# Parametric Convex Quadratic Relaxation of the Quadratic Knapsack Problem 

M. Fampa ${ }^{\text {a, }}$, D. Lubke ${ }^{\text {a }}$, F. Wang ${ }^{\text {b }}$, H. Wolkowicz ${ }^{\text {c }}$<br>${ }^{a}$ Universidade Federal do Rio de Janeiro, Brazil<br>${ }^{b}$ Dept. of Mathematics, Royal Institute of Technology, Sweden<br>${ }^{c}$ Dept. of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada


#### Abstract

We consider a parametric convex quadratic programming, CQP, relaxation for the quadratic knapsack problem, QKP. This relaxation maintains partial quadratic information from the original QKP by perturbing the objective function to obtain a concave quadratic term. The nonconcave part generated by the perturbation is then linearized by a standard approach that lifts the problem to the matrix space. We present a primal-dual interior point method to optimize the perturbation of the quadratic function, in a search for the tightest upper bound for the QKP. We prove that the same perturbation approach, when applied in the context of semidefinite programming, SDP, relaxations of the QKP , cannot improve the upper bound given by the corresponding linear SDP relaxation. The result also applies to more general integer quadratic problems. Finally, we propose new valid inequalities on the lifted matrix variable, derived from cover and knapsack inequalities for the QKP, and present the separation problems to generate cuts for the current solution of the CQP relaxation. Our best bounds are obtained from alternating between optimizing the parametric quadratic relaxation over the perturbation and adding cutting planes generated by the valid inequalities proposed.


Keywords: quadratic knapsack problem, quadratic binary programming, convex quadratic programming relaxations, parametric optimization, valid inequalities, separation problem

2000 MSC: 90C26, 90C25, 65K05

[^0]
## 1. Introduction

We study a convex quadratic programming, CQP, relaxation of the quadratic knapsack problem, QKP,

$$
\begin{align*}
p_{\mathrm{QKP}}^{*}:=\max & x^{T} Q x  \tag{1}\\
\text { s.t. } & w^{T} x \leq c \\
& x \in\{0,1\}^{n}
\end{align*}
$$

where $Q \in \mathbb{S}^{n}$ is a symmetric $n \times n$ nonnegative integer profit matrix, $w \in \mathbb{Z}_{++}^{n}$ is the vector of positive integer weights for the items, and $c \in \mathbb{Z}_{++}$is the knapsack capacity with $c \geq w_{i}$, for all $i \in N:=\{1, \ldots, n\}$. The binary variable $x$ indicates whether an item is chosen for the knapsack or not, and the inequality in the model, known as a knapsack inequality, ensures that the selection of items does not exceed the knapsack capacity. We note that any linear costs in the objective can be included on the diagonal of $Q$ by exploiting the $\{0,1\}$ constraints and, therefore, are not considered.

The QKP was introduced in 12 and was proved to be NP-Hard in the strong sense by reduction from the clique problem. The quadratic knapsack problem is a generalization of the knapsack problem, $\mathbf{K P}$, which has the same feasible set of the QKP, and a linear objective function in $x$. The KP can be solved in pseudo-polynomial time using dynamic programming approaches with complexity of $O(n c)$.

The QKP appears in a wide variety of fields, such as biology, logistics, capital budgeting, telecommunications and graph theory, and has received a lot of attention in the last decades. Several papers have proposed branch-and-bound algorithms for the QKP and the main difference between them is the method used to obtain upper bounds for the subproblems [7, 4, 6, 5, 15, 16]. The well known trade-off between the strength of the bounds and the computational effort required to obtain them is intensively discussed in [24], where semidefinite programming, SDP, relaxations proposed in [15] and [16] are presented as the strongest relaxations for the QKP. The linear programming, LP , relaxation proposed in 4, on the other side, is presented as the most computationally inexpensive.

Both the SDP and the LP relaxations have a common feature, they are defined in the symmetric matrix lifted space determined by the equation $X=$ $x x^{T}$, and by the replacement of the quadratic objective function in (1) with a linear function in $X$, namely, trace $(Q X)$. As the constraint $X=x x^{T}$ is nonconvex, it is relaxed by convex constraints in the relaxations. The well known McCormick inequalities [21], and also the semidefinite constraint, $X-x x^{T} \succeq 0$, have been extensively used to relax the nonconvex constraint $X=x x^{T}$, in relaxations of the QKP.

In this paper, we investigate a convex quadratic programming, CQP, relaxation for the QKP, where instead of linearizing the objective function, we perturb the objective function Hessian $Q$, and maintain the (concave) perturbed version of the quadratic function in the objective, linearizing only the remaining part derived from the perturbation. Our relaxation is a parametric convex
quadratic problem, defined as a function of a matrix parameter $Q_{p}$, such that $Q-Q_{p} \preceq 0$. A similar approach to handle nonconvex quadratic functions consists in decomposing it as a difference of convex (DC) quadratic function [18]. DC decompositions have been extensively used in the literature to generate convex quadratic relaxations of nonconvex quadratic problems. See, for example, [10] and references therein. Unlike the approach used in DC decompositions, we do not necessarily decompose $Q$ as a difference of convex functions, or equivalently, as a sum of a convex and a concave function. Instead, we decompose it as a sum of a concave function and a quadratic term derived from the perturbation applied to $Q$. This perturbation can be any symmetric matrix $Q_{p}$, which is iteratively optimized by a primal-dual interior point method, IPM, to generate the best possible bound for the QKP.

Although SDP relaxations are well known for being more expensive to solve in general, in an attempt to obtain even stronger bounds, we also investigated the parametric convex quadratic SDP problem, where we add to our CQP relaxation, the positive semidefinite constraint $X-x x^{T} \succeq 0$. An IPM could also be applied to this parametric problem in order to generate the best possible bound. Nevertheless, we prove an interesting result concerning the relaxations, in case the constraint $X-x x^{T} \succeq 0$ is imposed: the tightest bound generated by the parametric quadratic relaxation is obtained when the perturbation $Q_{p}$ is equal to $Q$, or equivalently, when we linearize all the objective function, getting the standard linear SDP relaxation. We conclude, therefore, that keeping the (concave) perturbed version of the quadratic function in the objective of the SDP relaxation does not lead to a tighter bound.

Another contribution of this work is the development of valid inequalities for the CQP relaxation on the lifted matrix variable. The inequalities are first derived from cover inequalities for the $\mathbf{K P}$, addressed in the next subsection. The idea is then extended to knapsack inequalities. Taking advantage of the lifting $X:=x x^{T}$, we propose new valid inequalities that can also be applied to more general relaxations of binary quadratic programming problems that use the same lifting. We discuss how cuts for the quadratic relaxation can be obtained by the solution of separation problems, and investigate possible dominance relation between the inequalities proposed.

We finally present an algorithmic framework, where we iteratively improve the upper bound for the QKP by optimizing the choice of the perturbation of the objective function and adding cutting planes to the relaxation. At each iteration, lower bounds for the problem are also generated from feasible solutions constructed from a rank-one approximation of the solution of the CQP relaxation.

In Section 2, we introduce our parametric convex quadratic relaxation for the QKP. In Section 3, we explain how we optimize the parametric problem over the perturbation of the objective, i.e., we present the IPM applied to obtain the perturbation that leads to the best possible bound. In Section 4 , we present our conclusion about the parametric quadratic SDP relaxation. In Section 5, we introduce new valid inequalities on the lifted matrix variable of the convex quadratic model, and we describe how cutting planes are obtained by the solution of separation problems. In Section 6. we present the heuristic pro-
cedure used to generate lower bounds to the QKP. In Section 7, we discuss our numerical experiments and in Section 8, we present our final remarks.

### 1.1. Preliminaries: knapsack polytope and cover inequalities

In the following we recall the concepts of knapsack polytopes and cover inequalities.

The knapsack polytope is the convex hull of the feasible points of the KP , $\mathbf{K F}:=\left\{x \in\{0,1\}^{n}: w^{T} x \leq c\right\}$.

Definition 1 (zero-one knapsack polytope).

$$
\mathbf{K P o l}:=\operatorname{conv}(\mathbf{K F})=\operatorname{conv}\left\{x \in\{0,1\}^{n}: w^{T} x \leq c\right\} .
$$

Proposition 2. The dimension

$$
\operatorname{dim}(\mathbf{K P o l})=n,
$$

and $\mathbf{K P o l}$ is an independence system, i.e.,

$$
x \in \mathbf{K P o l}, y \in\{0,1\}^{n}, y \leq x \Longrightarrow y \in \mathbf{K P o l} .
$$

Proof. Recall that $w_{i} \leq c, \forall i$. Therefore, all the unit vectors $e_{i} \in \mathbb{R}^{n}$ are feasible and the first statement follows. The second statement is clear.

Cover inequalities were originally presented in [2, 26]; see also [23, Section II.2]. These inequalities can be used in general optimization problems with binary variables and, particularly, in the knapsack problems, KP and QKP .

Definition 3 (cover inequality, CI). The subset $C \subseteq N$ is a cover if it satisfies

$$
\sum_{j \in C} w_{j}>c
$$

The (valid) CI is

$$
\begin{equation*}
\sum_{j \in C} x_{j} \leq|C|-1 \tag{2}
\end{equation*}
$$

The cover inequality is minimal if no proper subset of $C$ is also a cover.
Definition 4 (extended CI, ECI). Let $w^{*}:=\max _{j \in C} w_{j}$ and define the extension of $C$ as

$$
E(C):=C \cup\left\{j \in N \backslash C: w_{j} \geq w^{*}\right\}
$$

The ECI is

$$
\sum_{j \in E(C)} x_{j} \leq|C|-1
$$

Definition 5 (lifted CI, LCI). Given any minimal cover $C$, there exists at least one facet-defining lifted CI, LCIof the form

$$
\begin{equation*}
\sum_{j \in C} x_{j}+\sum_{j \in N \backslash C} \alpha_{j} x_{j} \leq|C|-1 \tag{3}
\end{equation*}
$$

where $\alpha_{j} \geq 0, \forall j \in N \backslash C$. Moreover, each such LCI dominates the extended CI.

Cover inequalities are extensively discussed in 14, 3, 2, 26, 23, 1, Details about the computational complexity of LCI is presented in [28, 13]. Algorithm 1 [27, page 5], shows how to derive a facet-defining LCI from a given minimal cover $C$.

