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Abstract
We present several solution techniques for the noisy single source localization problem,
i.e. the Euclidean distance matrix completion problem with a single missing node to locate
under noisy data. For the case that the sensor locations are fixed, we show that this problem
is implicitly convex, and we provide a purification algorithm along with the SDP relaxation
to solve it efficiently and accurately. For the case that the sensor locations are relaxed, we
study a model based on facial reduction. We present several approaches to solve this problem
efficiently, and we compare their performance with existing techniques in the literature. Our
tools are semidefinite programming, Euclidean distance matrices, facial reduction, and the
generalized trust region subproblem. We include extensive numerical tests.

Keywords Single source localization · Noise · Euclidean distance matrix completion ·
Semidefinite programming · Wireless communication · Facial reduction · Generalized trust
region subproblem
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1 Introduction

In this paper we consider the noisy, single source localization problem. The objective is to
locate the source of a signal that is detected by a set of sensors with exactly known locations.
Distances between sensors and source are given, but contaminated with noise. For instance,
in an application to cellular networks, the source of the signal is a cellular phone and the
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cellular towers are the sensors. Our data is the, possibly noisy, distance measurements from
each sensor to the source.

The single source localization problem has applications in e.g. navigation, structural
engineering, and emergency response [3,4,8,24,26,38]. In general, it is related to distance
geometry problems where the input consists of Euclidean distance measurements and a set
of points in Euclidean space. The sensor network localization problem is a generalization of
our single source problem, where there are multiple sources and only some of the distance
estimates are known. The general Euclidean distance matrix completion problem is yet a
further generalization, where sensors do not have specified locations and only partial, possi-
bly noisy, distance information is available, e.g. [2,13,15]. We refer the readers to the books
[1,5,9,10] and survey article [27] for background and applications, and to the paper [18] for
algorithmic comparisons.We also refer the readers for the related nearest Euclidean distance
matrix (NEDM) problem to the papers [30,31] where a semismooth Newton approach and
a rank majorization approach is presented. The more general weighted NEDM is a much
harder problem though. For theory that relatesNEDM to semidefinite programming, see e.g.
[12,25].

A common approach to solving an instance of the single source localization problem is
a modification of the least squares problem, referred to as the squared least squares (SLS)
problem. We consider two equivalent formulations of SLS: the generalized trust region sub-
problem (GTRS) formulation; and the nearest Euclidean distance matrix with fixed sensors
(NEDMF) formulation. We show that every extreme point of the semidefinite relaxation
of GTRSmay be easily transformed into a solution of GTRSand thus a solution of the
SLSproblem.

We also introduce and analyze several relaxations of the NEDMFformulation. These uti-
lize semidefinite programming, facial reduction, and parametric optimization. We provide
theoretical evidence that, generally, the solutions to these relaxations may be easily trans-
formed into solutions of SLS. We also provide empirical evidence that the solutions to these
relaxations may give better prediction for the location of the source.

1.1 Outline

In Sect. 1.2 we establish our notation and introduce background concepts. In Sect. 2.1 we
prove strong duality for theGTRS formulation of SLSand in Sect. 2.2 we derive the semidef-
inite relaxation (SDR ), and prove that it is tight. We also show that the extreme points of
the optimal set of SDR correspond exactly to the optimizers of SLS. A purification algo-
rithm for obtaining the extreme points is presented in Sect. 2.2.1. In Sect. 3 we introduce the
NEDM formulation aswell as several relaxations.We analyze the theoretical properties of the
relaxations and present algorithms for solving them. The results of numerical comparisons
of the algorithms are presented in Sect. 4.

1.2 Preliminaries

We now present some preliminaries and background on SDP and the facial geometry, see
e.g. [17]. We denote by Sn the space of n × n real symmetric matrices endowed with the
trace inner product and corresponding Frobenius norm,

〈X , Y 〉 := trace(XY ) =
∑

i j

Xi j Yi j , ‖X‖F := √trace(XX) =
√∑

i j

X2
i j .
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Unless otherwise specified, the norm of a matrix is the Frobenius norm, and we may drop
the subscript F . For a convex set C , the convex subset f ⊆ C is a face of C if for all
x, y ∈ C, x, y ∈ f with z ∈ (x, y), (the open line segment between x and y) we have z ∈ f .

The cone of positive semidefinite matrices is denoted by Sn+ and its interior is the cone of
positive definite matrices,Sn++ . The positive semidefinite cone is pointed, closed and convex.
Moreover, the cone Sn+ induces a partial order on Sn , that is Y � X if Y − X ∈ Sn+ and
Y � X if Y − X ∈ Sn++ . Every face of Sn+ is characterized by the range or nullspace of
matrices in its relative interior, equivalently, by matrices of maximum rank. For S ⊆ Sn+ , we
denote the minimal face of S, face(S), the smallest face of Sn+ that contains S. Let X ∈ Sn+
have rank r with orthogonal spectral decomposition.

X = [P Q
] [D+ 0

0 0

]T [
P Q

]T
, D+ ∈ Sr++ .

Then the range and nullspace characterizations of face(X) are,

face(X) = PSr++ PT = Sn+ ∩ {QQT }⊥.

We say that the matrix QQT is an exposing vector for face(X).
Sometimes it is helpful to vectorize a symmetric matrix. Let svec : Sn → R

n(n+1)/2 map
the upper triangular elements of a symmetric matrix to a vector, and let sMat = svec−1.

The centered subspace of Sn , denoted SC , is defined as

SC := {X ∈ Sn : Xe = 0},
where e is the vector of all ones. The hollow subspace of Sn , denoted SH , is

SH := {X ∈ Sn : diag(X) = 0},
where diag : Sn → R

n , diag(X):= (X11, . . . , Xnn)
T . A matrix D ∈ SH is said to be a

Euclidean distance matrix, EDM if there exists an integer r and points x1, . . . , xn ∈ R
r

such that

‖xi − x j‖22 = Di j , for all i j,

where ‖·‖2 denotes the Euclidean norm. As for the Frobenius norm, we assume the norm of
a vector to be the Euclidean norm when the subscript is omitted. The set of all n × n EDMs,
denoted En , forms a closed, convex cone with En ⊂ SH .

The classical result of Schoenberg [32] states that EDMs are characterized by a face of
the positive semidefinite cone. We state the result in terms of the Lindenstrauss mapping,
K : Sn → Sn ,

K(X)i j := Xii + X j j − 2Xi j .

with adjoint and Moore-Penrose pseudoinverse,

K∗(D) = 2(Diag(De) − D), K†(D) = − 1

2
Jn · offDiag(D) · Jn,

respectively. Here Diag is the adjoint of diag, the matrix Jn := I − 1
n ee

T is the orthogonal
projection ontoSC , and offDiag(D) refers to zeroing out the diagonal of D, i.e. the orthogonal
projection onto SH . The range of K is exactly SH and the range of K† is the subspace SC .
Moreover, K(Sn+ ) = En and K is an isomorphism between SC and SH .
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The Schoenberg characterization states that K is an isomorphism between Sn+ ∩ SC and
En , see [2] for instance. Specifically,

K(Sn+ ∩ SC ) = En, K†(En) = Sn+ ∩ SC .

Moreover, if D ∈ En andK†(D) = PPT has rank r with full column rank factorization PPT ,
then the rows of P correspond to the points in R

r with pairwise distances corresponding to
the elements of D. For more details, see e.g. [2,11,12,21,22].

2 SDP Formulation

We begin this section by formulating the SLSproblem using the model and notation of [3].
We let n denote the number of sensors, p1, . . . , pn ∈ R

r denotes their locations, and r is
the embedding dimension.

Assumption 2.1 The following holds throughout:

1. n ≥ r + 1;
2. int conv(p1, . . . , pn) �= ∅;
3.
∑n

i=1 p
i = 0.

The first two items in Assumption 2.1 ensure that a signal can be uniquely recovered if
we have accurate distance measurements. If the towers are positioned in a proper affine
subspace of R

r , and the signal is not contained within this affine subspace, then there are
multiple possible locations for the signal with the given distance measurements. We assume
that such poor designs are avoided in our applications. The third assumption is made so that
the sources are centered about the origin. This property leads to a cleaner exposition in the
NEDM relaxations of Sect. 3.

We let d = d̄ + ε ∈ R
n denote the vector of noisy distances from the source to the i th

sensor,

di := d̄i + εi , i = 1, . . . , n,

where d̄i is the true distance and εi is a perturbation, or noise. When the noise ε1, . . . , εn is
not too large, then a satisfactory approximation of the location of the source can be obtained
as a nearest distance problem to the sensors. Using the Euclidean norm as a metric, we obtain
the least squares problem

p∗
LS := min

x∈Rr

n∑

i=1

(
‖x − pi‖ − di

)2
. (2.1)

This problem has the desirable property that its solution is the maximum likelihood esti-
mator when the noise is assumed to be normal and the covariance matrix a multiple of the
identity, e.g. [8]. However, it is a non-convex problem with an objective function that is not
differentiable. Motivated by the success in [3], the main problem we consider instead is the
optimization problem with squared distances

(SLS) p∗
SLS := min

x∈Rr

n∑

i=1

(
‖x − pi‖2 − d2i

)2
. (2.2)

Though still a non-convex problem, in the subsequent sections we show that a solution of
SLS can be obtained by solving at most k ≤ r +1 convex problems, see Theorem 2.7 below.
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2.1 GTRS

TheGTRS is an optimization problem where the objective is a quadratic and there is a single
two-sided quadratic constraint [29,33]. Note that this class of problems also includes equality
constraints. If we expand the squared norm term in SLSand substitute using ‖x‖2 = α as in
[3], we get the equivalent problem

p∗
SLS = min

x,α

{
n∑

i=1

(
α − 2xT pi + ‖pi‖2 − d2i

)2 : ‖x‖2 − α = 0, x ∈ R
r

}
. (2.3)

In this formulation, we have a convex quadratic objective that is minimized over a level curve
of a convex quadratic function. It follows that (2.3) is an instance of the standard trust region
subproblem. Strong duality is proved in [29,33]. For the sake of completeness, we include a
proof of strong duality for our particular class of GTRS.

