UXU§ as well as

Vx VL.

Lemma 3.1 (basic FR). Let Y be an optimal solution of the primal problem in with rank(Y') =
r =1y, t.e., the NNM heuristic yields an optimal Y that successful solves the LRMC problem.
Let X € RP*Y be a sampled submatriz of Z be as in (after a permutation if needed) with
rank(X) =rx = rz < min{p, ¢} < max{p, ¢}, and with SVD as in . We now add appropriate
blocks of zeros to the block exposing vectors UXU§, VXV;{ and get

0| o 00 00 0 |0 0| 0 0 |0
0|UxUL 00 00 0 [0 0| UxUL 0 |0
WX: + T - T
0| 0 00 010 WxVElo 0| 0 VxVE|o
0| o 0]0 0/0 0 |0 0| 0 0 |0

Then all three matrices are exposing vectors for the optimal face, i.e., for Wx we have 0 #= Wx >
0,WxY = 0. Moreover, if T is a full column rank matriz with the columns forming a basis for
Null(Wx), the nullspace of Wx, then a facial reduction step for the optimal face, F*, the minimal
face containing the optimal set, yields

F*< TS—(’_”+m)*(p+Q*2T)TT.

Proof. That UXU;";, VXV; provide exposing vectors is by construction based on the argument for
(3.8). The result follows from the fact that the sum of exposing vectors is an exposing vector.
Moreover, the block diagonal structure of the exposing vectors guarantees that the ranks add up
to get the size of the smaller face containing F™*. O

10
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Example 3.1 (pair of exposing vectors). We now present a matriz Y € St with rank(Y) = 2.
Here (m,n) = (6,5).

r 0.0059877 0.10551 —0.011994 —0.036276 —0.073807 —0.049863 —0.049795 —0.02602 0.01314 0.022035 —0.012187 A
0.10551 2.1638 0.035252 —0.6439 —1.5417 —0.77074 —1.9215 —0.13496 —0.23004 0.13318 0.239
—0.011994 0.035252 0.22366 0.068878  —0.04733 0.18725  —0.74543 0.31405 —0.39999 —0.25065 0.39174
—0.036276  —0.6439 0.068878 0.21984 0.45085 0.30043 0.31772 0.15267 —0.072518 —0.12958 0.066865
—0.073807 —1.5417 —0.04733 0.45085 1.1006 0.52923 1.4401 0.064661 0.20335 —0.069711 —0.2089
Y = —0.049863 —0.77074 0.18725 0.30043 0.52923 0.45348 0.044817 0.33131  —0.27295 —0.27387 0.26224
—0.049795 —1.9215 —0.74543 0.31772 1.4401 0.044817 3.9923 —0.89251 1.4727 0.69104 —1.4538
—0.02602 —0.13496 0.31405 0.15267 0.064661 0.33131  —0.89251 0.45673  —0.54736 —0.3667 0.53491
0.01314 —0.23004 —0.39999 —0.072518 0.20335  —0.27295 1.4727 —0.54736 0.72824 0.43489  —0.71429
0.022035 0.13318 —0.25065 —0.12958 —0.069711 —0.27387 0.69104 —0.3667 0.43489 0.29471  —0.42483

L —0.012187 0.239 0.39174 0.066865 —0.2089 0.26224 —1.4538 0.53491  —0.71429  —0.42483 0.7007 4

We sample the elements in rows 4,5,6 and columns 7,8,9,10 to obtain the (p = 3) x (¢ = 4) matrix
X. We let Ux, Vx, denote orthonormal bases for the nullspaces of X, X, respectively, i.e.,

XUx =0, XTVy=0.