## Algorithm 1: Procedure to find LCI

Sort the elements in ascending $w_{i}$ order $i \in N \backslash C$, defining
$\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$.
For: $\mathrm{t}=1$ to r

$$
\begin{array}{lll}
\zeta_{t}= & \max & \sum_{j=1}^{t-1} \alpha_{i_{j}} x_{i_{j}}+\sum_{i \in C} x_{i} \\
\text { s.t. } & \sum_{j=1}^{t-1} w_{i_{j}} x_{i_{j}}+\sum_{i \in C} w_{i} x_{i} \leq c-w_{i_{t}}  \tag{4}\\
& x \in\{0,1\}^{|C|+t-1} .
\end{array}
$$

Set $\alpha_{i_{t}}=|C|-1-\zeta_{t}$.
End

## Notation

If $A \in \mathbb{S}^{n}$, then $\operatorname{svec}(A)$ is a vector whose entries come from $A$ by stacking up its lower half, i.e.,

$$
\operatorname{svec}(A):=\left(a_{11}, \ldots, a_{n 1}, a_{22}, \ldots, a_{n 2}, \ldots, a_{n n}\right)^{T} \in \mathbb{R}^{n(n+1) / 2}
$$

The operator sMat is the inverse of svec, i.e., $\operatorname{sMat}(\operatorname{svec}(A))=A$.
We also denote by $\lambda_{\min }(A)$, the smallest eigenvalue of $A$ and by $\lambda_{i}(A)$ the $i^{\text {th }}$ largest eigenvalue of $A$.

## 2. A Parametric Convex Quadratic Relaxation

In order to construct a convex relaxation for the QKP , we start by considering the following standard reformulation of the problem in the lifted space of
symmetric matrices, defined by the lifting $X:=x x^{T}$.

$$
\begin{array}{rll}
p_{\text {QKP }}^{\text {LIFTED }}
\end{array}:=\max \quad \operatorname{trace}(Q X), ~ \begin{array}{cl}
\text { s.t. } & w^{T} x \leq c \\
& X=x x^{T}  \tag{5}\\
& X \in\{0,1\}^{n} .
\end{array}
$$

We consider an initial $\mathbf{L P}$ relaxation of the $\mathbf{Q K P}$, given by

$$
\begin{array}{lll}
(\text { LPR }) & \max & \operatorname{trace}(Q X)  \tag{6}\\
\text { s.t. } & (x, X) \in \mathcal{P},
\end{array}
$$

where $\mathcal{P} \subset[0,1]^{n} \times \mathbb{S}^{n}$ is a bounded polyhedron, such that

$$
\left\{(x, X): w^{T} x \leq c, X=x x^{T}, x \in\{0,1\}^{n}\right\} \subset \mathcal{P}
$$

### 2.1. The perturbation of the quadratic objective

We then propose a convex quadratic relaxation with the same feasible set of LPR, but maintaining a concave perturbed version of the quadratic objective function of the QKP, and linearizing only the remaining nonconcave part derived from the perturbation. More specifically, we choose $Q_{p} \in \mathbb{S}^{n}$ such that

$$
\begin{equation*}
Q-Q_{p} \preceq 0 \tag{7}
\end{equation*}
$$

and get

$$
\begin{aligned}
x^{T} Q x & =x^{T}\left(Q-Q_{p}\right) x+x^{T} Q_{p} x=x^{T}\left(Q-Q_{p}\right) x+\operatorname{trace}\left(Q_{p} x x^{T}\right) \\
& =x^{T}\left(Q-Q_{p}\right) x+\operatorname{trace}\left(Q_{p} X\right)
\end{aligned}
$$

Finally, we define the parametric convex quadratic relaxation of the QKP :
(8) $\quad\left(\mathbf{C Q P}_{Q_{p}}\right)$

$$
\begin{aligned}
p_{\mathrm{CQP}}^{*}\left(Q_{p}\right):=\max & x^{T}\left(Q-Q_{p}\right) x+\operatorname{trace}\left(Q_{p} X\right) \\
\text { s.t. } & (x, X) \in \mathcal{P},
\end{aligned}
$$

## 3. Optimizing the parametric problem over the parameter $Q_{p}$

The upper bound $p_{\mathrm{CQP}}^{*}\left(Q_{p}\right)$ in the convex quadratic problem (8) depends on the feasible perturbation $Q_{p}$ of the Hessian $Q$. To improve the upper bound we consider the parametric problem

$$
\begin{equation*}
\operatorname{param}_{\mathrm{QKP}}^{*}:=\min _{Q-Q_{p} \preceq 0} p_{\mathrm{CQP}}^{*}\left(Q_{p}\right) . \tag{9}
\end{equation*}
$$

We solve (9) with a primal-dual interior-point approach, and describe in this section how the search direction of the algorithm is obtained at each iteration. We start with minimizing a log-barrier function. We use the barrier function, $B_{\mu}\left(Q_{p}, Z\right)$ with barrier parameter, $\mu>0$, to obtain the barrier problem

$$
\begin{array}{cl}
\min & B_{\mu}\left(Q_{p}, Z\right):=p_{\mathrm{CQP}}^{*}\left(Q_{p}\right)-\mu \log \operatorname{det} Z \\
\mathrm{s.t.} & Q-Q_{p}+Z=0 \\
& Z \succ 0
\end{array}
$$

where $\Lambda \in \mathbb{S}^{n}$ denotes the dual variable (matrix). Let us consider the Lagrangian function

$$
L_{\mu}\left(Q_{p}, Z, \Lambda\right):=p_{\mathrm{CQP}}^{*}\left(Q_{p}\right)-\mu \log \operatorname{det} Z+\operatorname{trace}\left(\left(Q-Q_{p}+Z\right) \Lambda\right)
$$

Note that the objective function for $p_{\mathrm{CQP}}^{*}\left(Q_{p}\right)$ is linear in $Q_{p}$, i.e., this function is the maximum of linear functions over feasible points $x, X$. Therefore, this is a convex function. From standard sensitivity analysis results, e.g. [11, Corollary 3.4.2], [17], [9, Theorem 1], if the optimal solution $x, X$ is unique, then the gradient is obtained by differentiating the Lagrangian. Since $Q_{p}$ appears only in the objective function in (8), and

$$
x^{T}\left(Q-Q_{p}\right) x+\operatorname{trace}\left(Q_{p} X\right)=x^{T} Q x+\operatorname{trace}\left(Q_{p}\left(X-x x^{T}\right)\right)
$$

we get a directional derivative at $Q_{p}$ in the direction $\Delta Q_{p}$,

$$
D\left(p_{\mathrm{CQP}}^{*}\left(Q_{p}\right) ; \Delta Q_{p}\right)=\max _{\text {optimal } x, X} \operatorname{trace}\left(\left(X-x x^{T}\right) \Delta Q_{p}\right)
$$

In the case of a unique optimum $x=x\left(Q_{p}\right), X=X\left(Q_{p}\right)$, we get the gradient

$$
\begin{equation*}
\nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}\right)=X-x x^{T} \tag{11}
\end{equation*}
$$

The gradient of the barrier function, is then

$$
\nabla B_{\mu}\left(Q_{p}\right)=\left(X-x x^{T}\right)-\mu Z^{-1}
$$

The optimality conditions for 10 are obtained by differentiating the Lagrangian $L_{\mu}$ with respect to $Q_{p}, \Lambda, Z$, respectively,

$$
\begin{array}{rrl}
\frac{\partial}{\partial Q_{p}}: & \nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}\right)-\Lambda & =0  \tag{12}\\
\frac{\partial}{\partial \lambda}: & Q-Q_{p}+Z & =0, \\
\frac{\partial}{\partial Z}: & -\mu Z^{-1}+\Lambda & =0, \quad \text { (or) } Z \Lambda-\mu I=0 .
\end{array}
$$

This gives rise to the nonlinear overdetermined system

$$
G_{\mu}\left(Q_{p}, \Lambda, Z\right)=\left(\begin{array}{c}
\nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}\right)-\Lambda  \tag{13}\\
Q-Q_{p}+Z \\
Z \Lambda-\mu I
\end{array}\right)=0, \quad Z, \Lambda \succ 0
$$

We use a BFGS approximation for the Hessian of $p_{\mathrm{CQP}}^{*}$, as if it is twice differentiable, and update it at each iteration (see [20]). We denote the approximation of $\nabla_{\mathrm{BFGS}}^{2} p_{\mathrm{CPP}}^{*}\left(Q_{p}\right)$ by $B$, and begin with the approximation $B_{0}=I$. Recall that if $Q_{p}^{k}, Q_{p}^{k+1}$ are two successive iterates with gradients $\nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}^{k}\right), \nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}^{k+1}\right)$, respectively, with current Hessian approximation $B_{k} \in \mathbb{S}^{n(n+1) / 2}$, then we set

$$
Y_{k}:=\nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}^{k+1}\right)-\nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}^{k}\right), \quad S_{k}:=Q_{p}^{k+1}-Q_{p}^{k}
$$

and,

$$
v:=\left\langle Y_{k}, S_{k}\right\rangle, \quad \omega:=\left\langle\operatorname{svec}\left(S_{k}\right), B_{k} \operatorname{svec}\left(S_{k}\right)\right\rangle
$$

We note that the curvature condition $v>0$ should be verified.
Finally, we update the Hessian approximation with

$$
B_{k+1}:=B_{k}+\frac{1}{v}\left(\operatorname{svec}\left(Y_{k}\right) \operatorname{svec}\left(Y_{k}^{T}\right)\right)-\frac{1}{\omega}\left(B_{k} \operatorname{svec}\left(S_{k}\right) \operatorname{svec}\left(S_{k}\right)^{T} B_{k}\right)
$$

The overdetermined equation for the search direction is

$$
G_{\mu}^{\prime}\left(Q_{p}, \Lambda, Z\right)\left(\begin{array}{c}
\Delta Q_{p}  \tag{14}\\
\Delta \Lambda \\
\Delta Z
\end{array}\right)=-G_{\mu}\left(Q_{p}, \Lambda, Z\right)
$$

where

$$
G_{\mu}\left(Q_{p}, \Lambda, Z\right)=\left(\begin{array}{c}
\nabla p^{*}\left(Q_{p}\right)-\Lambda  \tag{15}\\
Q-Q_{p}+Z \\
Z \Lambda-\mu I
\end{array}\right)=:\left(\begin{array}{c}
R_{d} \\
R_{p} \\
R_{c}
\end{array}\right)
$$

If $B$ is the current estimate of the Hessian, then the system becomes

$$
\left\{\begin{array}{l}
\operatorname{sMat}\left(B \operatorname{svec}\left(\Delta Q_{p}\right)\right)-\Delta \Lambda=-R_{d} \\
-\Delta Q_{p}+\Delta Z=-R_{p} \\
Z \Delta \Lambda+\Delta Z \Lambda=-R_{c}
\end{array}\right.
$$

We can substitute for the variables $\Delta \Lambda$ and $\Delta Z$ in the third equation of the system. We note that, as the system is overdetermined, this substitution changes the least squares solution. Nevertheless, elimination gives us a simplified system, and therefore, we apply it, using the following two equations for elimination and backsolving,

$$
\begin{equation*}
\Delta \Lambda=\operatorname{sMat}\left(B \operatorname{svec}\left(\Delta Q_{p}\right)\right)+R_{d}, \quad \Delta Z=-R_{p}+\Delta Q_{p} \tag{16}
\end{equation*}
$$

Accordingly, we have a single equation to solve, and the system finally becomes

$$
Z \operatorname{sMat}\left(B \operatorname{svec}\left(\Delta Q_{p}\right)\right)+\left(\Delta Q_{p}\right) \Lambda=-R_{c}-Z R_{d}+R_{p} \Lambda
$$

We emphasize that to compute the search direction at each iteration of our IPM, we need to update the residuals defined in 15 , and therefore we need the optimal solution $x=x\left(Q_{p}\right), X=X\left(Q_{p}\right)$ of the convex quadratic relaxation CQP $_{Q_{p}}$ for the current perturbation $Q_{p}$. Problem CQP $Q_{p}$ is thus solved at each iteration of the IPM method, each time for a new perturbation $Q_{p}$.