Theorem 2.2 Let

PT := [p1 p2 . . . pn
]T

, A := [−2PT e
]
, Ĩ :=

[
Ir 0r×1

01×r 0

]
,

b :=
⎛

⎜⎝
d21 − ‖p1‖2

...

d2n − ‖pn‖2

⎞

⎟⎠ , b̃ :=
(

0
− 1

2

)
. (2.4)

Consider SLS in (2.2) and the equivalent form given in (2.3). Then:

1. The problem SLS is equivalent to

(GTRS) p∗
SLS = min{‖Ay − b‖2 : yT Ĩ y + 2b̃T y = 0, y ∈ R

r+1}. (2.5)

2. The rank of A is r + 1 and the optimal value of GTRS is finite and attained.
3. Strong duality holds for GTRS , i.e. GTRSand its Lagrangian dual have a zero duality

gap and the dual value is attained:

p∗
SLS = d∗

SLS := max
λ

min
y

{‖Ay − b‖2 + λ(yT Ĩ y + 2b̃T y)}. (2.6)

Proof The first claim that SLScan be rewritten as GTRS follows immediately using the
substitution y = (xT , α)T . For the second claim, note that by Assumption 2.1, Item 2,
rank(PT ) = r . Therefore, (PT )T e = 0 implies that

rank(A) = rank(PT ) + 1 = r + 1.

Now, since A has full column rank, we conclude that AT A is positive definite, and therefore
the objective of GTRS is strictly convex and coercive. Moreover, the constraint set is closed
and thus the optimal value of GTRS is finite and attained, as desired.

That we have a zero duality gap for GTRS follows from [29], since this is a generalized
trust region subproblem. We now prove this for our special case. Note that

AT A =
[
4PT

T PT 0
0 n

]
.

Let γ = λmin(4PT
T PT ) be the (positive) smallest eigenvalue of 4PT

T PT so that we have
AT A− γ Ĩ � 0, but singular. We note that the convex constraint yT Ĩ y + 2b̃T y ≤ 0 satisfies
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the Slater condition, i.e. strict feasibility. Therefore, the following holds, with justification to
follow.

p∗
SLS = min

y
{‖Ay − b‖2 : yT Ĩ y + 2b̃T y = 0}

= min
y

{‖Ay − b‖2 − γ (yT Ĩ y + 2b̃T y) : yT Ĩ y + 2b̃T y = 0} (2.7)

= min
y

{‖Ay − b‖2 − γ (yT Ĩ y + 2b̃T y) : yT Ĩ y + 2b̃T y ≤ 0} (2.8)

= max
λ≥0

min
y

{‖Ay − b‖2 − γ (yT Ĩ y + 2b̃T y) + λ(yT Ĩ y + 2b̃T y)} (2.9)

= max
(λ−γ )

min
y

{‖Ay − b‖2 + (λ − γ )(yT Ĩ y + 2b̃T y)}
= d∗

SLS

≤ p∗
SLS. (2.10)

The first equality follows from Item 1 and the second equality holds since γ (yT Ĩ y + 2b̃T y)
is identically 0 for any feasible y.

For the third equality, let the objective and constraint, respectively, be denoted by

f (y) := ‖Ay − b‖2 − γ (yT Ĩ y + 2b̃T y), g(y) := yT Ĩ y + 2b̃T y = 0.

The optimal value of (2.8) is a lower bound for p∗
SLS since the feasible set of (2.8) is a

superset of the feasible set of (2.7) and the objectives are the same. Now suppose, for the
sake of contradiction, that the optimal value of (2.8) is strictly less than p∗

SLS. Then there
exists ȳ satisfying,

g(ȳ) < 0, f (ȳ) < p∗
SLS.

Let 0 �= h ∈ Null(∇2 f (ȳ)). Then by the structure of AT A and construction of γ we see that

h = (h̄T 0
)T

with h̄ �= 0. Moreover, we have,

lim
α→+∞ g(ȳ ± αh) = lim

α→+∞ g(ȳ) ± 2α ȳT h + α2‖h‖2 = +∞. (2.11)

Now we choose η ∈ {±1} such that,

f (ȳ + ηαh) ≤ f (ȳ), ∀α ≥ 0.

These observations imply that that there exists ᾱ > 0 such that

g(ȳ + ᾱh) = 0, f (ȳ + ᾱh) ≤ f (ȳ) < p∗
SLS,

a contradiction.
We have confirmed the third equality. Now (2.8) is a convex quadratic optimization prob-

lem where the Slater constraint qualification holds. This implies that strong duality holds,
i.e. we get (2.9) with attainment for some λ ≥ 0. Now if λ < 0 in (2.9) then the Hes-
sian of the objective is indefinite (by construction of γ ) and the optimal value of the inner
minimization problem is −∞. Thus since (2.9) is maximized with respect to λ in the outer
optimization problem, we may remove the non-negativity constraint and obtain (2.10). The
remaining lines are due to the definition of the Lagrangian dual and weak duality. Strong
duality follows immediately. ��
The above Theorem 2.2 shows that even though SLS is a non-convex problem, it can be
formulated as an instance of GTRSand satisfies strong duality. Therefore it can be solved
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efficiently using, for instance, the algorithm of [29]. Moreover, in the subsequent results we
show that SLS is equivalent to its semidefinite programming (SDP) relaxation in (2.15), a
convex optimization problem.

We compare our SDP approachwith the approach used byBeck et al. [3]. In their approach
they have to solve the following system obtained from the optimality conditions of GTRS:

(AAT + λ Ĩ )y = AT b − λb̃,
yT Ĩ y + 2b̃T y = 0,

AT A + λ Ĩ � 0.
(2.12)

The so-called hard case results in AT A+ λ∗ Ĩ being singular for the optimal λ∗ and this can
cause numerical difficulties. We note that in our SDP relaxation, we need not differentiate
between the ‘hard case’ and ‘easy case’.

2.2 The semidefinite relaxation, SDR

We now study the convex equivalent of SLS. We analyze the dual and the SDP relaxation
of GTRS. By homogenizing the quadratic objective and constraint and using the fact that
strong duality holds for the standard trust region subproblem [34], we obtain an equivalent
formulation of the Lagrangian dual of GTRSas an SDP. We first define

Ā :=
[
AT A −AT b

−bT A bT b

]
, B̄ :=

[
Ĩ b̃
b̃T 0

]
. (2.13)

The Lagrangian dual of GTRSmay be obtained as follows:

d∗
SLS = maxλ miny‖Ay − b‖2 − λ(yT Ĩ y + 2b̃T y)

= maxλ,s{s : ‖Ay − b‖2 − λ(yT Ĩ y + 2b̃T y) − s ≥ 0,∀y ∈ R
r+1}

= maxλ,s

{
s : [yT , 1

] [
Ā − λB̄ − ser+2eTr+2

] [
yT , 1

]T ≥ 0,∀y ∈ R
r+1
}

= maxλ,s
{
s : λB̄ + ser+2eTr+2 � Ā

}
.

(2.14)

Here the first equality follows from the definition of the dual. The second and third equalities
are just equivalent reformulations of the first one. For the last equality, let ỹ = [yT , y0]T and
M = Ā− λB̄ − ser+2eTr+2 and suppose ỹ

T M ỹ < 0 for some ỹ. If y0 is nonzero, we can get
a contradition by scaling ỹ. If y0 is zero, by the continutity of ỹ → ỹT M ỹ, we can perturb
ỹ by a small enough amount so that the last element of ỹ is nonzero. This is a contradiction
as in the previous case.

We observe that (2.14) is a dual-form SDP corresponding to the primal SDP problem, e.g.
[39],

(SDR)

p∗
SDR := min〈 Ā, X〉

s. t.〈B̄, X〉 = 0

Xr+2,r+2 = 1

X ∈ Sr+2+ .

(2.15)

Now let F and �, respectively, denote the feasible and optimal sets of solutions of SDR. We
define the map ρ : R

r+1 → Sr+2 as,

ρ(y) =
(
y
1

)(
y
1

)T
. (2.16)
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Note that ρ is an isomorphism between R
r+1 and rank 1 matrices of Sr+2+ , where the (r +

2, r + 2) element is 1.

Lemma 2.3 The map ρ is an isomorphism between the feasible sets of GTRSand SDR.
Moreover, the objective value is preserved under ρ, i.e. ‖Ay − b‖2 = 〈 Ā, ρ(y)〉.
Theorem 2.4 The following holds:

1. The optimal values of GTRS, SDR, and (2.14) are all equal, finite, and attained.
2. The matrix X∗ is an extreme point of � if, and only if, X∗ = ρ(y∗) for some minimizer,

y∗, of GTRS.

