Dimensionality of Biinfinite Systems

P. W, Smith*

Department of Mathematics
Old Dominion University
Norfolk, Virginia 23508
and :

Henry Wolkowicz**
Department of Mathematics

The University of Alberta
Edmonton, Canada T6G 2Gl

Submitted by Hans Schneider

ABSTRACT

The problem of determining the uniqueness of the coefficient of interpolation of
M compactly supported real functions, with a biinfinite sequence of interpolation
points, leads to the study of the kernel Z of the biinfinite block Toeplitz matrix

A B
b A B

The dimension of Z is found by considering the *maximal solvable subspace” V
(relative to A and B). Further results are obtained using the Kronecker canonical form
of the matrix pencil A + AB and “restricted generalized inverses” of A (and B).

1. INTRODUCTION

Let ¢,,...,¢, be compactly supported real valued functions, and let a
periodic sequence of interpolation points be given satisfying

x,<x,,, and Tan=l+z. (D
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0o M
G(zx)= X X agpfx—}).

j= -0 l=1

Then one problem of interest concerns the solvability of the interpolation
problem

G(x,)=y, —ow<i<oo. . (1.2)

In addition, it is of interest to know if the coefficients a, are uniquely
determined by bounded data when they are restricted to lie in I*°, That is,
one must study the block Toeplitz matrix

A, A, A_,

D= A, A, A, B (1.3)
where
oz +14) oo dul(x+i)
T s
ez +1) oo dpl(zn+i)

Since the functions have compact support, there exists a ¢ such that A; = 0 if
[§] > t. Thus the matrix D may be reblocked in the form

D=

»>
-]

Of particular interest is the case when the ¢; are normalized B-splines with
knots {t;} chosen to form an M-periodic sequence:

t;<t,, and t,, =1+t

Such block Toeplitz collocation matrices are totally positive and have been
studied in [2, 7).
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We intend to characterize when such matrices are onto or 1-1 either as
maps from I* - [* or from § - §, where $ is the space of all sequences. To
do this, we study the kernel Z of the block Teoplitz matrix D and the
transpose D', More precisely, we show how to find dim Z, the dimension of
Z, and characterize when dim Z is finite using the “maximal solvable sub-
space” (relative to A and B).

Section 2 shows that the maximal solvable subspace V is “deflating” if and
only if dim Z is finite. In this case, dim Z = dimV and each z=(z,)€ Z is
generated by some x, € V. Section 3 uses the “Kronecker canonical form™ of
the matrix pencil A + AB to find dim Z. We see that dim Z is finite if and
only if A + AB has no “column singularities.” In this case, dim Z is equal to
the number of nonzero, finite, generalized eigenvalues of A + AB. Section 4
uses restricted generalized inverses to find the maximal solvable subspace. An
algorithm based on Gaussian elimination is presented. Several examples are
given in Section 5.

2. THE DIMENSION OF Z

We are interested in the dimension of the subspace
Z= {(, X_1,%9,%,...) 1%, €C"and Ax,+ Bx;, = 0}, (2.1)
where A and B are complex m X n matrices and -* denotes transpose. Thus Z

is the null space (consisting of biinfinite vectors) of the (not necessarily
square) block Toeplitz system

B
D= A B (2.2)
A B
We call a subspace V of C" solvable (relative to A and B) if
AV=BV(cC™). (2.3)

Recall that a subspace V of C" is invariant (relative to A) if AV C V. The
notion of a solvable subspace is a generalization of a particular invariant
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subspace. In fact, if we set B = I, then the solvable subspaces correspond to
the Jordan blocks of A which are not nilpotent. (For a discussion of the
invariant subspaces of A, see e.g. [6}.)

We now find Z and its dimension by considering the maximum solvable
subspace (relative to A and B).