Then the two exposing vectors are UXU)T( and VXV)?, filled in with zeros. After adding them
together, we get

-0 0 0 0 0 0 0 0 0 0 0~
0 0 o0 0 0 0 0 0 0 0 0
0 0 o0 0 0 0 0 0 0 0 0
0 0 o0 0.81985 —0.17015 —0.34459 0 0 0 0 0
0 0 0 —0.17015 0.035313  0.071516 0 0 0 0 0
W = 0 0 0 —0.34459 0.071516 0.14483 0 0 0 0o o
0 0 o 0 0 0 0.023237  —0.058066 —0.12587  0.059006 O
0 0 o 0 0 0 —0.058066 0.57988 0.34589 0.34729 0
0 0 o 0 0 0  —0.12587 0.34589 0.68409  —0.28395 0
0 0 o 0 0 0 0.059006 0.34729  —0.28395 0.71279 0
Lo o o 0 0 0 0 0 0 0o o
We see that

WY || = 7.67638¢—16,

thus verifying to 15 decimals that the sum of the two exposing vectors is indeed an exposing vector
for face(Y).

We emphasize that here we knew the two principal diagonal blocks of Y that corresponded to the
cligue C = {4,5,6,7,8,9,10}. But in general we do not and only know the sampled X. However,
generically (Lemma below), we get the exposing vectors correctly as done here. Moreover, here
we only had a single sampled X and could permute it to an easy position to illustrate the exposing
vector. In general, we will have many of these that are identified by the indices determining the
corresponding cligue. We then add them up to get a final exposing vector which is used for the
FR step.

3.3 Bicliques, Weights and Final Exposing Vector

Given a partial matrix Z € R™*" we need to find nontrivial bicliques a and corresponding sampled
submatrices z[a] = X according to the properties in and . Intuitively, we may want to
find bicliques with size as large as possible so that we can expose Y immediately. However, we do
not want to spend a great deal of time finding large bicliques. Instead we find it is more efficient
to find many medium-size bicliques, satisfying the size-rank condition r» < min{p, ¢} < max{p,q}.
This rank condition guarantees that at least one of the two exposing vectors found from the biclique
is not zero. We can then add the exposing vectors obtained from the equivalent cliques for these
bicliques to finally expose a small face containing the optimal Y. This is equivalent to dealing with
a small number of large bicliques. This consideration also comes from the expense of the singular
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value decomposition for the sampled submatrix z[a] = X for Ux, Vx in (3.5) when the biclique is
large.

The following lemma shows that, generically, we can restrict the search to bicliques correspond-
ing to a sampled submatrix X € RP*Y that satisfies the rank condition r < min{p, ¢} < max{p, ¢}
without losing rank magnitude.

Lemma 3.2 (generic rank property). Let r be a positive integer and Z1 € R™*" and Zy € R"™*"
be continuous random variables with i.i.d. elements. Set Z = Z1Z1 and let X € RP*? be any
submatriz of Z with min{p, q} > r. Then rank(X) = r with probability 1.

Proof. Without loss of generality, we can assume that X is the top left corner of Z. Therefore,
X = Z1Z, for appropriate (top part) submatrices Z; of Z;, i = 1,2. By the rank condition, we
have that X = Z;Z7 is a full rank factorization of X generically. O

Remark 3.1. In our numerical tests we generate our matrices Z = Z1Z3 as done in the above
Lemma (3.9, Therefore, it clear generically that submatrices X with the specified size restriction
have rank(X) = rank(Z) generically. It is not clear if the converse is true, i.e., whether a given
random matriz Z with rank(Z) = r and full rank factorization Z = ZlZZT implies that Z1, Zo have
random elementsH

With the existence of noise (e.g., Gaussian), we know that generically the X found can only
have a higher rank but not a lower rank than r. In this case, since we assume that we know the
target rank of X, we can adjust the exposing vector so that it will not over-expose the completion
matrix. If the target rank is not known, then it can be estimated during the algorithm up to a
given tolerance, i.e., for a give sampled p X ¢ submatrix X we estimate the rank. If the estimated
rank < min{p, ¢}, then by our (generic) Lemma we can assume that we have found our target
rank for Z. If this is not the case, then we need to look for bicliques of larger size. As soon as we
find r = rank(X) < min{p, ¢} then we have found our estimated target rank r.

