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CHAPTER 4 OPTIMALITY CONDITIONS AND SHADOW PRICES*

HENRY WOLKOWICZ / The University‘of Alberta, Edmonton, Alberta, Canada

ABSTRACT

We consider an ordinary convex program that does not necessarily attain its
infimum. It 1s well known that the Kuhn-Tucker multipliers, 1f they exist,
provide shadow prices, or sensitivity coefficients, for the marginal improve-
ment of the optimum with respect to perturbations in the right-hand sides of
the constraints. Moreover, the Kuhn-Tucker multipliers exist if and only if
this marginal improvement is bounded below for all perturbation directions.
This is equivalent to "stability" of the program with respect to all non-
negative right-hand side perturbations. We present a group of optimality
4+ The "restricted" Kuhn-
Tucker multipliers, thus obtained, provide shadow prices for unstable pro-

conditions dependent on a regularizing set G

grams. Moreover, a class of perturbations is presented which, at the unit
price given by the "restricted" Kuhn-Tucker multipliers, are never econom-
ical to buy, i.e., we find a stable subset of perturbations.

*Research partially supported by NSERC A3388,
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I. INTRODUCTION

In this paper we consider the ordinary convex program
H = inf p(x)

subject to gk(x) 0 keP=1{1,...,m ®)
x€eQ

where p, gk : U=+ R are convex functions on U, U C R® s some open set con-
taining ), and § is a convex set.

If some constraint qualification, e.g., Slater's condition, holds for
(P), then ’

p = inf{p(x) +} X'kgk(x) : x e Q) @)

for some Kuhn-Tucker multipliers )‘k 2 0. The Ak provide shadow prices for
(P), t.e., if

p(e) = inf{p(x) : gk(x) Segske P, x e Q} (2)

then, at the unit prices }‘k' no perturbation € = (ek) whatsoever is econom-
ical to buy. Moreover, this equilibrium situation characterizes the Kuhn-
Tucker vector A = (Ak), see, e.g., [11].

In the absence of any constraint qualification, no Kuhn-Tucker vector
may exist. Characterizations of optimality without any constraint qualifi-
cation, using feasible directions, have been given in, e.g., [1,2,3,4].
Stronger optimality conditions were given in [13,14,15,16). These condi-
tions all assumed that the infimm is attained and that = RZ,

In this paper we presenﬁ several optimality conditions without con-
straint qualification of the type (1). 1In these conditions,  1is replaced
by @ N G, where G 1is some appropriate convex set. These results generalize
the above mentioned characterizations, in the sense that the infimum need
not be attained and  may be a proper, not necessarily polyhedral, subset
of R°. The proofs for these conditions are unified and depend on the char-
acte;rization of optimality (with constraint qualification) given in Lenma 2
below. The unifying key to the proofs and method of choosing the sets G is
that the equality set of constraints, denoted P-, are affine on QN G. (A
generalization of the characterization of optimality in [1,2,4], to the case
when the infimum may not be attained and Q ¥ Rn, was first given in [5].
This generalization followed from a characterization of optimality for the

abstract convex program.)
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For these optimality conditions without comstraint qualification, we
find a set of perturbations €(G) which, at the unit prices A‘k’ are never
economical to buy, i.e., a stable set of perturbations. (Note that, in the
case that the infimum is attained, the indices k such that the perturbation
tek is always economical to buy for some t > 0, no matter what the cost,
were found in [14]; see Section IV below.) We conclude with two examples.

II. PRELIMINARIES

Consider the ordinary convex program (P). Let g(x) = (gk(x)) denote the
vector of constraints in R'. We assume that the feasible set

F={xef:8(x) <0} ¥¢g- (3)
The inequalities g(x) < 0 and g(x) < 0 are taken component-wise.

We can now state the "standard" Karush-Kuhn-Tucker theorem, see, e.g.,
[11]. Note that a constraint qualification 18 & condition that guarantees
the existence of a Kuhn-Tucker vector.