Moreover, we note that at each iteration of the IPM, we have $Z \succ 0$ and $Q$ $Q_{p} \prec 0$. Problem CQP $Q_{p}$ then maximizes a strictly concave quadratic function, subject to linear constraints, and therefore has a unique optimal solution (see e.g. [25]). The result assures that the gradient in (11) is well defined.

In Algorithm2, we present in details an iteration of the IPM. The algorithm is part of the complete framework used to generate bounds for the QKP , as described in Section 7 .

## Algorithm 2: Updating the perturbation $Q_{p}$

Input: $k, Q_{p}^{k}, Z^{k}, \Lambda^{k}, x\left(Q_{p}^{k}\right), X\left(Q_{p}^{k}\right), \nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}^{k}\right), B_{k}, \mu^{k}$, $\tau_{\alpha}:=0.95, \tau_{\mu}:=0.9$.
Compute the residuals:

$$
\left(\begin{array}{c}
R_{d} \\
R_{p} \\
R_{c}
\end{array}\right):=\left(\begin{array}{c}
\nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}^{k}\right)-\Lambda^{k} \\
Q-Q_{p}^{k}+Z^{k} \\
Z^{k} \Lambda^{k}-\mu^{k} I
\end{array}\right)
$$

Solve the linear system for $\Delta Q_{p}$ :

$$
Z^{k} \operatorname{sMat}\left(B_{k} \operatorname{svec}\left(\Delta Q_{p}\right)\right)+\left(\Delta Q_{p}\right) \Lambda^{k}=-R_{c}-Z^{k} R_{d}+R_{p} \Lambda^{k}
$$

Set:

$$
\Delta \Lambda:=\operatorname{sMat}\left(B_{k} \operatorname{svec}\left(\Delta Q_{p}\right)\right)+R_{d}, \Delta Z:=-R_{p}+\Delta Q_{p}
$$

Update $Q_{p}, Z$ and $\Lambda$ :
$Q_{p}^{k+1}:=Q_{p}^{k}+\hat{\alpha}_{p} \Delta Q_{p}, Z^{k+1}:=Z_{p}^{k}+\hat{\alpha}_{p} \Delta Z, \Lambda^{k+1}:=\Lambda^{k}+\hat{\alpha}_{d} \Delta \Lambda$,
where

$$
\begin{aligned}
& \hat{\alpha}_{p}:=\tau_{\alpha} \times \min \left\{1, \operatorname{argmax}_{\alpha_{p}}\left\{Z_{p}^{k}+\alpha_{p} \Delta Z \succeq 0\right\}\right\} \\
& \hat{\alpha}_{d}:=\tau_{\alpha} \times \min \left\{1, \operatorname{argmax}_{\alpha_{d}}\left\{\Lambda^{k}+\alpha_{d} \Delta \Lambda \succeq 0\right\}\right\}
\end{aligned}
$$

Obtain the optimal solution $x\left(Q_{p}^{k+1}\right), X\left(Q_{p}^{k+1}\right)$ of relaxation
$\mathbf{C Q P}_{Q_{p}}$, where $Q_{p}:=Q_{p}^{k+1}$.
Update the gradient of $p_{\mathrm{CQ} P}^{*}$ :

$$
\nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}^{k+1}\right):=X\left(Q_{p}^{k+1}\right)-x\left(Q_{p}^{k+1}\right) x\left(Q_{p}^{k+1}\right)^{T}
$$

Update the Hessian approximation of $p_{\mathrm{CQP}}^{*}$ :
$Y_{k}:=\nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}^{k+1}\right)-\nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}^{k}\right), S_{k}:=Q_{p}^{k+1}-Q_{p}^{k}$,
$v:=\left\langle Y_{k}, S_{k}\right\rangle, \omega:=\left\langle\operatorname{svec}\left(S_{k}\right), B_{k} \operatorname{svec}\left(S_{k}\right)\right\rangle$,
$B_{k+1}:=B_{k}+\frac{1}{v}\left(\operatorname{svec}\left(Y_{k}\right) \operatorname{svec}\left(Y_{k}^{T}\right)\right)-\frac{1}{\omega}\left(B_{k} \operatorname{svec}\left(S_{k}\right) \operatorname{svec}\left(S_{k}\right)^{T} B_{k}\right)$.
Update $\mu$ :

$$
\mu^{k+1}:=\tau_{\mu} \frac{\operatorname{trace}\left(Z^{k+1} \Lambda^{k+1}\right)}{n}
$$

Output: $Q_{p}^{k+1}, Z^{k+1}, \Lambda^{k+1}, x\left(Q_{p}^{k+1}\right), X\left(Q_{p}^{k+1}\right), \nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}^{k+1}\right)$, $B_{k+1}, \mu^{k+1}$.

## 4. The parametric quadratic SDP relaxation

In an attempt to obtain tighter bounds, a promising approach could seem to be to include the positive semidefinite constraint $X-x x^{T} \succeq 0$ in our parametric quadratic relaxation, and solve a parametric convex quadratic SDP relaxation, also using an IPM. Nevertheless, we show in this section that the convex quadratic SDP relaxation cannot generate a better bound than the linear SDP relaxation, obtained when we set $Q_{p}$ equal to $Q$.

Consider the reformulation $\mathbf{Q K P}{ }_{\text {lifted }}$ in (5), of the QKP, and its SDP relaxation given by

## (LSDP )

$$
\begin{align*}
p_{\mathrm{LSDP}}^{*}:= & \sup \\
& \operatorname{trace}(Q X)  \tag{17}\\
& \text { s.t. } \\
& (x, X) \in \mathcal{F} \\
& X-x x^{T} \succeq 0
\end{align*}
$$

where $\mathcal{F}$ is any relaxation of the feasible set of $\mathbf{Q K P}$ lifted .
We now consider the parametric $\mathbf{S D P}$ relaxation of $\mathbf{Q K} \mathbf{P}_{\text {lifted }}$ given by

$$
\begin{equation*}
\left(\mathbf{Q S D P}_{Q_{p}}\right) \tag{18}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
p_{\mathrm{QSDP}}^{Q_{p}}
\end{array}:=\sup \quad x^{T}\left(Q-Q_{p}\right) x+\operatorname{trace}\left(Q_{p} X\right), ~(x, X) \in \mathcal{F}\right)
$$

where $Q-Q_{p} \preceq 0$.
Theorem 6. Let $\mathcal{F}$ be any subset of $\mathbb{R}^{n} \times \mathbb{S}^{n}$. For any choice of matrix $Q_{p}$ satisfying $Q-Q_{p} \preceq 0$, we have

$$
\begin{equation*}
p_{\mathrm{QSDP}_{Q_{p}}}^{*} \geq p_{\mathrm{LSDP}}^{*} \tag{19}
\end{equation*}
$$

Moreover, $\inf \left\{p_{\mathrm{QSDP}_{Q_{p}}}^{*}: Q-Q_{p} \preceq 0\right\}=p_{\mathrm{LSDP}}^{*}$.
Proof. Let $(\tilde{x}, \tilde{X})$ be a feasible solution for LSDP. We have

$$
\left.\begin{array}{rl}
p_{\mathrm{QSDP}}^{Q_{p}}
\end{array} \quad \geq \tilde{x}^{T}\left(Q-Q_{p}\right) \tilde{x}+\operatorname{trace}\left(Q_{p} \tilde{X}\right) . \operatorname{trace}\left(\left(Q-Q_{p}\right) \tilde{X}\right)\right)
$$

The inequality 20 holds because $(\tilde{x}, \tilde{X})$ is also a feasible solution for QSDP $_{Q_{p}}$. The inequality in 23 holds because of the negative semidefiniteness of $Q-Q_{p}$ and $\tilde{x} \tilde{x}^{T}-\tilde{X}$. Because $p_{\text {QSDP }_{Q_{p}}}^{*}$ is an upper bound on the objective value of LSDP at any feasible solution, we can conclude that $p_{\mathrm{QSDP}_{Q_{p}}}^{*} \geq p_{\mathrm{LSDP}}^{*}$. Clearly, $Q_{p}=Q$ satisfies $Q-Q_{p}=0 \preceq 0$ and LSDP is the same as QSDP for this choice of $Q_{p}$. Therefore, $\inf \left\{p_{\mathrm{QSDP}_{Q_{p}}}^{*}: Q-Q_{p} \preceq 0\right\}=p_{\mathrm{LSDP}}^{*}$.

Notice that in Theorem 6 we do not require that the relaxation $\mathcal{F}$ be convex nor need it have any relationship at all with the feasible region of QKP. Also, in principle, for some choices of $Q_{p}$, we could have $p_{\mathrm{QSDP}_{Q_{p}}}^{*}=+\infty$ with $p_{\mathrm{LSDP}}^{*}=+\infty$ or not.

## 5. Valid inequalities

We are now interested in finding valid inequalities to strengthen relaxations of the QKP in the lifted space determined by the lifting $X:=x x^{T}$. Let us denote by CRel, any convex relaxation of the QKP in the lifted space, where the equation $X=x x^{T}$ was relaxed somehow, by convex constraints, i.e., any convex relaxation of $\mathbf{Q K P}$ lifted.

We initially note that if the inequality

$$
\begin{equation*}
\tau^{T} x \leq \beta \tag{24}
\end{equation*}
$$

is valid for the $\mathbf{Q K P}$, where $\tau \in \mathbb{Z}_{+}^{n}$ and $\beta \in \mathbb{Z}_{+}$, then, as $x$ is nonnegative and $X:=x x^{T}$,

$$
\begin{equation*}
(x \quad X)\binom{-\beta}{\tau} \leq 0 \tag{25}
\end{equation*}
$$

is a valid inequality for $\mathbf{Q K} \mathbf{P}_{\text {lifted }}$. In this case, we say that 25 is a valid inequality for $\mathbf{Q K} \mathbf{P}_{\text {lifted }}$ derived from the valid inequality 24 for the $\mathbf{Q K P}$.