Proof From Theorem 2.2 and weak duality, we have that

p∗
SLS = d∗

SLS ≤ p∗
SDR. (2.17)

Moreover, since SDR is a relaxation of GTRSwe get,

p∗
SDR ≤ p∗

SLS �⇒ p∗
SLS = d∗

SLS = p∗
SDR.

Furthermore, from Theorem 2.2 the above values are all finite and the optimal values of
GTRSand (2.14) are attained. To see that the optimal value of SDR is attained it suffices to
show that (2.14) has a Slater point. Indeed, the feasible set of (2.14) consists of all μ, s ∈ R

such that,
[

AT A + μ Ĩ −AT b + μb̃
−bT A + μb̃T bT b − s

]
� 0.

Setting μ = 0 and applying the Schur complement condition, we have
[
AT A −AT b

−bT A bT b − s

]
� 0 ⇐⇒ AT A − 1

bT b − s
AT b(AT b)T � 0, AT A � 0.

By Theorem 2.2, AT A is positive definite and a Slater point may be obtained by choosing s
so that bT b − s is sufficiently large.

Now we consider Item 2.4. By the existence of a Slater point for (2.14) we know that � is
compact and convex. Now we show that � is actually a face of F . To see this, let θ ∈ (0, 1)
and let Z = θX + (1 − θ)Y ∈ � for some X , Y ∈ F . Since Z is optimal for SDR and X
and Y are feasible for SDR, we have

〈 Ā, Z〉 = θ〈 Ā, Z〉 + (1 − θ)〈 Ā, Z〉 ≤ θ〈 Ā, X〉 + (1 − θ)〈 Ā, Y 〉 = 〈 Ā, Z〉.
Nowequality holds throughout andwe have 〈 Ā, X〉 = 〈 Ā, Y 〉 = 〈 Ā, Z〉. Therefore X , Y ∈ �

and by the definition of face, we conclude that � is a face of F .
Since � is a compact convex set it has an extreme point, say X∗. Now X∗ is also an

extreme point ofF , as the relation face of is transitive, i.e. a face of a face is a face. Moreover,
since there are exactly two equality constraints in SDR, by Theorem 2.1 of [28], we have
rank(X∗)(1 + rank(X∗))/2 ≤ 2. This equation is satisfied if, and only if, rank(X∗) = 1.
Equivalently, X∗ = ρ(y∗) for some y∗ ∈ R

r+1. Now, by Lemma 2.3 and the first part of this
proof we have that y∗ is a minimizer of GTRS .

For the converse in Item 2.4, let y∗ be a minimizer of GTRS. Then by Lemma 2.3,
X∗ := ρ(y∗) is optimal for SDR. To see that X∗ is an extreme point of �, let Y , Z ∈ � such
that

1

2
Y + 1

2
Z = X∗.
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Since X∗ has rank 1 and Y , Z � 0, it follows that Y and Z are non-negative multiples of
X∗. But by feasibility, X∗

r+2,r+2 = Yr+2,r+2 = Zr+2,r+2 and thus Y = Z = X∗. So, by
definition, X∗ is an extreme point of �, as desired. ��
We have shown that the optimal value of SLSmay be obtained by solving the nice convex
problem SDR. Moreover, every extreme point of the optimal face of SDR can easily be
transformed into an optimal solution of SLS. However, SDR is usually solved using an
interior point method that is guaranteed to converge to a relative interior solution of �. In
general, such a solution may not have rank 1. In the following corollary of Theorem 2.4 we
address those instances for which the solution of SDR is readily transformed into a solution
of SLS. For other instances, we present an algorithmic approach in Sect. 2.2.1.

Corollary 2.5 The following hold.

1. If GTRShas a unique minimizer, say y∗, then the optimal set of SDR is the singleton
ρ(y∗).

2. If the optimal set of SDR is a singleton, say X∗, then rank(X∗) = 1 and ρ−1(X∗) is the
unique minimizer of GTRS.

Proof Let y∗ be the unique minimizer of GTRS . By Theorem 2.4 we know that ρ(y∗) is an
extreme point of �. Now suppose, for the sake of contradiction, that there exists X �= ρ(y∗)
in �. Since � is a compact convex set it is the convex hull of its extreme points. Thus there
exists an extreme point of �, say Y , that is distinct from ρ(y∗). By Theorem 2.4, we know
that ρ−1(Y ) is a minimizer of GTRSand by Lemma 2.3, ρ−1(Y ) �= y∗, contradicting the
uniqueness of y∗.

For the converse, let X∗ be the unique minimizer of SDR. Then X∗ is the only extreme
point of � and consequently ρ−1(X∗) is the unique minimizer of GTRS, as desired. ��

2.2.1 A purification algorithm

Suppose the optimal solution of (2.15) is X̄ with optimal value p∗
SDR = 〈 Ā, X̄〉 and

rank(X̄) = r̄ where r̄ > 1. Note that we can not obtain an optimal solution of GTRS from X̄
since the rank is too large. However, in this section we construct an algorithm that returns an
extreme point of � which, by Theorem 2.4, is easily transformed into an optimal solution of
GTRS. We note that this does not require the extreme point to be an exposed extreme point.

Let the compact spectral decomposition of X̄ be X̄ := UDUT with D ∈ S r̄++. We use the
substitution X = USUT and solve the problem (2.20), below, to obtain an optimal solution
with lower rank. Note that D � 0 is a strictly feasible solution for (2.20). We choose the
objective matrix C ∈ S r̄++ to be random and positive definite. To simplify the subsequent
exposition, by abuse of notation, we redefine

B̄ ← UT B̄U , Ā ← UT ĀU , Ē ← UT ĒU , (2.18)

where Ē := er+2eTr+2. We define the linear map A : S
r̄ → R

3 and the vector b ∈ R
3 as,

AS(S) :=
⎛

⎝
〈B̄, S〉
〈 Ā, S〉
〈Ē, S〉

⎞

⎠ , bS :=
⎛

⎝
0

p∗
SDR
1

⎞

⎠ , (2.19)

respectively. The rank reducing program is

min 〈C, S〉
s.t. AS(S) = bS

S ∈ S r̄+.

(2.20)
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In Algorithm 2.1 we extend the idea of the rank reducing program and in the subsequent
results we prove that the output of the algorithm is a rank 1 optimal solution of SDR.

Algorithm 2.1 Purification Algorithm

1: INPUT: AS as in (2.19) and X̄ ∈ �.
2: initialize: k = 1,A1

S := AS , S
1 := X̄ , U0 = I .

3: while rank(Sk ) ≥ 2 do
4: Compute compact spectral decomposition, Sk = UkDk (Uk )T , with Dk ∈ Srk++.

5: RedefineAk
S and bkS using Uk as in (2.18) and ensure that it is full rank.

6: Choose Ck ∈ Null(Ak
S) \ {0}.

7: Obtain Sk+1 ∈ argmin{〈Ck , S〉 : Ak
S(S) = bkS , S � 0}.

8: Update k ← k + 1.
9: end while
10: OUTPUT: X∗ := U0 · · ·Uk−1Sk (U0 · · ·Uk−1)T .

Lemma 2.6 Let k ≥ 1 be an integer and suppose that Ck,Ak
S, and b

k
S are as in Algorithm 2.1.

Then

Sk+1 � 0 ⇐⇒ Fk :=
{
S � 0 : Ak

S(S) = bkS

}
=
{
Sk+1
}

.

Proof By construction, Dk ∈ Fk . Therefore,

Fk =
{
Sk+1
}

�⇒ Sk+1 = Dk � 0.

For the forward direction, assume that Sk+1 � 0 and, for the sake of contradiction, suppose
that, Sk+1 is not the only element of Fk . Then Sk+1 ∈ relint(Fk) and for any T ∈ Null(Ak

S)

there exists ε > 0 such that,
{
Sk+1 + εT , Sk+1 − εT

}
⊂ Fk .

By the choice of Ck , there exists T ∈ Null(Ak
S) such that 〈Ck, T 〉 �= 0 and we may assume,

without loss of generality, that this inner product is in fact negative. Then,

〈Ck, Sk+1 + εT 〉 < 〈Ck, Sk+1〉,
contradicting the optimality of Sk+1. ��
Theorem 2.7 Let X̄ ∈ Sr+2+ be an optimal solution to SDR . If X̄ is an input to Algorithm 2.1,
then the algorithm terminates with at most rank(X̄) − 1 ≤ r + 1 calls to the while loop and
the output, X∗, is a rank 1 optimal solution of SDR.

Proof We proceed by considering the trivial case, rank(X̄) = 1. Clearly X∗ = X̄ in this
case, and we have the desired result. Thus we may assume that the while loop is called at
least once. We show that for every Sk generated by Algorithm 2.1 with k ≥ 1, we have,

Xk := U 0 · · ·Uk−1Sk(U 0 · · ·Uk−1)T ∈ �. (2.21)

To this end, let us consider the constraint 〈B̄, Sk〉 = 0. By the update formula (2.18), we
have,

0 = 〈(U 0 · · ·Uk−1)T B̄U 0 · · ·Uk−1, Sk〉 = 〈B̄,U 0 · · ·Uk−1Sk(U 0 · · ·Uk−1)T = 〈B̄, Xk〉.
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Similarly the other two constraints comprising Ak−1
S are satisfied by Xk and therefore Xk ∈

�.
Nowwe show that the sequence of ranks, r1, r2, . . . , generated by Algorithm 2.1 is strictly

decreasing. It immediately follows that the algorithm terminates in at most rank(X̄)−1 calls
to the while loop and that the output matrix X∗ has rank 1. Suppose, to the contrary, that
there exists an integer k ≥ 2 such that rk = rk−1. Then by construction, we have that
rank(Sk) = rk = rk−1 and Sk is a Slater point of the optimization problem,

min{〈Ck−1, S〉 : Ak−1
S (S) = bk−1

S , S � 0}. (2.22)

Therefore, by Lemma 2.6 we have that Sk is the only feasible solution of (2.22). Now we
claim that Xk as defined above is an extreme point of �. To see this, let Y k, Zk ∈ � such
that Xk = 1

2Y
k + 1

2 Z
k . Since Y k and Zk are both positive semidefinite we have that

range(Xk) ⊇
{
range(Y k), range(Zk)

}
.

