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TECHNICAL NOTE 

Calculating the Cone of Directions of Constancy 1 

H. W O L K O W I C Z  2 

Communicated by A. V. Fiacco 

Abstract. This note presents an algorithm that finds the cone of 
directions of constancy of a differentiable, faithfully convex function. 
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1. Introduction 

For a function f :  R n ~ R, the cone of directions of constancy of f at 
x ~ R n is defined as 

Dr(x) = {d ~ R n: 3d > 0 ~f(x + ad) = f ( x )  for all 0 < a < d}. 

If f is a differentiable convex function, then Dr(x ) is a convex cone (e.g., 
Ref. 1). 

The cone of directions of constancy has been recently used in various 
characterizations of optimality (e.g., Refs. 1-4) and numerical algorithms 
(e.g., Ref. 5). This cone is of particular importance when f belongs to the 
class of faithfully convex functions, i.e., convex functions which are not 
affine along any line segment,  unless they are alfine along the entire line 
extending the segment (e.g., Ref. 6). In this case, this cone is a subspace 
independent  of the choice of x (e.g., Ref. 4). The class of faithfully convex 
functions is large and it includes all analytic convex functions as well as all 
strictly convex functions. Note  that, in the case of faithfully convex 
functions, one can, by using the cone of directions of constancy, produce 
dual programs which are linearly constrained (e.g., Ref. 6). 

i This work was supported by the National Research Council of Canada. The author is 
indebted to Professor S. Zlobec for suggesting the topic and for his guidance. 
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2. Algorithm 

Suppose that f:  R n -~ R is a differentiable faithfully convex function. 
In this section, we formulate an algorithm that finds Dy ~ ~2 (Ao), where Df 
is the cone of directions of constancy, Ao is any specified n x p  matrix, and 
~ ( A o )  denotes the range space of Ao. Calculation of the intersection 
Dy c~ ~ (Ao) is useful in the situation when the intersection of two or more 
cones of directions of constancy is needed (e.g., Ref. 4). If A0 = L  the 
identity matrix, then the algorithm calculates the cone of directions of 
constancy of f. 

The algorithm is based on the fact that Df lies in the orthogonal 
complement  of Vf(x), the gradient of f at x. By repeatedly considering the 
restriction of f to this orthogonal complement,  we calculate Dr. 

First we need a useful observation which is given without proof. 

Lemma 2.1. Suppose that 0 # d c Rk and io is the smallest positive 
integer such that the ioth component  of d is nonzero, i.e,, d~ o # 0. Let  

[ l 
I(io--1)×(io-- 1) I 0 

I 

i d~+ l/  dlo . . .  A = d k / d i o  . 

0 I- 
1 
l - - I(k- io)x(k- io)  

Then, 

(A) = N(d) ,  

where Y(d)  denotes the null space of d. 

Let  Ek ={ei: i = 1 . . . . .  k} denote the set of unit vectors in R k and 
A o e  R "×p be given. 

Algorithm 

Initialization. Set Po = Ao and i = 1. 

ith step, 1 <~ i <- p. Find a point x in the set of p - i + 2 vectors {0} w 
Ep-i+l such that 

Vf(Pi- lx  )Pi-1 ~ O. (1) 

Case (i). If such an x exists and i<p ,  then, using Lemma 2.1, 
determine 

A i  E R (p-i+ l)x(p-i)  
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such tha t  

Set 

(A,)  = ]g'(Vf(Pi-lX )Pi-1). (2) 

Pi = Pi-lAi,  

and p roceed  to s tep i + 1. 

Case (ii). If such an x exists but  i = p, then  stop. 

Conclusion. D: m Y~(Ao) = {0}. 

Case (iii). If such an x does  not  exist, then  stop. 

Conclusion. D : ~ ( A o ) =  ~(P i -1 ) .  

T h e o r e m  2.1. Suppose  that  f :  Rn  ~ R is a faithfully c o n v e x  funct ion 
and Ao is some  given n x p  matr ix .  Then ,  the  above  a lgor i thm finds 
D :  c~ ~ ( A o )  in at mos t  p - s  + 1 steps, where  

s = d im(Dr  m ,.@ (A0)). 

P roof .  Le t  x i deno te  the point  x which satisfies (1) at the ith step; 
and,  for  i /> 0, let ~ = f°Pi deno te  the compos i t e  funct ion f o r m e d  by apply-  
ing first P / a n d  then  f. By the l ineari ty of P;, ~ is a faithfully convex  funct ion 
and so D:, is a fixed subspace  of RP-k  F u r t h e r m o r e ,  

V fi(x ) = V f(P,x )P,. 

Now,  suppose  tha t  Case  (i) has occurred ,  i.e., 

x ~ e {0}~ E~_,+I, 

Vf,-1(x')  = Vf(P,_Ix')P,_~ # O, 

and i < p. Le t  us show that  

First, let us show that  

D: n ~ (Ao) = P,D:,. (3) 

D : ~ ( A o ) =  AoD:o. 