### 5.1. Adding cuts to the relaxation

Given a solution ( $\bar{x}, \bar{X}$ ) of CRel, our initial goal is to obtain a valid inequality for $\mathbf{Q K P} \mathbf{P}_{\text {lifted }}$ derived from a CI, which is violated by $(\bar{x}, \bar{X})$. A CI is formulated as $\alpha^{T} x \leq e^{T} \alpha-1$, where $\alpha \in\{0,1\}^{n}$ and $e$ denotes the vector of ones. We then search for the CI that maximizes the sum of the violations among the inequalities in $\bar{Y} \operatorname{cut}(\alpha) \leq 0$, where $\bar{Y}:=(\bar{x} \bar{X})$ and

$$
\operatorname{cut}(\alpha)=\binom{-e^{T} \alpha+1}{\alpha}
$$

To obtain such CI, we solve the following linear knapsack problem,

$$
\begin{equation*}
v^{*}:=\max _{\alpha}\left\{e^{T} \bar{Y} \operatorname{cut}(\alpha): w^{T} \alpha \geq c+1, \alpha \in\{0,1\}^{n}\right\} \tag{26}
\end{equation*}
$$

Let $\alpha^{*}$ solve (26). If $v^{*}>0$, then at least one valid inequality in the following set of $n$ scaled cover inequalities, denoted in the following by SCI, is violated by $(\bar{x}, \bar{X})$.

$$
\begin{equation*}
(x X)\binom{-e^{T} \alpha^{*}+1}{\alpha^{*}} \leq 0 \tag{27}
\end{equation*}
$$

Based on the following theorem, we note that to strengthen cut (27), we may apply Algorithm 1 to the CI obtained, lifting it to an LCI, and finally add the valid inequality 25 derived from the LCI to CRel.

Theorem 7. The valid inequality (25) for QKP $_{\text {lifted }}$, which is derived from a valid LCI, dominates all inequalities derived from a CI that can be lifted to the LCI .

Proof. Consider the LCI (3) derived from a CI (2) for the QKP. The corresponding scaled cover inequalities 25 derived from the CI and the LCI are, respectively,

$$
\sum_{j \in C} X_{i j} \leq(|C|-1) x_{i}, \quad \forall i \in N
$$

and

$$
\sum_{j \in C} X_{i j}+\sum_{j \in N \backslash C} \alpha_{j} X_{i j} \leq(|C|-1) x_{i}, \quad \forall i \in N
$$

where $\alpha_{j} \geq 0, \forall j \in N \backslash C$. Clearly, as all $X_{i j}$ are nonnegative, the second inequality dominates the first, for all $i \in N$.

### 5.2. New valid inequalities in the lifted space

As discussed, after finding any valid inequality in the form of (24) for the QKP, we may add the constraint 25 to CRel when aiming at better bounds. We observe now, that besides (25) we can also generate other valid inequalities in the lifted space by taking advantage of the lifting $X:=x x^{T}$, and also of the fact that $x$ is binary. In the following, we show how the idea can be applied to cover inequalities.

Let

$$
\begin{equation*}
\sum_{j \in C} x_{j} \leq \beta \tag{28}
\end{equation*}
$$

where $C \subset N$ and $\beta<|C|$, be a valid inequality for KPol .
Inequality 28) can be either a cover inequality, CI, an extended cover inequality, ECI, or a particular lifted cover inequality, LCI, where $\alpha_{j} \in$ $\{0,1\}, \forall j \in N \backslash C$ in (3). Furthermore, given a general LCI, where $\alpha_{j} \in \mathbb{Z}_{+}$, for all $j \in N \backslash C$, a valid inequality of type 28 can be constructed by replacing each $\alpha_{j}$ with $\min \left\{\alpha_{j}, 1\right\}$ in the $\mathbf{L C I}$.
Definition 8 (Cover inequality in the lifted space, CILS ). Let $C \subset N$ and $\beta<|C|$ as in inequality 28, and also consider here that $\beta>1$. We define

$$
\begin{equation*}
\sum_{i, j \in C, i<j} X_{i j} \leq\binom{\beta}{2} \tag{29}
\end{equation*}
$$

as the CILS derived from 28 .
Theorem 9. If inequality (28) is valid for QKP, then the CILS 29) is a valid inequality for $\mathbf{Q K P} \mathbf{P}_{\text {lifted }}$.
Proof. Considering (28), we conclude that at $\operatorname{most}\binom{\beta}{2}$ products of variables $x_{i} x_{j}$, where $i, j \in C$, can be equal to 1 . Therefore, as $X_{i j}:=x_{i} x_{j}$, the result follows.

Remark 10. When $\beta>1$, inequality (28) is well known as a clique cut, widely used to model decision problems, and frequently used as a cut in branch-and-cut algorithms. In this case, using similar idea to what was used to construct the CILS, we conclude that it possible to fix

$$
X_{i j}=0, \text { for all } i, j \in C, i<j
$$

Given a solution $(\bar{x}, \bar{X})$ of CRel, the following mixed-integer linear program (MILP ) is a separation problem, which searches for a CILS violated by $\bar{X}$.

$$
\begin{array}{lll}
z^{*}:= & \max _{\alpha, \beta, K} \operatorname{trace}(\bar{X} K)-\beta(\beta-1), & \quad\left(\text { MILP }_{1}\right) \\
\text { s.t. } & w^{\prime} \alpha \geq c+1, & \\
& \beta=e^{\prime} \alpha-1, & i=1, \ldots, n, \\
& K(i, i)=0, & i, j=1, \ldots, n, i<j, \\
& K(i, j) \leq \alpha_{i}, & i, j=1, \ldots, n, i<j, \\
& K(i, j) \leq \alpha_{j}, & i, j=1, \ldots, n, i<j, \\
& K(i, j) \geq 0, & i, j=1, \ldots, n, i<j, \\
& K(i, j) \geq \alpha_{i}+\alpha_{j}-1, & \\
& \alpha \in\{0,1\}^{n}, \beta \in \mathbb{R}, K \in \mathbb{S}^{n} . &
\end{array}
$$

If $\alpha^{*}, \beta^{*}, K^{*}$ solves MILP ${ }_{1}$, with $z^{*}>0$, the CILS given by trace $\left(K^{*} X\right) \leq$ $\beta^{*}\left(\beta^{*}-1\right)$ is violated by $\bar{X}$. The binary vector $\alpha^{*}$ defines the CI from which the cut is derived. The $\mathbf{C I}$ is specifically given by $\alpha^{* T} x \leq e^{T} \alpha^{*}-1$ and $\beta^{*}\left(\beta^{*}-1\right)$ determines the right hand side of the CILS. The inequality is multiplied by 2 because we consider the variable $K$ as a symmetric matrix, in order to simplify the presentation of the model.

Theorem 11. The valid inequality CILS for $\mathbf{Q K P}{ }_{\text {lifted }}$, which is derived from a valid LCI in the form (28), dominates any CILS derived from a CI that can be lifted to the LCI.

Proof. As $X$ is nonnegative, it is straightforward to verify that if $X$ satisfies a CILS derived from a LCI, $X$ also satisfies any CILS derived from a CI that can be lifted to the LCI.

Any feasible solution of MILP $_{1}$ such that $\operatorname{trace}(\bar{X} K)>\beta(\beta-1)$ generates a valid inequality for $\mathbf{Q K} \mathbf{P}_{\text {lifted }}$, which is violated by $\bar{X}$. Therefore, we do not need to solve MILP ${ }_{1}$ to optimality to generate a cut. Moreover, to generate distinct cuts, we can solve MILP $_{1}$ several times (not necessarily to optimality), each time adding to it, the following "no-good" cut to avoid the previously generated cuts:

$$
\begin{equation*}
\sum_{i \in N} \bar{\alpha}(i)(1-\alpha(i)) \geq 1 \tag{30}
\end{equation*}
$$

where $\bar{\alpha}$ is the value of the variable $\alpha$ in the solution of MILP ${ }_{1}$, when generating the previous cut.

We note that, if $\alpha^{*}, \beta^{*}, K^{*}$ solves MILP ${ }_{1}$, then $\alpha^{* \prime} x \leq e^{\prime} \alpha^{*}-1$ is a valid CI for our QKP, however it may not be a minimal cover. Aiming at generating stronger valid cuts, based in Theorem 11, we might add to the objective function of MILP ${ }_{1}$, the term $-\delta e^{\prime} \alpha$, for some weight $\delta>0$. The objective function would then favor minimal covers, which could be lifted to a LCI, that would finally generate the CILS. We should also emphasize that if the CILS derived from a CI is violated by a given $\bar{X}$, then clearly, the CILS derived from the LCI will also be violated by $\bar{X}$.

Now, we also note that, besides defining one cover inequality in the lifted space considering all possible pairs of indexes in $C$, we can also define a set of cover inequalities in the lifted space, considering in each inequality, a partition of the indexes in $C$ into subsets of cardinality 1 or 2 . In this case, the right hand side of the inequalities is never larger than $\beta / 2$. The idea is better specified below.

Definition 12 (Set of cover inequalities in the lifted space, SCILS). Let $C \subset N$ and $\beta<|C|$ as in inequality (28). Let

1. $C_{s}:=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{p}, j_{p}\right)\right\}$ be a partition of $C$, if $|C|$ is even.
2. $C_{s}:=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{p}, j_{p}\right)\right\}$ be a partition of $C \backslash\left\{i_{0}\right\}$ for each $i_{0} \in C$, if $|C|$ is odd and $\beta$ is odd.
3. $C_{s}:=\left\{\left(i_{0}, i_{0}\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{p}, j_{p}\right)\right\}$, where $\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{p}, j_{p}\right)\right\}$ is a partition of $C \backslash\left\{i_{0}\right\}$ for each $i_{0} \in C$, if $|C|$ is odd and $\beta$ is even.

In all cases, $i_{k}<j_{k}$ for all $k=1, \ldots, p$.
The inequalities in the SCILS derived from (28) are given by

$$
\begin{equation*}
\sum_{(i, j) \in C_{s}} X_{i j} \leq\left\lfloor\frac{\beta}{2}\right\rfloor \tag{31}
\end{equation*}
$$

for all partitions $C_{s}$ defined as above.
Theorem 13. If inequality $(28)$ is valid for $\mathbf{Q K P}$, then the inequalities in the SCILS 31) are valid for $\mathbf{Q K P}{ }_{\text {lifted }}$.

Proof. The proof of the validity of SCILS is based on the lifting relation $X_{i j}=$ $x_{i} x_{j}$. We note that if the binary variable $x_{i}$ indicates whether or not the item $i$ is selected in the solution, the variable $X_{i j}$ indicates whether or not the pair of items $i$ and $j$, are both selected in the solution.

1. If $|C|$ is even, $C_{s}$ is a partition of $C$ in exactly $|C| / 2$ subsets with two elements each, and therefore, if at most $\beta$ elements of $C$ can be selected in the solution, clearly at most $\left\lfloor\frac{\beta}{2}\right\rfloor$ subsets of $C_{s}$ can also be selected.
2. If $|C|$ and $\beta$ are odd, $C_{s}$ is a partition of $C \backslash\left\{i_{0}\right\}$ in exactly $|C-1| / 2$ subsets with two elements each, where $i_{0}$ can be any element of $C$. In this case, if at most $\beta$ elements of $C$ can be selected in the solution, clearly at most $\frac{\beta-1}{2}\left(=\left\lfloor\frac{\beta}{2}\right\rfloor\right)$ subsets of $C_{s}$ can also be selected.
3. If $|C|$ is odd and $\beta$ is even, $C_{s}$ is the union of $\left\{\left(i_{0}, i_{0}\right)\right\}$ with a partition of $C \backslash\left\{i_{0}\right\}$ in exactly $|C-1| / 2$ subsets with two elements each, where $i_{0}$ can be any element of $C$. In this case, if at most $\beta$ elements of $C$ can be selected in the solution, clearly at most $\frac{\beta}{2}\left(=\left\lfloor\frac{\beta}{2}\right\rfloor\right)$ subsets of $C_{s}$ can also be selected.

