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Convex Programs with Equivaleat Duals

Henry Wolkowicz

Department of Mathematics
The Uaiversity of Alberta
Edmonton, Alberta, T66 26)

In this paper we study some recemt duality results for the comvex programming

problen. We consider both the case of the ordimary coavex program (P ), which
consists in minimizing s convex objective function subject to a finite number
of convex imequality comstraints, and the case of the abstract convex program
(P) , which has & come constraint. Unlike usus) duslity results, e.g. {8}, [9] ,
the results presented here do mot require that the comstraints satisfy a
regularity condition or comstraint qualification. Ia addition, we point out
the differences that srise between the ordinary convex program, the abstract
coavex program, and the preseace or absence of a no:u:i_Ln qualification.
A genoral charscterization of optimslity and s duality result, which cover all
the mentioned cases, are givea by (12) and the program (D) below. Several
examples are included .

Duality results have proven extremely useful in msthematical programming,

both computationslly snd theoretically. Many computational procedures begin

‘by transforming the comvex program into its dual programn. In addition, the

solution of the dual provides information for sensitivity analysis and has an
oconomic interpretstion ss marginal values or shadow prices. The reader is
referred to (2], [8), [9] for more details.

Let us first consider the ordinary convex progras

) ¥ = Inf p(x) subject to ¢X(x) 50, k=1,...,n,
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wherc p: X + R is a differentiable convex functional om the vector space X ,

whilc -.." X+R,k=1,...,m are smalytic convex functionals on X . If

we let the vector function

() - A,,Ev

and

]
m-.o N

he the nonnegative orthant in Y « K* s then we can rewrite avo- in the form

of the abstract convex program

m » = inf p(x) subject to g(x) ¢ -S ,

k

where, by the convexity of the constraints g , it is easy to see that g is

S-convex , f.e., for x,ye X

(1)} te(x) ¢+ (1-t)gly) - g(tx+(l-t)y) ¢ 8 , foraesll 0<sts1.,

Thus, the abstract convex program (P) genersiizes the ordinary comvex program

(Pg) . We now lct S be amy comvex cone in R°, i.e.

(2) S+4ScS;28c8, for a1l A20 ,

and we lct g be any S-convex fumction which is also weakly snalytic, i.e.
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#¢ has a Taylor series, for all ¢ in R* .
whers ¢g is the dot product of ¢ and g in ™. e let

mo-:a-l" ¢s 20, forall s ¢S)

bo the gative dual (apolar) come of S .

.
§=§

Figure 1. The apolar come of the cone S

Note that if S 1s a closed convex cons, then g is S-convex if and
only if the functions ¢g are convex for all ¢ ¢ s . This follows from the

fact that
S=§5  , for all closed convex cones S .

This implies that if S is s polyhedral cone, i.e.

t
m- =.m. ne-.aelo o— i a",

i=1
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then the abstract program (P) reduces to the ordinary convex program but with

the t convex constraints o—n y 1ot

If somc constraintqualification is satisfied for (P) , e.g. if Slater's

—

condition holds for (P): "there is some m in X for which

3 gli) ¢ -int S ™,

where int dcmotes interfor, thea we get the following characterizatiom of
optimality and dusl progrem of (P) (), 9}

x* (feasible) is optimal for (1)
(0)] if and omly if

w = inflp(x) » Ag(x): xecX), for some AecS' with Ag(x*) =0,

and

) "= sup inf p(x) * Ag(x) .
eSS  xeX

Thus the dual programs of () ond ?eu are essentially the same when Slater's
condition is satisfied. Note that if § is polyhedral, then §° 1is slso

polyhedval (with $* o R if sen]) . .

Duality results such as the sbove can be used as a basis for solving (P).

For example, Lf we define the dusl fumctional

) = ...un P(x) + A p(x)
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then (P) is equivalemt to

¥ = sup #(A)) subject to e S' .

1f the gradient of ¢ is available, then :—o- con be calculated. The complexity
of the probles now depends on how well we can describe ', we L:_ see below
that in the case whes no constraint qualification holds for (P) . then the
definition of the dusl functional ¢ includes the sdded restriction

X efcX, while the multipliors A are (in certain cases) restricted to a

-..-.-.nouo Aunuo 28" .

