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Abstract

We consider a parametric convex quadratic programming, CQP, relaxation
for the quadratic knapsack problem, QKP. This relaxation maintains partial
quadratic information from the original QKP by perturbing the objective func-
tion to obtain a concave quadratic term. The nonconcave part generated by
the perturbation is then linearized by a standard approach that lifts the prob-
lem to the matrix space. We present a primal-dual interior point method to
optimize the perturbation of the quadratic function, in a search for the tightest
upper bound for the QKP. We prove that the same perturbation approach,
when applied in the context of semidefinite programming, SDP, relaxations of
the QKP , cannot improve the upper bound given by the corresponding linear
SDP relaxation. The result also applies to more general integer quadratic prob-
lems. Finally, we propose new valid inequalities on the lifted matrix variable,
derived from cover and knapsack inequalities for the QKP, and present the sepa-
ration problems to generate cuts for the current solution of the CQP relaxation.
Our best bounds are obtained from alternating between optimizing the para-
metric quadratic relaxation over the perturbation and adding cutting planes
generated by the valid inequalities proposed.
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1. Introduction

We study a convex quadratic programming, CQP, relaxation of the quadratic
knapsack problem, QKP,

(1) (QKP )
p∗QKP := max xTQx

s.t. wTx ≤ c
x ∈ {0, 1}n,

where Q ∈ Sn is a symmetric n×n nonnegative integer profit matrix, w ∈ Zn++ is
the vector of positive integer weights for the items, and c ∈ Z++ is the knapsack
capacity with c ≥ wi, for all i ∈ N := {1, . . . , n}. The binary variable x indicates
whether an item is chosen for the knapsack or not, and the inequality in the
model, known as a knapsack inequality, ensures that the selection of items does
not exceed the knapsack capacity. We note that any linear costs in the objective
can be included on the diagonal of Q by exploiting the {0, 1} constraints and,
therefore, are not considered.

The QKP was introduced in [12] and was proved to be NP-Hard in the
strong sense by reduction from the clique problem. The quadratic knapsack
problem is a generalization of the knapsack problem, KP , which has the same
feasible set of the QKP , and a linear objective function in x. The KP can be
solved in pseudo-polynomial time using dynamic programming approaches with
complexity of O(nc).

The QKP appears in a wide variety of fields, such as biology, logistics, cap-
ital budgeting, telecommunications and graph theory, and has received a lot of
attention in the last decades. Several papers have proposed branch-and-bound
algorithms for the QKP and the main difference between them is the method
used to obtain upper bounds for the subproblems [7, 4, 6, 5, 15, 16]. The well
known trade-off between the strength of the bounds and the computational ef-
fort required to obtain them is intensively discussed in [24], where semidefinite
programming, SDP , relaxations proposed in [15] and [16] are presented as the
strongest relaxations for the QKP. The linear programming, LP , relaxation
proposed in [4], on the other side, is presented as the most computationally
inexpensive.

Both the SDP and the LP relaxations have a common feature, they are
defined in the symmetric matrix lifted space determined by the equation X =
xxT , and by the replacement of the quadratic objective function in (1) with
a linear function in X, namely, trace(QX). As the constraint X = xxT is
nonconvex, it is relaxed by convex constraints in the relaxations. The well known
McCormick inequalities [21], and also the semidefinite constraint, X−xxT � 0,
have been extensively used to relax the nonconvex constraint X = xxT , in
relaxations of the QKP.

In this paper, we investigate a convex quadratic programming, CQP, re-
laxation for the QKP, where instead of linearizing the objective function, we
perturb the objective function Hessian Q, and maintain the (concave) perturbed
version of the quadratic function in the objective, linearizing only the remain-
ing part derived from the perturbation. Our relaxation is a parametric convex
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quadratic problem, defined as a function of a matrix parameter Qp, such that
Q−Qp � 0. A similar approach to handle nonconvex quadratic functions con-
sists in decomposing it as a difference of convex (DC) quadratic function [18].
DC decompositions have been extensively used in the literature to generate con-
vex quadratic relaxations of nonconvex quadratic problems. See, for example,
[10] and references therein. Unlike the approach used in DC decompositions, we
do not necessarily decompose Q as a difference of convex functions, or equiva-
lently, as a sum of a convex and a concave function. Instead, we decompose it
as a sum of a concave function and a quadratic term derived from the perturba-
tion applied to Q. This perturbation can be any symmetric matrix Qp, which is
iteratively optimized by a primal-dual interior point method, IPM, to generate
the best possible bound for the QKP.

Although SDP relaxations are well known for being more expensive to solve
in general, in an attempt to obtain even stronger bounds, we also investi-
gated the parametric convex quadratic SDP problem, where we add to our
CQP relaxation, the positive semidefinite constraint X − xxT � 0. An IPM
could also be applied to this parametric problem in order to generate the best
possible bound. Nevertheless, we prove an interesting result concerning the re-
laxations, in case the constraint X − xxT � 0 is imposed: the tightest bound
generated by the parametric quadratic relaxation is obtained when the pertur-
bation Qp is equal to Q, or equivalently, when we linearize all the objective
function, getting the standard linear SDP relaxation. We conclude, therefore,
that keeping the (concave) perturbed version of the quadratic function in the
objective of the SDP relaxation does not lead to a tighter bound.

Another contribution of this work is the development of valid inequalities
for the CQP relaxation on the lifted matrix variable. The inequalities are first
derived from cover inequalities for the KP, addressed in the next subsection.
The idea is then extended to knapsack inequalities. Taking advantage of the
lifting X := xxT , we propose new valid inequalities that can also be applied
to more general relaxations of binary quadratic programming problems that
use the same lifting. We discuss how cuts for the quadratic relaxation can
be obtained by the solution of separation problems, and investigate possible
dominance relation between the inequalities proposed.

We finally present an algorithmic framework, where we iteratively improve
the upper bound for the QKP by optimizing the choice of the perturbation of
the objective function and adding cutting planes to the relaxation. At each itera-
tion, lower bounds for the problem are also generated from feasible solutions con-
structed from a rank-one approximation of the solution of the CQP relaxation.

In Section 2, we introduce our parametric convex quadratic relaxation for
the QKP. In Section 3, we explain how we optimize the parametric problem
over the perturbation of the objective, i.e., we present the IPM applied to ob-
tain the perturbation that leads to the best possible bound. In Section 4, we
present our conclusion about the parametric quadratic SDP relaxation. In Sec-
tion 5, we introduce new valid inequalities on the lifted matrix variable of the
convex quadratic model, and we describe how cutting planes are obtained by
the solution of separation problems. In Section 6, we present the heuristic pro-
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cedure used to generate lower bounds to the QKP . In Section 7, we discuss our
numerical experiments and in Section 8, we present our final remarks.

1.1. Preliminaries: knapsack polytope and cover inequalities

In the following we recall the concepts of knapsack polytopes and cover
inequalities.

The knapsack polytope is the convex hull of the feasible points of the KP ,
KF := {x ∈ {0, 1}n : wTx ≤ c}.

Definition 1 (zero-one knapsack polytope).

KPol := conv(KF ) = conv{x ∈ {0, 1}n : wTx ≤ c}.

Proposition 2. The dimension

dim(KPol) = n,

and KPol is an independence system, i.e.,

x ∈ KPol, y ∈ {0, 1}n, y ≤ x =⇒ y ∈ KPol.