THEOREM 1 Suppose that some constraint qualification holds for (P), e.g.,
there exists X € Q such that g(X) < 0 (Slater's condition)

Then
u = inf{p(x) + Ag(x) : x ¢ 1} (4)

for some Kuhn-Tucker vector )\ = O‘k) 2 0. Moreover, if u = p(x*) for some

x* in F, then

Ag(x*) = 0 (complementary slackness) (5)
and (4) and (5) characterize optimality of x* in F.

The inner product Ag(x) of the two vectors A and g(x) is stated by
Juxtaposition.

Now if £ : U~+ R is a convex function on U and x € U, let

(x) = {¢ € R® : ¢(y - x) £ £(y) - £(x), for all y in U} (6)

denote the subdifferential of f at x. For K C Rn, let

K" = (62" : ¢y > 0, for all y 1n K} (7)

be the nonnegative polar cone of K. Then we have the following optimality
characterization for a convex function f on U.
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LEMMA 1 (e.g., [10, p. 87])). Suppose that x* £ . Then
£(x*) = Inf{f(x) : % € Q)
if and only if
A N @ -t 4 ' (8)
If some constraint qualification holds for (P), this result and Theo-
rem 1 yield:

x* in F is optimal for (P) if and only if
0 € p(x*) + Ag(x*) - (@ - xt)* (9)
for some A = (lk) 2 0 with Ag(x*) = 0

Note that p and Ag are continuous on U, since they are convex and finite
on the open set U. ' Thus
3(p(x*) + Ag(x*)) = Ip(x*) + IAg(x*)

The directional derivative of the convex function £ at x in U in the
direction d is

VE(x;d) = m,ﬂrﬂ)t;ﬂz)_ 10)
t+0
Let
P(x) = {keP: ghx) =0} (11)

be the set of binding constraints at x in F. The set of implicit egquality

constraints, e.g., [1}], 1is

P ={keP:ghx) =0, for all x 1n F} (12)
We set

i) = PP 13)

C(x) = {d € B® : Vg"(x;d) < 0, for all k € P(x)} (14)

is the linearizing cone at x, while

B(x) = cone U 38k(x)
keP(x)
is the cone of subgradients at x, where cone denotes the generated convex

cone.

T(f,x) = cone(F - x) ’ (15)
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is the tangent cone of the convex feasible set F at x, where 7 denotes clo-

sure.
For the perturbed program

u(e) = 1nf{p(x) : g(x) <€, x € Q} (B)

H(e) is called the perturbation function. We let Fe = {x : g(x) <€, x€ 8}
denote the perturbed feasible set.
The cone of directions of constancy of a convex function f at x 1is

(see, e.g., [2])

Dg(x) = {d € K" : there exists 3 > O with f(x+ad) = £(x), (50
for all 0 <a <a}’

We let D (x) =D k(x) and DK(x) ﬂK D, (x). vhere KC P. The aoncs of di-
rections of increase, decrease, and non.incmase, denoted D (x), D (x), and
D-(x), are similarly defined. We also let

Df(x) = {d € R® : there exists a > 0, with £(x + ad) affine,
for all 0 < a < a)

denote the cone of affine directions; see [16].

I1I. RESTRICTED KUHN-TUCKER VECTORS

In this section we present several optimality conditions for (P) of the
type (1), with 2 replaced by N G. These results extend the conditions
given in [1,2,3,4] and [13,14,15,16] in the sense that the infimum need
not be attained and ] may be a proper subset of E". The proofs given here
are unified and are based on Lemma 2 below. The idea is to find a regular-
1zing set G, in order to satisfy the generalized Slater condition given in
the lemma.

For each choice of the set G and corresponding vector A which satis~
fies (1), with Q replaced by 2 N G, we find a set of stable perturbations;
see Theorem 3 below.