Example 1. (9] (Optimal Comtrol) Coasider a dynamic system evolving in time
and governod by the set of differential equations

) x(t) = Alt)x(t) ¢ b(t)u(t) :

where x(t) is am mxl state vector , £(t) is the corresponding vector of
derivatives, A(t) 1is sm mxm wmatrix, .b(t) is an ax]l distribution matrix ,
and u(t) 1is a scalar coatrol in -.~_no.n__ + the space of square (lLebesgue)
integrable functions on the intervasl —ne.n._. Given the initial state x(tg)
we seek the comtrol uy ninimizing

t
J(u) .& wya
e




while satisfying the terminal inequalities

(6) x(ty)) 2c,

where ¢ Js a fixed mx]l vector and ty 2, is fixed. This problem might
represent the selection of a thrust program for a rocket which has imitial
altitude and velocity x(tg) and which must exceed certaia altitude sad velocity
timits by the given time n- - The vector x(t) then represents the altitude
and velocity at time t while wu(t) is the scceleration force snd J(u) is
the cnergy cxpended. We can write the solution to (5) in the form

. t

: 1
x(t)) = ot tx(ty) ¢ —. #(t,.t db(t)u(t)dt
()

where ¢ (s the fundamental solutiom matrix of the corresponding homogeneous
cquation. We assumo o?_.z and b(t) to be continuous. The comstraint
(G) can be expressed as g(u) ¢ -5 , where

t

) g(w) = c - x(ty) = ¢ - 2"_3.7?% - — o:-.n b (tlu(t)de
t
(]

»
and S=R

with uc¢ X = _.N_na.n._ . Let us assume that Slater's condition holds,

. Thus, if we set p(u) = J(u) , we have a convex program (P)
f.e. there exists a control G in X such that the components of the vector
R(i) in (7) arc all strictly less that 0 . (in exsmple 3 below, Slater's
condition falls and S is not polyhedral.) Then the duality result yields

we sup inf p(u) ¢« Ag(u)
le nuﬂvo ueX

t
1y

T T 208 - aee,un(e)u()de o Me- oGt tx(ty) .

Ae(a)20 uex e

The imner uncomstrained minimizstionproblem cam be solved for fixed A, by

[}
differentistion, to yield

ug(t) = Ag¥(e, . t)b(e).

Substituting for u , we seo that the duality result has reduced the optimal
control problem to the simple finite dimensional maximization problem

»esup AMA' e
A20

whers ' demotes transpose,

t
1

Q= 3| e b 00 (e, 06
*o

dec- o?-.neuuanou .

When no constraiat qualification holds for the ordinary convex program

:..u » wo have the following characterizatiom of optimality (1), (3]}, [4]
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‘
x* (feasible) is optima) for nvou
if and omly i€
® x «\*
p(x*) + e (x*) « . D
E.W.vn. n rer” &
for some -r 20 ,
\
where

..” - n.ur.x- = {d: there exists a>0 with g5(xead) = nr x) ,
1

for all 0 <a <a)

is the cone of directions of constancy of -w

P=1(1,...,m} ,

Pix) = (keP: g%(x) = 0)

is the set of binding fctive) constraints st x and

P" o« (keP: nwanu = 0, for ell feasible x)

is the set.of equality constraints. Note that e.-. - enc; is a subspace
independent of x if b is an analytic comvex function, e.g8. [3]. The
following equivalent characterizations of optimality were derived in {n},
1) : _
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x*  (feasible) is optieal for (P )

if and only if

*
p(x*) + g(x*) ¢f n _-r » for some

keP

L]
»a-o

with Ag(x*) =0 ,
if and only if

Vp(x*) + Vig(x*) ¢ SUQ , for some

Me o], with 2g(x®) = 0

where h = rmwu ..rnr and o, 2 0 are amy monnegstive scalars with a,>o
if uw is pot affime. This ylelds the following charscterization of optimality

and dual program of *) '

x* (feasible) is optimal for :.ou

if and omly if
9

u = inflp(x) ¢ \g(x): x et nxo e.-.— , for some

"
»n-o

with Mg(x*) = 0 ,
and (where x is sny feasible point of ®,)

() we sup inf p(x) ¢+ Ag(x) , Q=X+ D .
o »nu-w xell h
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We will now sece that the program (P) has sm equivalent characterization
of optimality as in (9) and an equivalent dual to 3..- . First we need some

pretiminary wotions. K is s face of § {f

%y in S, x+y in K implies x,y in K.

Ry m—. we denote the minimal face of (P) [6), {10} , i.e. un is the smallest

face of S which contains -g(F) , where F demotes the feasible set of (P) .
We say that the face K is exposed if

XKe+5a 4 R

for some ¢ in S’ , where (4)* = (4)° n (-4)" 1is the hyperplane obtained by
taking the ort | complement of ¢ . Thus if sf is exposed, then

f

(10) sfesa ,

for some ¢ ¢S . llowever, even whon sf is not exposed, then [7)

. .
on sfe ntébitns,

for some orn Aamuo where, with oouelx_ for 1 =1,...,t ,

e (Saagnejn.oni) Lo csastael aet )t .