Suppose  that  d ~ D:o. This m e a n s  tha t  

f o ( a d )  = fo(O) 

for  all a ~ R.  B y  definit ion of ]Co and the l ineari ty of Ao, this gives 

f(oeAod) = / ( 0 )  

(4) 
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for all a 6 R, i.e., A o d  ~ D r. Furthermore,  since A o d  ~ ~(Ao) ,  

A o d  ~ Dr n ~ (Ao). 

Conversely, suppose that d ~ Dr c ~ ( A o  ). Then, there exists a d ~ R  p 
such that 

d = A o d  and f ( a A o d )  = f(O) 

for all a ~ R .  Again, by definition o f  fo and the linearity of Ao, we get that 

fo(o~d)= fo(O) 
for all a ~ R, i.e., d e  Dro, where d = AoaT. This proves (4). 

Next,  let us show that 

Df,_~ = A~Df,, i/> 1. (5) 

Suppose that d ~ Df,. This means that 

fi(ad)=f~(O) 
for all a E R. Since 

fi = f i - l °A i ,  

we get that 

for all a ~ R; i.e., 

f i - l (o lA id )=  fi-l(O) 

A i d  e Df,_~. 

Conversely,  suppose that d ~ Df,_~, i.e., 

~-l(,,d) =~_i(0) 

for all a ~ R.  But 

Dr~_~ c , /~(Vf i_ l (x i ) )  

and 

d¢ (Vfi- 1 (x i )) = 2( (Vf  (Pi- ~ x '  )Pi- ~) = Y~ (A,) ,  

by (2). Therefore ,  there exists a d e  R p-i such that d = Aid.  So, 

f i (ad)  = f i - l ( a A i d ) = f i - l ( a d )  = f / - l (0)  = f/(0) 

for all t~ ~ R ,  i.e., d ~ D f ,  and d = A i d .  This proves (5). 
By repeated substitution of (5) into (4), one gets that 

Df  ~ ~ (.4o) = AoDr  o = A o A  1D h . . . . .  P~Dr~, 

which proves (3). 
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Now, suppose that Case (ii) has occurred, i.e., 

xie{o}uEp_i-t-l, Vfb~l(X i) ~:~ 0, 

but i = p. Since fp-l:  R--> R is faithfully convex, we get that 

Drp_ 1 ={0}. 

But, by (3), the ( p  - 1)th step implies that 

D f r ~ ( A o ) =  Pp-tDrp_1. 

Substituting for Drp_ 1 yields the desired result that 

Dr ~ ~ (A o) = {0}. 

Finally, suppose that Case Off) has occurred, i.e., 

V~.~l(y)= 0 for all y ~ {0}uEp-i+l .  

Then,  by the convexity of fi-1, the complete set Ep-i+l lies in Dr,_ 1. But 
Dry_ ~ is a subspace of R p-f*1, and so we conclude that 

Dr,_ ~ = R p-i+1. 

Substituting into (3) yields 

D f m ~ ( A o ) = ~ ( P ~ - , ) .  

The algorithm will be illustrated by two examples. 

Example 2.1. Consider the function 

f ( x ) = - ( 4  + ( x l  ' 2 1/2 2 i x 2 ) )  + x l + x 2 + x 3 .  

This function is convex and analytic, and so is faithfully convex. Let  us 
determine its cone of directions of constancy D f. 

Initialization. Set 

P0 = A0 =/3×3, i = 1. 

Step 1. Since 

V f ( x  ) = ( 1 - (xl  + x2)/(4 + (xl + x~)2) I/2, 1 - (xl + x2)/(4 + (xl + x2)2) 1:2, 2x3), 

we see that 0 ~ {0} u E3 and 

Vf(PoO)Po = V f(0)  = (1, 1, 0) ¢ 0. 
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Furthermore,  since i = 1 < p  = 3, we are in Case (i). Using Lemma 2.1, we 
find that 

P1 = AoA1 = A ,  = 

Step 2. 

Therefore,  

For x ~ R 2, 

V f ( P I x ) P I = V f  X 1  - -  

\ -x21 

_ ! ]  = (0, 2x2). 

Vf(Paez)PI = (0, 2) ~ 0, 

where e2 e E2. Furthermore, since i = 2 < p,.we are in Case (i) again, and so 
we find that 

A2 [10] P2 = P1A2 = - -  • 

Step 3. 

I - t ' 1  

Vf(PzO)Pa=Vf(Pal)P2 = (1, 1, 0)l - i }  

Therefore,  we are in Case (iii) and 

d 

The finite point set {0}wEp-i+l is {0, 1} and 

=0 .  

Example 2.2. Now consider the faithfully convex function 

g(x) = - x l - x 2 + x ~ ,  

and suppose that we wish to find 

D e ~ D r = Dg ~ ~ 

where f is the function in the previous example. 
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Initialization. Set 

Step i. Since 

,0AoL i l  

p = 1, Vg(x)= ( - 1 ,  - ! ,  2x3), 

we see that {0} u E i  = {0, 1} and that 

Vg(eoO)eo = v g ( p o l ) P o  = 0. 

Therefore ,  we are in Case (iii) and 

D r  ~ D e  = Y~ (Po)  = - 

) 
R3: d c R I .  

The author has implemented the above algorithm on the I B M / 3 7 0  at 
McGill University. 
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