We call A = O‘k) 2 0 a restricted Xuhn-Tucker vector with respect to

the convex set G if
U < inf{p(x) + Ag(x) : x ¢ ﬂc =R NG} an
If the infimum for (P) is attained at x* in F, {.e., u = p(x*), then we can

trivially choose A = 0 and G = {x*}. Or, in the case that the infimum is
not attained, we can choose A = 0 and G = F, the feasible set. Now consider
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the perturbation € = (Ek) and suppose that (17) holds and
Fe - ﬂc : (18)

Then by (17),
P(x) - > -Ag(x) for all x in QG

2 =t for all x in Fe by (18)

Taking the infimum over x yields
H(e) - u > ~Ae if (18) holds (19)

Thus the restricted Kuhn-Tucker vector A provides a lower bound for the
marginal improvement of the optimal value with respect to the perturbation

e if Fe CIQG. Thus the program is stable, or equivalently A is a Kuhn-
Tucker vector, if we can choose G D Q. Moreover, the program will be stable
with respect to a larger set of perturbations € 1f we can choose the set G
larger. This motivates the search for larger sets G in (17) (or stronger
optimality conditions, e.g., Gould and Tolle [8] and Guignard [9]). We will
now present several choices for the set G in (17). First we need the fol-
lowing lemma. Note that a polyhedral function is the maximum of a finite

number of affine functions.

LEMMA 2 [6] Consider the ordinary convex program (P). Suppose that ) is
a polyhedral set and that there exists an x) € 1 such that gk(xl) X0, k=~
1,...,m, with strict inequality if gk is not polyhedral (on ). Then

W= inf{p(x) + Ag(x) : x € Q) (20)
for some A = (Ak) 2 0. Moreover, if u = p(a) for some a ¢t F, then

Ag(a) = 0 (21)
and (20) and (21) characterize optimality of a.

REMARK 1. 1If Q is not polyhedral, thenm the above result holds if either
x € rifl, the relative interior of 2, or 1f the strict inequality, gk(xl) <
0, holds for all k in P; see, e.g., [11].

Following Rockafellar [12], we say that a function f : U + R is faith-
fully convex (on U) 1f £ is convex (on U) and £ 1is affine on a line segment
(in U) only 1f it is affine on the whole line (in U) containing that seg-
ment. Analytic convex and strictly convex functions are two examples of
faithfully convex functions. If f is faithfully convex on U, then it can
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be shown that the cone of directions of constancy D;(x) is a subspace inde-~
pendent of the point x in U (see, e.g., [2]). We can now derive various
choices for the set G in (17).

THEOREM 2 Suppose that { is polyhedral, gk is faithfully convex (on U) for
allke P, andh-kg u.kg,wheteuk>0withak>Oifgkisnotlffine
(on U). Let & € F. Then there exist convex sets G such that

W= inf{p(x) + Ag(x) : x ¢ f,=an G} (22)

for some A > 0 and, if y = p(x*) for some x* in F, then

Ag(x*) = 0 (23)

and (22) and (23) characterize optimality of x*. Possible choices of the

convex set G in (22) are:

(a) G, = {x: gk(x) =0 for all k ¢ P"}

(d) G2 =%X+0D, (x), wvhere £ 4 max_ gk
N keP™

(c) G3 - x + DP.(x)

@ ¢, = X+ n;(:‘E)

(&) G = X+ n;.(?c)

() G =%+ D;(S‘:)

(Note that we can allow Ak to be arbitrary for all k such that gk(x) = 0 on
an Gi.) :

PROOF. (a): It can be shown that G1 - G3; see, e.g., [2]. Now see the

proof of (c) below. (b) and (c): First let us show that G2 - G3' That

P_(x) C:D (x) is clelr. Now suppose that d ¢ D (x)\ DP.(x) Then, by
definition of f, d e P,.(x) n D (x) for some k ¢ PF It can be shown (see
[2]) that there exists

dep_®ND,  (® (24)
P P (x :
(The proof of (24) remains the same even though 0 # R".) Let
4, =M+ - N , (25)

Then for sufficiently small A > 0, we see that

< ~ ~
4 €T B N D:(x) (26)
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which contradicts the definition of P". Thus
D(x) = D P,_(::)

Now it is clear that FC x+ D;.(;). Thus an equivalent program to (P) is
u=dnf{p(x) : g(x) <0, x€ QN G3} ’ _ (27)

It is now sufficient to show that we can satisfy the hypothesis of Lemma 2
with 2 replaced by 2 N G,. Now be definition of P", for each k € P\P" there