This result uses the fact that § is finite dimensional.
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3
Exasple 2. [6] Let u- denote the "ico-crean” cone in R

u- = {x = ?-.J.uu: X exy 20, Nu_uu-u“ 2 0)

and let S2 denote the convex cone generated by w— and the point (1,0,1).
Then the nontrivial faces of 5, are exactly the boundary rays and all the
faces are exposed. In fact, m- —nn..ouunon-::a.c..u—- -u t.;n..

make an angle of 45° or less with the vector 1 = (1,1,0) , i.e.

1
s | i 5

b Tl |

= Ix: jﬁ. 2}
?-ouwﬁuu .

Now suppose that K 1s the boundary ray generated by the nontrivial boundary
2
point x of m- . Then (see Pigure 2.) the vector ¢ = (2,2,0) - =n.=x is in
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X \l 2
2 z (1,1,0) \ 2 yymox, =0 XX, 2 xy ; X ¢2%20
~ (2,2,0) - 2 2 172 3 1
O ( ) Ak
7 - 1f and only if y = 8x,(1,0,0) + B(1,0,1) , i.e.
i Now ¢, = (0,0,1) s in K; and (as in (11))
45745° .
" u— - m~=o" n ow .
Figure 2

In m» » however, the ray through (1,0,0) , denoted n_ » is extreme but not
exposed and the smallest exposed face containing that ray is the convex come
generated by (1,0,0) and (1,0,1) (see Figure 3.)

K, = cone ((1,0,0) v (1,0,1)) .

Note that 4. = (0,1,00° s in S) , forif yes, , then, for some a,8 2 0
1 2 2

and u-c.—_ in m_ » Wo geot

Plgure 3

47 = 4fox ¢ 8(1,0,1)) s axy 20 . '

Furthermore
x* (feasibld is optimal
- 1 .
=808 - 1f and oaly if
2)
For if y = nx+8(1,0,1) for some a,0 20 and x in S, then y = (y;) 1s . u = inf(p(x) + Ag(x): x ¢

in ." nS, if and only if

for some 1 ¢ Aano with

Ag(x*) = 0 .

if and only 1f y 1is in —N.

! A characterization of optimality for (P) is ([7)
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tere W* = ow- » the - satisfy (11) and X s feasible. Moreover, in the case X
that .
L ]
a9 st ehHiesh
. £+ . —_—— = Y
then we can choose the multiplier A imn (12) tobe in 3 rather than (S) .
Thus when (13) holds and st 1s exposed, we get the equivalent conditions to Sf s
()
The dual program of (P) is (where X is any feasible point of (P))
(1,0,0)
t x
n Ve g Inf p(x) * Ag(x) , Q=X+ ah . ; .
™ rmﬁ. xe ’ kel B Figure 4

Example 3. Suppose that we consider the optimel control problem presented in o) 24 M 21 2, (1, (1) 2 ?u:v.:u .
Example L with m=3 ,tge0,¢t, =1, x5 (1,1,2), c= (4,1,1),

. As in Example 1, xn might be the velocity, % the altitude and Xy might
001 )
A(t) =000 » b(t) lﬁ.u and 8= L) the "ice-crean” cone in Example 2. be the acceleration of the rocket. The fundamental solution matrix '
000 0, Alt,,t)
: 0?-.3 -e 1 and therefore, by direct calculation,

The comstraint (6) is wow

1
:5.:-— u{t)dy , 0 ,0) ;

g(u) = ¢ - x(1) ¢ -8 [}
or equivalently, if x(t) = (x,(t)) , *

mn =5 n span ((1,0,0)} .

Moreover, it car be shown [6] that (13) holds and 5' = S . Now the vector
¢ =(0,1,0) in S exposes the face um , i.e, .p nS= mn and __ﬂn =X,
since ¢g is identically zero. Therefore the characterization of optimality

in (12) gives u* (feasible) is optimsl if and only if




0 = Vi(u*) + Vig(u*) = uv* - —-

with A = :_- €S and Ag(u*) =0 ,

i.e. if and only if u* 1is the constant nonmegative function —- and

_
:—n . ‘ =..;._3n=.._.r—u<—o-..u
]

ut = u(t) =2,

let us now susmarize the results in this paper. We have compared the dual
programs for the ordinary convex program nweu and the abstract convex program
(P) . This was donc in the presence and ahsence of constraint qualifications.
The general form for the dusl is given by the program (D) above. Let us point

out the differences that arise in the various situations that we have considered.

(1) I1f we consider (P) as given hy the ordimary convex program :.:. N
then S =S° is the nonnegative orthant in " (a polyhedral cone) and (13)
always holds. Thus we can choose -ﬂ in AS , 1.e. the multipliers 1 are
restricted to he > 0 . Moreover, every face of a polyhedral cone is exposed.
This implies that t =1 ., Finslly, if some comstraint qualificstion holds,
then 0 = X , i.e. the varisble x is uarestricted.

(1) If we consider (P) but with S polyhedral, then we have the ssme
situstion as in (i) above, but with the exception that the multipliers ) are
restricted to the dual cono (still polyhedral) st .