Thus there exist V k,Wk ∈ Srk−1+ such that,

Y k = U 0 · · ·Uk−1V k(U 0 · · ·Uk−1)T , Zk = U 0 · · ·Uk−1Wk(U 0 · · ·Uk−1)T ,

and it follows that V k and Wk are feasible for (2.22). By uniqueness of Sk we have that
Y k = Zk = Xk and Xk is an extreme point of �. Then by Theorem 2.4, rank(Sk) = 1 and
Algorithm 2.1 terminates before generating rk, a contradiction. ��
We remark that in many of our numerical tests the rank of X̄ was 2 or 3. Consequently, the
purification process did not require many iterations.

3 EDMFormulation

In this section we use the Lindenstrauss operator, K, and the Schoenberg characterization
to formulate SLSas an EDM completion problem. Recall that the exact locations of the
sensors (towers) are known, and that the tower-source distances are noisy. The corresponding
EDM restricted to the towers is denoted DT and is defined by

(DT )i j := ‖pi − p j‖2, ∀1 ≤ i, j ≤ n.

Then the approximate EDM for the sensors and the source is

DTc :=
[

DT d ◦ d
(d ◦ d)T 0

]
∈ S

n+1.

Recall that

PT = [p1 p2 . . . pn
]T ∈ R

n×r .

From Assumption 2.1 the towers are centered, i.e. eT PT = 0. This property is desirable due
to the Schoenberg characterization which states that K is an isomorphism between Sn+ ∩SC
and En . Moreover, it allows for easy recovery of the towers in the last step of our algorithm
by solving a Procrustes problem.

Now let GT := PT PT
T be the Gram matrix restricted to the towers, and note that

K(GT ) = DT , K†(DT ) = GT .
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The nearest EDMproblem with fixed sensors is

min
x∈Rr

1

2

∥∥∥∥∥K
([

PT
xT

] [
PT
xT

]T)
− DTc

∥∥∥∥∥

2

. (3.1)

For any x ∈ R
n let

dx :=
⎛

⎜⎝
‖x − p1‖2

...

‖x − pn‖2

⎞

⎟⎠ .

By simplifying the objective, we see that the NEDMPproblem in (3.1) is indeed equivalent
to SLS , i.e.

1

2

∥∥∥∥∥K
([

PT
xT

] [
PT
xT

]T)
− DTc

∥∥∥∥∥

2

= 1

2

∥∥∥∥K
([

GT PT x
(PT x)T 0

])
− DTc

∥∥∥∥
2

= 1

2

∥∥∥∥

[
DT dx
dTx 0

]
−
[

DT d ◦ d
(d ◦ d)T 0

]∥∥∥∥
2

=
n∑

i=1

(
‖x − pi‖2 − d2i

)2
.

The approach of [13] for the related sensor network localization problem is to replace

the matrix

[
PT
xT

] [
PT
xT

]T
in (3.1) with the positive semidefinite matrix variable X ∈ Sn+1 ,

and then introduce a constraint on the block of X corresponding to the sensors. Taking
this approach, we obtain nearest Euclidean distance matrix with fixed sensors (NEDMF)
problem,

(NEDMF)

VS := min 1
2 ‖Hc ◦ (K(X) − DTc)‖2 ,

s.t. HT ◦ (K(X) − DTc

) = 0,
rank(X) ≤ r ,
X � 0,

(3.2)

where

HT :=
[
eeT − I 0

0 0

]
, Hc :=

[
0 e
eT 0

]
.

The objective of this (3.2) is exactly the objective of SLS (acting on the matrix variable) and
the affine constraint restricts X to those Gram matrices for which the block corresponding to
the sensors has exactly the same distances as PT PT

T . That is, if

X =:
[
XT

xTc

] [
XT

xTc

]T
,

is feasible for (3.2), with XT ∈ R
n×r and xc ∈ R

r , then XT differs from PT only by
translation and rotation. Since neither translation nor rotation affect the distances between
the rows of XT and xc we translate the points in R

r so that XT is centered. This corresponds
to the assumption that PT is centered. Then we solve the Procrustes problem

min {‖XT Q − PT ‖2 : QT Q = QQT = I , Q ∈ R
r×r }, (3.3)
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to obtain the rotation and thus have a complete description of the transformation from XT to
PT . Applying the transformation to xc yields a vector feasible for SLS . Thus every feasible
solution of (3.2), corresponds to a feasible solution of SLS . The converse is trivially true
and we conclude that (3.2) is equivalent to SLSdue to the rank constraint. We show in the
subsequent sections that the relaxation where the rank and the linear constraints are dropped,
may be used to solve the problem accurately in a large number of instances.

3.1 The relaxed NEDMproblem

3.1.1 Nearest Euclidean distance matrix formulation

One relaxation of (3.2) is obtained by removing the affine constraint and modifying the
objective as follows:

(NEDM)

min
1

2
||K(X) − DTc ||2

s.t. rank(X) ≤ r

X � 0.

(3.4)

Due to the semidefinite characterization of En+1 this problem is the projection of DTc onto
the set of EDMs with embedding dimension at most r . The motivation behind this relaxation
is the assumption that the distance measurements corresponding to the sensors are very
accurate. Therefore, any minimizer of NEDMwill likely have the first n points very near
the sensors. As we show in the subsequent sections by introducing weights, we can obtain a
solution arbitrarily close to that of (3.2).

The challenge in problem NEDM is the rank constraint. A simpler problem is to first
solve the unconstrained least squares problem and then to project the solution onto the set of
positive semidefinite matrices with rank at most r . This is equivalent to solving the inverse
nearest EDMproblem:

(NEDMinv)

min
1

2
||X − K†(DTc )||2

s.t. rank(X) ≤ r

X � 0.

(3.5)

Note that if the positive semidefinite constraint is removed, this problem is just the projection
onto the matrices with rank at most r . By the Eckart–Young theorem, this projection is a rank
r matrix obtained by setting the n−r smallest eigenvalues (inmagnitude) ofK†(DTc ) to zero.
In the following lemma we show that for sufficiently small noise, the negative eigenvalue is
of small magnitude and hence the Eckart–Young rank r projection is positive semidefinite.
We denote by D ∈ Sn+1 the true EDMof the sensors and the source, that is

D :=
[

DT d̄ ◦ d̄
(d̄ ◦ d̄)T 0

]
. (3.6)

It is easy to see from the definitions of d̄ and ε that,

DTc = D + en+1ξ
T + ξeTn+1, where ξ :=

(
ε

0

)
.
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Theorem 3.1 The rank ofK†(DTc ) is at most r+2. Moreover,K†(DTc ) has at most 1 negative

eigenvalue with magnitude bounded above by
√
2
2 ‖Jn+1‖2‖ε‖.

Proof First we note that the norm of en+1ξ
T + ξeTn+1 is bounded above by the magnitude of

the noise:

‖en+1ξ
T + ξeTn+1‖ =

√√√√2
n∑

i=1

ε2i = √
2‖ε‖.

Next we observe that thematrix en+1ξ
T +ξeTn+1 has trace 0 and rank 2. Thus en+1ξ

T +ξeTn+1
has exactly one negative and one positive eigenvalue. By theMoreau decomposition theorem,
e.g. [23], en+1ξ

T + ξeTn+1 may be expressed as the sum of two rank one matrices, say P � 0

and Q � 0, that are the projections of en+1ξ
T + ξeTn+1 onto Sn+1+ and −Sn+1+ , respectively.

Now we have,

K†(DTc ) = − 1
2 Jn+1DTc Jn+1

= − 1
2 (Jn+1DJn+1 + Jn+1QJn+1) + (− 1

2 Jn+1P Jn+1),

where the first term in the last line is positive semidefinitewith at least r and atmost r+1 posi-
tive eigenvalues (−Jn+1DJn+1 is a positive semidefinitematrixwith rank r and−Jn+1QJn+1

is positive semidefinite with rank at most 1); and the second term is negative semidefinite
with at most one negative eigenvalue. Using the Cauchy–Schwartz inequality it can be shown
that for X , Y ∈ Sn ,

‖XY‖ ≤ ‖X‖‖Y‖. (3.7)

By (3.7) and the fact that P is a projection of en+1ξ
T + ξeTn+1 onto −Sn+1+ , we have

∥∥∥∥−
1

2
Jn+1P Jn+1

∥∥∥∥ ≤ 1

2
‖Jn+1‖2‖P‖ ≤ 1

2
‖Jn+1‖2‖en+1ξ

T + ξeTn+1‖ =
√
2

2
‖Jn+1‖2‖ε‖.

It follows that K†(DTc ) has rank at most r + 2 and by the Courant–Fischer–Weyl theorem,
e.g. [37], it has at most one negative eigenvalue whose magnitude is bounded above by√

2
2 ‖Jn+1‖2‖ε‖, as desired. ��
The following corollary follows immediately.

