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ABSTRACT

Let A be an n X n matrix with real eigenvaluesA; > -+ 3A,,andlet 1<k <l
n. Bounds involving trA and trA® are introduced for Ay /A;, (Ax—A))/(Ax+ A7),
and (KA, +(n =1+ DA)Y/(kA +(n — 1 +1)A}). Also included are conditions for
A,>0andfork,+kl>0.

1. INTRODUCTION

Bounds for the modulus, the real part, and the imaginary part of a linear
combination of the ordered eigenvalues of an n X n complex matrix A were
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obtained in [4], [5]. These bounds used the traces of the matrix A and its
square A% Throughout this paper we assume that A is nonzero and has real
eigenvalues, and n > 2. We will find upper bounds for the ratios

-A*—A’
A+tA,”

skl

and

_{RA +(n -1+ DN
TE T (n— 1+ )N

Here lck<l<n,andA; 3> Ag > - - - 3 A, are the ordered eigenvalues of A.

In Section 2 we present several preliminary definitions and results includ-
ing conditions (necessary and/or sufficient) which guarantee that A, >0
and/or that A, + A, > 0. These conditions are needed when deriving the
bounds for v;, and §,;. (A side result (Proposition 2.2) extends the bounds for
the average of a set of consecutive eigenvalues obtained in [4, Eq. (2.19)] to
the average of a set of noncontiguous eigenvalues.) The bounds for y,; are
presented in Section 3, while those for §;; and ,, are given in Sections 4 and
5, respectively.

If A is positive definite, then v, ,, is the “condition number” of A (e.g., [2])
while 8,, equals the Kantorovich ratio (e.g., [1]). These ratios, as well as v,
and §;,, are useful in error and convergence-rate analysis for solutions of
systems of equations and mathematical programs (see [1] and [2]).

2. PRELIMINARIES

As in [4, 5], our bounds use the traces

trA= Y A\, =a (2.1a)
(=1
and
trA= Y M=b, (2.1b)
-1

where a and b are real numbers. Qur bounds, therefore, will hold for any
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n X n complex matrix A which has real eigenvalues and which satisfies (2.1).
We now let

m =24 (22)

and
s’-hTA’-—m’. . (2.3)

Given a and b, the equations (2.1) admit a real solution if and only if s > 0;
cf. [6). We will therefore suppose throughout this paper that s% > 0, and we
will take s as the nonnegative square root of s.

To derive bounds for y,, and §,;, we must have A;>0 and A, +A,;> 0.
The following results provide sufficient (and necessary) conditions for this to
hold.

ProrosiTioN 2.1.  Suppose that trA 3 0 and 2 € 1l € n. Then the follou-
ing are equivalent:

(i) Every n X n matrix A with real eigenvalues satisfying (2.1) has A; > 0.
(i) (trA)?> (1 - 1)trA2

Proof. From [4, Equation (2.22)] we have
A -1 2
,;m—s(m) s (2-4)

with equality if and only if A, = -+ = A;_, and A; = - - - = X . The right-hand
side of (2.4) is positive if and only if (ii) holds. [ |

Note that we must assume a =trA > O in order to guarantee that the
right-hand side of (2.4) is positive. If trA <0 and !> 2, then there always
exists a matrix B such that trB=trA, trB2=trA®% and the lth ordered
eigenvalue of B is < 0. However, if [ = 1, then by {4, Theorem 2.1}

$

Ajzmt —————
! (n-1)"*

with equality if and only if A, = Ay =-.. =\ __,. Therefore A\, >0iftrA>0
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and trA? = 0. When trA <0, then A, > 0 if

(rA) =gt <b=trAl (2.5)

Condition (ii) above naturally guarantees that A, +A;>0 for k<l

However, (ii) is a very restrictive condition, particularly when the difference
1~ k is large. The following corollary improves on condition (ii).