Proof. Recall that wi ≤ c,∀i. Therefore, all the unit vectors ei ∈ Rn are feasible
and the first statement follows. The second statement is clear.

Cover inequalities were originally presented in [2, 26]; see also [23, Section
II.2]. These inequalities can be used in general optimization problems with
binary variables and, particularly, in the knapsack problems, KP and QKP .

Definition 3 (cover inequality, CI). The subset C ⊆ N is a cover if it satisfies∑
j∈C

wj > c.

The (valid) CI is

(2)
∑
j∈C

xj ≤ |C|−1.

The cover inequality is minimal if no proper subset of C is also a cover.

Definition 4 (extended CI, ECI). Let w∗ := maxj∈C wj and define the ex-
tension of C as

E(C) := C ∪ {j ∈ N\C : wj ≥ w∗}.

The ECI is ∑
j∈E(C)

xj ≤ |C|−1.
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Definition 5 (lifted CI, LCI). Given any minimal cover C, there exists at
least one facet-defining lifted CI , LCIof the form

(3)
∑
j∈C

xj +
∑

j∈N\C

αjxj ≤ |C|−1,

where αj ≥ 0,∀j ∈ N\C. Moreover, each such LCI dominates the extended
CI.

Cover inequalities are extensively discussed in [14, 3, 2, 26, 23, 1]. Details
about the computational complexity of LCI is presented in [28, 13]. Algorithm
1 [27, page 5], shows how to derive a facet-defining LCI from a given minimal
cover C.

Algorithm 1: Procedure to find LCI

Sort the elements in ascending wi order i ∈ N \ C, defining
{i1, i2, . . . , ir}.
For: t=1 to r

(4)

ζt = max
∑t−1
j=1 αijxij +

∑
i∈C xi

s.t.
∑t−1
j=1 wijxij +

∑
i∈C wixi ≤ c− wit

x ∈ {0, 1}|C|+t−1.

Set αit = |C|−1− ζt.

End

Notation

If A ∈ Sn, then svec(A) is a vector whose entries come from A by stacking
up its lower half, i.e.,

svec(A) := (a11, . . . , an1, a22, . . . , an2, . . . , ann)T ∈ Rn(n+1)/2 .

The operator sMat is the inverse of svec, i.e., sMat(svec(A)) = A.
We also denote by λmin(A), the smallest eigenvalue of A and by λi(A) the

ith largest eigenvalue of A.

2. A Parametric Convex Quadratic Relaxation

In order to construct a convex relaxation for the QKP, we start by consid-
ering the following standard reformulation of the problem in the lifted space of
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symmetric matrices, defined by the lifting X := xxT .

(5) (QKP lifted)

p∗QKPlifted
:= max trace(QX)

s.t. wTx ≤ c
X = xxT

x ∈ {0, 1}n.

We consider an initial LP relaxation of the QKP , given by

(6) (LPR )
max trace(QX)
s.t. (x,X) ∈ P,

where P ⊂ [0, 1]n × Sn is a bounded polyhedron, such that

{(x,X) : wTx ≤ c, X = xxT , x ∈ {0, 1}n} ⊂ P.

2.1. The perturbation of the quadratic objective

We then propose a convex quadratic relaxation with the same feasible set
of LPR , but maintaining a concave perturbed version of the quadratic objec-
tive function of the QKP, and linearizing only the remaining nonconcave part
derived from the perturbation. More specifically, we choose Qp ∈ Sn such that

(7) Q−Qp � 0,

and get

xTQx = xT (Q−Qp)x+ xTQpx = xT (Q−Qp)x+ trace(Qpxx
T )

= xT (Q−Qp)x+ trace(QpX).

Finally, we define the parametric convex quadratic relaxation of the QKP :

(8) (CQPQp)
p∗CQP(Qp) := max xT (Q−Qp)x+ trace(QpX)

s.t. (x,X) ∈ P,

3. Optimizing the parametric problem over the parameter Qp

The upper bound p∗CQP(Qp) in the convex quadratic problem (8) depends on
the feasible perturbation Qp of the Hessian Q. To improve the upper bound we
consider the parametric problem

(9) param∗QKP := min
Q−Qp�0

p∗CQP(Qp).

We solve (9) with a primal-dual interior-point approach, and describe in this
section how the search direction of the algorithm is obtained at each iteration.
We start with minimizing a log-barrier function. We use the barrier function,
Bµ(Qp, Z) with barrier parameter, µ > 0, to obtain the barrier problem

(10)
min Bµ(Qp, Z) := p∗CQP(Qp)− µ log detZ
s.t. Q−Qp + Z = 0 (: Λ)

Z � 0,
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where Λ ∈ Sn denotes the dual variable (matrix). Let us consider the Lagrangian
function

Lµ(Qp, Z,Λ) := p∗CQP(Qp)− µ log detZ + trace((Q−Qp + Z)Λ).

Note that the objective function for p∗CQP(Qp) is linear in Qp, i.e., this function
is the maximum of linear functions over feasible points x,X. Therefore, this
is a convex function. From standard sensitivity analysis results, e.g. [11,
Corollary 3.4.2],[17], [9, Theorem 1], if the optimal solution x,X is unique, then
the gradient is obtained by differentiating the Lagrangian. Since Qp appears
only in the objective function in (8), and

xT (Q−Qp)x+ trace(QpX) = xTQx+ trace(Qp(X − xxT )),

we get a directional derivative at Qp in the direction ∆Qp,

D(p∗CQP(Qp); ∆Qp) = max
optimal x,X

trace((X − xxT )∆Qp).

In the case of a unique optimum x = x(Qp), X = X(Qp), we get the gradient

(11) ∇p∗CQP(Qp) = X − xxT .

The gradient of the barrier function, is then

∇Bµ(Qp) = (X − xxT )− µZ−1.

The optimality conditions for (10) are obtained by differentiating the La-
grangian Lµ with respect to Qp,Λ, Z, respectively,

(12)

∂
∂Qp

: ∇p∗CQP(Qp)− Λ = 0,
∂
∂Λ : Q−Qp + Z = 0,
∂
∂Z : −µZ−1 + Λ = 0, (or) ZΛ− µI = 0.

This gives rise to the nonlinear overdetermined system

(13) Gµ(Qp,Λ, Z) =

∇p∗CQP(Qp)− Λ
Q−Qp + Z
ZΛ− µI

 = 0, Z,Λ � 0.

We use a BFGS approximation for the Hessian of p∗CQP, as if it is twice differ-
entiable, and update it at each iteration (see [20]). We denote the approximation
of ∇2

BFGSp
∗
CQP(Qp) by B, and begin with the approximation B0 = I. Recall that

if Qkp, Q
k+1
p are two successive iterates with gradients ∇p∗CQP(Qkp),∇p∗CQP(Qk+1

p ),

respectively, with current Hessian approximation Bk ∈ Sn(n+1)/2, then we set

Yk := ∇p∗CQP(Qk+1
p )−∇p∗CQP(Qkp), Sk := Qk+1

p −Qkp,

and,
υ := 〈Yk, Sk〉, ω := 〈svec(Sk), Bk svec(Sk)〉.
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We note that the curvature condition υ > 0 should be verified.
Finally, we update the Hessian approximation with

Bk+1 := Bk +
1

υ

(
svec(Yk) svec(Y Tk )

)
− 1

ω

(
Bk svec(Sk) svec(Sk)TBk

)
.