Corollary 3.2 If ‖ε‖ is sufficiently small, the optimal solution of NEDMinv is the rank r
Eckart–Young projection of K†(DTc ).

3.1.2 Weighted, facially reduced NEDM

While we have discarded the information pertaining to the locations of the sensors in relaxing
the problem (3.2) to the problem NEDM , we still make use of the distances between the
sensors. Thus, to some extent the locations of the sensors have an implicit effect on the
optimal solution of NEDM and the approximation NEDMinv from the previous section.
In this section we take greater advantage of the known distances between the sensors by
restricting NEDM to a face of Sn+1+ by facial reduction.

The true Gram matrix, K†(D), belongs to the set,

FT := {X ∈ Sn+1
c,+ : K(X)1:n,1:n = DT }. (3.8)
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Now the constraint X � 0 in NEDM , may actually be refined to say X ∈ face(FT ,Sn+1+ )

which is the following:

(NEDMP)

min
1

2
||K(X) − DTc ||2

s.t. rank(X) ≤ r

X ∈ face(FT ,Sn+1+ ).

(3.9)

Moreover, we may obtain a closed form expression for face(FT ,Sn+1+ ) in the form of an
exposing vector. To see this, consider the spectral decomposition of the sensor Grammatrix,

GT =:
[
U 1√

n
e WT

] [
� 0
0 0

] [
U 1√

n
e WT

]T
, UTU = Ir , UT e = 0, � ∈ Sr++.

Note thatWTWT
T is an exposing vector for face(GT ,Sn

c,+) since the following two conditions
hold:

〈GT ,WTW
T
T 〉 = 0, rank(GT + WTW

T
T ) = n − 1 = max

X∈Sn
c,+

rank(X).

We now extend WTWT
T to an exposing vector for face(FT ,Sn+1+ ).

Lemma 3.3 Let WT := [WT
T 0]T and let W := WTW

T
T + eeT . Then,

1. WTW
T
T exposes face(FT ,Sn+1

c,+ ),

2. W exposes face(FT ,Sn+1+ ).

Proof This statement is a special case of Theorem 4.13 of [16]. ��
Note that face(K†(D),Sn+1+ ) � face(FT ,Sn+1+ ) since,

rank(K†(D)) + rank(W ) = r + n − r < n + 1.

ThroughW wehave a ‘nullspace’ characterization of face(FT ,Sn+1+ ). However, the ‘range
space’ characterization is more useful in the context of semidefinite optimizaiton as it leads
to dimension reduction, numerical stability, and strong duality. To this end, we consider any
(n + 1) × (r + 1) matrix such that its columns form a basis for null(W ). One such choice is,

V = Jn+1

[
PT 0
0 1

]
=
[
PT − 1

n+1e

0 1 − 1
n+1

]
. (3.10)

To verify that the columns of V indeed form a basis for null(W ), we first observe that
rank(V ) = r + 1 and secondly we have,

WV =
([

WTWT
T 0

0 0

]
+ eeT

)[PT − 1
n+1e

0 1 − 1
n+1

]

=
[
WTWT

T PT − 1
n+1WTWT

T e
0

]
+ eeT

[
PT − 1

n+1e

0 1 − 1
n+1

]

= 0.

It follows that
face(FT ,Sn+1+ ) = Sn+1+ ∩ W⊥ = VSr+1+ V T . (3.11)
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Thus we may replace the variable X in NEDMPby V RV T for R ∈ Sr+1+ . To simplify the
notation, we define the composite map KV := K(V · V T ). Moreover, we introduce a weight
matrix to the objective and obtain the weighted facially reduced problem, FNEDM,

(FNEDM)

Vα := min
1

2
||Hα ◦ (KV (R) − DTc )||2, (=: f (R, α))

s.t. rank R ≤ r ,

R � 0.

(3.12)

Here Hα := αHT +Hc andα is positive. Let usmake a few comments regarding this problem.
When α = 1 the weight matrix has no effect and FNEDM reduces toNEDMP . On the other
hand, when α is very large, the solution has to satisfy the distance constraints for the sensors
more accurately and in this case FNEDM approximates (3.2). In fact, in Theorem 3.9 we
prove that the solution to FNEDM approaches that of (3.2) as α increases.

We begin our analysis by proving that Vα is attained.

Lemma 3.4 Let α > 0. Then

1. null(Hα ◦ KV ) = {0},
2. f (R, α) is strictly convex and coercive,
3. the problem FNEDMadmits a minimizer.

Proof For Item 1, under the assumption that α > 0, we have Hα ◦ KV (R) = 0 if, and only
if, KV (R) = 0. Recall that K is one-to-one between the centered and hollow subspaces
and K(0) = 0. By construction, range(V · V T ) is a subset of the centered matrices. Hence
H ◦ KV (R) = 0 if, and only if, V RV T = 0. Since V is full column rank, V RV T = 0 if,
and only if, R = 0, as desired.

Now we turn to Item 2. The function f (R, α) is quadratic with a positive semidefinite
second derivative. Moreover, by Item 1, the second derivative is positive definite. Therefore
f (R, α) is strictly convex and coercive.
Finally, the feasible set of FNEDM is closed. Combining this observation with coercivity

of the objective, from Item 2, we obtain Item 3. ��
We conclude this subsection by deriving the optimality conditions for the convex relaxation
of FNEDM , which is obtained by dropping the rank constraint.

Lemma 3.5 Thematrix R ∈ Sr+1+ is optimal for the relaxation of (3.12) obtained by ignoring
the rank constraint if, and only if,

0 � ∇ f (R) = V T
(
H∗

α ◦ K∗ [(Hα ◦ K)(V RV T ) − Hα ◦ DTc

])
V , 〈∇ f (R), R〉 = 0.

In addition, R is optimal for (3.12) if rank R ≤ r .

Proof From the Pshenichnyi–Rockafellar conditions, R is optimal if, and only if, ∇ f (R) ∈
(Sr+1+ − R)+, the nonnegative polar cone. This condition holds if, and only if, for all X ∈
Sr+1+ and α > 0, we have

0 ≤ 〈∇ f (R), αX − R〉 = α〈∇ f (R), X〉 − 〈∇ f (R), R〉.
which implies that α〈∇ f (R), X〉 ≥ 〈∇ f (R), R〉 for every α > 0. Since α may be arbitrarily
large we get that 〈∇ f (R), X〉 ≥ 0 for all X ∈ Sr+1+ . Therefore, we conclude that ∇ f (R) ∈
(Sr+1+ )+ = Sr+1+ . Moreover, setting X = 0, we get,

0 ≤ 〈∇ f (R), 0 − R〉 = − 〈∇ f (R), R〉 ≤ 0,

hence orthogonality holds. ��

123



Journal of Global Optimization (2019) 75:973–1002 989

3.1.3 Analysis of FNEDM

In this section we show that the optimal value of FNEDM is a lower bound for the optimal
value of SLS. Moreover, the this lower bound becomes exact as α is increased to +∞.

In the SLSmodel, the distances between the towers are fixed, while in the NEDM model
(3.4), the distances between towers are free. The facial reduction model allows the distances
between the towers to change but the towers can still be transformed back to their original
positions by a square matrix Q ∈ R

r×r . Note that Q does not have to be orthonormal, so it
is possible that QQT �= I .

Theorem 3.6 Let PT be as above, V as in (3.10), and let P be a centered matrix with,

P =
[
T
cT

]
, T ∈ R

n×r , c ∈ R
r .

Then there exists a matrix Q ∈ R
r×r such that PT Q = JnT if, and only if,

P PT ∈ VSr+1+ V T .

Proof Since P is centered,

0 = PT e = T T e + c.

Substituting into the equation PT Q = JnT we get,

PT Q = JnT = T − 1

n
eeT T = T − 1

n
ecT ,

which yields the following expression for P ,

P =
[
PT Q + 1

n ec
T

cT

]
. (3.13)

Now by (3.11) we have,

PPT ∈ VSr+1+ V T ⇐⇒ PPT ∈ Sn+1+ ∩ W⊥ ⇐⇒ PTW = 0.

Applying (3.13) we verify that the last statement in the equivalence holds,

PTW = PT (WTW
T
T + eeT )

= PTWTW
T
T

= [QT PT
T + 1

n ce
T c

] [WT

0

]
W

T
T

=
(
QT PT

T WT + 1

n
ceT WT

)
W

T
T

= 0,

as desired.
For the other direction, let

V1 :=
[
PT 0
0 1

]
,

and recall that V = Jn+1V1. Suppose PPT belongs to the face VSr+1+ V T . Then P =
Jn+1V1M for some M ∈ R

(r+1)×r . We show that if Q ∈ R
r×r denotes the first r rows of
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M , then PT Q = JnT . To this end, let J̄ = [Jn 0] and observe that J̄ P = JnT . Moreover,
since J̄ is centered, J̄ Jn+1 = J̄ . Then,

JnT = J̄ P = J̄ Jn+1V1M = J̄ V1M = Jn PT Q = PT Q,

as desired. ��
Theorem 3.6 indicates that when using the facial reduction model FNEDMwe can use a least
square approach to exactly get back the original positions of the sensors. This approach will
be discussed in Sect. 3.2 along with the Procrustes approach.