After finding a biclique « corresponding to a sampled submatrix X and its full rank factorization
X = PQ", we then construct biclique weights u§ and u?( to measure how noisy the corresponding
exposing vectors are. We essentially use the Eckart-Young distance |7] to the nearest matrix of
rank 7 and include the size of the submatrix. If the problem is noiseless and we know the target
rank for Z, then these distances for the submatrices are 0.

Definition 3.1 (biclique noise). Suppose that X € RP*?, with singular values o1 > ... > Omingp g}

is a given sampled submatriz corresponding to a biclique of the graph of the partial matriz Z. Let
r be the target rank. Define the biclique noise

min{p,q} 2 min{p,q} 2
P dieril O Q Dimril  O;

=== iy i="="""_
0.5p(p — 1) X 05¢(g—1)

Definition 3.2 (biclique weights). Let © be the set of all bicliqgues. For each biclique X € © of
the partial matrix Z, let p, q,ui, ug be defined as in Definition . Let

S = Z (uf +uQ).
Xeo

4The authors thank Dmitriy Drusvyatskiy for the simplification of our original proof of Lemma Further
discussions are given in [6].

12



226

227

228

229

230

Define the biclique weight

p Q
u u
w§:1—?x, w?(:l—?x.

Using Lemma we now present Algorithm page to find an exposing vector Yegp, for
the optimal face, i.e., we get the block diagonal

> ox @w)F;UXU§ ‘ 0 |
g 0 ‘ er@ w?(VXV)? erpo — expo optima

Note that if A
0
Vo= (U V1[5 o1 VI,

is the (orthogonal) spectral decomposition of Yesp,, with A € §¢, , then the optimal face satisfies

FraygrtnreyT v = [\gp ‘9 } :
Q

Thus this FR process reduces the size of the problem.

Algorithm 3.1 (finding the final exposing vector)

1: INPUT: partial matrix Z € M™*™ target rank r;
2: OUTPUT: final blocked exposing vector Yezp, that exposes the optimal face for
3: PREPROCESSING:
find a set of bicliques © of size within the given range {minsize, maxsize} with r < minsize;
4: for each biclique a € © and corresponding z[a] = X do
. [Ux,Vx] + from SVD of X in 3.5

6: W)]? +— Ux U;;

calculate biclique noise u§;
. W2 vV

calculate biclique noise u)Q(;
8: end for
9: calculate all the biclique weights wé(,i = P, Q,a € O, from biclique noise;
10: sum over bicliques the weighted blocked matrices filled in with appropriate zeros.

ererW)}()‘ OQ o -
0 ‘ ZXG@ wx Wy

0 7£ Yvewpo —

11: return Yz,

Remark 3.2. We do not need to look for large bicliques in Algorithm since we can take ad-
vantage of the fact that adding exposing vectors results in an exposing vector. Moreover, finding a
biclique is equivalent to finding a clique in G. Therefore, we use the algorithms for finding cliques
given in [15] and [4), Algorithm 2].
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4 Noiseless Case

In the noiseless case, the biclique noise is 0 and the weights are all 1 and so ignored. The FR step
finds the blocked exposing vector Y..p, and the blocked basis for Null(Yexpo)ﬂ given by the columns
of

q?

Vp 0O T T
V:[O VQ], VEVp =1, VEVo =1,

thus defining the dimensions r, + r4 = r,,. Therefore an original feasible Y can be expressed as

VpR,VE VPR, VQT

VoRLVE  VoRVE

Y =VRVT = [ (4.1) 7eq: VRVT?

where the blocked

R, R
R=|_F% "M e8S™ r,<m-+n.
i s <me
This means the problems and are in general reduced to the much smaller dimension
R"™>*7a. And if we find enough bicliques we expect a reduction to r, = r, = r,1, = 2r, twice the
target rank. If this is the case then we have exact recovery that can be obtained by a simple least
squares solution. Otherwise, we have to rely on the NINM heuristic.
The reduced model for Y after FR with NNM is

min trace(R) (= trace(VRVT))
st. Pa(VeRnVI) =2  (=Py(2)