The overdetermined equation for the search direction is

(14) G′µ(Qp,Λ, Z)

∆Qp
∆Λ
∆Z

 = −Gµ(Qp,Λ, Z),

where

(15) Gµ(Qp,Λ, Z) =

∇p∗(Qp)− Λ
Q−Qp + Z
ZΛ− µI

 =:

RdRp
Rc

 .

If B is the current estimate of the Hessian, then the system becomes sMat(B svec(∆Qp))−∆Λ = −Rd,
−∆Qp + ∆Z = −Rp,
Z∆Λ + ∆ZΛ = −Rc.

We can substitute for the variables ∆Λ and ∆Z in the third equation of the
system. We note that, as the system is overdetermined, this substitution changes
the least squares solution. Nevertheless, elimination gives us a simplified system,
and therefore, we apply it, using the following two equations for elimination and
backsolving,

(16) ∆Λ = sMat(B svec(∆Qp)) +Rd, ∆Z = −Rp + ∆Qp.

Accordingly, we have a single equation to solve, and the system finally becomes

Z sMat(B svec(∆Qp)) + (∆Qp)Λ = −Rc − ZRd +RpΛ.

We emphasize that to compute the search direction at each iteration of our
IPM , we need to update the residuals defined in (15), and therefore we need
the optimal solution x = x(Qp), X = X(Qp) of the convex quadratic relaxation
CQPQp for the current perturbation Qp. Problem CQPQp is thus solved at
each iteration of the IPM method, each time for a new perturbation Qp.

Moreover, we note that at each iteration of the IPM , we have Z � 0 and Q−
Qp ≺ 0. Problem CQPQp then maximizes a strictly concave quadratic function,
subject to linear constraints, and therefore has a unique optimal solution (see
e.g. [25]). The result assures that the gradient in (11) is well defined.

In Algorithm 2, we present in details an iteration of the IPM . The algorithm
is part of the complete framework used to generate bounds for the QKP , as
described in Section 7.
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Algorithm 2: Updating the perturbation Qp

Input: k, Qkp, Zk, Λk, x(Qkp), X(Qkp), ∇p∗CQP(Qkp), Bk, µk,
τα := 0.95, τµ := 0.9.
Compute the residuals:RdRp

Rc

 :=

∇p∗CQP(Qkp)− Λk

Q−Qkp + Zk

ZkΛk − µkI

 .

Solve the linear system for ∆Qp:

Zk sMat(Bk svec(∆Qp)) + (∆Qp)Λ
k = −Rc − ZkRd +RpΛ

k.

Set:

∆Λ := sMat(Bk svec(∆Qp)) +Rd, ∆Z := −Rp + ∆Qp.

Update Qp, Z and Λ:

Qk+1
p := Qkp + α̂p∆Qp, Z

k+1 := Zkp + α̂p∆Z, Λk+1 := Λk + α̂d∆Λ,

where

α̂p := τα ×min{1, argmaxαp{Z
k
p + αp∆Z � 0}},

α̂d := τα ×min{1, argmaxαd{Λ
k + αd∆Λ � 0}}.

Obtain the optimal solution x(Qk+1
p ), X(Qk+1

p ) of relaxation

CQPQp , where Qp := Qk+1
p .

Update the gradient of p∗CQP:

∇p∗CQP(Qk+1
p ) := X(Qk+1

p )− x(Qk+1
p )x(Qk+1

p )T .

Update the Hessian approximation of p∗CQP:

Yk := ∇p∗CQP(Qk+1
p )−∇p∗CQP(Qkp), Sk := Qk+1

p −Qkp,
υ := 〈Yk, Sk〉, ω := 〈svec(Sk), Bk svec(Sk)〉,

Bk+1 := Bk +
1

υ

(
svec(Yk) svec(Y Tk )

)
− 1

ω

(
Bk svec(Sk) svec(Sk)TBk

)
.

Update µ:

µk+1 := τµ
trace(Zk+1Λk+1)

n
.

Output: Qk+1
p , Zk+1, Λk+1, x(Qk+1

p ), X(Qk+1
p ), ∇p∗CQP(Qk+1

p ),

Bk+1, µk+1.
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4. The parametric quadratic SDP relaxation

In an attempt to obtain tighter bounds, a promising approach could seem to
be to include the positive semidefinite constraint X−xxT � 0 in our parametric
quadratic relaxation, and solve a parametric convex quadratic SDP relaxation,
also using an IPM . Nevertheless, we show in this section that the convex
quadratic SDP relaxation cannot generate a better bound than the linear SDP
relaxation, obtained when we set Qp equal to Q.

Consider the reformulation QKP lifted in (5), of the QKP, and its SDP
relaxation given by

(17) (LSDP )
p∗LSDP := sup trace(QX)

s.t. (x,X) ∈ F
X − xxT � 0,

where F is any relaxation of the feasible set of QKP lifted.
We now consider the parametric SDP relaxation of QKP lifted given by

(18) (QSDPQp)

p∗QSDPQp
:= sup xT (Q−Qp)x+ trace(QpX)

s.t. (x,X) ∈ F
X − xxT � 0,

where Q−Qp � 0.

Theorem 6. Let F be any subset of Rn × Sn. For any choice of matrix Qp
satisfying Q−Qp � 0, we have

(19) p∗QSDPQp
≥ p∗LSDP.

Moreover, inf{p∗QSDPQp
: Q−Qp � 0} = p∗LSDP.

Proof. Let (x̃, X̃) be a feasible solution for LSDP . We have

p∗QSDPQp
≥ x̃T (Q−Qp)x̃+ trace(QpX̃)(20)

= trace((Q−Qp)(x̃x̃T − X̃)) + trace((Q−Qp)X̃)

+ trace(QpX̃)(21)

= trace((Q−Qp)(x̃x̃T − X̃)) + trace(QX̃)(22)

≥ trace(QX̃).(23)

The inequality (20) holds because (x̃, X̃) is also a feasible solution for QSDPQp .
The inequality in (23) holds because of the negative semidefiniteness of Q−Qp
and x̃x̃T − X̃. Because p∗QSDPQp

is an upper bound on the objective value of

LSDP at any feasible solution, we can conclude that p∗QSDPQp
≥ p∗LSDP. Clearly,

Qp = Q satisfies Q − Qp = 0 � 0 and LSDP is the same as QSDP for this
choice of Qp. Therefore, inf{p∗QSDPQp

: Q−Qp � 0} = p∗LSDP.
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Notice that in Theorem 6 we do not require that the relaxation F be convex
nor need it have any relationship at all with the feasible region of QKP . Also, in
principle, for some choices of Qp, we could have p∗QSDPQp

= +∞ with p∗LSDP = +∞
or not.

5. Valid inequalities

We are now interested in finding valid inequalities to strengthen relaxations
of the QKP in the lifted space determined by the lifting X := xxT . Let us
denote by CRel, any convex relaxation of the QKP in the lifted space, where
the equation X = xxT was relaxed somehow, by convex constraints, i.e., any
convex relaxation of QKP lifted.