In the following, we show that the optimal value of the problem in (3.12) is not greater
than the optimal value of the SLS estimates (2.2) or (3.2). We also prove that the solution to
FNEDM approaches that of (3.2) as α increases.

Lemma 3.7 Consider the problem,

VT := min
1

2
||Hc ◦ (KV (R) − DTc )||2 (=: h(R))

s.t.HT ◦ (KV (R) − DTc ) = 0

rank R ≤ r

R ∈ Sr+1+ .

(3.14)

Then VT is finite and satisfies VT = VS.

Proof That VT is finite, follows from arguments analogous to those used in Lemma 3.4.
For the equality claim, it is clear that VS ≤ VT . To show that VS ≥ VT , consider X that is

feasible for (3.2). First we show that X may be assumed to be centered. To see this, consider
X̂ = Jn X Jn . Note that X̂ is the orthogonal projection of X onto Sc and it can be verified that
X̂ = K† K(X). Now it is clear that X̂ � 0 and that K(X̂) = K(X). Moreover, since Jn is
singular we have, rank(X̂) ≤ rank(X). Therefore, X̂ is also feasible for (3.2) and provides
the same objective value as X .

Now there exists T ∈ R
n×r and c ∈ R

r such that,

X =
[
T
cT

] [
T
cT

]T
.

Then, from the tower constraint of (3.2) we get the implications,

K(T T T ) = DT �⇒ K† K(T T T ) = K†(DT ) �⇒ JnT T
T Jn = PT P

T
T .

Thus, there exists an orthogonal Q such that JnT = PT Q. By Theorem 3.6 we have X ∈
VSr+1+ V T and it follows that VS ≥ VT . ��
Lemma 3.8 Let 0 < α1 < α2. Then,

Vα1 < Vα2 < VT .

Moreover, the first inequality is strict if DTc is not an EDMwith embedding dimension r.

Proof For the first inequality, let R � 0 be such that rank(R) ≤ r . Then,

f (R, α1) = 1

2
‖Hα1 ◦ (KV (R) − DTc )‖2

= 1

2
‖(α1HT + Hc) ◦ (KV (R) − DTc )‖2
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= 1

2
α2
1‖HT ◦ (KV (R) − DTc )‖2 + 1

2
‖Hc ◦ (KV (R) − DTc )‖2

≤ 1

2
α2
2‖HT ◦ (KV (R) − DTc )‖2 + 1

2
‖Hc ◦ (KV (R) − DTc )‖2

= f (R, α2).

Note that the inequality is strict if, and only if, ‖HT ◦ (KV (R)−DTc )‖ is positive. This holds
for all R, if DTc is not an EDMwith embedding dimension r .

For the second inequality, we first observe that,

VT = min f (R, α2)

s.t.HT ◦ (KV (R) − DTc ) = 0

rank(R) ≤ r

R � 0.

Now VT and Vα2 are both optimal values of f (R, α2) over their respective domains, but the
domain for VT is smaller than that of Vα2 . Hence, the second inequality holds. ��
Theorem 3.9 For any α > 0, let Rα denote the minimizer of FNEDM . Let {α�}�∈N ⊂ R++
be a sequence of increasing numbers such that Rα�

→ R̄ for some R̄ ∈ Sr+1. Then Vα ↑ VT

and R̄ is a minimizer of (3.14).

Proof First we note that Rα is well defined by Lemma 3.4. Now, from Lemma 3.8, we have
that Vα is monotonically increasing and bounded above by VT . Hence there exists V ∗ such
that,

Vα ↑ V ∗ ≤ VT . (3.15)

Next, we show that R̄ is feasible for (3.14). Since Sr+1+ is closed and the rank function is
lower semicontinuous, we have rank(R̄) ≤ r and R̄ � 0. Moreover, for every � ∈ N,

Vα�
= f (Rα�

, α�) = 1

2
α2

� ||HT ◦ (KV (Rα�
) − DTc )||2 + h(Rα�

)

Rearranging and taking the limit we get,

0 ≤ lim
�→+∞

1

2
α2

� ||HT ◦(KV (Rα�
V T )−DTc )||2 = lim

�→+∞ Vα�
−h(Rα�

) = V ∗−h(R̄). (3.16)

The last equality follows from the continuity of h. Since the limit in (3.16) exists we get,

0 = lim
�→+∞ ||HT ◦ (KV (Rα�

) − DTc )|| = ||HT ◦ (KV (R̄) − DTc )||, (3.17)

by continuity. Thus R̄ is feasible for (3.14) and we have h(R̄) ≥ VT . On the other hand, from
(3.16) we have h(R̄) ≤ V ∗. Combining these observations with (3.15) we get,

h(R̄) ≤ V ∗ ≤ VT ≤ h(R̄). (3.18)

Now equality holds throughout (3.18) and the desired results are immediate. ��

3.1.4 Solving FNEDM

The solution set of the unconstrained version of (3.12) can be stated in terms of the Moore–
Penrose generalized inverse of Hα ◦KV , denoted by (Hα ◦KV )†. Indeed, the solution to the
least squares problem is,

RLS := (Hα ◦ KV )†(Hα ◦ DTc ) ∈ argmin f (R). (3.19)
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In this subsection we explore the relationship between the optimal solution of FNEDM and
the eigenvalues of RLS . In general the Moore–Penrose inverse may be difficult to obtain,
however, the following result implies that RLS may be derived efficiently and it is the unique
minimizer of f .

Lemma 3.10 Let RLS be as in (3.19). Then, RLS is the unique minimizer of f and

RLS = ((Hα ◦ KV )∗(Hα ◦ KV ))−1(Hα ◦ KV )∗(Hα ◦ DTc ).

Proof That RLS is the unique minimizer of f follows from strict convexity as in Item 2 of
Lemma 3.4. Moreover, by Item 1 of Lemma 3.4, we have null(Hα ◦KV ) = {0}which implies
that (Hα ◦KV )† is the left inverse. The desired expression for RLS is obtained by substituting
the left inverse into (3.19). ��

Note that (Hα ◦KV )∗(Hα ◦KV ) admits an r × r matrix representation. Thus if r is small,
as in many applications, the inverse of (Hα ◦ KV )∗(Hα ◦ KV ), and consequently RLS , may
be obtained efficiently.

We consider three cases regarding the eigenvalues of RLS , each of which corresponds to
a different approach to solving FNEDM .

Case I RLS � 0 and rank(RLS) ≤ r .
Case II RLS /∈ Sr+1+ .
Case III RLS � 0.

In the best scenario, Case I, we have that RLS is the unique minimizer of FNEDM . In this
case FNEDM reduces to an unconstrained convex optimization problem. Moreover, we have
a closed form solution for the minimizer, RLS . In Case II, the minimizer of FNEDMmay
also be obtained through a convex relaxation as is indicated by the following result.

Theorem 3.11 Let R
 denote the minimizer of the relaxation of FNEDMwhere the rank
constraint is removed. If RLS /∈ Sr+1+ , then R
 is a minimizer of FNEDM .

Proof Let R
 denote the optimal solution of FNEDM without the rank constraint. Note that
R
 exists by arguments analogous to those in Lemma 3.4. If rank(R
) ≤ r , then clearly R


is a minimizer of FNEDM . Thus we may assume that R
 � 0.
Since RLS is the unique minimizer of f , we have f (RLS) < f (R
). Moreover, by strict

convexity of f , every matrix R in the relative interior of the line segment [RLS, R
] satisfies
f (R) < f (R
). Now since R
 � 0 there exists R̄ ∈ relint[RLS, R
] ∩ Sr+1+ . Then, R̄
is feasible for the relaxation of FNEDMwhere the rank constraint is removed. However,
f (R̄) < f (R
), contradicting the optimality of R
. ��
In Case III we are motivated by the primal-dual approach of [30,31] and the penalty

approach of [19,30,31]. Let h = [1, · · · , α]T , we notice that Hα ◦ Y = hhT ◦ Y =
Diag(h)Y Diag(h) if diag(Y ) = 0. Let T = Diag(h), it is easy to see that (3.12) is equivalent
to the problem:

min
1

2
||T (Y − DTc )T ||2

s.t. diag(Y ) = 0,

〈Jn+1Y Jn+1,W 〉 = 0,

− Jn+1Y Jn+1 � 0,

rank(Jn+1Y Jn+1) ≤ r .

(3.20)
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As in [30,31], we define Kn+1+ (r) := {Y ∈ Sn+1| − Jn+1Y Jn+1 � 0, rank(Jn+1Y Jn+1) ≤
r}, and let B (Y ) = 0 represent the linear constraints diag(Y ) = 0 and 〈Jn+1Y Jn+1,W 〉 = 0.
Then (3.20) may be written as,

min
1

2
||T (Y − DTc )T ||2

s.t.B (Y ) = 0

Y ∈ Kn+1+ (r),

(3.21)

If B consists only of the diagonal constraint and T = I , then (3.21) is exactly the problem
considered in [30,31], where a sufficient condition for strong duality was presented. In the
subsequent results, we present an analogous dual problem for the general constraint B (Y ) =
0.

Lemma 3.12 The Lagrangian dual of (3.21) is

− min
y

1

2
‖
∏

Kn+1
T (r)

(T DTcT + B ∗(y))‖2 − 1

2
‖T DTcT ‖2, (3.22)

where Kn+1
T (r) = {Y ∈ Sn+1| − Y � 0 on {T e}⊥, rank(Jn+1T−1YT−1 Jn+1) ≤ r}

Proof The Lagrangian function L : Sn+1 × R
n+2 → R of (3.21) is,

L(Y , y) = 1

2
‖T (Y − DTc )T ‖2 − 〈B (Y ), y〉

= 1

2

(‖T (Y − (DTc + T−1B ∗(y)T−1))T ‖2

+‖T DTcT ‖2 − ‖T (DTc + T−1B ∗(y)T−1)T ‖2) .