3y

exists xk € F such that g (xk) < 0. Let t equal the cardinality of PPT.
Then, by the convexity of F, we see that

k
- Z -l‘ EF
g ke P~ b

and

gk(xl) <0, k€ P\PT; gk(xl) =0, ke P-; x € a (28)

Moreover, this implies that

-%eD _(X (29)

1 "
Thus x satisfies the constraint qualification in Lemma 2 if we show that
»gk is affine on G, na for allk e P (30)

In fact, by the faithfully convex assumption, it is clear that gk is 0 on

G, NnQ, for all k € P". This proves that Gqs and so also G,, is a possible
choice for G in (22). Note that 2N G2 is polyhedral since { is, by assump-
tion, and G2 is an affine subspace, by faithful convexity.

Following the details of the proof above, we see that to show that G:I.'
i = 4,5,6, are possible choices for G in (22) we need only show that

g* s affine on AN G, for all k € P~, 1 = 4,5,6 (31)
(d): Let d e D-. k, € P-, and suppose gko ig not affine (on §1). Then
h’ 0 )
Gko > 0 and
ko x
-0, 8 (R+0d) = B a8 (X + ad) (32)
0 keP Vi)

Since a nonnegative linear combination of convex functions is convex, this
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shows that both tgko(ﬁ + ad) is a convex function of a. Thus gk is in fact

an affine function of a. This shows that gk is affine on 2 N G4 as desired.
The result with Gs and G6 follows similarly by allowing an affine term
on the right-hand side of (32).

REMARK 2. The characterization of optimality using Gl holds without the
polydedrality and faithful convexity assumptions; see [5). This extends
the characterization of optimality givem in [1,2,4,17], which requires that
the infimum for (P) be attained and that = R®, Using Lemma 1, we get

x* (in F) is optimal for (P) if and only if

0 € 2p(x®) + Ng(x*) - (@, - xx) ¥
G

1
for some A = () 2 0 with Ag(x*) = 0
It can be shown (see [5]) that

+ - +
@ -x*) - (n _(x*) N cone(q - x*))
P

1
¢

and that ) can be chosen with A = 0 1f k € P". If we fn fact fix 0 = K"
and choose A with Ak = 0 for k ¢ P-, then (32) becomes the result in [4].
Note that this result is a special case of the generalized Kuhn-Tucker con-
ditions given by Guignard [9].

We can similarly recover the results obtained in [13,14,15,16]. More-
over, ome can replace the assumption of faithful convexity (and affinity)
by plecewise faithful convexity (resp. polyhedrality), i.e., that gk. k€ P-,
is the maximum of a finite number of faithfully convex functions. For,
working with the equivalent program to (P), obtained by replacing the
plecewise faithfully convex functions by the faithfully convex functions
from which the maximum is taken, gives rise to a minorant for the Lagrang-

ian, i.e.,
u = tnfip(x) +kf A 875 i xeane
st
< inf{p(x) + Ag(x) : x € 2 NG)

A= 0D, A =LA ., and 5" e ma gt
We now define the following class of "stable" perturbations in Rm,
with respect to a convex set G in Rn,

1This argument is due to Professor Jon Borwein.
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€(G) = ;E e R®: u(e) = inf{p(x) : g(x) _<_ €, X E ﬂﬂG}f (33)

i.e., this is the set of perturbations for which the perturbation function
does not change when the (regularizing) set G is added. We now have the
following property of a restricted Kuhn-Tucker vector in terms of equilib-

rium prices for the perturbation.

THEOREM_3 When u 1s finite, then A% = (A;) > 0 is a restricted ‘Kuhn-‘l‘ucker
vector, with respect to the convex set G, implies that at the unit price A{
for a perturbation €,» DO perturbation in €(G) is worth buying.