We initially note that if the inequality

(24) τTx ≤ β

is valid for the QKP, where τ ∈ Zn+ and β ∈ Z+, then, as x is nonnegative and
X := xxT ,

(25) (x X)

(
−β
τ

)
≤ 0

is a valid inequality for QKP lifted. In this case, we say that (25) is a valid
inequality for QKP lifted derived from the valid inequality (24) for the QKP.

5.1. Adding cuts to the relaxation

Given a solution (x̄, X̄) of CRel, our initial goal is to obtain a valid in-
equality for QKP lifted derived from a CI, which is violated by (x̄, X̄). A CI is
formulated as αTx ≤ eTα − 1, where α ∈ {0, 1}n and e denotes the vector of
ones. We then search for the CI that maximizes the sum of the violations among
the inequalities in Ȳ cut(α) ≤ 0, where Ȳ :=

(
x̄ X̄

)
and

cut(α) =

(
−eTα+ 1

α

)
.

To obtain such CI , we solve the following linear knapsack problem,

(26) v∗ := max
α
{eT Ȳ cut(α) : wTα ≥ c+ 1, α ∈ {0, 1}n}.

Let α∗ solve (26). If v∗ > 0, then at least one valid inequality in the following
set of n scaled cover inequalities, denoted in the following by SCI, is violated
by (x̄, X̄).

(27) (x X)

(
−eTα∗ + 1

α∗

)
≤ 0.

Based on the following theorem, we note that to strengthen cut (27), we
may apply Algorithm 1 to the CI obtained, lifting it to an LCI , and finally
add the valid inequality (25) derived from the LCI to CRel.
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Theorem 7. The valid inequality (25) for QKP lifted, which is derived from
a valid LCI , dominates all inequalities derived from a CI that can be lifted to
the LCI .

Proof. Consider the LCI (3) derived from a CI (2) for the QKP . The corre-
sponding scaled cover inequalities (25) derived from the CI and the LCI are,
respectively, ∑

j∈C
Xij ≤ (|C|−1)xi, ∀i ∈ N,

and ∑
j∈C

Xij +
∑

j∈N\C

αjXij ≤ (|C|−1)xi, ∀i ∈ N,

where αj ≥ 0,∀j ∈ N\C. Clearly, as all Xij are nonnegative, the second
inequality dominates the first, for all i ∈ N .

5.2. New valid inequalities in the lifted space

As discussed, after finding any valid inequality in the form of (24) for the
QKP, we may add the constraint (25) to CRel when aiming at better bounds.
We observe now, that besides (25) we can also generate other valid inequalities
in the lifted space by taking advantage of the lifting X := xxT , and also of the
fact that x is binary. In the following, we show how the idea can be applied to
cover inequalities.

Let

(28)
∑
j∈C

xj ≤ β,

where C ⊂ N and β < |C|, be a valid inequality for KPol .
Inequality (28) can be either a cover inequality, CI , an extended cover

inequality, ECI , or a particular lifted cover inequality, LCI , where αj ∈
{0, 1},∀j ∈ N\C in (3). Furthermore, given a general LCI , where αj ∈ Z+,
for all j ∈ N\C, a valid inequality of type (28) can be constructed by replacing
each αj with min{αj , 1} in the LCI .

Definition 8 (Cover inequality in the lifted space, CILS ). Let C ⊂ N and
β < |C| as in inequality (28), and also consider here that β > 1. We define

(29)
∑

i,j∈C,i<j
Xij ≤

(
β

2

)
.

as the CILS derived from (28).

Theorem 9. If inequality (28) is valid for QKP , then the CILS (29) is a
valid inequality for QKP lifted.

Proof. Considering (28), we conclude that at most
(
β
2

)
products of variables

xixj , where i, j ∈ C, can be equal to 1. Therefore, as Xij := xixj , the result
follows.
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Remark 10. When β > 1, inequality (28) is well known as a clique cut, widely
used to model decision problems, and frequently used as a cut in branch-and-cut
algorithms. In this case, using similar idea to what was used to construct the
CILS, we conclude that it possible to fix

Xij = 0, for all i, j ∈ C, i < j.

Given a solution (x̄, X̄) of CRel, the following mixed-integer linear program
(MILP ) is a separation problem, which searches for a CILS violated by X̄.

z∗ := maxα,β,K trace(X̄K)− β(β − 1), (MILP 1)
s.t. w′α ≥ c+ 1,

β = e′α− 1,
K(i, i) = 0, i = 1, . . . , n,
K(i, j) ≤ αi, i, j = 1, . . . , n, i < j,
K(i, j) ≤ αj , i, j = 1, . . . , n, i < j,
K(i, j) ≥ 0, i, j = 1, . . . , n, i < j,
K(i, j) ≥ αi + αj − 1, i, j = 1, . . . , n, i < j,
α ∈ {0, 1}n, β ∈ R, K ∈ Sn.

If α∗, β∗,K∗ solves MILP 1, with z∗ > 0, the CILS given by trace(K∗X) ≤
β∗(β∗−1) is violated by X̄. The binary vector α∗ defines the CI from which the
cut is derived. The CI is specifically given by α∗Tx ≤ eTα∗ − 1 and β∗(β∗ − 1)
determines the right hand side of the CILS. The inequality is multiplied by 2
because we consider the variable K as a symmetric matrix, in order to simplify
the presentation of the model.

Theorem 11. The valid inequality CILS for QKP lifted, which is derived from
a valid LCI in the form (28), dominates any CILS derived from a CI that can
be lifted to the LCI.

Proof. As X is nonnegative, it is straightforward to verify that if X satisfies a
CILS derived from a LCI, X also satisfies any CILS derived from a CI that
can be lifted to the LCI.

Any feasible solution of MILP 1 such that trace(X̄K) > β(β− 1) generates
a valid inequality for QKP lifted, which is violated by X̄. Therefore, we do not
need to solve MILP 1 to optimality to generate a cut. Moreover, to generate
distinct cuts, we can solve MILP 1 several times (not necessarily to optimality),
each time adding to it, the following “no-good” cut to avoid the previously
generated cuts:

(30)
∑
i∈N

ᾱ(i)(1− α(i)) ≥ 1,

where ᾱ is the value of the variable α in the solution of MILP 1, when generating
the previous cut.
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We note that, if α∗, β∗,K∗ solves MILP 1, then α∗′x ≤ e′α∗ − 1 is a valid
CI for our QKP, however it may not be a minimal cover. Aiming at generating
stronger valid cuts, based in Theorem 11, we might add to the objective function
of MILP 1, the term −δe′α, for some weight δ > 0. The objective function
would then favor minimal covers, which could be lifted to a LCI, that would
finally generate the CILS. We should also emphasize that if the CILS derived
from a CI is violated by a given X̄, then clearly, the CILS derived from the
LCI will also be violated by X̄.

Now, we also note that, besides defining one cover inequality in the lifted
space considering all possible pairs of indexes in C, we can also define a set of
cover inequalities in the lifted space, considering in each inequality, a partition
of the indexes in C into subsets of cardinality 1 or 2. In this case, the right
hand side of the inequalities is never larger than β/2. The idea is better specified
below.