(3.23)

we then write the dual object function θ : R
n+2 → R as,

θ(y) := min
Y∈Kn+1+ (r)

L(Y , y) (3.24)

= 1

2
‖
∏

Kn+1
T (r)

(T DTcT + B ∗(y)) − (T DTcT + B ∗(y))‖2 (3.25)

− 1

2
‖T DTcT + B ∗(y)‖2 + 1

2
‖T DTcT ‖2 (3.26)

= −1

2
‖
∏

Kn+1
T (r)

(T DTcT + B ∗(y))‖2 + 1

2
‖T DTcT ‖2 (3.27)

From Eqs. (3.26) to (3.27) we need to prove the triangle equality holds, i.e.
∥∥∥∥∥∥∥

∏

Kn+1
T (r)

(T DTcT + B ∗(y)) − (T DTcT + B ∗(y))

∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥

∏

Kn+1
T (r)

(T DTcT + B ∗(y))

∥∥∥∥∥∥∥

2

= ∥∥T DTcT + B ∗(y)
∥∥2 .

To this end, consider any matrix X ∈ Sn+1 and let
∏

(X) be a nearest point in Kn+1
T (r) to

X . Since Kn+1
T (r) is a cone, the ray θ

∏
(X) for all θ ≥ 0 is contained in the set Kn+1

T (r).
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Moreover this ray is convex and
∏

(X) is the nearest point to X from this ray. Nowwe can use
orthogonality:

∏
(X) − X is orthogonal to

∏
(X) − 0. Then the triangle inequality follows:

‖
∏

(X) − X‖2 + ‖
∏

(X)‖2 = ‖X‖2.
The Lagrangian dual problem is then defined by,

Vd := max θ(y) = − min
y

1

2
‖
∏

Kn+1
T (r)

(T DTcT + B ∗(y))‖2 − 1

2
‖T DTcT ‖2, (3.28)

as desired. ��

In [30,31] it is shown that the Lagrangian dual has compact level sets and therefore the optimal
value is finite and attained. The dual problem (3.28) can be solved by the semi-smoothNewton
approach proposed in [30].

In [30,31], the authors proposed a rank majorization approach where strong duality is
guaranteed if the penalty function goes to zero. The approach can be readily modified to
replace the diagonal constraint by the linear constraint B and to include the diagonal weight
matrix T . The strong duality result and global optimal condition can also be carried out to
our problem (3.21). The drawback of this approach is the slow convergence when n is large.
Therefore, in our facial reduction model we prefer to stay in Sr+1 rather than Sn+1 since the
dimension is lower. Hence we develop a rankmajorization approach in Sr+1 in the following:

To penalize rank, we consider the concave penalty function,

p : Sr+1 → R, p(R) := 〈I , R〉 −
r∑

i=1

λi (R). (3.29)

Note that p is non-negative over the positive semidefinite matrices and

R � 0, rank(R) ≤ r ⇐⇒ p(R) = 0 R � 0.

Hence, p is an appropriate penalty function for the rank constraint of FNEDM. Now we
consider the penalized version of FNEDM ,

(PNEDM)
min

1

2
||Hα ◦ (KV (R)) − DTc )||2 + γ p(R),

s.t. R � 0.
(3.30)

where γ is a positive constant. The objective is a difference of convex functions and the
feasible set is convex. The literature on this type of optimization problem is extensive and
the theory well established. In particular, the well-known majorization approach guarantees
convergence to a matrix satisfying the first order necessary conditions for PNEDM, i.e. a
stationary point. See for instance [35,36].

The majorization approach is outlined below in Algorithm 3.1. Central to the approach
is the observation that p is majorized by its linear approximation, since it is concave. In the
algorithm, ∂ p(R) denotes the subdifferential of p at R. Thus at every iterate, the convex
subproblem (3.31) is solved to obtain the next iterate.

Theorem 3.13 Suppose Algorithm 3.1 converges to a stationary point R̄, and that rank(R̄) =
r . Then R̄ is a global minimizer of FNEDM restricted to face(R̄).
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Algorithm 3.1 Majorization Algorithm
1: INPUT: R0 � 0, γ >> 0, 1 > ε > 0
2: initialize: k = 0, err = 1
3: while err > ε do
4: Choose Uk ∈ ∂ p(Rk )
5: Obtain Rk+1,

Rk+1 ∈ argmin
R�0

1

2
||Hα ◦ (KV (R)) − DTc )||2 + γ (p(Rk ) + 〈Uk , R − Rk 〉) (3.31)

6: Update err ← ‖Rk+1 − Rk‖, k ← k + 1
7: end while

Proof By [35,36], the stationary point R̄ satisfies the following condition:

(∇ f (R̄, α) + NSr+1+
(R̄)) ∩ (γ ∂ p(R̄)) �= ∅. (3.32)

Under the assumption rank(R̄) = r , we have R̄ = V

[
� 0
0 0

]
V T where � =

Diag(λ1, . . . , λr ) with λ1 ≥ . . . ≥ λr > 0 being the eigenvalues of Z and V T V = I . Let
V = [V1, V2] with the columns of V1 being the eigenvectors corresponding to λ1, . . . , λr .
We have

NSr+1+
(R̄) = {V

[
0 0
0 t

]
V T : t ≥ 0}

and

∂ p(R̄) = I −
[
V1
0

] [
V T
1 0
] = V

[
0 0
0 1

]
V T .

Therefore we have ∇ f (R̄, α) = V

[
0 0
0 γ − t

]
V T .

Due to the convexity of f (R, α), for any R̂ ∈ face(R̄), we have

f (R̂, α) ≥ f (R̄, α) + 〈∇ f (R̄, α), R̂ − R̄〉 = f (R̄, α) + 0.

Hence our claim is proved. ��

3.1.5 Identifying outliers using l1 minimization and facial reduction

In this section, we address the issue of unequal noise, where a few distance measurements
are outliers, i.e. much more inaccurate than others. We use l1 norm minimization to try and
identify the outliers, and remove them to obtain a more stable problem. We assume that we
have many more towers available than is necessary, so that removal of a few outliers leaves
us with towers that still satisfy Assumption 2.1.

Problem (3.12) is equivalent tominimizing the residual of an overdetermined linear system
in the domain of an SDP cone. Let z := svec(R) for R ∈ Sr+1. Abusing our previous
notation, let b := svec(Hα ◦ DTc ) and let A denote the matrix representation of Hα ◦ KV .
Then z ∈ R

(r+1)(r+2)/2 and b ∈ R
n(n+1)/2. In practice, n is much larger than r + 1, so A will

have more rows than columns. In other words, we have an overdetermined system. Under
this new notation, problem (3.12) is equivalent to,
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min‖δ‖
s.tAz − b = δ

sMat(z) � 0

(3.33)

To motivate the compressed sensing approach, suppose that only the outlier measurements
are noisy and that the remaining measurements are accurate. If z̄ denotes the true solution,
then Az̄ − b is sparse and we consider the popular l1 norm minimization problem,

min‖δ‖1
s.tAz − b = δ

sMat(z) � 0.

(3.34)

Aside from the positive semidefinite cone (3.34) is a compressed sensing problem. To see
this, note than δ + b = Az if, and only if, δ + b ∈ range(A). Let N be a matrix such that
range(A) = null(N ). Then δ + b = Az if, and only if, δ + b ∈ null(N ). Therefore the
constraint, Az−b = δ is equivalent to Nδ = − Nb which is exactly the compressed sensing
constraint.

The problem (3.34) differs from the classical compressed sensing model in the positive
semidefinite constraint. However, in our numerical tests, we have found that adding the
positive semidefinite constraint greatly increases the success rate in identifying outliers. In
compressed sensing, If the matrix N satisfy the so-called restricted isometry property, then
the sparse signal can be recovered exactly [7, Theorem 1.1]. However, there are no practical
algorithms available right now to check if a given matrix satisfies the restricted isometry
property. If δ0 is the solution to (3.34) and most of the elements of δ0 are 0, then the non-zero
elements indicate the outlier measurements.

Thus far, we have assumed that most of the measurements in b are exact and a few have
large error. Now let us revert to the original assumption of this section: that most elements
of b are slightly inaccurate and few elements are very inaccurate. If the positive semidefinite
constraint is ignored, then the identification of outliers is guaranteed to be accurate assuming
that N satisfies the restricted isometry property. To be specific, if δ# represents the optimal
solution of (3.34) without the positive semidefinite constraint, then ||δ# − δ0||l2 ≤ CS · ε

where CS and ε are small constants [6,7]. The specifics for our outlier-detection algorithm
are stated in Algorithm 3.2.

Algorithm 3.2 Removing Outliers
1: INPUT: Matrix of sensor locations, PT , and vector of noisy distances, d, from sensors to the source.
2: Solve the following l1 norm minimization problem

min‖KV (R) − DTc‖1,
s.t.R � 0.

(3.35)

3: Obtain δ := (KV (R) − DTc
)
1:n,n+1.

4: Normalize: δ ← 1
‖δ‖2 δ.

5: Remove pi from PT and di from d for all i satisfying δi ≥ 1√
n
.

