SHADOW PRICES FOR AN UNSTABLE CONVEX PROGRAM

Henry Wolkowicz

ABSTRACT. We find shadow prices or marginsl values for the convex
program
winimize f(x) subject to -ranu s 0, keP = {1,,..,m)

when no constraint qualification holds at the optimum point. Some of
these multipliers must then have an 'infinite' value.

1. Introduction.

Consider the convex programming problem

minimize f£(x)

subject to
® «
g (x) s 0, keP = {1,...,m}

x<R® »

vhere the functions m.ur“un + R. are convex. (P) may represent the

problem of maximizing the profit of an industrial plant where: the variable
x = Anuv represents the amounts of the j products produced; the
negative of the objective function f 1s the dollars of return; and the
noannnpncna wr l rr | vr nmvnono=n4n=o nnvnnnuuooomnro.unnnno. r«r

resource with amount vr available.

If x solves (P) and a suitable constraint ncbwpmno-nwnn holds
at x, then it is well-known that there exists an optimal Kuhn-Tucker
multiplier vector A = Avrvmu1 such that »x 20, »rnrﬁuv =0, and x is
the global minimum of the Lagrangian

F(y) = £(y) + M,x%@ ,

see e.g. [7], If

v(e) = inf{f(y): g(y) s e}

is the perturbation function, see e.g. [7], where g(y) = Anwaquv

UTILITAS MATHEMATICA Vol. 18 (1980), pp. 119-139.




and e = Anrv are vectors in ul. then the Kuhn-Tucker multipliers

represent sensitivity coefficients or shadow prices and
v(e) - v(0) 2 - M_m Ne, -

This means that we can obtain a lower bound on the marginal rate of
decrease in the optimal value of the objective function when the amount
of the resources available changes, i.e., program (P) 1s stable. For

th resource can be purchased

example, if an additional amount of some k
for y dollars per unit, then this purchase is not economical 1if
y > »r. i.e. if the marginal return from the optimal allocation of an

additional unit of the rnr regource is less than its marginal cost.

However, an optimal multiplier vector may not exist, see e.g. (2],
(3], [4]. This 'is equivalent to the fact that the marginal rate of
decrease in the optimal value of the objective function with respect
to an increase in all the resources available is - =, 1.e. program (P)
is unstable, see [7]. This means that it is economical to purchase 'small'
additional amounts of all the resources, no matter the cost. But, it may
be inconvenient or even impossible to purchase additional amounts of all

the resources.

The purpose of this paper is to isolate the set of 'vital' resources,
i.e. the resources which lead to an infinite marginal increase in the
dollars of return. We will see that purchasing additional amounts of just
one resource is usually sufficient. We will also obtain finite shadow
prices for the 'monvital' resources.

Section 2 gives several definitions and preliminary results, while
Section 3 presents various optimality and regularity criteria for (P). The
main regult then appears in Section 4,

2., Preliminaries.
For the convex program (P), we assume that the feasible set
F= {x wraxv S 0, for all keP)

is nonempty. The set of binding (active) constraints at xeF is

P(x) = {keP: wwAuv = 0} .
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An important subset of P independent of x 1is the equality set, see
e.g. [1],

P ={keP: nraxv =0, for all xeF} .
We then denote

Pi(x) = P(x)\P" .

Following [2], we denote the relations

"relation" ig "=", "<", MM MM op wym
and set

"rel nw. " -
D ation (x) = {d: there exists a > 0 with g(x+ad)

8
"relation" g(x), for all 0 <a < a} .

For simplicity of notation we let

", ” L1} "
crnoaun»on (x) =D Mopwn»os (x)
g
and
"relation"” " "
un (x) = n uwnouwnuou (x), for QcP ,

keQ

Note that, see e.g. [2],

= <
conv unauv c Ubev R

where conv denotes convex hull;

(2.1) D (X)) nD°. (x) $9;
Hl vAAsv x

and, see [5],

A~.~v ownauv l uwlev Aw=aao»uno=<muv.

n
For a convex function g:R" + R u {»} , the directional derivative of g
at x in the direction d 1s defined as

Vg(x;d) = 1im BOHED) - g0
: t+0 t
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1f g(x) 1s finite, then the directional derivative exists in all
directions d, although it may be plus or minus infinity. A vector
4cR” 15 said to be a asubgradient of g at x 1if

g(z) = g(x) + ¢(z-x), for all zeR" .