Definition 12 (Set of cover inequalities in the lifted space, SCILS). Let C ⊂ N
and β < |C| as in inequality (28). Let

1. Cs := {(i1, j1), . . . , (ip, jp)} be a partition of C, if |C| is even.

2. Cs := {(i1, j1), . . . , (ip, jp)} be a partition of C \ {i0} for each i0 ∈ C, if
|C| is odd and β is odd.

3. Cs := {(i0, i0), (i1, j1), . . . , (ip, jp)}, where {(i1, j1), . . . , (ip, jp)} is a parti-
tion of C \ {i0} for each i0 ∈ C, if |C| is odd and β is even.

In all cases, ik < jk for all k = 1, . . . , p.
The inequalities in the SCILS derived from (28) are given by

(31)
∑

(i,j)∈Cs

Xij ≤
⌊
β

2

⌋
,

for all partitions Cs defined as above.

Theorem 13. If inequality (28) is valid for QKP , then the inequalities in the
SCILS (31) are valid for QKP lifted.

Proof. The proof of the validity of SCILS is based on the lifting relation Xij =
xixj . We note that if the binary variable xi indicates whether or not the item
i is selected in the solution, the variable Xij indicates whether or not the pair
of items i and j, are both selected in the solution.

1. If |C| is even, Cs is a partition of C in exactly |C|/2 subsets with two
elements each, and therefore, if at most β elements of C can be selected

in the solution, clearly at most
⌊
β
2

⌋
subsets of Cs can also be selected.

2. If |C| and β are odd, Cs is a partition of C \ {i0} in exactly |C − 1|/2
subsets with two elements each, where i0 can be any element of C. In this
case, if at most β elements of C can be selected in the solution, clearly at

most β−1
2

(
=
⌊
β
2

⌋)
subsets of Cs can also be selected.
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3. If |C| is odd and β is even, Cs is the union of {(i0, i0)} with a partition
of C \ {i0} in exactly |C − 1|/2 subsets with two elements each, where i0
can be any element of C. In this case, if at most β elements of C can be

selected in the solution, clearly at most β
2

(
=
⌊
β
2

⌋)
subsets of Cs can also

be selected.

Given a solution (x̄, X̄) of CRel, we now present a MILP separation prob-
lem, which searches for an inequality in SCILS that is most violated by X̄. Let

A ∈ {0, 1}n×
n(n+1)

2 . In the first n columns of A we have the n × n identity
matrix. In the remaining n(n − 1)/2 columns of the matrix, there are exactly
two elements equal to 1 in each column. All columns are distinct. For example,
for n = 4,

A :=


1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

 .

The columns of A represent all the subsets of items in N with one or two
elements. Let

z∗ := maxα,v,K,y trace(X̄K)− 2v, (MILP 2)
s.t. w′α ≥ c+ 1,

K(i, i) = 2y(i), i = 1, . . . , n,∑n
i=1 y(i) ≤ 1,

K(i, j) =
∑n(n+1)/2
t=n+1 A(i, t)A(j, t))y(t), i, j = 1, . . . , n, i < j,

v ≥ (e′α− 1)/2− 0.5,
v ≤ (e′α− 1)/2,

y(t) ≤ 1−A(i, t) + α(i), i = 1, . . . , n, t = 1, . . . , n(n+1)
2 ,

α ≤ Ay ≤ α+
(
n(n+1)

2

)
(1− α),

α ∈ {0, 1}n, y ∈ {0, 1}
n(n+1)

2 ,
v ∈ Z, K ∈ Sn.

If α∗, v∗,K∗, y∗ solves MILP 2, with z∗ > 0, then the particular inequality
in SCILS given by

(32) trace(K∗X) ≤ 2v∗

is violated by X̄. The binary vector α∗ defines the CI from which the cut
is derived. As the CI is given by α∗x ≤ e′α∗ − 1, we can conclude that the
cut generated either belongs to case (1) or (3) in Definition 12. This fact is
considered in the formulation of MILP 2. The vector y∗ defines a partition Cs
as presented in case (3), if

∑n
i=1 y(i) = 1, and in case (1), otherwise. We finally

note that the number 2 in the right hand side of (32) is due to the symmetry
of the matrix K∗.

We now may repeat the observations made for MILP 1.

15



Any feasible solution of MILP 2 such that trace(X̄K) > 2v generates a
valid inequality for CRel , which is violated by X̄. Therefore, we do not need
to solve MILP 2 to optimality to generate a cut. Moreover, to generate distinct
cuts, we can solve MILP 2 several times (not necessarily to optimality), each
time adding to it, the following suitable “no-good” cut to avoid the previously
generated cuts:

(33)

n(n+1)
2∑
i=1

ȳ(i)(1− y(i)) ≥ 1,

where ȳ is the value of the variable y in the solution of MILP 2, when generating
the previous cut.

The CI α∗′x ≤ e′α∗−1 may not be a minimal cover. Aiming at generating
stronger valid cuts, we might add again to the objective function of MILP 2, the
term −δe′α, for some weight δ > 0. The objective function would then favor
minimal covers, which could be lifted to a LCI. In this case, however, after
computing the LCI, we have to solve MILP 2 again, with α fixed at values
that represent the LCI, and v fixed so that the right hand side of the inequality
is equal to the right hand side of the LCI. All components of y that were equal
to 1 in the previous solution of MILP 2 should also be fixed at 1. The new
solution of MILP 2 would indicate the other subsets of N to be added to Cs.
One last detail should be taken into account. If the cover C corresponding to
the LCI , is such that |C| is odd and the right hand side of the LCI is also odd,
then the cut generated should belong to case (2) in Definition 12, and MILP 2

should be modified accordingly. Specifically, the second and third constraints
in MILP 2, should be modified respectively to

K(i, i) = 0, i = 1, . . . , n,∑n
i=1 y(i) = 1.

Remark 14. Let γ := |C|. Then, the number of inequalities in the SCILS is

γ!

2( γ2 )(γ2 ! )
,

if γ is even, or

γ × (γ − 1)!

2( γ−1
2 )(γ−1

2 ! )
,

if γ is odd.

Finally, we extend the ideas presented above to the more general case of
knapsack inequalities. We note that the following discussion applies to a general
LCI , where αj ∈ Z+,∀j ∈ N\C.

Let

(34)
∑
j∈N

αjxj ≤ β.
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be a valid knapsack inequality for KPol , with αj , β ∈ Z+, β ≥ αj ,∀j ∈ N .

Definition 15 (Set of knapsack inequalities in the lifted space, SKILS). Let
αj be the coefficient of xj in (34). Let {C1, . . . , Cq} be the partition of N , such
that αu = αv, if u, v ∈ Ck for some k, and αu 6= αv, otherwise. The knapsack
inequality (34) can then be rewritten as

(35)

q∑
k=1

α̃k ∑
j∈Ck

xj

 ≤ β.
Now, for k = 1, . . . , q, let Clk := {(ik1 , jk1), . . . , (ikpk , jkpk )}, where i < j for

all (i, j) ∈ Clk , and

• Clk is a partition of Ck, if |Ck| is even.

• Clk is a partition of Ck \ {ik0}, where ik0 ∈ Ck, if |Ck| is odd.

The inequalities in the SKILS corresponding to (34) are given by

(36)

q∑
k=1

α̃kXik0 ik0
+ 2α̃k

∑
(i,j)∈Clk

Xij

 ≤ β,
for all partitions Clk , k = 1, . . . , q, defined as above, and for all ik0 ∈ Ck \ Clk .
(If |Ck| is even, Ck \ Clk = ∅, and the term in the variable Xik0 ik0

does not
exist.)