CoroLLARY 2.1. Leta>0,1<k<I<n,and

t = max{k,2l —n —1}.
A sufficient condition for every ordered n-tuple satisfying (2.1) also to satisfy
A FA>0 - (2.6)

is that

a®> (¢t —-1)b. @7

The condition (2.7) is also necessary if k > 2 and
l-k-1gn-1L (2.8)

Moreover, if k=1 and 1 < (n +2)/2, then (2.8) always holds.
Proof. Let

1 &
Mew =Rl E""r | (29)

Since I>t > k,
1A +2)33(A,+1A)
> i(k(c.l—l) + A(l.zl-—r-—l))

- A(t.sl—t— M)
>N

t—1 \®
>m—s(n-‘—t+l) ’

by [4, Equation (2.19)], with equality in the last inequality if and only if
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Aymeocom),_ and A, =-.. = . (This therefore characterizes equality in
all the inequalities together except for the first inequality.) The first result
now follows, since m — s{(t — 1)/(n — t + 1)*/® > 0 if and only if (2.7) holds.

The necessity of (2.7) follows from the above mentioned conditions for
equality since equality holds in the first inequality in (2.9) if ¢ = k, which is
equivalent to (2.8). Finally, if k =1 and 2! — 2 < n, then

(A +A) 3 A g-g>a/n>0, (2.10)

and the proof is complete. ]

The inequality (2.7) always improves on condition (i) in Proposition 2.1
Moreover, Corollary 2.1 also shows that (2.7) is the best possible condition if
1~k -1« n—1, and the only information we use is the triple (n, a, b). The
following corollary provides an alternative sufficient condition which may
improve on (2.7) whenl—k—-1>n-1

CoROLLARY 2.2. Supposea>0and 1<k<I<n. If

a> ( M“—)b, (2.11)

(n-1*-u
where
u=n(k=1)+(-1)(}-k),
then every ordered real ntuple (\,) satisfying (2.1) also satisfies
Ar+A;>0. (2.12)

Proof. Consider the diagonal r X r matrix B with ordered diagonal
elements

pr=A+A,  h=1..r, (2.13)
where r=n(n—1)/2 and 1<{ < j<n. Let

ag=trB, by=tB?
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There are at least
r—q+1-("—2l+2)+(l—k-l)(n—l+l) (2.14)

A+ A,)’s less than or equal to A, + A, namely those for which i and j satisfy
i'k, j‘l,.--,n;
I<i<j<n; (2.15)

k<i<lgjgn.

Therefore [cf. (2.4) and (2.14)),

g1 \'*
Ak+AI>“q>m8_33(m)
u \12
=-m,—s,,(f_u) . (2.16)
Now since
ag=(n—1)a and by=a®+(n-2)b,
we obtain, using (2.11),
u 2
m"_s’(r—u) >0,
which implies A; + A, > 0, using (2.16), if and only if
of
m%>s"(r—u)
if and only if ‘e
2 - —(n - 12,2
22> 18 +r(n-2)b—(n—-1)a® u @.17)

(n-l)’ r—u

if and only if (2.11). |
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The simple case n =2 can be included in the above, but can also be
studied separately. Here, k=1 and I = 2. Therefore, since Aj+Ag=tra,

(2.11) and (2.12) are always valid if trA > 0.
Let2<l<p<nandI<g<(n+1+1)/2. Now

A3 Aap 2 A0, (2.18)
*(AI + Aq) 2 A4 0y (2.19)

and by [4, Theorem 2.2]

1-1 )V’

A(l.ﬂ);"m_""(n_l.'.l (220)

with equality throughout (2.18), (2.19), and (2.20) if and only if
Ay=---=XA_; and A;=--- =2,

Since equality can be attained, we see that

Ld n
M>0 e Y A>0 e T A>0 e A +A >0 (221)
i=1 il

Thus we have the following four interesting conditions equivalent to (i) and
(ii) in Proposition 2.1:.

(iii) For a fizxed p, 2 € I € p € n, every ordered real n-tuple (A,) satisfying
(2.1) also satisfies A, + - -+ + A, > 0.

(iv) For any p, 2 <1< p € n, every ordered real n-tuple (A,) satisfying
(2.1) also satisfies A;+ - -+ + A, >0.

(v) For a fized q, 2€ 1€ g<(n+1+1)/2, every ordered real n-tuple
(A,) satisfying (2.1) also satisfies A; + A, > 0.

(vi) For any q, 2< 1< q<(n+1+1)/2, every ordered real n-tuple (A,)
satisfying (2.1) also satisfies A; + A, > 0.