6: OUTPUT: Sensor matrix PT and distance vector d with outliers removed.
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3.2 Recovering source position from grammatrix

After finding the EDM from our data, we need to rotate the sensors back to their original
positions in order to recover the position of the source. This is done by solving a Procrustes
problem. That is, suppose that the, appropriately partitioned, finalEDM, correspondingGram
matrix and points are,

D f =
[
D̄ f d f

dTf 0

]
, G f = Pf P

T
f ∈ Sn+1, Pf =

[
P̄ f

pTf

]
∈ R

N+1,r .

Assuming P̄ f and the original data PT are both centered, we now have two approaches.
The first approach solves the following Procrustes problem using [20, Algorithm 12.4.1]

minQ ‖PT − P̄ f Q‖2F
s.t. QT Q = Ir .

(3.36)

The optimal solution can be found explicitly from the singular value decomposition of P̄T
f PT .

If P̄T
f PT =: U f � f V T

f , then the optimal solution to (3.36) is Q∗ := U f V T
f . The recovered

position of the source is then P T
c = pTf Q

∗ .

The second approach is to solve the least square problem

minQ ‖PT − P̄ f Q‖2F
s.t. Q ∈ R

r×r .
(3.37)

The least square solution is Q̄ = P̄†
f PT . Recall that P̄

†
f is the Moore–Penrose generalized

inverse of P̄ f . The recovered position of the source is then pTc = pTf Q̄ .

4 Numerical results

To compare the different methods, we used randomly generated data with an error propor-
tional to the distance to each tower. The proportionality is given by η. This gives

Dn+1,i = Di,n+1 = [d̄i (1 + εi )
]2

, (4.1)

where D is the generated EDM and ε ∈ U (−η, η). The outliers are obtained by multiplying
(4.1) by another factor θ for a small subset of the indices.

We let M denote the set of optimization methods to be tested. Then for M ∈ M, the
relative error, cMre , between the true location of the source, c, and the location obtained using
method M , denoted cM , is given by

cMre = ‖cM − c‖
‖c‖ . (4.2)

The data is then found by calculating this error for all the methods and varying the error η in
Eq. (4.1) and the amount of sensors n. For each pair (n, η), one hundred instances are solved.

The methods in the tables are labelled according to the models with some additional
prefixes. To be specific, the L and P prefixes represent the different ways used to obtain the
position of the source, c. By L we denote the least square approach of (3.37) and P represents
the Procrustes approach in (3.36). We choose α = 1 in FNEDM and the constant γ for
PNEDM in (3.30) is chosen to be 1000.
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Table 1 The mean relative error cMre of 100 simulations for varying amount of sensors and error factors with
no outliers for dimension r = 3

Error factor η η = 0.002 η= 0.02 η = 0.2

# Sensors 5 10 15 5 10 15 5 10 15

L-NEDM 0.0045 0.0014 0.0010 0.0408 0.0140 0.0120 0.3550 0.1466 0.1153

P-NEDM 0.0025 0.0013 0.0010 0.0231 0.0133 0.0117 0.2813 0.1385 0.1171

SDR 0.0024 0.0014 0.0010 0.0223 0.0137 0.0119 0.2739 0.1373 0.1164

L-FNEDM 0.0042 0.0013 0.0010 0.0356 0.0141 0.0119 0.2910 0.1395 0.1061

P-FNEDM 0.0024 0.0013 0.0010 0.0237 0.0134 0.0118 0.2623 0.1360 0.1088

Table 2 The mean relative error cMre of 100 simulations for varying amount of sensors and error factors with
no outliers for dimension r = 3

Error factor η η = 0.005 η= 0.05 η = 0.15

# Sensors 5 10 15 5 10 15 5 10 15

L-NEDM 0.0101 0.0033 0.0027 0.0970 0.0328 0.0262 0.2473 0.1037 0.0786

P-NEDM 0.0070 0.0031 0.0027 0.0610 0.0320 0.0262 0.1925 0.1041 0.0760

SDR 0.0071 0.0031 0.0027 0.0576 0.0322 0.0261 0.1933 0.1030 0.0779

L-FNEDM 0.0090 0.0032 0.0026 0.0800 0.0311 0.0255 0.2151 0.1001 0.0769

P-FNEDM 0.0069 0.0031 0.0027 0.0536 0.0310 0.0258 0.1914 0.1000 0.0772

We report some results in the following table.
From Tables 1 and 2 we can see generally P-FNEDM has the smallest error, and occa-

sionally L-FNEDM is better. Also we can see that as the number of towers n increases, the
relative error cMre decreases which is expected as we have more sensors, the location of the
source should be more accurate.

To compare the overall performance of all the methods, we use the well known perfor-
mance profiles [14]. The approach is outlined below.

For each pair (n, η) and one hundred solved instances, we calculate themean of the relative
error cMre for method M . We denote this

cn,η,M = mean over 100 instances, for n towers, with error factor η and method M .

We then compute the performance ratio,

rn,η,M = cn,η,M

min{cn,η,M : M ∈ M} ,

and the function,

ψM (τ ) = |{(n, η) : rn,η,M ≤ τ
}|

|M| .

The performance profile is a plot of ψM (τ ) for τ ∈ (1,+∞) and all choices of M ∈ M.
Note that rn,η,M ≥ 1 and equality holds if, and only if, the solution obtained by M is best for
the pair (n, η). In general, smaller values of rn,η,M indicate better performance. The function
ψM (τ ) measures how many pairs (n, η) were solved with a performance ratio of τ or better.
The function is monotonically non-decreasing and larger values are better.
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(a) η = [0.002, 0.02, 0.2]

(b) η = [0.0005, 0.001, 0.005, 0.01, 0.05, 0.15]

Fig. 1 Performance profiles for ψM (τ ) with n = [5, 10, 15], r = 3, no outliers

The performance profiles can be seen in Fig. 1a and b, the P-FNEDM approach has the
best performance over all 5 methods. Also using the Procrustes approach (3.36) is better than
using the least squares approach (3.37). Allowing the sensors to move in FNEDMmodel is
better than fixing the sensors in SDR or making the sensors completely free in NEDM for
recovering the location of the source.

We also generate the data with outliers. In FNEDM , the outliers are detected and removed
using the �1 norm approach described in Sect. 3.1.5. We report the results with outliers added
in the following Tables 3 and 4.
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Table 3 The mean relative error cMre of 100 simulations for varying amount of sensors and error factors with
1 outlier for dimension r = 3

Error factor η η = 0.001 η= 0.01 η = 0.1

# Sensors 7 12 16 7 12 16 7 12 16

L-RNEDM 0.8076 0.6189 0.4579 0.8695 0.6376 0.4738 0.8006 0.5935 0.4068

P-RNEDM 1.0319 0.6789 0.4755 1.0819 0.6869 0.4677 0.9939 0.6374 0.4312

SDR 1.0618 0.7150 0.5398 1.0825 0.6981 0.5343 0.9968 0.6732 0.4983

L-FNEDM 0.1358 0.0546 0.0388 0.1556 0.0525 0.0402 0.2308 0.0799 0.0710

P-FNEDM 0.1364 0.0546 0.0388 0.1588 0.0527 0.0401 0.2150 0.0799 0.0708

Outlier factor θ ∼ U (5, 10)

Table 4 The mean relative error cMre of 100 simulations for varying amount of sensors and error factors with
2 outliers for dimension r = 3

Error factor η η = 0.001 η= 0.01 η = 0.1

# Sensors 7 12 16 7 12 16 7 12 16

L-RNEDM 0.7035 0.5299 0.3909 0.7686 0.5186 0.3905 0.7219 0.5296 0.4271

P-RNEDM 0.9533 0.5838 0.4488 0.9160 0.5817 0.4371 0.9324 0.6183 0.4739

SDR 0.9337 0.5386 0.4623 0.8905 0.5600 0.4390 0.8927 0.5917 0.4663

L-FNEDM 0.5777 0.1032 0.0571 0.5637 0.0961 0.0560 0.5860 0.1409 0.0878

P-FNEDM 0.5740 0.1033 0.0561 0.5388 0.0925 0.0544 0.5619 0.1380 0.0864

Outlier factor θ ∼ U (3, 6)

From Table 3 and 4 we can see clearly that when outliers are added, the FNEDM out-
performs both SDR and NEDMwith a big improvement, as the outliers can be removed. It
is also consistent with our previous conclusion that using the Procrustes approach (3.36) is
better than using the least squares approach (3.37).

5 Conclusion

We showed that the SLS formulation of the single source localization problem is inherently
convex, by considering the semidefinite relaxation, SDR, of the GTRS formulation. The
extreme points of the optimal set of SDR correspond exactly to the optimal solutions of the
SLS formulation and these extreme points can be obtained by solving no more than r + 1
convex optimization problems.

We also analyzed several EDMbased relaxations of the SLS formulation and introduced
the weighted facial reduction model FNEDM. The optimal value of FNEDMwas shown to
converge to the optimal value of SLSby increasing α. In our numerical tests, we showed
that our newly proposed model FNEDMperforms the best for recovering the location of
the source. Without any outliers present, the performance of each method improves as the
number of towers increases. This is expected since more information is available. All the
methods tend to perform similarly as the number of towers increases but the facial reduction
model, FNEDM, using the Procrustes approach performs the best.

Finally, we used the �1 norm approach in Algorithm 3.2, to remove outlier measurements.
In Tables 3 and 4 we demonstrate the effectiveness of this approach.
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