R, R
R o) o
R,, Ry

(4.2) ?frnuclearnoise

The FR typically results in low values for r,,7, and in the exact data case many of the linear
equality constraints become redundant, i.e., we generally end up with an overdetermined linear
system. We use the compact QR decompositionlﬂ to identify which constraints to choose that result
in a linearly independent set with a relatively low condition number. Thus we have eliminated a
portion of the sampling and we get the linear system

M(qu) = 'PE(Vpquvg) = z, for some E - E, (4.3) ?eq:smallsyst?
and Z is the vector of corresponding elements in z.
1. We first solve the simple semidefinite constrained least squares problem
min [|Pz(VeRyVE) — 2)].
Jmin, [PV R VE) = )|
If the optimal R has attained the target rank, then the exactness of the data implies that

necessarily the optimal value is zero; and we are done. (In fact, the SDP constraint is
redundant here as R can always be completed using an SVD decomposition of R,.)

5The MATLAB command null was used to find an orthonormal basis for the nullspace. However, this requires an
SVD decomposition and fails for huge problems. In that case, we used the Lanczos approach with eigs.

5The MATLAB economical version function [~, R, E] = qr(®, 0) finds the list of constraints for a well conditioned
representation, where ® denotes the matrix of constraints.
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2. If R does not have the target rank in Item [1| above, then we solve for our minimum
nuclear norm solution. We note that the linear transformation M in is not one-one.
Therefore, we often need to add a small regularizing term to the objective, i.e., we use
min trace(R) + || R|| p with small v > 0.

4.1 Numerics Noiseless Case

We now present experiments with the algorithm on random noiseless instances. Averages (computer
times, rank, residuals) on twenty random instances are included in the table

The tests were run with MATLAB version R2016a, and Windows 8, on a Dell Optiplex 9030,
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and 16 GB RAM. [f| The times we present are the
wall-clock times in seconds. For the semidefinite constrained least squares problems we used the
MATLAB addon CVX [12] for simplicity. This means our computer times could be improved if we
replaced CVX with a recent SDP solver.

We generate the instances as done in the recent work [8]. The target matrices are obtained
from Z = ZLZIE, where Z;, € R™*" and Zr € R™"™. Each entry of the two matrices Z;, and Zg is
generated independently from a standard normal distribution N(0,1). We then generate a sparse
m X r matrix to obtain the random indices that are sampled. We evaluate our results using the
same measurement as in [8], which we call “Residual” in our tables. It is calculated as:

7-7
Residual = 7“ HF,
1ZF

where Z is the target matrix, Z is the output matrix that we find, and ||-|| » is the Frobenius norm.

We observe that we far outperform the results in [8] both in accuracy and in time; and we
solve much larger problems. We are not as competitive for the low density problems as our method
requires a sufficient number of cliques in G (bicliques in Gz). We could combine our preprocessing
approach using the bicliques before the method in [8] is applied.

In Tables [1] to [7] we present the results with noiseless data with target ranks ranging from r = 2
to r = 6. We see that we get efficient high accuracy recovery in every instance. The accuracy is
significantly higher than what one can expect from an SDP interior point solver. The computer
time is almost entirely spent on finding the matrix representation and on its QR factorization that
is used as a heuristic for finding a correct subset of well-conditioned linear constraints. However,
we do not use any refinement steps for these tests. For higher rank and sparse problems we end
up with a larger FR problem and a a large matrix representation. This can be handled using
the sketch matrix and refinement described in the noisy case. For the lower density problems, we
remove the rows and columns of the original data matrix corresponding to zero diagonal elements
of the final exposing matrix. These rows and columns have no sampled entries in them and so it
does not make sense to include them in the algorithm. We include the percentage of the number of
elements of the original data matrix that are recovered and the corresponding percentage residual.
Since the accuracy is high for this recovered submatrix, it can then be used with further sampling
to recover the complete original matrix.

"The density p in the tables are reported as “mean(p)” because the real density obtained is usually not the same
as the one set for generating the problem. We report the mean of the real densities over the five instances.