(iii) IFf relation (13) fails, then the sup is n-.ro.. with A restricted to

the 1arper cone .mm.o rather than S° .
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(iv) If the ninimal cone Sf 1is exposed, thea we have t = 1 . (This always
occurs if S is polyhedral or for cxsmple if S = m_ in Example 2).

(v) 1If some constraint qualification holds, thea we can restrict the
multipliers A to S’ snd Q=X . Thus (D) is equivalent to (D) in this
case.

In conclusiom, let us note that mamy of our assumptions can be relaxed.
First, we do mot need ¢g analytic for all ¢ ¢ ] , hut rather that owa be
analytic for k= 1,...,t , where the or satisfy (11). This guarantees that
the functions orn are faithfully convex , 1.6. they are affine on a linc seg-
wment only if they are affine on the whole line containing that segment. .._._.—m
then implies that the cone of directions of constancy e.r is a subspace inde-

¢e -
pendent of x in X . If X " , then we can calculate the cones D . 3] .

‘e
The assumption of differentisbility of the objective function p and the constraint
g can also be relaxed and, in particular, cam be replaced by continuity when the
or- , k=l,...,t asre faithfully convex. The optimality conditions are, in

this case, given using subdifferentials.




1Y)
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THE MATHEMATICS OF DEMOCRACY

Wayne Patterson
Professewr agrigé

Département de physique-mathématiques
Unfversité de Moncton

Moncton, N.-B., EIA 3E9

Résumé: Les Mathématiques de la Démocratie

Considérons un ensemble fini de cardinalité P , et une partition de
P dans M sous-ensembles. Choisissons de chaque sous-ensemble, de
cardinalité P, , W, @&léments (4 = 1,...,4) tels que la fonction

M N
FrE
est minimisée sujet & Ja contrainte ¢ LIRS N (D = distance.)

Ce probléme peut étre interprete dans une facon qui rend sa solution
bien plus intéressante que son contenu Intrinséque. Dans son application 3 1a
vie, elle peut 8tre exprimée:

“Comment peut un corps reprisentatif (comme le Parlement) diviser un
nosbre de membres fixe entre un nombre de juridictions, de q-me.. qu'un seul
représentant ne peut pas représenter les parties de deux juridictions, telles
que la population moyenne de chaque région (comme umecirconscription) est si
proche 3 la moyenne générale comme possible?”

Ce problime arrive, au Canada et aux Etats-Unis, avec chaque recensement
dicennal, lors de 1a redistribution des bornes &lectorales. Jusqu'd présent,

aucun essal & formuler le probléme mathématique associé s'est produit au Canada. .

Dans les Etats-Unis, une fonction appelée 1a "Methode des Proportions Egales®
est employee pour calculer la redistribution.

Notre prisentation démonstrera que la fonction utilisée aux Etats-Unis ne
winimise pas les inégualités entre les régions, et démonstrera aussi um

algorithme pour déterminer les valeurs minimales pour f .
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INTRODUCTION

More and more today, we see problems that humankind en-
counters, in whatever sphere of activity, being subjected to
various forms of systematic, i.e. mathematical, analysis.
There have been mathematics papers written on subjects as
diverse as the Fundy tides and the scheduling of pro football
games.

Many of these problem areas invade vhat is called "public
sector” activity; they ald in making decisions for the body
politic. However, it is interesting that a mathematical pro-
blem which is at the heart of the body politic has rarely been
discussed in mathematical terms, and, in the forum of politics,
not since 1941; and, the mathematical solution described then
is sadly lacking in the context of our present-day understan-

ding of the power of mathematics.

TUE_PROBLEM_(STATED NOM-MATHEMATICALLY)

Many countries are governed by a uoapuunnpg body that is
directly responsible to the people. That is, in such countries,
when an elector goes to the ballot box, he or she casts a vote
for a certain person, who, if elected, will sit in the legis-
lative body as a representative of that elector and all the
other electors of his or her district.

This system, called representative democracy, differs,

say, from a system of proportional representation, wherein, if
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36% of the people cast votes for party X or leader Y, then
that party or leader may select 36% of the representatives in
the legislative body.

Our problem arises in representative democratic systems,
where there is more than one level of govermment, and the
method of election to.the higher level respects the boundaries
of the lower. .

For example, in Canada we have the federal government and
ten provinces, and by the BNA Act and tradition no federal
member of parliament may represent parts of two provinces —
say, for example with a riding consisting of Awherst, N. S.,
and Sackville, N. B. .

The problem, which exists as well in the United States,
Australia, France, and West Germany, among others [4], is that
there is an {(integral) number of seats, W, in the national
legislature (X = 282 in Canada, N = 435 in the United
States) and an (integral) number from each province; but the
proportion of the total population in each province is unlikely
to give a partition of N into integral parts proportionally.