The set of all subgradients of g at x 1is then called the subdifferential
of g at x and is denoted 23g(x). If g is differentiable at x,
then

3g(x) = {vg(x)}; vg(x;d) = vg(x)d ,

where Vg(x) 1s the gradient of g at x and, for two vectors u and
v in w:. :t denotes the dot product. In general, if x is in the
interior of dom(g) (the domain of g, 1i.e. the set of points where g
is finite), nrnd 3g(x) 18 a nonempty compact convex set and

(2.3) Vg(x;d) = max{¢d: ¢edg(x)} .
If M 1s a set in R", then the nonnegative polar of M is
M - Aonw=“¢l 20, for all meM} .

Note that

n++ = cone C ,

2.4) oot - nt 4 N

where M and N are closed convex comes, °* denotes closure while
cone C 1is the convex cone generated by C. Some useful properties of
a convex function h:R" -+ R are:

(2.5) Di(x) v DL(x) u D, () = &";
(2.6) CYSMER WO

(2.7) D(x) = {d: Wh(x;d) 2 0} ;
(2.8) Di(x) = {d: h(x;d) < 0} ;

(2.9) uﬂmuv+ - cone 3h(x) , when cﬁuraxv .
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For these and other related results, see e.g. {21, [31, [9].

For every subset R of P(x), the lineariaing cone at xeF with
respect to Q {is

(2.10)  Co(x) = {d: ¢4 5 0, for all ¢ € 3g°(x) and all keql.

By (2.3), we see that
(2.11) naﬁnv = {d: <wrau"av s 0, for all ken} .

The cone of subgradients at x 1is

(2.12) uoaxv = ”o" ¢ = M »ror s, for some »r 20 and ornvwrﬁuvv .

kefd

The linearizing cone and the cone of subgradients have the following dual
property, see e.g. [13),

(2.13) ™ = - nw?v .

Bg

Following [13], we introduce the set of 'badly behaved' constraints
at xeF,

(2.14) P = keP™: () 0 Cprey IV COM)

These are the constraints that create vnovwm:u in the Kuhn-Tucker theory.
It was shown in {13] that

vauv =@ and uvnsvauv is closed

is a weakest comgtraint qualification at x. We now let

(2.15) Pex) = (keP"s D(x) 0 B(x) n Cppy () % 9) .

We will see that ﬁwnuv corresponds exactly to the set of *vital'
resources at x 1f x solves (P), i.e. an increment in the rnr

resource, wnﬁwav. leads to an infinite marginal decrease in the optimal
value of the objective function.
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3. Optimality Conditions.

In this section we present several optimality conditions which
hold under different constraint qualifications as well as some which
hold without any constraint A:tw»m»nnn»os. We also present a
characterization of regularity of (P) and find a 'bad' direction in
the case that (P) is not regular.

Recall that: (i) Slater's condition holds if there exists £ such
that

(3.1) g5(%) <0, for all keP ,

and (i1) x 41s a Kuhn-Tucker point if

(3.2 . HOWES SINCRLE

We call program (P) regular if (3.2) characterizes optimality of x.
Note that (3.2) is alwyas sufficient for optimality but necessity may
fail in the absence of a suitable constraint qualification, see e.g.
[2], (3], [41.

PROPOSITION 3.1. (e.g. Zoutendijk [14]). Suppose that Slater's condition
holds for (P). Then xeF sgolves (P) if and only if

< < .
Umanv n uvaxvnxu =g .

PROPOSITION 3.2. Suppose that (P) is regular, i.e. the optimal point
i8 a Kuhn-Tucker point. Then xeF solves (P) <if and only if

<
(3.3 UmAxv n nvﬁuVAav =9 .

Proof. 1f xeF is not optimal, then there exists yeF such that
f(y) < £f(x). This implies that

<
y-xc¢€ umﬁuv n nvAuVAxv .

Conversely, 1f xeF 1s optimal, then by hypothesis there exists

¢ € 3f(x) n~- wvnuvauv .
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Therefore, by (2.13), (2.3), (2.4),and (2.7), we get that

+ + 2
nvanAxv - wvAnVAxv c {¢) < UmAuv .