8The Tables With rank 6 andwith rank 8 were done using a MacBookPro12,1, Intel Core i5, 2.7 GHz with two
cores and 8 GB RAM. The version of MATLAB was the same R2016a.
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These problems involved relatively low target ranks » = 2 to » = 8. Larger ranks mean that we
need to find larger bicliques/cliques, e.g., r = 20 means that the cliques need to be of size bigger
than 40. This means that the values for r,,r, can be large and we need to solve a large SDP least
squares problem. We include a purify step to do this in the noisy case discussed below.

Note that the largest problems in the last of the noiseless tables, [6] and [7] have, respectively,
48,000, 000 and 50,000,000 data entries in Z with approximately 35,000,000 unknown values that
were recovered successfully with extremely high accuracy. The target rank was recovered in every
instance. We used the MATLAB command null in Table [] to find the nullspaces to derive V' in
. This is based on an SVD decomposition of a full matrix and is expensive. We used MATLAB
etgs rather than null in Table 7] which resulted in lower computer times but lower accuracy. We
could not use null in the noisy case as this results in essentially full rank each time due to the noise.
We changed to a sparse QR decomposition which estimates the rank, has the lowest computer times

while still maintaining high accuracy.

Table 1: noiseless: r = 2; m X n size; density p; mean 20 instances.

Specifications ry | Revrd (%Z) | Time (s) | Rank | Residual (%Z2)
m n  mean(p)
2100 4000 0.33 4.00 100.00 46.35 2.0 1.4298e-13
2100 4000 0.26 4.00 100.00 44.69 2.0 4.3546e-14
2100 4000 0.22 4.00 100.00 43.43 2.0 9.8758e-14
2100 4000 0.18 4.00 100.00 42.66 2.0 1.4409e-13
2100 4000 0.14 4.00 99.78 42.16 2.0 8.9667e-14
Table 2: noiseless: r = 3; m X n size; density p; mean 20 instances.
Specifications ry | Reved (%Z) | Time (s) | Rank | Residual (%Z2)
m n  mean(p)
2100 4000 0.33 6.00 100.00 50.46 3.0 8.6855e-13
2100 4000 0.26 6.00 100.00 49.88 3.0 1.0738e-12
2100 4000 0.22 6.00 100.00 48.56 3.0 1.1436e-12
2100 4000 0.18 6.00 99.81 47.90 3.0 2.5695e-12
2100 4000 0.14 6.20 95.15 46.69 3.0 8.5525e-12
Table 3: noiseless: r = 5; m X n size; density p; mean 20 instances.
Specifications ry | Revrd (%Z) | Time (s) | Rank | Residual (%Z2)
m n  mean(p)
2100 4000 0.45 10.00 100.00 52.48 5.0 2.2232e-10
2100 4000 0.42 10.00 100.00 53.16 5.0 2.3748e-11
2100 4000 0.39 10.00 100.00 52.45 5.0 1.5950e-10
2100 4000 0.36 10.00 99.99 49.78 5.0 4.5280e-11
2100 4000 0.33 10.00 99.79 47.60 5.0 2.5057e-10

16




285

286

287

289

290

291

Table 4: noiseless: r = 6; m X n size; density p; mean 20 instances.

Specifications ro | Reved (%2) | Time (s) | Rank | Residual (%2)
m n  mean(p)
5100 4000  0.48 || 12.00 | 100.00 8483 | 6.0 | 44311c-10
5100 4000  0.45 || 12.00 | 99.98 7881 | 60 | 7.28560-10
5100 4000  0.42 || 12.00 | 99.78 7611 | 6.0 | 1.3813c-11
5100 4000  0.39 || 12.00 | 98.46 7348 | 60 | 2.8688¢-10
5100 4000  0.36 || 13.65 |  92.08 7452 | 6.0 | 5.65450-08

Table 5: noiseless: r = 8; m X n size; density p; mean 20 instances.