PROOF. That no perturbation in €(G) is worth buying is equivalent to the
inequality

H(e) + A*e > for all £ € €(G) (34)

For any perturbation €, the minimum value in the perturbed program (Pe)
Plus the cost of buying the perturbation €, at the unit prices given by

the vector v = (vk), is
u(e) + ve
Now, for any m-vector ) 20,
inf{u(e) + Xe : € € €(6)} = inf{p(x) + Ae : € € €(G), x ¢ Pe}

inf{p(x) + Xe : € € €(G), x € Q, g(x) < €}

inf{p(x) + Xe : e € €(G), x € QG’ 8(x) < €} by definition of €(G)

inf{p(x) + Ag(x) : € € €(G), x € Qc, g(x) < e} (35)

[since A > 0 and € € e(G), ez X €, implies €, € €(G)]

Iv

inf{p(x) + Ag(x) : x ¢ ﬂG}
>u if and only 1f (17) holds, l.es, 1f A = A%

An alternative proof of the above is

p(x) - u > -A*g(x) for all x in 2 NG, by assumption
2 =A* ' if xeQNGand gx) <€
Thus
p(x) - u > -a%e for all x in Fe if € € €(G)

Taking the infimum over x on both sides yields

u(e) + Axe 2u
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Note that if some constraint qualification holds then A is a Kuhn-
Tucker vector if and only 1f, at the unit prices Ak' no perturbation what-
soever 1s economical to buy; see [11, p. 277). It is conjectured that "if
and only 1f" holds in the above theorem as well. For this to hold, it re-
mains to show that equality holds in (35). Otherwise, we can find a larger
set of perturbations than €(G).

COROLLARY 1 Suppose that the perturbation € satisfies

recnnc (36)

and XA is a restricted Kuhn—Tuéker vector satisfying (17). Then € is not
worth buying at the unit prices given by A = (Ak).

PROOF. 1t is clear that (36) implies £ & €(G).

The corresponding restricted Lagrangian dual program with respect to
the set G is

v =sgup inf {p(x) + Ag(x)} (DG)
A0 xeNG

Note that if A is a solution of (17), then v = u (no duality gap) and A is
also a solution of (Dc).

IV. PROGRAMS WITH ATTAINED INFIMUM

Let us now assume that x* is in F, u = p(x*), and both p and g are continu-
ous at x*. We now look for optimality conditions of the type

x* in F is optimal if and only if 37
0 e 9p(x*) + AAg(xk) - (QG - x*)+ for some X > 0 with Ag(x*) = 0

where ﬂc = Q N G. By applying Lemma 1, these conditions can be reformu~
lated in the same form as the conditions given in Theorem 2.

We now present some choices of G in (37) different and possibly larg.r
than those which can be obtained from Theorem 2. These sets G can be found
by satisfying the equation (x* is an optimal solution)

TV (P, x*) = -B(x*) + @ - x*

In the differentiable case, B(x*) can be replaced by C(x*). (See {8,9,13)
for more details.) Note that larger sets G in (17), and so "stronger" op-
timality conditions, correspond to "smaller" sets (ﬂc - x*) in (37).
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Now let

Px) = 31‘ eP :cxN D;(x)\;):_ ¢ ls (38)

This is the set of badly behaved constraints at x (see [13]), 1.e., the set
of constraints which create problems in the Kuhn-Tucker theory. It can be
shown [13] that

Pb(x) = ¢ and B(x) is closed

is a weakest constraint qualification at x, i.e., is a necessary and suffi-
cient condition for the Kuhn-Tucker theory to hold at x. We can introduce
the objective function into this definition by setting

b - ? . .<
Phe) - {k € Pt o N DL N D) ¥ ¢} . (39)

For simplicity we assume that = R" and gk, k€ P-, is faithfully convex
and differentiable. Let x € F and

Pxckcr

Then we can choose (see [14))

6 = (0)*
in (37). This is also true with Pb(x) replaced by Pb(x). see [14]). It can
also be shown that D, (x) can be replaced by DK(x), ;(x), or Df(x). where
f= ): akgk and uk lre any positive scalars.

Moreover, it was shown in [14] that, discounting redundmcies in the
constraints, the shadow price A corresponding to k € P (x*) is essentially
infinite, i.e., for k € Pb(x*), small amounts of the perturbation ek are
economical to buy no matter how high the unit cost.