Remark 16. Consider {C1, . . . , Cq} as in Definition 15. For k = 1, . . . , q, let
γk := |Ck| and define

NClk :=
γk!

2(
γk
2 )(γk2 ! )

,

if γk is even, or

NClk := γk ×
(γk − 1)!

2(
γk−1

2 )(γk−1
2 ! )

,

if γk is odd.
Then, the number of inequalities in SKILS is

q∏
k=1

NClk .

Remark 17. If γk := |Ck| is even for every, or if α̃k is even for every k, such
that γk is odd, then the right rand side β of inequality (36) may be replaced

with 2×
⌊
β
2

⌋
, which will strengthener the inequality in case β is odd.

Corollary 18.
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If inequality (34) is valid for QKP , then the inequalities (36), in the SKILS ,
are valid for QKP lifted, whether or not the modification suggested in Remark
17 is applied.

Proof. The result is again verified, by using the same argument used in the
proof of Theorem 13, i.e., considering that Xij = 1, iff xi = xj = 1.

5.3. Dominance relation among the new valid inequalities

We start this subsection investigating whether SCILS dominates CILS or
vice versa.

Theorem 19. Let C be the cover in (28) and consider γ := |C| to be even.

1. If β = γ − 1, then the sum of all inequalities in SCILS is equivalent to
CILS . Therefore, in this case, the set of inequalities in SCILS dominates
CILS .

2. If β < γ − 1, there is no dominance relation between SCILS and CILS .

Proof. Let sum(SCILS ) denote the inequality obtained by adding all inequal-
ities in SCILS , and let rhs(sum(SCILS )) denote its right hand side (rhs).
We have that rhs(sum(SCILS )) is equal to the number of inequalities in
SCILS multiplied by the rhs of each inequality, i.e.:

rhs(sum(SCILS )) =
γ!

2( γ2 )(γ2 ! )
×
⌊
β

2

⌋
.

The coefficient of each variable Xij in sum(SCILS ) (coefij) is given by the
number of inequalities in the set SCILS in which Xij appears, i.e.:

coefij =
(γ − 2)!

2(
(γ−2)

2 )( (γ−2)
2 ! )

Dividing rhs(sum(SCILS )) by coefij , we obtain

(37) rhs(sum(SCILS ))/coefij = (γ − 1)×
⌊
β

2

⌋
.

On the other side, the rhs of CILS is:

(38) rhs(CILS ) =

(
β

2

)
=
β(β − 1)

2
.

1. Replacing β with γ− 1, and
⌊
β
2

⌋
with β−1

2 (since β is odd), we obtain the

result.

2. Consider, for example, C = {1, 2, 3, 4, 5, 6} and β = 3 (β < γ − 1 and
odd). In this case, the CILS becomes:

X12 +X13 +X14 +X15 +X16 +X23 +X24

+X25 +X26 +X34 +X35 +X36 +X45 +X46 +X56 ≤ 3.
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And a particular inequality in SCILS is

(39) X12 +X34 +X56 ≤ 1.

The solution X1j = 1, for j = 2, . . . , 6, and all other variables equal to
zero, satisfies all inequalities in SCILS , because only one of the positive
variables appears in each inequality in the set. However, the solution does
not satisfy CILS . On the other side, the solution X12 = X34 = X56 = 1,
and all other variables equal to zero, satisfies CILS , but does not satisfy
(39).
Now, consider C = {1, 2, 3, 4, 5, 6} and β = 4 (β < γ − 1 and even). In
this case, the CILS becomes:

X12 +X13 +X14 +X15 +X16 +X23 +X24

+X25 +X26 +X34 +X35 +X36 +X45 +X46 +X56 ≤ 6.

And a particular inequality in SCILS is

(40) X12 +X34 +X56 ≤ 2.

The solution X1j = 1, for j = 2, . . . , 6, X2j = 1, for j = 3, . . . , 6, and all
other variables equal to zero, satisfies all inequalities in SCILS , because
at most two of the positive variables appear in each inequality in the
set. However, the solution does not satisfy CILS . On the other side, the
solution X12 = X34 = X56 = 1, and all other variables equal to zero,
satisfies CILS , but does not satisfy (40).

Theorem 20. Let C be the cover in (28) and consider γ := |C| to be odd.
Then there is no dominance relation between SCILS and CILS .

Proof. Consider, for example, C = {1, 2, 3, 4, 5} and β = 3 (β odd). In this
case, the CILS becomes:

X12 +X13 +X14 +X15 +X23 +X24 +X25 +X34 +X35 +X45 ≤ 3.

And a particular inequality in SCILS is

(41) X23 +X45 ≤ 1.

The solution X1j = 1, for j = 1, . . . , 5, and all other variables equal to zero,
satisfies all inequalities in SCILS , because only one of the positive variables
appears in each inequality in the set. However, the solution does not satisfy
CILS . On the other side, the solution X23 = X45 = 1, and all other variables
equal to zero, satisfies CILS , but does not satisfy (41).

Now, consider C = {1, 2, 3, 4, 5} and β = 4 (β even). In this case, the
CILS becomes:

X12 +X13 +X14 +X15 +X23 +X24 +X25 +X34 +X35 +X45 ≤ 6.
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And a particular inequality in SCILS is

(42) X11 +X23 +X45 ≤ 2.

The solution X1j = 1, for j = 1, . . . , 5, X2j = 1, for j = 2, . . . , 5, and all other
variables equal to zero, satisfies all inequalities in SCILS , because at most two
of the positive variables appear in each inequality in the set. However, the
solution does not satisfy CILS . On the other side, the solution X11 = X23 =
X45 = 1, and all other variables equal to zero, satisfies CILS , but does not
satisfy (42).

Now, we investigate if SCILS is just a particular case of SKILS , when
αj ∈ {0, 1}, for all j ∈ N in (34).

Theorem 21. In case the modification suggested in Remark 17 is applied, then
if |C| is even in (28), SCILS becomes just a particular case of SKILS . In case
|C| is odd, however, the inequalities in SCILS are stronger.

Proof. If |C| is even, the result is easily verified. If |C| is odd, the inequalities
in SCILS become

2
∑

(i,j)∈Cs

Xij ≤ β − 1,

if β is odd, and

2Xi0i0 + 2
∑

(i,j)∈Cs

Xij ≤ β,

if β is even, and the inequalities in SKILS become

Xi0i0 + 2
∑

(i,j)∈Cs

Xij ≤ β,

for all β. In all cases, Cs is a partition of C \ {i0}, where i0 ∈ C.
Either with β even or odd, it becomes clear that SCILS is stronger than

SKILS .

6. Lower bounds from solutions of the relaxations for QKP lifted

In order to evaluate the quality of the upper bounds obtained with CRel,
we compare them with lower bounds for the QKP , given by feasible solutions
constructed by a heuristic procedure.

Let (x̄, X̄) be a solution of CRel. We initially apply principal compo-
nent analysis (PCA) [19] to construct an approximation to the solution of the
QKP and then apply a special rounding procedure to obtain a feasible solution
from it. PCA selects the largest eigenvalue and the corresponding eigenvector
of X̄, denoted by λ̄ and v̄, respectively. Then λ̄v̄v̄T is a rank-one approximation
of X̄. We set x̄ = λ̄

1
2 v̄ to be an approximation of the solution x of the QKP .