TueoreM 2.1.  The dimension of Z is finite if and only if the maximum
solvable subspace V, relative to A and B, satisfies

dim AV = dimV (= r). (2.4)
In this case
 dimZ=r. (2.5)

Proof. Let (...,%_y, 39, Zp,-..)" be any element of Z. Then, the sub-
space
U=span{z,: —0<i<o0} (2.6)

is a solvable subspace, since

A(Zag,)=Lajs,
- Ea,(— sz+1)
=B(L - ag,,)- 2.7)

Now suppose that we partially order all the solvable subspaces by set
inclusion. If V, and V, are solvable (i.e., AV, = BV}, i = 1,2), then A(V, +V})
= B(V, +V,), ie., V| +V, is also solvable. Since these subspaces are all in the
finite dimensional space C", we conclude that a maximal solvable subspace
exists. Let V denote the maximal solvable subspace. Thus AV =BV and V
contains any other solvable subspace. Now every element v € V can be the
zeroth component for a null vector (i.e., v = z, and 2, € — A'Bz,, 1, 3,4, €
—~ Bjy*Az,). Conversely, every null vector z € Z has a zero component in V,
which, by (2.7), means that all the components are in V. Moreover, if
dimV = dim AV (= dim BV'), then the operators A, and By, are one-one and
onto the subspace AV ( = BV). Thus dim Z = dimV in this case.

Now suppose that dim AV < dimV. Let 0 # v, €V N A(B) and 0 # v,
€ V N A(A), where #(-) denotes null space. Then there exists z € Z of the
form

z2=(.cy2_;_1»2_4,0,0,...,0, 2, 2,...)"
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with zy = v, and z_, = v,. It follows that Z is infinite dimensional, since we
can choose { arbitrarily. ' |

The above proof is constructive, i.e., it shows that we can find Z by
finding the maximal solvable subspace V. (This is done in the next two
sections.) Elements v, € #(A)NV and v, € #(B)NV give rise to an in-
finite dimensional subspace Z, while if (A (A)+ A (B))NV = (0}, each
nonzero element v € V yields a unique element z € Z.

In the special case that A and B are square, we get

CoroLLARY 2.1.  Suppose that A and B are square. Then the subspace Z
is finite dimensional if and only if

det(A+AB)=0,
i.e., the determinant of the matrix pencil A + AB is not identically 0.

Proof. 1f det(A + AB) = Q, then for each A there exists v, # 0 such that
(A+AB)v,=0.

Thus z,‘-(..., A-lvA,DA, on,...)e Z. Thus dim Z = co.

Conversely, suppose that det(A + AB) % 0. Let us assume that dim Z = co.
Then by the theorem, we have that dimV > dim AV = dim BYV. Since AV =
BV, we get that dimV > dim (A + AB)V. Thus A + AB is singular for each A,
which contradicts that det(A + AB) = 0, [ ]

Note that if m <n, then there exist 0 + v, € #°(A + AB), for each A.
This again yields that dim Z is infinite. (See Corollary 3.2 for an alternate
proof.) If dim Z is finite, then we have shown that z = (z,) € Z implies that
span{z; }C V. Moreover, each z € Z can be generated by some z, € V.

3. THE KRONECKER CANONICAL FORM

In this section we study the subspace Z by considering the Kronecker
canonical form of the matrix pencil A + AB. We call the subspace V of R"
deflating if

dim(AV + BV ) = dimV.
This is a further generalization of the concept of invariant subspaces to matrix

pencils. We have seen that the dimension of Z is finite if and only if the
maximal solvable subspace (relative to A and B) is deflating.
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The generalization of the Jordan canonical form to the matrix pencil
A + AB is given by the Kronecker canonical form (see e.g. [5] or [4]),

P(A+AB)Q=diag(L,,...,L,, L!

. FiA

WLy AN=LAI-]),

where A -1 0
(1) L, is the p X(p +1) bidiagonal pencil A
' | 0 A -1
(2) L} is the transpose of L,
A 0]
_l ) * A ,
o -1]

(3) N is a nilpotent Jordan matrix, and
(4) ] is in Jordan canonical form.