Specifications ro | Reved (%2) | Time (s) | Rank | Residual (%2)
m n  mean(p)
1000 3000 053 | 16.10 |  96.39 3720 | 80 | L.1072e-10
1000 3000 050 | 17.65 |  88.99 3650 | 8.0 | 4.6569¢-10
1000 3000 048 | 3215 |  71.66 7214 | 85 | 2.04130-07

Table 6: noiseless: r = 3; m X n size; d

ensity p; mean 20 instances.

Specifications ry | Revrd (%Z) | Time (s) | Rank | Residual (%2)
m n mean(p)
700 2000 0.33 6.00 100.00 5.58 3.0 2.6857e-13
1000 5000 0.33 6.00 100.00 58.31 3.0 3.0256e-12
1400 9000 0.33 6.00 100.00 296.91 3.0 1.4185e-12
1900 14000 0.33 6.00 100.00 1043.46 3.0 1.9995e-12
3000 16000 0.33 6.00 100.00 1758.76 3.0 2.5250e-12

Table 7: noiseless: r = 4; 100% recovered; nullspace with eigs; mean 5 instances.

Specifications Time (s) | Rank | Residual (%Z2)
m n mean(p)
700 2000 0.36 12.80 4.0 1.5217e-12
1000 5000 0.36 49.66 4.0 1.0910e-12
1400 9000 0.36 131.53 4.0 6.0304e-13
1900 14000 0.36 291.22 4.0 3.4847e-11
2500 20000 0.36 798.70 4.0 7.2256e-08

5 Noisy Case

This case is similar to the noiseless case but with the addition of a refinement step. (The refinement
step can also be used for the noiseless case when the FR problem dimension r, is too large.)
We include the rank and residual outputs for both before refinement and the total of both after
We see that in most cases when the graph is sufficiently dense, refinement is not
needed, and near perfect completion (recovery) is obtained relative to the noise. In particular, the

refinement.

low target rank was attained most times.
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We generate the data as in the noiseless case and then perturb the known entries by additive
noise, i.e.,
Zij — Zij + O’ft”Z”OO, Vij € E,

where & ~ N(0,1) and o is a noise factor that can be changed. The computer and software were
similar as in the noiseless case. The tests were run on MATLAB version R2016a as above, but on
a Dell Optiplex 9030, with Windows 8, Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz and 16 GB
RAM.

As above we proceed to first complete FR in order to reduce the dimension of Y, i.e., the
dimension of R, 1, is dramatically smaller. In the low density and/or high rank cases it is difficult
to find enough cliques and in this case the final exposing vector Y,.p, contains many zero rows.
This essentially means that we have not sampled rows and/or columns of Z. In these cases we have
ignored the rows and columns that used no sampled entries.

After FR we first solve the simple semidefinite constrained least squares problem

oo = Rnel‘is?_v ||PE(VPquVQT) —z|, z= PE(Z)-

However, unlike in the noiseless case, we cannot remove redundant constraints, even though there
may be many. This problem is now highly overdetermined and may also be ill-posed in that the
constraint transformation may not be one-one. We use the notion of sketch matriz to reduce the
size of the system, e.g., [18]. The matrix A is a random matrix of appropriate size with a relatively
small number of rows in order to dramatically decrease the size of the constrained least squares
problem

A(Pa(VPRyVS) — 2) |-

dp = min

ReSY

As noted in [18], this leads to surprisingly good results. If s is the dimension of R, then we use a

random sketch matrix of size 2t(s) x |E|, where ¢(-) is the number of variables on and above the
diagonal of a symmetric matrix, i.e., the triangular number

i(s) = S(S;l)

If the optimal R has the correct target rank, then we are done.

5.1 Refinement Step with Dual Multiplier

If the result from the constrained least squares problem does not have the target rank, we now use
this dp as a best target value for our parametric approach as done in [4]. Our NINM problem can
be stated as:

min trace(R)

s.t. HA (Pe(VrRpV) - 2)

R

To attempt to find a lower rank solution, we use the approach in [4] and flip this problem:

Y IA

0.