Given a solution $(\bar{x}, \bar{X})$ of CRel, we now present a MILP separation problem, which searches for an inequality in SCILS that is most violated by $\bar{X}$. Let $A \in\{0,1\}^{n \times \frac{n(n+1)}{2}}$. In the first $n$ columns of $A$ we have the $n \times n$ identity matrix. In the remaining $n(n-1) / 2$ columns of the matrix, there are exactly two elements equal to 1 in each column. All columns are distinct. For example, for $n=4$,

$$
A:=\left(\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

The columns of $A$ represent all the subsets of items in $N$ with one or two elements. Let

$$
\begin{array}{lll}
z^{*}:= & \max _{\alpha, v, K, y} \operatorname{trace}(\bar{X} K)-2 v, & \\
\text { s.t. } & w^{\prime} \alpha \geq c+1, & \\
& K(i, i)=2 y(i), & \\
& \sum_{i=1}^{n} y(i) \leq 1, & \\
& \left.K(i, j)=\sum_{t=n+1}^{n(n+1) / 2} A(i, t) A(j, t)\right) y(t), \quad i, j=1, \ldots, n, i<j, \\
& v \geq\left(e^{\prime} \alpha-1\right) / 2-0.5, & \\
& v \leq\left(e^{\prime} \alpha-1\right) / 2, & i=1, \ldots, n, t=1, \ldots, \frac{n(n+1)}{2}, \\
& y(t) \leq 1-A(i, t)+\alpha(i), & \\
& \alpha \leq A y \leq \alpha+\left(\frac{n(n+1)}{2}\right)(1-\alpha), & \\
& \alpha \in\{0,1\}^{n}, y \in\{0,1\}^{\frac{n(n+1)}{2}}, & \\
& v \in \mathbb{Z}, K \in \mathbb{S}^{n} . &
\end{array}
$$

If $\alpha^{*}, v^{*}, K^{*}, y^{*}$ solves MILP $_{2}$, with $z^{*}>0$, then the particular inequality in SCILS given by

$$
\begin{equation*}
\operatorname{trace}\left(K^{*} X\right) \leq 2 v^{*} \tag{32}
\end{equation*}
$$

is violated by $\bar{X}$. The binary vector $\alpha^{*}$ defines the $\mathbf{C I}$ from which the cut is derived. As the $\mathbf{C I}$ is given by $\alpha^{*} x \leq e^{\prime} \alpha^{*}-1$, we can conclude that the cut generated either belongs to case (1) or (3) in Definition 12 . This fact is considered in the formulation of MILP $_{2}$. The vector $y^{*}$ defines a partition $C_{s}$ as presented in case $(3)$, if $\sum_{i=1}^{n} y(i)=1$, and in case (1), otherwise. We finally note that the number 2 in the right hand side of 32 is due to the symmetry of the matrix $K^{*}$.

We now may repeat the observations made for MILP ${ }_{1}$.

Any feasible solution of $\operatorname{MILP}_{2}$ such that trace $(\bar{X} K)>2 v$ generates a valid inequality for CRel, which is violated by $\bar{X}$. Therefore, we do not need to solve MILP $_{2}$ to optimality to generate a cut. Moreover, to generate distinct cuts, we can solve MILP ${ }_{2}$ several times (not necessarily to optimality), each time adding to it, the following suitable "no-good" cut to avoid the previously generated cuts:

$$
\begin{equation*}
\sum_{i=1}^{\frac{n(n+1)}{2}} \bar{y}(i)(1-y(i)) \geq 1 \tag{33}
\end{equation*}
$$

where $\bar{y}$ is the value of the variable $y$ in the solution of $\mathbf{M I L P}{ }_{2}$, when generating the previous cut.

The CI $\alpha^{* \prime} x \leq e^{\prime} \alpha^{*}-1$ may not be a minimal cover. Aiming at generating stronger valid cuts, we might add again to the objective function of MILP ${ }_{2}$, the term $-\delta e^{\prime} \alpha$, for some weight $\delta>0$. The objective function would then favor minimal covers, which could be lifted to a LCI. In this case, however, after computing the LCI, we have to solve MILP $_{2}$ again, with $\alpha$ fixed at values that represent the LCI, and $v$ fixed so that the right hand side of the inequality is equal to the right hand side of the LCI. All components of $y$ that were equal to 1 in the previous solution of $\mathbf{M I L P}_{2}$ should also be fixed at 1. The new solution of MILP $_{2}$ would indicate the other subsets of $N$ to be added to $C_{s}$. One last detail should be taken into account. If the cover $C$ corresponding to the $\mathbf{L C I}$, is such that $|C|$ is odd and the right hand side of the $\mathbf{L C I}$ is also odd, then the cut generated should belong to case (2) in Definition 12 , and MILP ${ }_{2}$ should be modified accordingly. Specifically, the second and third constraints in MILP ${ }_{2}$, should be modified respectively to

$$
\begin{aligned}
& K(i, i)=0, \quad i=1, \ldots, n \\
& \sum_{i=1}^{n} y(i)=1
\end{aligned}
$$

Remark 14. Let $\gamma:=|C|$. Then, the number of inequalities in the SCILS is

$$
\frac{\gamma!}{2^{\left(\frac{\gamma}{2}\right)}\left(\frac{\gamma}{2}!\right)}
$$

if $\gamma$ is even, or

$$
\gamma \times \frac{(\gamma-1)!}{2^{\left(\frac{\gamma-1}{2}\right)}\left(\frac{\gamma-1}{2}!\right)}
$$

if $\gamma$ is odd.
Finally, we extend the ideas presented above to the more general case of knapsack inequalities. We note that the following discussion applies to a general LCI, where $\alpha_{j} \in \mathbb{Z}_{+}, \forall j \in N \backslash C$.

Let

$$
\begin{equation*}
\sum_{j \in N} \alpha_{j} x_{j} \leq \beta \tag{34}
\end{equation*}
$$

be a valid knapsack inequality for $\mathbf{K P o l}$, with $\alpha_{j}, \beta \in \mathbb{Z}_{+}, \beta \geq \alpha_{j}, \forall j \in N$.
Definition 15 (Set of knapsack inequalities in the lifted space, SKILS). Let $\alpha_{j}$ be the coefficient of $x_{j}$ in (34). Let $\left\{C_{1}, \ldots, C_{q}\right\}$ be the partition of $N$, such that $\alpha_{u}=\alpha_{v}$, if $u, v \in C_{k}$ for some $k$, and $\alpha_{u} \neq \alpha_{v}$, otherwise. The knapsack inequality (34) can then be rewritten as

$$
\begin{equation*}
\sum_{k=1}^{q}\left(\tilde{\alpha}_{k} \sum_{j \in C_{k}} x_{j}\right) \leq \beta \tag{35}
\end{equation*}
$$

Now, for $k=1, \ldots, q$, let $C_{l_{k}}:=\left\{\left(i_{k_{1}}, j_{k_{1}}\right), \ldots,\left(i_{k_{p_{k}}}, j_{k_{p_{k}}}\right)\right\}$, where $i<j$ for all $(i, j) \in C_{l_{k}}$, and

- $C_{l_{k}}$ is a partition of $C_{k}$, if $\left|C_{k}\right|$ is even.
- $C_{l_{k}}$ is a partition of $C_{k} \backslash\left\{i_{k_{0}}\right\}$, where $i_{k_{0}} \in C_{k}$, if $\left|C_{k}\right|$ is odd.

The inequalities in the SKILS corresponding to (34) are given by

$$
\begin{equation*}
\sum_{k=1}^{q}\left(\tilde{\alpha}_{k} X_{i_{k_{0}} i_{k_{0}}}+2 \tilde{\alpha}_{k} \sum_{(i, j) \in C_{l_{k}}} X_{i j}\right) \leq \beta \tag{36}
\end{equation*}
$$

for all partitions $C_{l_{k}}, k=1, \ldots, q$, defined as above, and for all $i_{k_{0}} \in C_{k} \backslash C_{l_{k}}$. (If $\left|C_{k}\right|$ is even, $C_{k} \backslash C_{l_{k}}=\emptyset$, and the term in the variable $X_{i_{k_{0}} i_{k_{0}}}$ does not exist.)

Remark 16. Consider $\left\{C_{1}, \ldots, C_{q}\right\}$ as in Definition 15. For $k=1, \ldots, q$, let $\gamma_{k}:=\left|C_{k}\right|$ and define

$$
N C_{l_{k}}:=\frac{\gamma_{k}!}{2^{\left(\frac{\gamma_{k}}{2}\right)}\left(\frac{\gamma_{k}}{2}!\right)}
$$

if $\gamma_{k}$ is even, or

$$
N C_{l_{k}}:=\gamma_{k} \times \frac{\left(\gamma_{k}-1\right)!}{2^{\left(\frac{\gamma_{k}-1}{2}\right)}\left(\frac{\gamma_{k}-1}{2}!\right)}
$$

if $\gamma_{k}$ is odd.
Then, the number of inequalities in SKILS is

$$
\prod_{k=1}^{q} N C_{l_{k}}
$$

Remark 17. If $\gamma_{k}:=\left|C_{k}\right|$ is even for every, or if $\tilde{\alpha}_{k}$ is even for every $k$, such that $\gamma_{k}$ is odd, then the right rand side $\beta$ of inequality (36) may be replaced with $2 \times\left\lfloor\frac{\beta}{2}\right\rfloor$, which will strengthener the inequality in case $\beta$ is odd.

Corollary 18.

If inequality (34) is valid for QKP , then the inequalities (36), in the SKILS , are valid for $\mathbf{Q K} \mathbf{P}_{\text {lifted }}$, whether or not the modification suggested in Remark 17 is applied.

Proof. The result is again verified, by using the same argument used in the proof of Theorem 13, i.e., considering that $X_{i j}=1$, iff $x_{i}=x_{j}=1$.

### 5.3. Dominance relation among the new valid inequalities

We start this subsection investigating whether SCILS dominates CILS or vice versa.

Theorem 19. Let $C$ be the cover in (28) and consider $\gamma:=|C|$ to be even.

1. If $\beta=\gamma-1$, then the sum of all inequalities in SCILS is equivalent to CILS . Therefore, in this case, the set of inequalities in SCILS dominates CILS
2. If $\beta<\gamma-1$, there is no dominance relation between SCILS and CILS .