EXAMPLE 1. Consider the (linear) program

u-infp(x)-cx-xl+2x ~l»3:x3

2
s.t.gl(x)-llx-bl- ﬁ+ x2+x3-1£0
£ =a’x -, = -x - X - X, + 120 o
83(!) "831-b3 2x1+222 -1<0
g‘(x) -al'x-ba--le- 2x2 +1<0
gs(x)-asx-bs- X, =X, +1<0 x>0
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Then P = P~ = {1,2,...,5}; F = {xl -0, x,=x, = 1/2}; u = 5/2; and G =
(:2 - Ga = F. Suppose we choose Gl in Theorem 2. Since the constraints g
are all identically O on Gl’ any A > 0 solves (17) with G = Gl' However,
not every A > O can be interpreted as a shadow price for the original pro-
gram (P), e.g., A = 0 is clearly not a shadow price for the perturbation
ek = 1, for all k € P. In addition, the corresponding restricted dual is
identical to the primal program (40). Thus we get no duality information
when using the regularizing set Gl' )

Now let o - 1l and h(x) = zp' akxk(x) =X, - X, 4+ 1. Then
ke

i

Ga-{x:xz-i-xs-l}

The corresponding restricted dual s

5
U = gsup inf {cx + ] l.k(akx - bk)}

20 20 k=1
x2+x3-1
3 K 5 _
=sup 4inf <Jex+ ) A a"x - b)) since g° 5 0 on G,
320 0 k=1
x2+x3-1
= gup 1inf c + a Ix - b
320 %0 oy ¥ oy
x2+x3-1
= sup inf 2+ A, =2, + 22, - 2),)x
A>0 >0 { 1 2 3 4”72

-_ &
142, =2 422 -2, >0 x. +x =1 4
1 42 SN 2%y _ _
+ 3+ - A)x, kgl lkbk}

[since the infimum 1s —= 1f 1 + 3\1 - Az + 2A3 - 214 < 0]

=  sup inf f(z +a+ 28)x, + (3+a)x, - (a+ B)}
4at+28>0 x>0
x2+x3-1
1 1
=2 2 when 8 = 2

Thus @ > -2 and B = 1/2, 1i.e.,

1
172275 A=A =g A 20

are the solutions of the restricted dual program. The perturbations € =

(ek) with e".es 2> 0 and €, =g, =€ = 0 are in E(Gl.)’ since Ga equals the

2 3
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set of points x which satisfy the constraints gl,gz,gs. In particular, we
get that Vu(o;ea) 2 -(1/2) and Vu(O;e4) 2 0, where e, and e, are the third
and fourth unit vectors, respectively, i.e., we get shadow prices for the
third and fourth constraints. .
Since the constraints are affine, we have G_ = G, = R", The corres-

. 5 6
ponding dual reduces to the usual linear programming dual,

U = sup - Ab
a.t.AtA - ctz 0
A20
where A is the matrix with rows ai and .t denotes transpose. Two basic op-

timal solutions are (0,2,%,0,1) and (0,0,%,0,3). This yields Vu(O;ea) 2
-(1/2) and Vu(O;el') > 0, as before.

The example above shows how using larger choices of G in (17) yields
more dual information. This is the case for nonlinear problems as well,
as the following example illustrates.

EXAMPLE 2. Consider the program

u"im?'p(x)-x2
s.t.gl(x)- x1+x§-1£0
2
g(x)--xl +1<0

ThenP-P--{l,Z}; F= {xl-l. xz-o}-x*; u = 0; andGl-Gz-... =
G6 = F. Choosing Gl in Theorem 2 yields no information. Thus even though
one of the constraints is affine, we cannot obtain any shadow prices. In
fact, Vu(O;ei) = - for the unit vectors € &5 This points out the fact
that affine constraints cannot always be ignored. Note that Pb(x*) -
P:(x*) = {1} and DI(x*) - D;(x*) = {0}. Thus using only the badly behaved
constraints does not help. However, suppose that we change the objective
function to be p(x) = X). Then G:I.’ i1=1,...,6, iz unchanged. But now

P:(x*) = @. We can therefore set G = 0 and get

(o))

This yields Vu'(0;e)) 2 0; Vu'(O;ez) 2 -1.
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