PROPOSITION 3.3. ({1], (2], [3)). x<F solves (P) if and only if
(3.4) Di(x) ND° (X)) nD (x) = ¢
£ P (x) P
if and only if
@ 0 (B, 0 +D (0 e
P (x) P

COROLLARY 3.1. ([13]). xeF solves (P) <if and only if

(3.5 G 0 (B () +07 0D 49
‘.

COROLLARY 3.2. xeF solves (P) if and only if
(3.6) D(x) n Chin 0 0 cm.Auv -0 .
Proof. Since nvﬁxvasv =C_. nc laxv. and uwnnuv cC (0,

P (x) P P

we get that

<

< - <
uhAuv n nvAxVAuv n uvlauv - umaxv n nv ™

(x) a D (%) .
P

Suppose that (3.6) fails. Then there exists

deD(x)nC . (0nD _(x).

P (x) P

By (2.1) we can find

(3.7) ded’, 0 aD _ .
P (x) P
Let

d = M4+ (1-NDd, for 0SAs1 .,




ded® ) ¢ int C (x)
Row, since nva?vauv is convex, mnchnqu vAAuv

and (see (2.2)) D is convex, we conclude that
‘.

< < nD _(x),
QV € UMANV n Uﬁhﬁ“v vl

is not
for A > 0 sufficiently small, By the above proposition, x

optimal. This argument is reversable. 0
Recall that
(3.8) v.n;uv = {keP": um?v n 5”9& n nvanvauv ¢ 91,

Let the set 0 satisfy

(3.9) | P cacr,

We will now see that P may be replaced by 0 .
PROPOSITION 3.4. xeF solves (P) 1if and only if
(3.10) Dg(x) n Chy (¥ 7 Dy(x) = 9 .

mwﬁh\. It ie .‘NM&.ﬁ“D—-ﬂ to show that AW-H.OV is ﬂﬁ——&.cﬂﬂﬂ-—ﬂ to AU-OV.
That AUoﬁg su.a.ﬂﬂ AW.OV i8 clear, To prove the converse, suppose that

d € Dg(x) n Cp s (¥ 0 D)
By (3.8) and (3.9), we get that
s
de UM?V n nvauvauv n uvlﬁuv .

But now (2.2) yields a contradiction. 0

COROLLARY 3.3, xeF golves (P) if and only if

) <
umca M Cppyy(®) N D(x) = 9 .
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Proof, The proof is identical to the one above,
also shows that

Ch(x)(®) 0 D2(x) = ¢

Note that thig argument

<
Pex) %) 2 Dg

is a convex set, 0

COROLLARY 3.4, Suppose that vwcc 0. Then xeF golveg (P) if and
only if

<
vac n nvaxvaxv =0 .

COROLLARY 3.5. [13). Suppose that both conv D (x) and “Bpy (O + D7 (0)*
are closed. Thenm xcF solves (p) if and only if

(3.11) ) n (-Bp () + oY e,

Proof. By the ucvo<»n¢w:|=:vén§ Theoren (6],

(3.10) holds if and only
if there existg wpncmaxv.v and Y,

€Cpy M 0 D, such thae

(3.12) nt+ Y2 =0, not both ¢ .

Now if 0c3f(x), then X 18 a minimum for f over z:. X solves (P),

and (3.11) clearly holds. Otherwise, if o*wm?c. then by (2.9)
umaxv+ = - cone 3f(x) .
Furthermore, by (2.4) and (2.13) and the hypothesis,

Croo® 0 030" = B, ) 4 It

The result now follows from (3.12), ]

The following regult characterizes regularity of (P) at an optimum,

PROPOSITION 3.5, Suppose that B

P(x) (x) is8 eloged and xeF solves (p).
Then the following gre equivalent

.
v

(3.13) X 138 a Kuhn-Tucker Point;

(3.14) Sy (@ < D) ;




(3.15) ) =9 .

Proof. That (3.13) implies (3.14) follows from Proposition 3.2. The
converse follows by (2.6) and since

2, + +
GNA%V < OﬂANv (x) = IHVA#V (x) »

.by (2.13). That (3.14) implies (3.15) follows from the

definition of wwAuv. It remains to show that (3.15) implies (3.14).
Suppose that (3.15) holds, but (3.14) fails. But then, by (3.8) and (2.2),

< -
‘ * Q‘A“v Alv n —vnﬁﬂv < U‘IANV .
This contradicts Proposition 3.4.° 0

Note that by Proposition 3.2 and the definition of wwﬁxv. we get
that

1wﬁnv # # = (P) 1is not regular.