©(7) := min HA <’PE(VpquVg) - z> H +[RlF

s.t. trace(R) < T (5.2) ?eq:flipNoisyfi

R>0.
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As in the noiseless case, the least squares problem may be underdetermined. We add a regularizing
term ++v||R||F to the objective with v > 0 small. The starting value of 7 is obtained from the
unconstrained least squares problem, and from which we can reduce the value of the trace of R
to reduce the nuclear norm and so heuristically reduce the rank. We refer to this process as the
refinement step.

This process requires a tradeoff between low-rank and low-error. Specifically, the trace con-
straint may not be tight at the starting value of 7, which means we can lower the trace of R
without sacrificing accuracy, however, if the trace is pushed lower than necessary, the error starts
to get larger. To detect the balance point between low-rank and low-error, we exploit the role as
sensitivity coefficient for the dual multiplier of the inequality constraint. The value of the dual
variable indicates the rate of increase of the objective function. When the the dual multiplier be-
comes positive then we know that decreasing 7 further will increase the residual value. We have
used the value of .01 to indicate that we should stop decreasing 7.

5.2 Numerics Noisy Case

The noisy case results with increasing ranks 2, 3,4 and various sizes and densities follow in Tables
) With the densities we use the recovery is essentially 100%. We consider problems with
relatively high density to ensure that we can find enough cliques. We have not included tests with
higher rank as those are done in the noiseless case and are similar here.

Table 8: noisy: r = 2; m X n size; density p; mean 20 instances.

Specifications Time (s Rank Residual (%Z
m EL % noise  p Revd (%2) initial r(ezine initial refine initial (reﬁr)le
1100 3000 0.50 0.33 100.00 33.72  48.53 2.00 2.00 | 8.53e-03 8.53e-03
1100 3000 1.00 0.33 100.00 33.67  49.09 2.00 2.00 | 2.70e-02  2.70e-02
1100 3000 2.00 0.33 100.00 34.13 48.84 2.00 2.00 | 9.75e-02  9.75e-02
1100 3000 3.00 0.33 100.00 36.34 92.73 5.00 5.00 | 5.48¢-01 1.40e-01
1100 3000 4.00 0.33 100.00 51.45 186.28 | 11.00 8.00 | 1.25e+00 1.28e-01
Table 9: noisy: r = 3; m X n size; density p; mean 20 instances.
Specifications Time (s Rank Residual (%Z
m E % noise  p Revd (%2) initial (r(zﬁne initial refine initial (reﬁr)le
700 1000 1.00 0.33 99.99 2.58 16.54 3.35 3.35 | 1.29e+00 1.07e+400
800 2000 1.00 0.33 100.00 10.72 29.59 3.75 3.75 | 1.15e+00 1.07e+400
900 4000 1.00 0.33 100.00 61.92 94.40 3.25 3.20 | 1.47e+00 1.07e+400
1000 8000 1.00 0.33 100.00 404.26  672.60 8.70 6.45 | 3.94e4+00 7.11e-01
1100 16000 1.00 0.33 100.00 3553.81 4230.73 | 9.00 6.65 | 4.00e+00 6.66e-01

6 Conclusion

In this paper we have shown that we can apply facial reduction through the exposing vector
323 approach used in [4] in combination with the nuclear norm heuristic to efficiently find low-rank
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Table 10: noisy: r = 4; m x n size; density p; mean 20 instances.

Specifications Time (s Rank Residual (%Z
m fz % noise  p Revd (%2) initial 1(re>ﬁne initial refine initial (reﬁr)le
1100 3000 0.00 0.36 100.00 30.27 4244 | 400  4.00 | 9.04e-13  9.04e-13
1200 3500 1.00 0.33 100.00 52.48 198.22 | 820  6.70 | 6.45e+00 1.08e+00
1300 4000 2.00 0.32 100.00 81.09 388.68 | 11.80 7.85 | 1.88e+01 1.28e+00
1400 4500 3.00 0.31 100.00 117.40 573.87 | 12.00 7.40 | 2.51e4+01 1.45e+00
1500 5000 4.00 0.31 100.00 142.86 699.06 | 12.00 6.90 | 2.42e+01 1.61e+00

matrix completions. This exploits the degenerate structure of the optimal solution set even though
the nuclear norm heuristic problem itself satisfies strict feasibility.