Finally, we round x̄ to a binary solution that satisfies the knapsack capacity
constraint, using the simple approach described in Algorithm 3.
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Algorithm 3: Heuristic procedure

Input: the solution X̄ from CRel , the weight vector w, the
capacity c.
Let λ̄ and v̄ be, respectively, the largest eigenvalue and the
corresponding eigenvector of X̄.
Set x̄ = λ̄

1
2 v̄.

Round x̄ to x̂ ∈ {0, 1}n.
While wT x̂ > c

Set i = argminj∈N{x̄j |x̄j > 0}.
Set x̄i = 0, x̂i = 0.

End
Output: a feasible solution x̂ of the QKP .

7. Numerical Experiments

We summarize our algorithmic framework in Algorithm 4, where at each
iteration we update the perturbation Qp of the parametric relaxation and, at
every m iterations, we add to the relaxation, the valid inequalities considered in
this paper, namely, SCI , defined in (27), CILS , defined in (29), and SCILS ,
defined in (31).

The numerical experiments performed had the following main purposes,

• verify the effectiveness of the IPM described in Section 3 in decreasing
the upper bound while optimizing the perturbation Qp,

• verify the impact of the valid inequalities, SCI, CILS, and SCILS, when
iteratively added to cut the current solution of the relaxation of the QKP ,

• compute the upper and lower bounds obtained with the proposed algo-
rithmic approach described in Algorithm 4, and compare them, with the
optimal solutions of the instances.

We coded Algorithm 4 in MATLAB, version R2015a, and ran the code on a
desktop with an AMD FX- 6300 processor, 16GB RAM, running under Ubuntu
16.04. We used the primal-dual IPM method implemented in Mosek, version
8, to solve relaxation CQPQp , and, to solve the separation problems MILP 1

and MILP 2, we use Gurobi, version 8.
The input data used in the first iteration of the IPM described in Algorithm

2 (k = 0) are: B0 = I, µ0 = 1. We depart from a matrix Q0
p, such that Q−Q0

p is
negative definite. By solving CQPQp , with Qp := Q0

p, we obtain x(Q0
p), X(Q0

p),

as its optimal solution, and set ∇p∗CQP(Q0
p) := X(Q0

p) − x(Q0
p)x(Q0

p)
T . Finally,

the positive definiteness of Z0 and Λ0 are assured by setting: Z0 := Q0
p−Q and

Λ0 := ∇p∗CQP(Q0
p) + (2|λmin(∇p∗CQP(Q0

p)|+.1)I.
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Algorithm 4: Our algorithmic framework

Input: Q ∈ Sn, max.ncuts.
k := 0, B0 := I, µ0 := 1.
Let λi(Q), vi be the ith largest eigenvalue of Q and corresponding
eigenvector.
Qn :=

∑n
i=1(−|λi(Q)|−1)viv

′
i, Q

0
p := Q−Qn.

Solve CQPQp (in (8)), with Qp := Q0
p, and obtain x(Q0

p), X(Q0
p).

∇p∗CQP(Q0
p) := X(Q0

p)− x(Q0
p)x(Q0

p)
T .

Z0 := Q0
p −Q.

Λ0 := ∇p∗CQP(Q0
p) + (2|λmin(∇p∗CQP(Q0

p)|+.1)I.
While (stopping criterium is violated)

Run Algorithm 2, where Qk+1
p is obtained and relaxation

CQPQp , with Qp := Qk+1
p is solved. Let

(x(Qk+1
p ), X(Qk+1

p )) be its optimal solution.

upper.boundk+1 := p∗CQP(Qk+1
p ).

Run Algorithm 3, where x̂ is obtained.
lower.boundk+1 := x̂TQx̂.
If k mod m == 0

Solve problem (26) and obtain cuts SCI in (27).
Add the max{n,max.ncuts} cuts SCI with the
largest violations at (x(Qk+1

p ), X(Qk+1
p )), to

CQPQp .
ncuts := 0.
While (ncuts < max.ncuts & MILP 1 feasible)

Solve MILP 1 and add the CI and
CILS obtained to CQPQp .
Add the “no-good” cut (30) to MILP 1.
ncuts := ncuts + 1.

End
ncuts := 0.
While (ncuts < max.ncuts & MILP 2 feasible)

Solve MILP 2 and add the CI and
SCILS obtained to CQPQp .
Add the “no-good” cut (33) to MILP 2.
ncuts := ncuts + 1.

End

End
k := k + 1.

End
Output: Upper bound upper.boundk, lower bound lower.boundk,
and feasible solution x̂ to the QKP .
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Our randomly generated test instances were also used by J. O. Cunha in
[8], who provided us with the instances data and with their optimal solutions.
Each weight wj , for j ∈ N , was randomly selected in the interval [1, 50], and
the capacity of the knapsack c was randomly selected in [50,

∑n
j=1 wj ]. The

procedure used by Cunha to generate the instances was based on previous works
[4, 6, 7, 12, 22].

In Tables 1–3, we identify the method applied to compute the lower bound
on the first column. On the remaining columns we present, for each method,
average results for

• relative optimality gap (OptGap (%):= ((upper bound - opt)/opt) × 100,
where opt is the optimal solution value),

• computational time to compute the bound (Time (sec)),

• relative duality gap (DuGap) := (upper bound - lower bound)/(|upper
bound|) + (|lower bound|), where the lower bound is computed as de-
scribed in Sect. 6,

• number of iterations (Iter),

• the number of cuts added to the relaxation (Cuts),

• computational time to obtain cuts CILS and SCILS (TimeMILP (sec)).

In Tables 1–2 we present statistics for 10 instances with n = 10. Results in
Table 1 have the purpose of showing the impact of the cuts presented. For that,
we first add them iteratively to the following linear relaxation

(43) ( ˜LPR )

max trace(QX)
s.t.

∑n
j=1 wjxj ≤ c,

0 ≤ Xij ≤ 1, ∀i, j ∈ N
0 ≤ xi ≤ 1, ∀i ∈ N
X ∈ Sn.

In the first row of Table 1, the results correspond to the solution of the linear
relaxation ˜LPR with no cuts. In SCI1, we add only the most violated cut from
the n cuts in SCI to ˜LPR at each iteration, and in the SCI we add all n cuts.
In CILS and SCILS, we solve MILP problems to find the most violated cut of
each type. The last row of the table (All) corresponds to results obtained when
we add all n cuts in SCI, and one cut of each type, CILS and SCILS. In these
initial tests, we run up to 50 iterations, and in most cases, stop the algorithm
when no more cuts are found to be added to the relaxation. We note that we
use a time limit of 3 seconds to solve the separation problems. However, when
n = 10, this time is sufficient to solve all problems to optimality.