Nonconsecutive eigenvalues A;, A, for which ¢>(n+1+1)/2 behave
differently. For example let n =35, ¢ = 8, and b = 52. By (ii) in Proposition
2.1, every n-tuple (A)) satisfying (2.1) has A, > 0, and by (iv) and (vi) above,
also Ag+A3>0, Ag+A;+A,50, Ag+A;+A,+A5>0, Ap+A,>0.
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However, (3,3,3,3, — 4) satisfies (2.1) with a = 8 and b = 52 as above, but
has A;+ A5 <0. Note that g = 5> (5+2+1)/2=(n+1+1)/2

Proposition 2.1 and its two corollaries give sufficient conditions for
A+ A;> 0 (k <1). To compare these, we have to compare

(n-2)u

(n—l)'—u-f’

1-1, t-1, and

where ¢ = max(k,2!—n —1) and u = n(k — 1)+ (I = 1X4! - k). Since k <!
< n, it follows at once that [ —-1>¢ - 1.
We now compare ¢ — 1 with f. Let

y=t-1-f.

Then (2.7) is less restrictive than (2.11) whenever y <0. From (2.8) in
Corollary 2.1, when

t=(l-k-1)~(n-1)=2l-k-n-1

is less than or equal to zero, then y € 0. This is illustrated in Figure 1, where
we have plotted the region in the (x, y)-plane for the §n(n — 1) = 1225 values
of x and y with 1 € k <! < n =50. From Figure 1 we also observe that y £ 0
whenever x €< 11 and that y > 0 whenever x » 24. Additional computations
for n = 2(1)100 show that y > O whenever x > [$n] — 1, where [-] denotes
the integer part. We have not yet, however, been able to prove this observa-
tion.

One can generalize the above procedures in order to find bounds (upper
and lower) for

1 k
A[4,.....4.,] - * j?l A“,

which is the average of k noncontiguous eigenvalues (1€, <fp<--- <4, €
n). When the eigenvalues are contiguous we write [cf. (2.9)]

l h
ANew=F—g 1 l);"‘r
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4
15.01

-7, 84
-10.04
s
-185.04

<

-17.83
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x

Fic. 1. The “bird” when n = 50.

PROPOSITION 2.2. Suppose that tr A > 0. Set
ro-o; rl-‘x; rj-m(‘,,zf'_l_fi_g}, j‘2,...,k;
tk+1-ﬂ+1; tk-‘l; t,-max{i,,2t#1—t,+,), j-k-l,...,l;
=, t=t,.

Then

t—-1 2 n—r\12
m—"(n-t+1) "‘u.,...m""""( ) . (2.24)
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Proof. Since r,<€4,(j=1,...,k), we have

Miveo i) €A 1ry, ) €Ay

BS ;=11 €71~ 7;_5 (j=2,...,k). Then the right-hand inequality in (2.24)
follows at once from [4, Equation (2.24) sic). The left-hand inequality follows
similarly. (]

Conditions characterizing equality on the left (and on the right) of (2.24)
may be obtained directly from [4, Theorem 2.2). Improvements to (2.24)
occur when §; =] (i3 =n) and may be obtained by setting I=1{, in [4,
Equation (2.25)] (k = 1, in [4, Equation (2.26))).

The second approach involves considering the ( : ) X (; ) diagonal matrix
—call it D—with diagonal elements consisting of all the possible sums of p
elements Z7.1A;, Then we need to express trD and tr D® in terms of trA
and tr A* and use the known bounds for the ordered eigenvalues of D.

‘3. UPPER BOUND FOR y,,

THEOREM 3.1. Let 1ck<lg<n,trA>0, and

(I-1trA<(wA) (3.1
Then
A>0 (3.2)
and
n—-1+1 172
c+k+{—k——(c+k)(n—l+l—c)}
< E v E (3.3)
c+k- {"—_7+—1(c+k)(n—l+1—c)}
where

. .
c-(:‘—::zl-(l—l). (3.4)
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Equality holds if and only if
“ I ™
tr A®
. Apsr=ccr=A = A’ (3.5)
A== =A,.

Proof. That (3.2) holds follows from Proposition 2.1. We prove the rest
by solving )
Problem A. Maximize y,; = A, /A, subject to

A3 2, (3.6)
A4+, =a, (3.7)
M+---+22¢b, (3.8)

A >0, ' (3.9)

where the A’s are the variables, while a = trA and b = tr A2,

Thus we know that a® < nb, ie., there exists at least one solution to
(3.6)—(3.9) (see Proposition 2.1). Moreover, we can eliminate the trivial case
a® = nb, since this holds if and only if A, =-.- =A_.