However the converse is not necessarily true (when wvauvauv is not
closed) .

Example u.~.+ Consider the program

min £(y) =y,

subject to
uaa<v = sup{¢y: ¢¢K}
Cyer?
where
3 2 2
Ke (¢ = Aowvnu t ¢, =0 and Aonuuv + 4, -150).
Then

x = (0,0,0)
solves (P), mwaov =@ but (P) is not regular. Note that
uvonaov = cone K 1is not closed.

The following rather technical result shows that when vwnuv ¢,
then we can find a ‘bad' direction. This direction will yield the
infinite marginal rate of change of the optimal value of (P) ‘with

+ This example is due to Prof. J. M. Borwein.
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respect to an increase in the right-hand side of the rnr constraint,

_a_vwcc.

PROPOSITION 3.6. Suppose that xeF solves (P) and mwasv + 9. Then

(3.16) v Dg(x) 0 Dr(x) n Cp o (x) 0 awx VE 9.
keP3(x) x

Proof. Suppose that (3.16) fails. Then

(3.17) U D A B 0 Cp(@ € v DI .
rmvaxv ' uvaaxv

We will now show that vwaxv = @ and thus contradict the hypothesis. We
will do this by constructing a program (P) for which x 1is optimal
and which has the same differential properties as (P).

Let
k k
(3.18) h7(y) = sup{e(y-x): ¢edg (x)} .
Then
(3.18a) R = 285 .

For, suppose oﬁvwrﬁxv. Since uwrauv is convex and compact, the
hyperplane separation theorem implies that we can find deR" such that

¢d > sup{yd: enunranVV .
Let y = d+x, Then
¢(y-x) = ¢d
> gup{vd: emuwrauvu

= sup{¥(y-x): en»wwﬁva
rrawv - rrﬁxv. since vrAxv =0,

This implies that okvrxﬁxv. Conversely, suppose that onvwrﬁuv. Then,
for all wmw= .
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Y

t
(y-x) < sup{¥(y-x): veag“(x))

= v¥(y) - %0 .
And thus omwvauv. This proves (3.18a). Now consider the convex program

min f(y)

subject to )
P
® wrﬁ%v <0, ernxv/wwAnv
() s 0, keP2(x) .

First, let us show that

(3.19) x 1is optimal for (P) .
Suppose that yeF, the feasible set of (P). Then

mrauu £ 0, for all xnvauv/mwauv ’
and

0 = g5(x) = g5(y), for all rmnwaxv c?P™ .
Thus, for all rnvauv.

0= <ar?¥-5
= gup{$(y-x) ¢ onuwrﬁuvw

- rrawv .
Therefore ye¢F, 1i.e.,
(3.20) FcPF,
where F denotes the feasible set of (P). (We let . refer to problem

(P), e.g. P denotes the equality set of (P).) If v = f(x) 1is the

optimal value of (P), then (3.20) implies that

(3.21) vsv,

By convexity of the feasible sets and the objective function f, we see

that to prove (3.19) it 1s sufficient to show that equality holds in
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(3.21). Suppose not. Then there exists x ¢ F\F such that
£(x) < f(x). Let

Then
de _.MS .

-~

<wrﬁuumv £ 0, for all xnvalv/wwav R
and
w*(x;d) s 0, for all keP(x) .
Thus, by (3.18a) we have .that
nwauvauv - nﬂﬁuvang
and so0
<
¢ Dy " Cpey ™ -
Now Corollary 3.3 implies that
deDi(x) nCp, . ( D (x), f keP?
d e De(x) n P(x) x) n . x), for some ke mAxv .
But by (3.17) there then exists unvAAxv such that

@nbwauv .

This contradicts the feasibility of x and proves that equality holds in
(3.21). Therefore x is optimal for (P).

By (3.18), the functions vr. rmmwﬁxv. have the nice property
that

(3.22) D7, (x) = {der™: Wh*(x;a) = 0} .
h

Furthermore, since F c F and nwaxvaxv - nvAuVAuv. wve get that

P e ad Ihto < P .