Figure 1 depicts the optimality gaps from Table 1. There is a trade-off
between the quality of the cuts and the computational time needed to find them.
Considering a unique cut of each type, we note that SCILS is the strongest cut
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Method OptGap Time DuGap Iter Cuts TimeMILP

(%) (sec) (sec)

˜LPR 38.082 0.35 0.620 1.0
SCI1 36.703 32.38 0.343 1.1 28.4
SCI 10.036 39.98 0.058 3.0 364.1
CILS 19.719 9.00 0.293 2.7 82.2 6.91
SCILS 9.121 266.81 0.250 50.0 794.3 198.12
ALL 3.315 315.82 0.016 28.3 646.6 264.91

Table 1: Impact of the cuts added to ˜LPR (10 instances, n = 10).
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Figure 1: Average optimality gaps from Table 1

24



(OptGap = 9.121%), but the computational time to obtain it, if compared
to CILS and SCI, is bigger. Nevertheless, a decrease in the times could be
achieved with a heuristic solution for the separation problems. We point out
that using all cuts together we find a better upper bound than using each type
of cut in separate (OptGap = 3.315%).

We now present results from our main tests, considering the parametric
quadratic relaxation, the IPM and the cuts. To improve the results, we also
consider in our initial relaxation the valid inequalities obtained by multiplying
the capacity constraint by each nonnegative variable xi, and also valid inequali-
ties derived from the fact that xi ∈ {0, 1}. We then start the algorithms solving
the following relaxation.

(44) (QPR )

max xT (Q−Q0
p)x+ trace(Q0

pX)
s.t.

∑n
j=1 wjxj ≤ c,∑n
j=1 wjXij ≤ cXii, ∀i ∈ N

Xii = xi, ∀i ∈ N
0 ≤ Xij ≤ 1, ∀i, j ∈ N
0 ≤ xi ≤ 1, ∀i ∈ N
X ∈ Sn.

In order to evaluate the influence of the initial decomposition of Q on the
behavior of the IPM , we considered two initial decompositions. In both cases,
we compute the eigendecomposition of Q, getting Q =

∑n
i=1 λiviv

′
i.

• For the first decomposition, we set Qn :=
∑n
i=1(−|λi|−1)viv

′
i, and Q0

p :=
Q−Qn/2. We refer to this initial matrix Q0

p as Qap in the following tables
and figures.

• For the second, we set Qn :=
∑n
i=1(min{λi,−10−6})viv′i, and Q0

p := Q−
Qn/2. We refer to this initial matrix as Qbp.

We implemented the IPM updating the Hessian matrix B using the BFGS
procedure described in Section 3 and also considering the simpler approximation
B = I in all iterations.

In Table 2 we show the average results obtained for these two procedures,
and for the two initial decompositions of Q described above. In the first two rows
of the table, the results are obtained from the solution of the initial quadratic
relaxation, with the initial decomposition of Q and no cuts. In the next four
rows of the table, the results are obtained with the application of the IPM , with
no cuts added to the relaxation. In the last four rows, the results are obtained
with the inclusion of cuts in the relaxation. The cuts are added at every m = 10
iterations of the IPM and the numbers of cuts added at each iteration are n
SCI , 5 CILS and 5 SCILS . Note that when solving each MILP problem,
besides the cut CILS or SCILS , we also obtain a cover inequality CI . We
check if this CI was already added to the relaxation, and if not, we add it as
well.
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For these tests we set the maximum number of iterations to 150, and the
maximum computational time to 900 seconds. We also stop the algorithms if
DuGap is sufficiently small. Table 2 shows that the best bounds are obtained

Method OptGap Time DuGap Iter Cuts TimeMILP

(%) (sec) (sec)

Qap,QPR 21.640 0.79 0.138 1.0

Qbp,QPR 12.276 0.83 0.076 1.0

Qap,I 7.242 26.80 0.042 150.0

Qbp,I 7.633 25.81 0.055 150.0

Qap,BFGS 7.091 27.41 0.041 150.0

Qbp,BFGS 7.094 25.94 0.041 150.0

Qap,I,Cuts 0.863 87.09 0.009 144.5 104 42.13

Qbp,I,Cuts 1.516 77.60 0.012 132.8 97.6 38.37

Qap,BFGS,Cuts 0.639 46.13 0.008 77.7 275.4 23.57

Qbp,BFGS,Cuts 0.640 56.32 0.008 98.7 80.7 29.24

Table 2: Average results for 10 instances (n = 10).

when we use the IPM with the BFGS update of the Hessian, and adding the
cuts. Concerning the starting point, Qap leads better bounds in general, but

the computational time is slightly bigger than for Qbp. Figure 2 depicts the
optimality gaps from Table 2.

In Table 3 we show how the results evolve when n increases. For these
final tests, we set the maximum number of iterations to 500, the maximum
computational time to 2700 seconds, and also stop the algorithms if DuGap is
sufficiently small. We note again that the IPM , with or without cuts, decreases

Method OptGap Time DuGap Iter Cuts TimeMILP

(%) (sec) (sec)

Qap,QPR 21.136 0.87 0.113 1.0

Qbp,QPR 9.460 0.86 0.056 1.0

Qap,BFGS 1.345 2732.70 0.015 424.0

Qbp,BFGS 1.345 2713.26 0.015 430.0

Qap,BFGS,Cuts 0.078 2216.81 0.001 168.6 241.2 858.51

Qbp,BFGS,Cuts 0.076 1882.68 0.001 145.0 199.4 731.55

Table 3: Average results for 5 instances (n = 50).

the initial upper bound given by the solution of the quadratic relaxation. The
influence of the initial decomposition of Q on the bounds obtained by the IPM is
not relevant, but the convergence is still faster with the initial decomposition
Qbp. It is interesting to note that, although the solution of the MILP problems
is computationally expensive, the time spent solving them is compensated by
the faster convergence of the algorithm and to better bounds.
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8. Conclusion

In this paper we present a cutting plane algorithm (CPA) to iteratively
improve the upper bound for the quadratic knapsack problem, QKP . The initial
relaxation for the problem is given by a parametric convex quadratic problem,
where the Hessian Q of the objective function of the QKP is perturbed by a
matrix parameter Qp, such that Q − Qp � 0. Seeking for the best possible
bound, the concave term xT (Q − Qp)x, is then kept in the objective function
of the relaxation and the remaining part, given by xTQpx is linearized through
the standard approach that lifts the problem to space of symmetric matrices
defined by X := xxT .

We present an interior point algorithm, IPM , which update the perturba-
tion Qp at each iteration of the CPA aiming at reducing the upper bound given
by the relaxation. We also present new classes of cuts that are added at each
iteration of the CPA, defined on the lifted variable X, and derived from cover
inequalities and the binary constraints.

We show that both the IPM and the cuts generated are effective in improv-
ing the upper bound for the QKP and note that these procedures could be
applied to more general binary indefinite quadratic problems as well. The sepa-
ration problems described to generate the cuts could also be solved heuristically,
in order to accelerate the process.

Finally, we show that if the positive semidefinite constraint X − xxT � 0
was introduced in the relaxation of the QKP , or any other indefinite quadratic
problem (maximizing the objective function), then the decomposition of objec-
tive function, that leads to a convex quadratic relaxation, where a perturbed
concave part of the objective is kept, and the remaining part is linearized, is
not effective. In this case the best bound is always attained when the whole
objective function is linearized, i.e., when the perturbation Qp is equal to Q.
This observation also relates to the well known DC (difference of convex) de-
composition of indefinite quadratics that have been used in the literature to
generate bounds for indefinite quadratic problems. Once more, in case the pos-
itive semidefinite constraint is added to the relaxation, the DC decomposition
is not effective anymore, and the alternative linear SDP relaxation leads to the
best possible bound.
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