Proof. Let sum(SCILS ) denote the inequality obtained by adding all inequalities in SCILS, and let $r h s(\operatorname{sum}(\mathbf{S C I L S}))$ denote its right hand side (rhs). We have that $\operatorname{rhs}(\operatorname{sum}(\mathbf{S C I L S}))$ is equal to the number of inequalities in SCILS multiplied by the rhs of each inequality, i.e.:

$$
\operatorname{rhs}(\operatorname{sum}(\mathbf{S C I L S}))=\frac{\gamma!}{2^{\left(\frac{\gamma}{2}\right)}\left(\frac{\gamma}{2}!\right)} \times\left\lfloor\frac{\beta}{2}\right\rfloor
$$

The coefficient of each variable $X_{i j}$ in $\operatorname{sum}(\mathbf{S C I L S})\left(\operatorname{coe} f_{i j}\right)$ is given by the number of inequalities in the set SCILS in which $X_{i j}$ appears, i.e.:

$$
\operatorname{coef}_{i j}=\frac{(\gamma-2)!}{2^{\left(\frac{(\gamma-2)}{2}\right)}\left(\frac{(\gamma-2)}{2}!\right)}
$$

Dividing $\operatorname{rhs}(\operatorname{sum}(\mathbf{S C I L S}))$ by $\operatorname{coef}_{i j}$, we obtain

$$
\begin{equation*}
r h s(\operatorname{sum}(\mathbf{S C I L S})) / \operatorname{coe} f_{i j}=(\gamma-1) \times\left\lfloor\frac{\beta}{2}\right\rfloor . \tag{37}
\end{equation*}
$$

On the other side, the rhs of CILS is:

$$
\begin{equation*}
r h s(\mathbf{C I L S})=\binom{\beta}{2}=\frac{\beta(\beta-1)}{2} \tag{38}
\end{equation*}
$$

1. Replacing $\beta$ with $\gamma-1$, and $\left\lfloor\frac{\beta}{2}\right\rfloor$ with $\frac{\beta-1}{2}$ (since $\beta$ is odd), we obtain the result.
2. Consider, for example, $C=\{1,2,3,4,5,6\}$ and $\beta=3(\beta<\gamma-1$ and odd). In this case, the CILS becomes:

$$
\begin{aligned}
X_{12}+X_{13} & +X_{14}+X_{15}+X_{16}+X_{23}+X_{24} \\
& +X_{25}+X_{26}+X_{34}+X_{35}+X_{36}+X_{45}+X_{46}+X_{56} \leq 3
\end{aligned}
$$

And a particular inequality in SCILS is

$$
\begin{equation*}
X_{12}+X_{34}+X_{56} \leq 1 \tag{39}
\end{equation*}
$$

The solution $X_{1 j}=1$, for $j=2, \ldots, 6$, and all other variables equal to zero, satisfies all inequalities in SCILS, because only one of the positive variables appears in each inequality in the set. However, the solution does not satisfy CILS. On the other side, the solution $X_{12}=X_{34}=X_{56}=1$, and all other variables equal to zero, satisfies CILS , but does not satisfy (39).

Now, consider $C=\{1,2,3,4,5,6\}$ and $\beta=4(\beta<\gamma-1$ and even $)$. In this case, the CILS becomes:

$$
\begin{aligned}
X_{12}+X_{13} & +X_{14}+X_{15}+X_{16}+X_{23}+X_{24} \\
& +X_{25}+X_{26}+X_{34}+X_{35}+X_{36}+X_{45}+X_{46}+X_{56} \leq 6
\end{aligned}
$$

And a particular inequality in SCILS is

$$
\begin{equation*}
X_{12}+X_{34}+X_{56} \leq 2 \tag{40}
\end{equation*}
$$

The solution $X_{1 j}=1$, for $j=2, \ldots, 6, X_{2 j}=1$, for $j=3, \ldots, 6$, and all other variables equal to zero, satisfies all inequalities in SCILS , because at most two of the positive variables appear in each inequality in the set. However, the solution does not satisfy CILS. On the other side, the solution $X_{12}=X_{34}=X_{56}=1$, and all other variables equal to zero, satisfies CILS , but does not satisfy (40).

Theorem 20. Let $C$ be the cover in (28) and consider $\gamma:=|C|$ to be odd. Then there is no dominance relation between SCILS and CILS .

Proof. Consider, for example, $C=\{1,2,3,4,5\}$ and $\beta=3$ ( $\beta$ odd). In this case, the CILS becomes:

$$
X_{12}+X_{13}+X_{14}+X_{15}+X_{23}+X_{24}+X_{25}+X_{34}+X_{35}+X_{45} \leq 3
$$

And a particular inequality in SCILS is

$$
\begin{equation*}
X_{23}+X_{45} \leq 1 \tag{41}
\end{equation*}
$$

The solution $X_{1 j}=1$, for $j=1, \ldots, 5$, and all other variables equal to zero, satisfies all inequalities in SCILS, because only one of the positive variables appears in each inequality in the set. However, the solution does not satisfy CILS. On the other side, the solution $X_{23}=X_{45}=1$, and all other variables equal to zero, satisfies CILS, but does not satisfy (41).

Now, consider $C=\{1,2,3,4,5\}$ and $\beta=4$ ( $\beta$ even). In this case, the CILS becomes:

$$
X_{12}+X_{13}+X_{14}+X_{15}+X_{23}+X_{24}+X_{25}+X_{34}+X_{35}+X_{45} \leq 6
$$

And a particular inequality in SCILS is

$$
\begin{equation*}
X_{11}+X_{23}+X_{45} \leq 2 \tag{42}
\end{equation*}
$$

The solution $X_{1 j}=1$, for $j=1, \ldots, 5, X_{2 j}=1$, for $j=2, \ldots, 5$, and all other variables equal to zero, satisfies all inequalities in SCILS, because at most two of the positive variables appear in each inequality in the set. However, the solution does not satisfy CILS. On the other side, the solution $X_{11}=X_{23}=$ $X_{45}=1$, and all other variables equal to zero, satisfies CILS, but does not satisfy 42.

Now, we investigate if SCILS is just a particular case of SKILS, when $\alpha_{j} \in\{0,1\}$, for all $j \in N$ in (34).

Theorem 21. In case the modification suggested in Remark 17 is applied, then if $|C|$ is even in $(28)$, SCILS becomes just a particular case of SKILS . In case $|C|$ is odd, however, the inequalities in SCILS are stronger.

Proof. If $|C|$ is even, the result is easily verified. If $|C|$ is odd, the inequalities in SCILS become

$$
2 \sum_{(i, j) \in C_{s}} X_{i j} \leq \beta-1
$$

if $\beta$ is odd, and

$$
2 X_{i_{0} i_{0}}+2 \sum_{(i, j) \in C_{s}} X_{i j} \leq \beta,
$$

if $\beta$ is even, and the inequalities in SKILS become

$$
X_{i_{0} i_{0}}+2 \sum_{(i, j) \in C_{s}} X_{i j} \leq \beta,
$$

for all $\beta$. In all cases, $C_{s}$ is a partition of $C \backslash\left\{i_{0}\right\}$, where $i_{0} \in C$.
Either with $\beta$ even or odd, it becomes clear that SCILS is stronger than SKILS .

## 6. Lower bounds from solutions of the relaxations for QKP lifted

In order to evaluate the quality of the upper bounds obtained with CRel, we compare them with lower bounds for the QKP , given by feasible solutions constructed by a heuristic procedure.

Let $(\bar{x}, \bar{X})$ be a solution of CRel. We initially apply principal component analysis (PCA) [19] to construct an approximation to the solution of the QKP and then apply a special rounding procedure to obtain a feasible solution from it. PCA selects the largest eigenvalue and the corresponding eigenvector of $\bar{X}$, denoted by $\bar{\lambda}$ and $\bar{v}$, respectively. Then $\bar{\lambda} \bar{v} \bar{v}^{T}$ is a rank-one approximation of $\bar{X}$. We set $\bar{x}=\bar{\lambda}^{\frac{1}{2}} \bar{v}$ to be an approximation of the solution $x$ of the QKP. Finally, we round $\bar{x}$ to a binary solution that satisfies the knapsack capacity constraint, using the simple approach described in Algorithm 3 .

```
Algorithm 3: Heuristic procedure
    Input: the solution \(\bar{X}\) from CRel, the weight vector \(w\), the
    capacity \(c\).
    Let \(\bar{\lambda}\) and \(\bar{v}\) be, respectively, the largest eigenvalue and the
    corresponding eigenvector of \(\bar{X}\).
    Set \(\bar{x}=\bar{\lambda}^{\frac{1}{2}} \bar{v}\).
    Round \(\bar{x}\) to \(\hat{x} \in\{0,1\}^{n}\).
    While \(w^{T} \hat{x}>c\)
        Set \(i=\operatorname{argmin}_{j \in N}\left\{\bar{x}_{j} \mid \bar{x}_{j}>0\right\}\).
        Set \(\bar{x}_{i}=0, \hat{x}_{i}=0\).
    End
    Output: a feasible solution \(\hat{x}\) of the \(\mathbf{Q K P}\).
```


## 7. Numerical Experiments

We summarize our algorithmic framework in Algorithm 4 where at each iteration we update the perturbation $Q_{p}$ of the parametric relaxation and, at every $m$ iterations, we add to the relaxation, the valid inequalities considered in this paper, namely, SCI, defined in (27), CILS , defined in (29), and SCILS, defined in (31).

The numerical experiments performed had the following main purposes,

- verify the effectiveness of the IPM described in Section 3 in decreasing the upper bound while optimizing the perturbation $Q_{p}$,
- verify the impact of the valid inequalities, SCI, CILS, and SCILS, when iteratively added to cut the current solution of the relaxation of the QKP ,
- compute the upper and lower bounds obtained with the proposed algorithmic approach described in Algorithm 4, and compare them, with the optimal solutions of the instances.

We coded Algorithm 4 in MATLAB, version R2015a, and ran the code on a desktop with an AMD FX- 6300 processor, 16GB RAM, running under Ubuntu 16.04. We used the primal-dual IPM method implemented in Mosek, version 8, to solve relaxation $\mathbf{C Q P}_{Q_{p}}$, and, to solve the separation problems MILP ${ }_{1}$ and MILP ${ }_{2}$, we use Gurobi, version 8.