Therefore, by (3.22), we see that
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NMQV -9 .
Now by Corollary 3.4, we see that

<
GMANV n OWANVA!V -9 .

But since nwauvaxv = nvaxvauv. we now conclude, by the definition of

vauy. vwanv = § which yields the desired contradiction. ]

4. Identifying -<mmn~. Resources.

Suppose that x solves (P). We will now ghow that the set of
‘vital' resources of (P) corresponds to the set uwauu. i.e., an
increment in the rnr resource, ranAxv leads to an 'infinite'
marginal rate of decrease in the optimal value of the objective function.
(Recall that v(e) 1is the optimal value of the objective function with
respect to the perturbation e of the right-hand side of the constraints.)

THEOREM 4.1. Suppose that x solvee (P). Let e = Anpvnwl satisfy

o .. ”p if :&3 .

a, 2 0 otherwise.

Then, when PR(x) # 9,
(4.2) W(0se) = - = .,

Proof. Suppose that 1ﬂauv % §. By Proposition 3.6, there exists

4.3 de v Dy A D) a Cpy(x) 0 uwAE () .
’ rmmwaxv
Let

Uy = ”rAmWAuv" amuﬂauv v. -
Then, by (4.3), .
(4.4) <erx"nv = 0, for all keU

“ »
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while
(4.5) VE(x;d) = g<0 .,
Suppose a + 0. Then (4.4) implies that
nrAu+n=nv
0 <« a + 0, for all rncn R

i.e.,

k
0<«<g Au+n=nv < a=w= -c for all wacu .

where ua + 0. By convexity and d € vﬂﬁxvv we get that

0 =g < uwﬁu+auv < wrﬁu+n=av Se

monuwp rmcn n:nomem a . uwaa.uunnanvn.nomnznnMOBOm vaxv.

we now conclude that, for sufficiently large n,

urax+e=mv See for all keP .

'_'

Therefore

<An=mv - v(0) mﬁx+n=av - £ (x)

s < c s for gufficiently large n ,
n n .
2%3..3 - £ (x)
naws
> —m »
by (4.5) and since w: +0 ., 1]

.Note that we do not need to increment all the resources indexed by
Vw?&. Indeed, once a d is found which satisfies (4.3), then we need
only increment the resources indexed by :n. In fact, usually ca will
consist of only one element (after discarding redundant conatraints).

The next result provides lower bounds for the marginal rate of

change of the optimal value of (P) with respect to an increment in the
Kth resovrce, k{P",
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THEOREM 4.2. Suppose that x solves (P). Using Corollary 3.1, choose
A*R® an optimal multiplier vector for (P), i.e. A* = Cmv.

20, ¢ ¥, and r.wm a2 e Bpyy(X) #0lves (3.5). Then
¢ P(x)
(4.6) Vv(0;e) 2 -~ A%e ,

where the perturbation vector e = ?»vmwn with e, <0 for all 1eP

Proof. Corollary 3.1 implies that there exists an optimal multiplier
vector A*eR™ such that A*g(x) = 0 and

4.7 £(y) 2 £(x) - r*g(y)

for all yex + ullanv =x 4+ uwuﬁnv. by (3.10). Therefore, (4.7) holds
P

for all y such that nrQu S0 for all keP .

Let
Z = {zeR™: g(y) s z, for some wnusu .

Then, for each z = Auwv € Z with z, < 0 for all 1eP, (4.7)
implies .
£(y) 2 £(x) + (~A*)z, for all y such that g(y) s z.

Taking the infimum on the left-hand side and noting that £(x) = v(0) and
v(z) = » 1f z{z, ylelds

v(x) - v(0) 2 -A*z ,

for all z = (z,) with z SO for all 1eP". This implies (4.6). O

Remark 4.1. One can replace vm?v with uwg in Proposition 3.4.
Thus, if

+ +

: < <
(4.8) ) cv?v?& n un?o = lwznv?o + cb?o .
ve can replace umﬁ.uv with cm?& in (3.11) of Corollary 3.5 and use this
modified form of Corollary 3.5 (instead of Corollary 3.1) in the above
theorem to obtain lower bounds for the marginal rate of change of the

optimal value of (P) with respect to an increment in the rnr resource,
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k¢ Q 1.e., 1f A* is the optimal multiplier vector for (P) obtained
using the modified Corollary 3.5, then