Furthermore, it has been established, judicially in the
United States and by tradition in Canada, that one person's
vote, from wherever in the country, should count equally with
that of anyone else — the tradition of one man, one vote;
which, thankfully today, can be restated as one person, one
vote.

Thus by this principle, it is necessary to create legis-

lative districts which are as equal in size as possible while



respecting the boundaries of the lower jurisdictions of govern-

ment (such as provinces or states).

THE PROBLEM (STATED MATHEMATICALLY)

Consider a finite set of P elements, and a partition of
P into M subsets. Select from sach subset of cardinality
Pis N; elements (i =1, ..., M) such that the function

N
is minimized subject to the constraint [ zp <N.
is]

Here P represents the total population of a country; vp ’

the population of the »n—. province; N, the total number of
representatives in the legislative body; and N; , the number

of rapresentatives from province 1. D is a distance function

weasuring the distance of the average representation (per per-
son) in a riding in province i from the national average re-
presontation (per person). P is the sum of these distances
for all states or provinces.

Otherwise stated, we have the following problem. How can
a representative body divide a fixed membership among a rumber
of jurisdictions, so that the average population in any repre-
sentative's district is as close to the average as possible,

that is, so that the function P is minimized?
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H1ISTORY

The author’s own curiosity was piqued earlier last year
when he discovered an article describing projections for the
1980 U, 8. census, and the effects that this census would be

likely to have on the state-by-state representation in Congress.

The Congress [1] decided in the 1920's to {ix the representa-

tion of the House of Representatives at 435. (The United
States Senate is fixed at 100, but does not follow the one-man-
one-vote principle, but rather, the one-state-two-vote princi-
ple.) A number of methods had been used to arrive at the re-
presentation, but in 1941 & wmethod called the Method of Major
Fractions was in use. It had been refined by a Professor
Willcox of the Cornell University Mathematics Department.

But in contention was a method called the Method of Equal
Proportions, proposed in the 1920's by a Professor Huntington
of the Harvard Mathematics Department, and also recommended by
the U. 8. National Science Foundation [3].

In 1941, the (friendly ?) academic debate between Harvard
and Cornell broke out into full-scale war in the halls of
Congress. 1t appeared that, using the 1940 Census and the
Harvard method, that one district more would be given to
Arkansas and taken away from Michigan, than would have been
the case with the Cornell wethod [6]).

All of the other 46 (at that time) states would have had
the same representation using either method.

There followed a fascinating debate stretching over




several months, and mostly involving — as one might imagine
— the Congressmen from Arkansas and Michigan.

One is treated to the remarkable spectacle of Arkansas
Congressmen arguing about the mathematical superiority of the
Harvard method, and similarly for Michigan and Cornell.
Finally, the veneer is stripped awvay and 1 quote this fascina-

ting passage [2]):

Senator Brown (of Michigan): MNr. President, I cannot
refrain mentioning now a subject which I know was a
potent force in the House of Representatives and is a
potent force in the Senate of the United States., That

is the politics of this situation. In the House of
Representatives one Republican voted for the apportionment
bill. In the House, outside of the State of Nichigan,
..., only three Democrats voted against the bill,

It was a strict party vote. What was the reason for that?
The reason was that Arkansas is considered to be a sure
Democratic State, ... and because Michigan is considered
to be a doubtful state. I wish to inguire into that si-~
tuation and analyze it briefly from a party standpoint,
and I want to appeal to the reasoning of my Democratic
colleagues in the Senate upon that subject.

ucn:n:a.—.:. because of the Rooseveltian Democratic majori-~

ty, Equal Proportions was adopted and is in effect today.

THE METHOD OF MAJOR FRACTIONS

The Method of Major Fractions, a refinement of the “"intui-
tive® solution, is the following: Assign to each state one
representative. This is constitutionally guaranteed. Por the
remaining 385, firat construct a sequence for each state, m» .

with population vp [
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1 1
m—. - AVh. .u.!..-.- w.—v&- eees L/(2N - 1) —vh. . |

50
Let 8= U 8;. Choose the 385 largest elements of S.
i=l

If mw has _.» of these largest elements, then, in all, state
u» will be allocated N, ¢ 1 representatives.

THE_METHOD OF EQUAL PROPORTIONS

The Method of Equal Proportions is similar, except that
the sequence 8{ = (P, 1//ZP, /AP, 1//3A P, ...,
/MR =1) Py vee} 1w usmed.

Throughout the literature of the day one reads [6] that
Equal Proportions was fairer because if two states exchanged a

representative after a census, the relative v.novounposu of the

state average populations per district would be closer to 1.

Theorem 1. Harvard was partly right.

Proof: If 8, gains a representative from mu under
EZqual Proportions, then at least one of the elements of mm
will now be in the "Top 385" at the expense of one of the
elements of nw . Suppose that S, goes from z» to Ry +1

and mu from Zu to ..ulu.