First, let us show that equality must hold in (3.8). Suppose not, and let h;
denote the multiplicity of A, and h, denote the multiplicity of A,. (Allocate the
multiplicities arbitrarily, though consistently with the ordering, if A, = A,.)
Let d > 0, and perturb the A, A,’s equal to A, to A, +d /h,, and the h; A,’s
equal to A, to A, — d /h,. The perturbed A,’s satisfy (3.6)—(3.9) for sufficiently
small d > 0. Since the value of y,, is increased, we have obtained a contradic-
tion. Thus we must have

A+ + B =b, (3.10)

We employ the perturbation technique repeatedly in order to obtain the
solution of Problem A. Now let us show that

Ap=cemAy, (3.11)

M= =Xy, (3.12)
AymeemA,. (3.13)
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Suppose that (3.11)-(3.13) do not bold, but that (A,) solves Problem A,
that A, has multiplicity h,, and that there exist at least two other distinct
eigenvalues i1 > », neither equal to A, We perturb all of the b, A,’sto A, +d,
where d > 0, the p to p + x, and the » to » — h,d — x. The perturbed A’s
satisfy (3.7). The condition (3.8) is satisfied if

hk(Ak + d)"" (“ + z)2+ (V - hkd - x)z < hklsk + “’ + ”. (3.14)

Ifdandlxlaresuffident]ysnhll,wecanomitthetermsofordertwoindand
Ix}. Then (3.14) is valid if

x hi(r = A,)
d > T. (3.15)

Since s > », the inequality (3.15) always has a solution with d and |x| as small
as desired. Thus we can solve (3.6)-(3.9) and increase Y:1» @ contradiction.
Therefore we have at most three distinct values in the solution.

Now suppose that A, > A,. Then we perturb the he A’s to A, + d, where
d>0, and A, to A, — h,d. Then for sufficiently small d > 0,

(A= hid)*+ By(A + d) = 28 + B2 - 2h,d (A, — A,)+ hy(hy +1)d®
<M +hA,

Le., (3.8) is satisfied for small d > 0. Since (3.6)-(3.9) are now satisfied for
small d >0, while v,, is increased, we have a contradiction. This proves
(3.11). Similarly (3.13) holds. -

To prove (3.12), suppose Ap=Apag We perturb A, = A, to A, +d (d > 0)
and A, ,, to A, ; — kd — x. Denoting by j the smallest integer greater than
k +1 such that A = A, we also perturb A to A, + x. (Note that A, , , > A, for
if not we deduce that A, = - - - = ) ) The perturbed A,’s satisfy (3.7), and for
sufficiently small d and |x| they also satisfy (3.9), and (3.8) also if in addition

x k(Ak"Ak-u)
d>T+1"—A—l- 0 (z>0). (3.18)

If j<l1, the perturbed A,’s increase v,;, which yields a contradiction. If f=1,
let a=x/d. Then we now have the new 7 equal to

x"l‘%"z =fd) (afixed). (.17)
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Since f'(d)>0if a< A, /A,, there exist a, d such that {d)> £0),

117

i.e., Yri is

increased again. Thus we cannot have A, = Ai+ - Similarly, we can show that

A;=X;_, leads to a contradiction. This completes the proof that (3.11)-(3.13)

must hold. (Recall that we have shown there are at most three distinct A's)
Nowletx=A,, z=A,,,, and y=A,. Then (3.11)~(3.13) imply that

’ x2zZ2Y,
kx+(l-k-1)z+(n—1+1)y=a,

ke*+(1-k-1)z2+(n—1+1)y*=b,

v>0,
while
Ya=x/y.
Let
ay=a—(1-k-1)z, by=b-(I-k-1)z%
Then (3.19) and (3.20) become
kx+(n—-1+1)y=a,,

kt+(n-1+1)yt=p,

Eliminating y yields
—kr \8
h2+(n—1+1)(niil—f}) —b,=0,
or
(n+k—1+1)ke? - 2kayx+af—(n—1+1)b, =0,

which implies

2ka, + D'?
= ’
2(n+k—l+l)k

(3.18)
(3.19)
(3.20)
(3.21)

(3.22)
(3.23)

(324
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where

D-4k(n—l+l)((n+k—l+1)b1—a§).
Similarly, eliminating x yields

__2n=1+1)s, 1+ D\?
Vo eI+ D) (n+k=1+1)"

(3.25)