The input data used in the first iteration of the IPM described in Algorithm $2(k=0)$ are: $B_{0}=I, \mu^{0}=1$. We depart from a matrix $Q_{p}^{0}$, such that $Q-Q_{p}^{0}$ is negative definite. By solving $\operatorname{CQP}_{Q_{p}}$, with $Q_{p}:=Q_{p}^{0}$, we obtain $x\left(Q_{p}^{0}\right), X\left(Q_{p}^{0}\right)$, as its optimal solution, and set $\nabla p_{\text {Cop }}^{*}\left(Q_{p}^{0}\right):=X\left(Q_{p}^{0}\right)-x\left(Q_{p}^{0}\right) x\left(Q_{p}^{0}\right)^{T}$. Finally, the positive definiteness of $Z^{0}$ and $\Lambda^{0}$ are assured by setting: $Z^{0}:=Q_{p}^{0}-Q$ and $\Lambda^{0}:=\nabla p_{\text {CQP }}^{*}\left(Q_{p}^{0}\right)+\left(2 \mid \lambda_{\min }\left(\nabla p_{\text {CQP }}^{*}\left(Q_{p}^{0}\right) \mid+.1\right) I\right.$.

```
Algorithm 4: Our algorithmic framework
    Input: \(Q \in \mathbb{S}^{n}\), max. \(_{\text {cuts }}\).
    \(k:=0, B_{0}:=I, \mu^{0}:=1\).
    Let \(\lambda_{i}(Q), v_{i}\) be the \(i^{\text {th }}\) largest eigenvalue of \(Q\) and corresponding
    eigenvector.
    \(Q_{n}:=\sum_{i=1}^{n}\left(-\left|\lambda_{i}(Q)\right|-1\right) v_{i} v_{i}^{\prime}, Q_{p}^{0}:=Q-Q_{n}\).
    Solve \(\operatorname{CQP}_{Q_{p}}\) (in (8) ), with \(Q_{p}:=Q_{p}^{0}\), and obtain \(x\left(Q_{p}^{0}\right), X\left(Q_{p}^{0}\right)\).
\(\nabla p_{\mathrm{CQP}}^{*}\left(Q_{p}^{0}\right):=X\left(Q_{p}^{0}\right)-x\left(Q_{p}^{0}\right) x\left(Q_{p}^{0}\right)^{T}\).
\(Z^{0}:=Q_{p}^{0}-Q\).
\(\Lambda^{0}:=\nabla p_{\text {CQP }}^{*}\left(Q_{p}^{0}\right)+\left(2 \mid \lambda_{\min }\left(\nabla p_{\text {CQP }}^{*}\left(Q_{p}^{0}\right) \mid+.1\right) I\right.\).
While (stopping criterium is violated)
Run Algorithm 2, where \(Q_{p}^{k+1}\) is obtained and relaxation \(\operatorname{CQP}_{Q_{p}}\), with \(Q_{p}:=Q_{p}^{k+1}\) is solved. Let \(\left(x\left(Q_{p}^{k+1}\right), X\left(Q_{p}^{k+1}\right)\right)\) be its optimal solution. upper.bound \({ }^{k+1}:=p_{\text {CQP }}^{*}\left(Q_{p}^{k+1}\right)\).
Run Algorithm 3, where \(\hat{x}\) is obtained.
lower.bound \({ }^{k+1}:=\hat{x}^{T} Q \hat{x}\).
If \(k \bmod m==0\)
Solve problem (26) and obtain cuts SCI in (27).
Add the \(\max \left\{n\right.\), max. \(\left.n_{\text {cuts }}\right\}\) cuts SCI with the
largest violations at \(\left(x\left(Q_{p}^{k+1}\right), X\left(Q_{p}^{k+1}\right)\right)\), to
\(\mathrm{CQP}_{Q_{p}}\).
\(n_{\text {cuts }}:=0\).
While ( \(n_{\text {cuts }}<\) max. \(_{\text {cuts }}\) \& MILP \(_{1}\) feasible)
Solve MILP \({ }_{1}\) and add the CI and
CILS obtained to CQP \(_{Q_{p}}\).
Add the "no-good" cut (30) to MILP \({ }_{1}\).
\(n_{\text {cuts }}:=n_{\text {cuts }}+1\).
End
\(n_{\text {cuts }}:=0\).
While ( \(n_{\text {cuts }}<\max . n_{\text {cuts }} \&\) MILP \(_{2}\) feasible)
Solve MILP \({ }_{2}\) and add the CI and
SCILS obtained to CQP \(Q_{Q_{p}}\).
Add the "no-good" cut (33) to MILP \({ }_{2}\).
\(n_{\text {cuts }}:=n_{\text {cuts }}+1\).
End
End
\(k:=k+1\).
End
Output: Upper bound upper.bound \({ }^{k}\), lower bound lower.bound \({ }^{k}\), and feasible solution \(\hat{x}\) to the QKP .
```

Our randomly generated test instances were also used by J. O. Cunha in [8], who provided us with the instances data and with their optimal solutions. Each weight $w_{j}$, for $j \in N$, was randomly selected in the interval $[1,50]$, and the capacity of the knapsack $c$ was randomly selected in $\left[50, \sum_{j=1}^{n} w_{j}\right]$. The procedure used by Cunha to generate the instances was based on previous works (4, 6, 7, 12, 22.

In Tables 113, we identify the method applied to compute the lower bound on the first column. On the remaining columns we present, for each method, average results for

- relative optimality gap (OptGap (\%):=((upper bound - opt)/opt) $\times 100$, where opt is the optimal solution value),
- computational time to compute the bound (Time (sec)),
- relative duality gap (DuGap) $:=$ (upper bound - lower bound)/(|upper bound $\mid)+(\mid$ lower bound $\mid)$, where the lower bound is computed as described in Sect. 6
- number of iterations (Iter),
- the number of cuts added to the relaxation (Cuts),
- computational time to obtain cuts CILS and SCILS (Time milp $^{(\mathrm{sec})}$ ).

In Tables 12 we present statistics for 10 instances with $n=10$. Results in Table 1 have the purpose of showing the impact of the cuts presented. For that, we first add them iteratively to the following linear relaxation

$$
\begin{array}{rll} 
& \max & \operatorname{trace}(Q X) \\
\\
\text { s.t. } & \sum_{j=1}^{n} w_{j} x_{j} \leq c, &  \tag{43}\\
(\mathbf{L P R}) & 0 \leq X_{i j} \leq 1, \quad \forall i, j \in N \\
& 0 \leq x_{i} \leq 1, & \forall i \in N \\
& X \in \mathbb{S}^{n} . &
\end{array}
$$

In the first row of Table 1, the results correspond to the solution of the linear relaxation $\mathbf{L P} \mathbf{R}$ with no cuts. In $\mathbf{S C I}_{1}$, we add only the most violated cut from the $n$ cuts in SCI to $\mathbf{L P} \tilde{R}$ at each iteration, and in the $\mathbf{S C I}$ we add all $n$ cuts. In CILS and SCILS, we solve MILP problems to find the most violated cut of each type. The last row of the table (All) corresponds to results obtained when we add all $n$ cuts in SCI, and one cut of each type, CILS and SCILS. In these initial tests, we run up to 50 iterations, and in most cases, stop the algorithm when no more cuts are found to be added to the relaxation. We note that we use a time limit of 3 seconds to solve the separation problems. However, when $n=10$, this time is sufficient to solve all problems to optimality.

Figure 1 depicts the optimality gaps from Table 1. There is a trade-off between the quality of the cuts and the computational time needed to find them. Considering a unique cut of each type, we note that SCILS is the strongest cut

| Method | OptGap <br> $(\%)$ | Time <br> $(\mathrm{sec})$ | DuGap | Iter | Cuts | Time $_{\text {MiLp }}$ <br> $(\mathrm{sec})$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| LPR | 38.082 | 0.35 | 0.620 | 1.0 |  |  |
| SCI $_{1}$ | 36.703 | 32.38 | 0.343 | 1.1 | 28.4 |  |
| SCI | 10.036 | 39.98 | 0.058 | 3.0 | 364.1 |  |
| CILS | 19.719 | 9.00 | 0.293 | 2.7 | 82.2 | 6.91 |
| SCILS | 9.121 | 266.81 | 0.250 | 50.0 | 794.3 | 198.12 |
| ALL | 3.315 | 315.82 | 0.016 | 28.3 | 646.6 | 264.91 |

Table 1: Impact of the cuts added to LP̃R (10 instances, $n=10)$.


Figure 1: Average optimality gaps from Table 1
(OptGap $=9.121 \%$ ), but the computational time to obtain it, if compared to CILS and SCI, is bigger. Nevertheless, a decrease in the times could be achieved with a heuristic solution for the separation problems. We point out that using all cuts together we find a better upper bound than using each type of cut in separate ( $\mathrm{OptGap}=3.315 \%$ ) .

We now present results from our main tests, considering the parametric quadratic relaxation, the IPM and the cuts. To improve the results, we also consider in our initial relaxation the valid inequalities obtained by multiplying the capacity constraint by each nonnegative variable $x_{i}$, and also valid inequalities derived from the fact that $x_{i} \in\{0,1\}$. We then start the algorithms solving the following relaxation.

$$
\begin{array}{lll}
\max & x^{T}\left(Q-Q_{p}^{0}\right) x+\operatorname{trace}\left(Q_{p}^{0} X\right) & \\
\text { s.t. } & \sum_{j=1}^{n} w_{j} x_{j} \leq c, & \\
& \sum_{j=1}^{n} w_{j} X_{i j} \leq c X_{i i}, & \forall i \in N \\
& X_{i i}=x_{i}, & \forall i \in N \\
& 0 \leq X_{i j} \leq 1, & \forall i, j \in N  \tag{44}\\
& 0 \leq x_{i} \leq 1, & \forall i \in N \\
& X \in \mathbb{S}^{n} . &
\end{array}
$$

In order to evaluate the influence of the initial decomposition of $Q$ on the behavior of the IPM, we considered two initial decompositions. In both cases, we compute the eigendecomposition of $Q$, getting $Q=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\prime}$.

- For the first decomposition, we set $Q_{n}:=\sum_{i=1}^{n}\left(-\left|\lambda_{i}\right|-1\right) v_{i} v_{i}^{\prime}$, and $Q_{p}^{0}:=$ $Q-Q_{n} / 2$. We refer to this initial matrix $Q_{p}^{0}$ as $Q_{p}^{a}$ in the following tables and figures.
- For the second, we set $Q_{n}:=\sum_{i=1}^{n}\left(\min \left\{\lambda_{i},-10^{-6}\right\}\right) v_{i} v_{i}^{\prime}$, and $Q_{p}^{0}:=Q-$ $Q_{n} / 2$. We refer to this initial matrix as $Q_{p}^{b}$.

We implemented the IPM updating the Hessian matrix $B$ using the BFGS procedure described in Section 3 and also considering the simpler approximation $B=I$ in all iterations.

In Table 2 we show the average results obtained for these two procedures, and for the two initial decompositions of $Q$ described above. In the first two rows of the table, the results are obtained from the solution of the initial quadratic relaxation, with the initial decomposition of $Q$ and no cuts. In the next four rows of the table, the results are obtained with the application of the IPM, with no cuts added to the relaxation. In the last four rows, the results are obtained with the inclusion of cuts in the relaxation. The cuts are added at every $m=10$ iterations of the IPM and the numbers of cuts added at each iteration are $n$ SCI, 5 CILS and 5 SCILS. Note that when solving each MILP problem, besides the cut CILS or SCILS, we also obtain a cover inequality CI. We check if this CI was already added to the relaxation, and if not, we add it as well.