I will demonstrate only the case Py > vu (hence

Py o Ny
z»wzu.. and v.m.l.lq.nn.

)
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| A —zh + 1)
It is necessary to show that i Ea S is closer to

P! « (N, - 1)
P, * N i b
1 than is b i Y N '
Qr . Zu
Before the census is taken, the "cut-offs” are _-n and *

zu so that,

!p\jﬁ z»l v-.u\-j v‘n\ W7 D

1

b A I i

which leads to
N, ~ P, * N N, -
i i \_m..~ 1)
ml-.mullq > ﬂul»l_..l > }
g 30T 17 % 3™t
After the census, we have

!m \z.—.lﬂﬂ.lﬂlﬂ: > ‘m,‘\.ﬂﬂ-.-lulﬂm _l vww A

or

3N

N, vv..._.:.h.v:v
m»:-u - 1) P - .lu - 1)

as we wished to prove.

Pl « (N, 4+ 1)
Showing that b1 A

is bounded by 1 follows
P! « (N, -1
similarly. i 3 !

-N -

Theorem 2. HRarvard was mostly wrong.

Proof: The Method of Equal Proportions may, in fact,
worsen the proportions between all pairs of states. For exam-
ple, as long as P/M >> M (e.g. in the U. S. P/N & 500,000 ;
M w 50); then, let the states be ordered by population ave-
rages P,/M;, so that P,/N, 2 Py/Ny > ... 2 Pyy/Ngy .

Then a new census -.m such that

HMI‘».—.Il»

P{ N
will ensure that the ratios A ) will be further from 1
| 4 N
3 i

than their predecessors.

THE _CANADIAN CONTEXT :

Here in Canada we have not even achieved the sophistica-
n.ho.. of the Americans. In 1974, the Parliamentary Standing
Cowmittee on Privileges and Elections was presented with five
calculation methods for the redistribution of Parliament. They
were named, rather exotically [8] the Compensation Method,
Quebec Plus Four, Qualified Parity, Awplified, and Amalgam.
None of these methods, however, were more than variations on
the "intuitive method", except with different approaches for
keeping the minimum legislative guarantees in Canada of no
province having fewer Commons seats than Senate seats, and no

province having N> zu if v.. < mu .
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TUE SOLUTION LA ¢
B8
1
Since there are only finitely many choices for —z»-. in ' 4
fact with an upper bound of N™, tnen there must exist a set -m P —H.P :~-
- . - ]
“ -
of values —zm- which minimize F. . 1 Py ¥
The problem, as stated, is a straightforward problem in
Herein are listed the dynamic programming solutions to a
dynamic linear programming, with F to be optimized subject
[ nusber of redistribution problems for the Canadian House of
only to the constraint that I -.n = N. The solution algo-
iel Commons 3
rithm is described, for example, in [5S]. The following tables
nsus - L] £ 11
list a number of cases that have been tested using the dynamic Case § 1 1951 census 265 members of parliament
Case 1 ~ 264 wemb £ i t
programming algorithm DYNPR, written in the APL language, at we ¥ 2 1961 census ¢ ers of parliamen
Case 1971 - memb £ 14
the University of California (Riveraide). se 83 ’ census - 282 ers of parliament
4 197 ~ 282 memb £ ¥ nt
A word is necessary about the distance function, D. In Case § ’ a census ers of parliame

applying optimization techniques, some notion of "distance" Each case is divided into four subcases, the results with

from the average must be chosen. Some obvious candidates are: respect to each of the following distance functions:

TR :
Mooy w A -
BRI L a1 Py
N Ny un?
Ny N N N2 . b) Fpoa £ Pi(==- )
U.ﬂ . .vu- = .Wﬂ - w.- 1zl B, ¥
z, N _NK @ r =1 [-1
'h N - |W - : . c c® s = I—
bl P = G F 1=1 Py P
] N
. @ rye ..»_I». -t
One might also sum over the number of people in the coun- 1=1 Iy P