Since we are maximizing vy,,, we choose the positive root in (3.24) and the
negative root in (3.25), i.e., we want to maximize

2ka,+DV? . _14]

P 2n-1+1)a,~- D72k (3.26)
over all z for which the discriminant D > 0. Let
1/2
ﬂz)-z(nf’;“:)z_pm. (3.27)
Differentiating, we find that the numerator of F(z)is
N= —’%(n—u k +1)(a1% —2D%).
Substituting for dD/dz and da, /dz yields that
f(z)=0 #andonlyif b,—za,=0, (3.28)
which is equivalent to
z=b/a. (3.29)
Now since

oz n—-l+k
;-f(z)—T—->l
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with equality when D = 0—i.e., when

| n-l+k+1\/®
z-Zl-m+s(—T_T—:T—)

or

-, = _('_"_":_E”’
EE L EM TN Tk

—and since Z,<z=b/a<Z, is the only stationary point of f(z), we
conclude that f{b/a) must be the maximum

c-gbi—(l—l). (3.30)

Substituting in (3.24) and (3.25) yields

- 172
c+k+{" £+1(c+k)(n—l+l—c)} ,
x= nt+tk—1+1 2 @3
12
c+k—{-r—'-:_%_—1(c+k)(n—l+l—c)} )
v= nt+tk—-1+1 2 (832
and also
ket +(n—1+1)g? b
o kx+(n-1+Dy a’ (3.33)
This solves Problem A and yields (3.3). |

Remarx 3.1. If k> 1 (or if I < n), then the minimum of v, is 1 and is
attained for A, =---=XA,_, and Ay =--- =X, (or for A\;=--- =], and
"Ae1™= - =A,). However, since f{z) has only the one critical point which is
a maximum, the minimum values for k =1 and ! = n occur at the end points,
ie,\;=m+s(n—1)2[orm+s/(n—1)"*]and A, =m — s(n ~1)}/% [or
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m — s /(n — 1)'/%). Comparing the two yields,

m + s(n—1)7* *

m-s/(n—-1)"* ’ (8.34)

Yln>
with equality if and only if Ag==--- = A .

ReMaArk 3.2. If l=k+1, we get from (3.3)

- k172
m+s("kk)

n—k\~2’
m—s( - )

Y. k+1 €

With”ualityifmdonlyifkl--.o -Akandxk'kl-‘.. -A”'

4. UPPER BOUND FOR §,,

We now use Theorem 3.1 to find an upper bound for 8,‘,.4 The bound is
given in

THeoREM 4.1. Let1gk<lgn, trA> 0, and t = max{(k,2l—n - 1). If

(t-1trA<(wA)? (4.1) -
(or if (2.11) holds), then
A+A,>0 (4.2)
and
s {(c+k)(n=1+1-c))!P(n-1+1+k)
kl

< 2(c+k)k(n—-1+1)Y2+{(c+k)(n=1+1-c))A(n-1+1-k) *"*
(4.3)
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where
)
c= (::2) -(-1).
Equality holds if and only if (3.5) holds.

Proof. That (4.2) holds follows from Corollaries 2.1 and 2.2. The inequal-
ity (4.2) guarantees that §,; is well defined. Otherwise, we could only
conclude that §,; € c0. We now maximize 8, subject to the same constraints
as in Problem A [with (4.2) replacing (3.9)] given in the proof of Theorem 2.1.
However (suppressing the indices k and [/ and assuming A; = 0),

and £/(y)> 0 (y = —1). All the arguments in the proof of Theorem 2.1 now
hold with 8 replacing y in the appropriate places. By (4.2), 8 is well defined
and positive. Thus & attains its maximum if and only if (3.5) holds, and (4.3)
follows from substituting the right-hand side of (3.3) into (4.4). [ ]

Remarx 4.1. If k>1 (or I < n), the best lower bound for 8, is 0. This
can be improved if k = 1 and ! = n, as was done in Remark 3.1. We get, when
trA>0,
ns

g 2m(n—-1)"2+3s(n-2) '

6lﬂ

with equality if and only if Ag= .- =A .

5. LOWER BOUND FOR 1,

The above technique can be applied to any function f{y,,) which is
monotonic in y,;. Consider

kyd+(n=-1+1) °

M= flvu) = { (5.1)
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THEOREM 5.1. Let 1<k<iIgn, kA, +(n—=1+1)A;>0, and trA > 0.
Then

(trd)*
trA®

N 3 -(1-k-1). : (5.2)

Equality holds if and only if (3.5) holds.'