(4.9) yv(0;e) 2 -A%e ,

where e < 0 for all 1 € 2. Note that this result is not true in

general, if (4.8) fails,

Ezample 4.1. Suppose that

f(x) = Xy wpco - xw + uw - 2; mn?v --x + 2

N. Then x = A\M.e is the only feasible point of
(P) and thus is optimal with optimal value f(x) = v(0) = 0. Moreover,
P(x) =P = 1,2}, while Hwﬁxv = {1} since

d = (0,-1) € D(x) 0 DJ(x) 0 Cp ) (x). Note that 2 4 Po(x) since g’

is affine. Now let us comsider the perturbation direction

with x = Auwv in R

e = (0,1) .

Then, for t >0 ,

v(te) = 1nf{f(y): mp@v 50, m~€ <t}

uu\nn?\m..nvnul\nxmnnnn
and .

Vv(0;e) = 1lim v(te) - v(0)
t40 t

‘“ 2
-2t -t -0_

t+0 t

Thus e »u. an unstable perturbation even though e s 0 for all 1 ¢ Q,
with Q = _uch. In addition, Theorem 4.1 implies 9v(0;(1,0)) = - «,

Thus both marginal values are infinite. Note that (4.8) fails to hold.

Example 4.2, Suppose that

N.fxncnu

- H H -
£(x) % + x, + X35 8 (x) x) 2

2 3 4
w?&lunw...w"m?&||x~+rm9cluxu.
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with x = Au»v in ww. Then the feasible set

F= {x: x, -1, x, * 1, x,2 0}

while x = (1,1,0) 1is the optimal solution with optimal value
£(x) = v(0) = 0. Moreover, P(x) = P~ = (1,2,3,4} and Pi(x) = {1}.

We set

2= Poee)
Then umauv = {d: d = An = 0}; Umﬁxv - =mAxv v cmAxv = {d: au + nu < 0};
nvASVAuv = (d: mw - mw = 0}, nu 2 0);

<+ + s, \+
ﬂvnxvauv n Unauv = {d: nw 20} = nwauvauv + Aunﬁxvv .

Thus (4.7) holds. The modified Corollary 3.5 yields the system

-1 1 0 0
(4.9) 1) +axf2) +2a%f 0] +25[-1L }J + 2% O
1 1\2 2\ o \o N\

e {d: nw - an s 0, nu =0} .

A solution must satisfy
- 1: - -2 * - A% .
wM 1; »m yw 2; 1+ N»H ww <0
One particular solution is
A* = (0,0,2,1) .

From Theorem 4.1, we get that

¥v(0;(1,0,0,0)) = -= ,

i.e., the marginal value for the firat comstrsint is infinite. However,
Remark 4.1 gives
vv(0,¢0,1,0,0)) 20 ;
(4.10) 9v(0,(0,0,1,0)) 2 -2;
¥v(0,(0,0,0,1)) 2 -1,
Thus we have marginal values for all constraints. Note that these are

the best values obtainable, since they are the smallest nonnegative values
which solve (4.9). In fact, equality holds in (4.10).
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In summary, if a constraint qualification holds for (P) and
Ak = A»ﬂv is a Kuhn-Tucker multiplier vector (obtained using (3.2)), then
it 18 well-known that

(5.1) Vv(0;e) 2 =i%e

for all perturbation directions e = Anrv. If e 1is the Rnr unit
vector, this shows that »ﬂ is a marginal value for the constraint wr.
In the absence of a constraint qualification, we can obtain an optimal
multiplier vector J* using Corollary 3.1. Then (5.1) still holds 1if

the perturbation direction e satisfies e nxc for waw ke P . Thus

A} 1s a marginal value for each constraint g, k ¢ P. If (4.7) holds

for some set 1 satisfying (3.9) and an optimal multiplier vector A%

is obtained using Corollary (3.5) (with umaxv replacing cmAuv in (3.11)),
then again (5.1) holds but now we only need e S0 for all k ¢ 1. Thus

the »w are marginal values for each constraint wr. k ¢ 2. Finally, 1if

k € Vwcc. then the rz— marginal value (assuming that the constraint

nr is not redundant at the optimum point) is infinite.
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