try rather than the number of jurisdictions; thus, for example,

we could have

M N Nt
PR R

F )
= i=1 -h P
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CASE § 3 CANADA - 1971 CENSUS - 282 MP's
PROVINCE POPULATION| ACTUAL r r ¥ r
CASE § 1 CANADA - 1951 CENSUS - 265 MP's SEATS (a) (b) {c) Ll
Newfoundland 522,104 7 7 7 7 6
PROVINCE POPULATION 2 LT LI . Prince Edward I, 111,641 4 4 ] 4 4
7 7 Nova Scotia 788,960 11 10 10 10 10
Newfoundland 361,416 7 _ New Brunswick 634,557 10 10 10 10 10
Prince Bdward I, 98,429 4 4 1 Quebec 6,027,764 75 77 n 78 70
Nova Scotia 642,504 12 12 12 ’ ontario 7,703,106 95 98 97 95 100 )
New Brunswick §15,697 10 10 10 Mani toba 988,247 14 S 13 12 13 12
Quebec 4,055,681 75 7 7 Saskatchewan 926,242 14 12 12 12 12
ontario 0,597,542 8 6 7 Alberta 1,627,874 21 21 21 21 21
British Columbial 2,184,621 28 28 28 28" 27
| D PR T el I I T
111 ¢3 L] [
NWT 34,807 2 1 1 1 1
Alberta 939,501 18 17 18 .
British columbia| 1,165,210 22 23 23 Total 21,568,311 | 282 . Bomaw , 200 282
.2095 x 10~
Yukon 9,096 1 ” ” ¥ (actual) .000175  .000117 20.7498
T 16,004 1 2.47820 x 10~*
Total 14,009,429 265 65 260 r .000106  .000008 11.0963
]
Plactual) 10.65 = 10-*|.00015 | .00016
F 10.65 x 10-*|.00015 | .00016 CASE § 4 CANADA - 1976 CENSUS - 282 MP's
PROVINCE poPuLATION | ACTUAL ?ia) P (b) L a)
CASE {§ 2 CANADA - 1961 CENSUS - 264 MP's Newfoundlend 562,500 7 7 3 3 .
PROVINGE POPOLATION T a oo ™ Prince Edward I. 120,300 4 4 4 ) 4
3 5 Nova Scotia 835,400 11 10 10 10 10
za..no...a.u.“i.. : “wN.“ww N . . New Brunswick 686,400 10 10 10 10 10
nl..omo”n»n_. . 104,629 a o ' u Quebec 6,283,100 75 M 7% 76 76
ova Lok 597 .o 3 10 10 10 Ontario 8,373,500 95 99 100 8s 101
New Brunsw . . ”s 7 Mani toba 1,031,300 14 12 12 12 12
Quebac 5,259,211 7 . Saskatchewan 936,500 14 11 11 11 11
Ontario 6,236,092 (] L] % ) - | Alberta 1,099,700 21 23 22 23 23
Mani toba 921,606 13 13 13 British Colusbia] 2,497,600 20 30 29 30 27
Saskatchewan 925,181 13 13 13 . Yukon 21,500 1 1 1 1 1
Alberta 1,331,944 19 19 19 NWT 43,300 2 1 1 1 1
23 23
w“mw.».-.. Columbia -.omu.unu »w 1 X Total 23,291,100 | 202 282 282 270 282
L
NWT 22,998 1 1 1 ¥ (actual) 2.8x10"° 1.0%10"* 10x10" 23.25
Total 18,238,247 264 6 6 d 1.75 %107 0.90 x10™* 0.75 x10™* 1148
[ L
F 4.3148x10-*].00012643{ .000112292
{actual)
F 4.3148x10~%].00032642] .000112232
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REMARKS ON THE CASE STUDI1ES nlm = M-8

In each case analysed, the "constitutional minima® vere where 8 represents the sise of the Senate.

built into the program. In other words, the variables used Define the varisble &, to be the average, using distance

were : . tunctions :-. Prp) * :n. , and w_.: of the differences

N between the optimal solution and the actual solution.

newrovsoranp = ¥ - 6

NEWFOUNDLAND
For example, for 1951 we have

NERINCE EOWARD ISLAND ® “pRINCE EowARD IsLanp ~ ¢
. A
Niova scoTIA * MNova scoria T 10 1951, P, = 6
Nuew Brunswick ® ™wew Brumswick -~ 10 brysa, P = 3
Nouesec = Nguesec " 24
A r s 12
¥onrario * Mowrario - 24 . 1951, “(e)
“uanzrosa = Muanrrosa - ¢ " a
, o Biggy = 7.
SASKATCHEWAN = Msaskarcuewan ~ 6
’ -
¥ALperTa * MaLserTa ¢ In all, we have:
“RrrTisH coLumsiA * “eririsu coumera " © .
, 1951 * 7
Nyukon * Yyuxow - ! s
, X 1961 = 2
NNORTHWEST TERRITORIES ™ “NORTHWEST TERRITORIES
. b197: = 1

where the constants represent the nusber of Senators per juris- bwoun = 17.5
diction, and hence the minimum number of seats guaranteed to

the jurisdiction. One might facetiously refer to A as a "gerrymandering

Consequently, the conatraint is transformed from coefficient®. 1It provides a crude measure of the difference

nlh =M




between the actual redistributions and the various optimal
solutions.

Oon the surface, it certainly appears that efforts at
redistribution in recent years have fallen further and further
from the "one man, one vote” principle, since both tha 1951
and 1961 redistributjons were very close to the optimal
solutions. .