Proof. Novy (suppressing the indices k and 1)

- 2k(ky+n—l+l)(n-—l+l)(l-7)
£ (ky* +n—1+1)° '

Then f(y)<0, since y > 1 if A, > 0 and ky+n—-1+1<0if A;<0. There-
fore, the arguments in the proof of Theorem 2.1 hold again, and we have that
7 = f(7) is a minimum if and only if (3.5) holds. This yields 5.2). [ |

Remarx 5.1. If k=1 and I =n, we get

(Al + An)2
AN +A

(tra)’

TR (n-2).

>

This always holds (see [4, Lemma 2.3]).

6. CONCLUSIONS

In this paper, we have derived upper bounds for the ratios Yi1» Oxp» and
;- These bounds were initially obtained using the Kuhn-Tucker optimality
conditions of mathematical programming (see [3]). For example, to find the
upper bound for y,; = A, /A,, one explicitly solves the optimization problem

max{kk/}\,: ZA‘ -trA, E}\z‘ -tI'Az, Ak<}\‘, AI‘ Al’
i‘l,...,k,j=l,...,n}. ve

Once the solution is obtained, more elementary proofs may be obtained such
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as the perturbation techniques used herein. In fact, this perturbation tech-
nique is an altemative to the Kuhn-Tucker conditions—i.e., under certain
regularity conditions, it can be shown that the Kuhn-Tucker conditions hold if
and only if a feasible perturbation of decrease cannot be found.

The eigenvalue bounds use only trA, tr A%, and n, and so depend directly
- on the eigenvalues and not on the particular matrix, i.e., we get the same
bounds for A as for UAU®, where U is any unitary matrix. Thus, in the
following example, we do not write the matrix A down explicitly, but rather
just write the eigenvalues, trA, tr A%, n, and the bounds obtained.

ExampLE 6.1. Let n =25, and consider a 5X5 complex matrix A with
real eigenvalues

Al - 5.3, Az - 4-3, Aa - 3-5, A‘ - 2-6, As =25.

Then a=trA=182 and b=trA%="71.84. Hence (rA)}/rA’=qa?/b=
4.61 > 4, and so by Proposition 2.1 we find that any complex Hermitian
matrix A with trA =182 and trA®=71.84 must, therefore, be positive
definite. (See also [4, Theorem 2.6).) Let

Ak—ll

=X, 72,

_ {4 (n -1+ D)
TR A (n— 1+ )N

Then (3.3) and (4.3) provide upper bounds for y;, and §,,, respectively, while
(5.2) gives a lower bound for n,,. In Table 1 we present values of these
bounds along with v;,, 8;;, and n,;, for 1 <k <I<5. A measure of perfor-
mance or “efficiency” of our bounds is the ratio of the actual value and the
" bound, with the larger number in the denominator. With this measure we
notice that our bounds are best whenever k =1 and ! = 4, worst for v,; and
&;; when k = 4 and I = 5, and worst for 7;; when k =1 and [ = 5. Moreover,
the bound for y,; consistently outperforms the bounds for y,, and §,,; in fact
the efficiency of (5.2) as a bound for 3, never falls below 90%.
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TABLE 1

k1 Yai B3 /(B3 S “4.3) 8&1/(4-3) Mt G2 G2y L7 Y]
1,2{1233 1850 0666 [0.104 0298 0.349 [4961 4611 0929

1,3/1514 1836 0782 0205 0319 0643 [385 3611 0938

1,4 12038 2127 0658* |0.342 0360 0.950° [2650 2611 0.985*
1,5]2120 2834 0.723 (0350 0492 0730 |1.772 1611 0.909°
231229 1777 0692 (0103 0279 0389 |495 4611 00932

2,4(165¢ 1978 0838 |0246 0328 0750 |[3.771 3611 0958

2,5/1720 2804 0613 [0265 0474 0559 |2850 2611 0916

3,4 1346 1921 0701 [0148 0315 0470 |4903 4611 0940

3,5/1400 2758 0508 |0.167 0468 0357 [3830 3611 0919

4,5(1040 2734 038" [0.020 0464 0043> |[5000 4611 0922

*Column maximum.

>Column minimum.
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