For these tests we set the maximum number of iterations to 150 , and the maximum computational time to 900 seconds. We also stop the algorithms if DuGap is sufficiently small. Table 2 shows that the best bounds are obtained

| Method | OptGap <br> $(\%)$ | Time <br> $(\mathrm{sec})$ | DuGap | Iter | Cuts | Time <br> $(\mathrm{sec})$ |
| :--- | :---: | :---: | :---: | ---: | ---: | ---: |
| $Q_{p}^{a}$, ,QPR | 21.640 | 0.79 | 0.138 | 1.0 |  |  |
| $Q_{p}^{b}, \mathrm{QPR}$ | 12.276 | 0.83 | 0.076 | 1.0 |  |  |
| $Q_{p}^{a}, \mathrm{I}$ | 7.242 | 26.80 | 0.042 | 150.0 |  |  |
| $Q_{p}^{b}, \mathrm{I}$ | 7.633 | 25.81 | 0.055 | 150.0 |  |  |
| $Q_{p}^{a}$,BFGS | 7.091 | 27.41 | 0.041 | 150.0 |  |  |
| $Q_{p}^{b}$, ,BFGS | 7.094 | 25.94 | 0.041 | 150.0 |  |  |
| $Q_{p}^{a}$, ,I,Cuts | 0.863 | 87.09 | 0.009 | 144.5 | 104 | 42.13 |
| $Q_{p}^{b}$, ,Cuts | 1.516 | 77.60 | 0.012 | 132.8 | 97.6 | 38.37 |
| $Q_{p}^{a}$, BFGS,Cuts | 0.639 | 46.13 | 0.008 | 77.7 | 275.4 | 23.57 |
| $Q_{p}^{b}$, BFGS,Cuts | 0.640 | 56.32 | 0.008 | 98.7 | 80.7 | 29.24 |

Table 2: Average results for 10 instances $(n=10)$.
when we use the IPM with the BFGS update of the Hessian, and adding the cuts. Concerning the starting point, $Q_{p}^{a}$ leads better bounds in general, but the computational time is slightly bigger than for $Q_{p}^{b}$. Figure 2 depicts the optimality gaps from Table 2 .

In Table 3 we show how the results evolve when $n$ increases. For these final tests, we set the maximum number of iterations to 500 , the maximum computational time to 2700 seconds, and also stop the algorithms if DuGap is sufficiently small. We note again that the IPM, with or without cuts, decreases

| Method | OptGap <br> $(\%)$ | Time <br> $(\mathrm{sec})$ | DuGap | Iter | Cuts | Time $_{\text {MiLp }}$ <br> $(\mathrm{sec})$ |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: |
| $Q_{p}^{a}$, QPR | 21.136 | 0.87 | 0.113 | 1.0 |  |  |
| $Q_{p}^{b}$, QPR | 9.460 | 0.86 | 0.056 | 1.0 |  |  |
| $Q_{p}^{a}$, BFGS | 1.345 | 2732.70 | 0.015 | 424.0 |  |  |
| $Q_{p}^{b}$, BFGS | 1.345 | 2713.26 | 0.015 | 430.0 |  |  |
| $Q_{p}^{a}$, BFGS,Cuts | 0.078 | 2216.81 | 0.001 | 168.6 | 241.2 | 858.51 |
| $Q_{p}^{b}$, BFGS,Cuts | 0.076 | 1882.68 | 0.001 | 145.0 | 199.4 | 731.55 |

Table 3: Average results for 5 instances $(n=50)$.
the initial upper bound given by the solution of the quadratic relaxation. The influence of the initial decomposition of $Q$ on the bounds obtained by the IPM is not relevant, but the convergence is still faster with the initial decomposition $Q_{p}^{b}$. It is interesting to note that, although the solution of the MILP problems is computationally expensive, the time spent solving them is compensated by the faster convergence of the algorithm and to better bounds.


Figure 2: Average optimality gaps from Table 2

## 8. Conclusion

In this paper we present a cutting plane algorithm (CPA) to iteratively improve the upper bound for the quadratic knapsack problem, QKP. The initial relaxation for the problem is given by a parametric convex quadratic problem, where the Hessian $Q$ of the objective function of the QKP is perturbed by a matrix parameter $Q_{p}$, such that $Q-Q_{p} \preceq 0$. Seeking for the best possible bound, the concave term $x^{T}\left(Q-Q_{p}\right) x$, is then kept in the objective function of the relaxation and the remaining part, given by $x^{T} Q_{p} x$ is linearized through the standard approach that lifts the problem to space of symmetric matrices defined by $X:=x x^{T}$.

We present an interior point algorithm, IPM, which update the perturbation $Q_{p}$ at each iteration of the CPA aiming at reducing the upper bound given by the relaxation. We also present new classes of cuts that are added at each iteration of the CPA, defined on the lifted variable $X$, and derived from cover inequalities and the binary constraints.

We show that both the IPM and the cuts generated are effective in improving the upper bound for the QKP and note that these procedures could be applied to more general binary indefinite quadratic problems as well. The separation problems described to generate the cuts could also be solved heuristically, in order to accelerate the process.

Finally, we show that if the positive semidefinite constraint $X-x x^{T} \succeq 0$ was introduced in the relaxation of the QKP , or any other indefinite quadratic problem (maximizing the objective function), then the decomposition of objective function, that leads to a convex quadratic relaxation, where a perturbed concave part of the objective is kept, and the remaining part is linearized, is not effective. In this case the best bound is always attained when the whole objective function is linearized, i.e., when the perturbation $Q_{p}$ is equal to $Q$. This observation also relates to the well known DC (difference of convex) decomposition of indefinite quadratics that have been used in the literature to generate bounds for indefinite quadratic problems. Once more, in case the positive semidefinite constraint is added to the relaxation, the DC decomposition is not effective anymore, and the alternative linear SDP relaxation leads to the best possible bound.

## Acknowledgements

We thank J. O. Cunha for providing us with the test instances used in our experiments. M. Fampa was partially supported by CNPq (National Council for Scientific and Technological Development) Grant 303898/2016-0, D. C. Lubke was supported by Research Grants from CAPES (Brazilian Federal Agency for Support and Evaluation of Graduate Education) Grant 88881.131629/2016-01, CNPq Grant 142143/2015-4 and partially supported by PSR - Power Systems Research, Rio de Janeiro, Brazil.

## References

## References

[1] A. Atamtürk. Cover and pack inequalities for (mixed) integer programming. Annals of Operations Research, 139(1):21-38, Oct 2005.
[2] E. Balas. Facets of the knapsack polytope. Mathematical Programming, 8(1):146-164, Dec 1975.
[3] E. Balas and E. Zemel. Facets of the knapsack polytope from minimal covers. SIAM Journal on Applied Mathematics, 34(1):119-148, 1978.
[4] A. Billionnet and F. Calmels. Linear programming for the 0-1 quadratic knapsack problem. European Journal of Operational Research, 92(2):310325, 1996.
[5] A. Billionnet, A. Faye, and É. Soutif. A new upper bound for the 0-1 quadratic knapsack problem. European Journal of Operational Research, 112(3):664-672, 1999.
[6] A. Caprara, D. Pisinger, and P. Toth. Exact solution of the quadratic knapsack problem. INFORMS Journal on Computing, 11(2):125-137, 1999.
[7] P. Chaillou, P. Hansen, and Y. Mahieu. Best network flow bounds for the quadratic knapsack problem. In Bruno Simeone, editor, Combinatorial Optimization: Lectures given at the 3rd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held at Como, Italy, August 25-September 2, 1986, pages 225-235. Springer Berlin Heidelberg, Berlin, Heidelberg, 1989.
[8] J.O. Cunha, L. Simonetti, and A. Lucena. Lagrangian heuristics for the quadratic knapsack problem. Computational Optimization and Applications, 63(1):97-120, Jan 2016.
[9] J.M. Danskin. The theory of max-min, with applications. SIAM Journal on Applied Mathematics, 14(4):641-664, 1966.
[10] M. Fampa, J. Lee, and W. Melo. On global optimization with indefinite quadratics. EURO Journal on Computational Optimization, 5(3):309-337, 092017.
[11] A.V. Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, volume 165 of Mathematics in Science and Engineering. Academic Press, 1983.
[12] G. Gallo, P. L. Hammer, and B. Simeone. Quadratic knapsack problems. In M. W. Padberg, editor, Combinatorial Optimization, pages 132-149. Springer Berlin Heidelberg, Berlin, Heidelberg, 1980.
[13] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Lifted cover inequalities for 0-1 integer programs: Computation. INFORMS Journal on Computing, 10(4):427-437, 1998.
[14] P.L. Hammer, E.L. Johnson, and U. N. Peled. Facet of regular 0-1 polytopes. Mathematical Programming, 8(1):179-206, Dec 1975.
[15] C. Helmberg, F. Rendl, and R. Weismantel. Quadratic knapsack relaxations using cutting planes and semidefinite programming. In Integer Programming and Combinatorial Optimization (Vancouver, BC, 1996), volume 1084 of Lecture Notes in Comput. Sci., pages 190-203. Springer, Berlin, 1996.
[16] C. Helmberg, F. Rendl, and R. Weismantel. A semidefinite programming approach to the quadratic knapsack problem. J. Comb. Optim., 4(2):197215, 2000.
[17] W.W. Hogan. The continuity of the perturbation function of a convex program. Operat. Research, 21:351-352, 1973.
[18] R. Horst and N.V.l Thoai. Dc programming: Overview. Journal of Optimization Theory and Applications, 103:1-43, 1999.
[19] I. Jolliffe. Principal component analysis. 2nd ed. Springer, Berlin, 2010.
[20] A.S. Lewis and M.L. Overton. Nonsmooth optimization via quasi-newton methods. Mathematical Programming, 141(1):135-163, Oct 2013.
[21] G.P. McCormick. Computability of global solutions to factorable nonconvex programs: part i convex underestimating problems. Mathematical Programming, 10:147-175, 1976.
[22] P. Michelon and L. Veillieux. Lagrangean methods for the 0-1 quadratic knapsack problem. European Journal of Operational Research, 92(2):326 341, 1996.
[23] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John Wiley \& Sons, New York, NY, 1988.
[24] D. Pisinger. The quadratic knapsack problem, a survey. Discrete Applied Mathematics, 155(5):623-648, 2007.
[25] B.A. Turlach and S.J. Wright. Quadratic programming. Wiley Interdisciplinary Reviews: Computational Statistics, 7(2):153-159.
[26] L.A. Wolsey. Faces for a linear inequality in $0-1$ variables. Mathematical Programming, 8(1):165-178, Dec 1975.
[27] L.A. Wolsey. Integer programming. Wiley-Interscience, New York, NY, USA, 1998.
[28] E. Zemel. Easily computable facets of the knapsack polytope. Mathematics of Operations Research, 14(4):760-764, 1989.


[^0]:    Email addresses: fampa@cos.ufrj.br (M. Fampa), danielalubke@cos.ufrj.br (D. Lubke), fewa@kth.se (F. Wang), hwolkowicz@uwaterloo.ca (H. Wolkowicz)
    ${ }^{1}$ Corresponding author: Marcia Fampa, PESC/COPPE, Universidade Federal do Rio de Janeiro, Caixa postal 68511, Rio de Janeiro, RJ, 21941-972, Brazil. Email: fampa@cos.ufrj.br