Specifically, whenever enough complete bipartite subgraphs are available for the graph of the
matrix of the problem, we are able to find a proper face with a significantly reduced dimension that
contains the optimal solution set. We then solve this smaller minimum trace problem by flipping
the problem and using a refinement with a parametric point approach. If we cannot find enough
bicliques, the matrix can still be partially completed. Having an insufficient number of bicliques
is indicative of not having enough initial data to recover the unknown elements for our algorithm.
This is particularly true for large r where larger bicliques are needed. Throughout we see that the
facial reduction both regularizes the problem and reduces the size and often allows for a solution
without any refinement.

Our preliminary numerical results are promising as they efficiently and accurately recover large
scale problems. The numerical tests are ongoing with improvements in using biclique algorithms
rather than clique algorithms thus exploiting the block structure of the cliques; and with solving
the lower dimensional flipped problems. In our paper we have started our tests with knowing the
target rank r. In forthcoming tests we plan on using estimating the target rank using sampled
submatrices.

In addition, theoretical results on ezact recovery are discussed in many papers, e.g., [2/3}/19].
They use the so-called restricted isometry property, RIP, for vectors extended to the matrix case.
However, the RIP condition is difficult to verify. It appears from our work above that exact recovery
guarantees can be guaranteed from rigidity questions in the graph of Z, i.e., in the number and
density of the bicliques. Moreover, there are interesting questions on how to extend these results
from the simple matrix completion to general solutions of linear equations, A(Z) = b, where A is
some linear transformation.
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Index

CX:{m—p+1,,m,m+1,,m+Q}7

F <K, face,[7]

F*, optimal face,

G = (V, E), undirected graph, [6]
Gz = (Unm, Vi, £),[f]

K*, dual cone,

P-biclique weight, w§,

R,,

Ry, [14

Ryq, [14]

X € RP*Y, sampled submatrix, |§|

Y > 0, positive semidefinite, [7]

Y:expm @

Mat, [§]

S™, space of real symmetric matrices,
!, positive semidefinite matrices,

S% ., positive definite matrices,

E, indices of sampled entries of Z,

vec, [§]

|||, nuclear norm,
||-|| =, Frobenius norm,
r, target rank, [I0]

rXx, @

Ty, E

p, [14]

Tq,

t(k) = k(k + 1)/2, triangular number,
ul;, biclique noise,

ul;, biclique weight,

w)F;, P-biclique weight,

z[a], complete submatrix, 6]

FR, facial reduction,

FE, indices in Y of sampled entries of Z,

394

395

396

410

411

412

413

418

LRMC, low-rank matrix completion problem,

Bl &

NNM, nuclear norm minimization,
RIP, restricted isometry property,
SDP, semidefinite programming,

adjoint of A,

biclique, [}, [6]
biclique noise, uf},

419
420
421
422

423

424

425

426

21

biclique weight, ui,

clique, [0]
complete submatrix, z[a], [6]
conjugate face, F’*,

dual cone, K*,
dual multiplier,

Eckart-Young distance, [12]
exposed face, [7]

exposing vector, [3 [B], [I0]

face, F < K, [7]
x FR,
Frobenius norm, |||z,

indices in Y of sampled entries of Z, E,
indices of sampled entries of Z, FE,

low-rank matrix completion problem, LRMC,

x LRMC,

Mangasarian-Fromovitz constraint qualification,
4

x NNM, 4]

nuclear norm, ||-||,,

optimal face, F'™,
orthogonal complement, [7]

partial matrix,
positive definite matrices, 87,
positive semidefinite matrices, S,

x RIP,

sampled submatrix, z[a] = X € RP*?, |§|
x SDP,

sketch matrix,
Slater constraint qualification,

space of real symmetric matrices, S",

target rank, r,
triangular number, t(n) =n(n+1)/2,

undirected graph, G = (V, E), |§|
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