One would expect that the demographic reason for n-.n-,
comparatively recent departure from optimality is due to a wore
rapidly fluctuating distribution in Canadian population, and
an inability of the present methods to reflect this fluctuation.

RECENT MATHEMATICAL DEVELOPMENTS

In the past few years, there has been mathematical deve-
lopment in the study of redistribution methods (although none
of this development has been translated into public policy).
Particularly, the work of Still {9) and Balinski and Young [10])
should be noted in this regard.

However, this work is predicated upon the development of
methods that introduce other constraints not considered in this
paper.

For example, Still, Balineki and Young use the concepts of
“gquota” and "house monotonicity” in defining redistribution

functions (called apportionment methods) as follows: A

redistribution (n;} satisfies -acog... if

ney NP
f . _ 1
_I——- ) £ n, = Tﬂ-llv

where —l represents the greatest integer less than, and r

the smallest integer greater than.

A redistribution is "house monotone” if an increase in W
(to N’) cannot result in N{ < N, for the new redistribution
ing) .

These constraints are not considered in this paper as
neither is consistent with the strictest possible -vv:nnnnor
of the one-man, one-vote principle. A plan for further inves-
tigation includes the incorporation of the Still-Balinski-Young
methods along with the optimization approach taken here.
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An Erratum. (Volume 5, Number 1, Feb. 1980) page 15, second line from bottom:

“then mounts to applying the usual non-siip condition ...°
should read

“then amounts to applying the usual no_ normal velocity condition ... °.
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OF BICYCLES AND NEWTON

fonald . Gatterdam

Mathematics and Computer Science

University of Wisconsin-Parkside

Kenosha, Wisconsin, 53141

Consider two sprocket wheels with a chain running between them as

depicted in the sketch. A designer of such a system has the problem of
adjusting the center-to-center distance, X , so that the length of the

sprocket chain, t , {s equal to an integer number of chain Jinks of length

D . In the case of a bicycle, mechanical adjustment of x can be provided
but 1f the sprocket wheels are attached to machinery 1t is often fwpractical

to provide for much sdjustment. Thus, the distance x must be computed with
some accuracy. Me show how this computation can be made by a simple Newton-like
wethod.

Recefved (via J.W. Macki, Univ. of Alberta) Feb., 1980;
revised Apr. 1980.
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Figure

First, to compute the length of the chain observe that the chain is
tangent to the wheels at the point of contact. Also, note that by translating
the center-to-center Vine segment along the parallel radit to the comtact
points, a right triangle with hypetenuse x and legs r = Iry-rpl and s,
the tangential chain length, is obtained (the absolute value s chosen so it
makes no difference which of the radif is larger). The angle. @ , between the
hypotenuse and the Jeg of length s 1s also the angle between the radii
tangential to the chain and those normal to the center line. The relations are:

ver- rl
s A2 T
[ :a-:lu.

..~n...._¢..--¢~2 .

Here {is where Newton plays a role. Given a nominal center-to-center distance
X . the approximate mumber of Vinks s given by n = int(e/D + .5) (where int
is the greatest integer function and the ¢ .5 s used to round to the nearest
integer). The length x 1s to be adjusted so that aL =nD - ¢ 15 small. Now

-8 -

at . dt
& -
S0
.N“.h\“m .

Note that the sign of At is chosen to agree with the direction in which

change s required, f.e., & {1s to be replaced by ¢ + ar. A few applications
of the chain rule and some elementary algebra show

ds » (x/s)dx

do = (-r/(xs))dx

dt = (2s/x)dx
s0  ax - xae/(2s) .

The method 1s now sasily described. . Starting with an nitfal value of x
compute $,0,%,n,4¢,4x as indicated; replace x by x + ax ; repeat the
process until Ar 1s less than the prescribed accuracy.

It can be shown that 1f the tnitfal value of s 1s not close to 0 , the
initia) value of x {3 greater tham ...:.u. o and D 1Is smaller than the

sinfmm of r, and ry » then the algorithm converges to the "nearest
possible” solution. “Nearest possible® means that for ty the tnitial chain
length and £y the chain length to which the algorithm converges, _n. - —e_ < 0/2.
{In fact the algorithm converges provided only that s > 0 and min ?.. .1~_ >0,
but may converge to vnwsval or negative values for x.) Sufficient conditions for
convergence to the nearest solution are that for Xq the tnitial value of x ,
op the initial value of 9, and o = min(ryury) , Xy > rytr, and 0 <4 p cose,.
The {nterested reader may verify the above by considering the first two terms of
the Taylor series for & as a function of x with remainder.

Observe that the conditions expressed sbove are reasonable in the physica}
situation, In particular, the conditionon D and 8g can be viewed as
expressing the requirement that the chain make reasonable contact with the
smaller sprocket. In practice the method converges rapidly to the nearest

solution.
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