Thus Al — ] contains the finite eigenvalues (i.e., (A + AB)x, = 0),and AN - I
the infinite eigenvalues (i.e., Bx = 0), while L, and L' contain the column
and row singularities, i.e., there exist polynomm.l (oolumn and row) vectors
that zero out the pencil identically. The sizes of these blocks are given by the
Kronecker column indices ¢; and Kronecker row indices 7, respectively.

THEOREM 3.1.  The dimension of Z is finite if and only if the Kronecker
canonical form of A + AB has no column indices. In this case dim Z equals
the number (counting multiplicity) of nonzero, finite eigenvalues of A + AB.

Proof. First suppose that there exists a column index &, = x. Then for
each scalar A, (A + AB)v, = 0, where the polynomial vector

0, =0(0,...,0,1,A, A%,...,A%,0,...,0)". (3.1)

Thus, as in the proof of Corollary 2.1, we see that dim Z = co.
Now suppose that there are no column indices. Let us find the maximal
solvable subspace V. We have the Kronecker form

E+AF
AL -1 0 .
P(A+AB)Q=| J-AI . (32)
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where E + AF contains the (row) singularities, J; and J; are nilpotent Jordan
matrices, and J, is a Jordan matrix with no nilpotent blocks, i.e. a nonsingular
Jordan matrix.

Since Ax, + Bx,,, =0 if and only if PAQQ ~x, + PBQQ " !x;,, =0, we
can restrict ourselves to finding the maximal solvable subspace (call it U)
relative to

0 5 0 -1

(Then we get V=QU). Since ], and J, are nilpotent and E and F are
composed of blocks of type

-1 0 0 0
o 1| |1 0 (3.3)
o 0 o 1

respectively, we see that
U= {(0,0,...,0, Uys Uy 1se-es,)" s 4, arbitrary

and ¢ the first column of J, ).

Moreover, since J, and I are both nonsingular and of the same dimensions, we
conclude that U is deflating. Thus V = QU, the maximal subspace relative to
A and B, is also deflating. By Theorem 2.1, dim Z = dimV = dimU, which
equals the dimension of J;. |

We can now improve Corollary 2.1.

ConoLrLaRY 3.1. If A and B are square, then the subspace Z is finite
dimensional if and only if
det(A+AB)= 0.
Furthermore, in this case the precise dimensionality of Z is k where det(A +
AB)=KNTI¥(A—A))and A, %0,i=1,....k.

Proof. The proof is immediate from the theorem, since det(A + AB)= 0
if and only if A + AB has no singularities, i.e. if and only if the Kronecker
form has no column (or row) indices. [ ]
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COROLLARY 3.2. If m < n, then dim Z is infinite.

Proof. If m < n, then the columns of A + A B are linearly dependent, for
every scalar A. Thus, the Kronecker form has column indices which, by the
theorem, yields the conclusion. |

If dim Z is finite, then A + AB has the Kronecker form in (3.2) and, as
seen in the proof of Theorem 3.1, the maximal solvable subspace (relative to A
and B) is

V=0U,
where U= {u=(y,)€R":4,=0, i=12,...,t —1},and ¢ is the first column

of the non-nilpotent blocks J;. Each vector zOEV generates an element
z=(2,)€Z, and all of Z is generated in this way.

4. AN ALGORITHM FOR V

We now present a finite iterative algorithm for finding V, the maximal
solvable subspace (relative to A and B). We first present some preliminary
results. We will use the generalized inverse of an m X n matrix A. Let #7(A)
denote the null space of A and #(A) the range space of A. We say that A* is
a generalized inverse of A if

AA*A=A.

A* is also called a {1}-inverse of A (see [1]).
If we are given the system of linear equations

Ax=bh, x€eC",

then x is a solution if and only if x = A* b for some generalized inverse A*. In

fact, the set of all solutions [if it is nonempty, i.e. if b € #(A)] is equal to

A*b+ A (A). Moreover, Py 4,= AA* is a projection onto Q(A) and x =
A™ b is always a solution of Ax = Py A)b
If x is restricted to a subspace W, i.e.

Ax=Db, xEW,

then a solution exists if and only if a solution exists for

APy x=b,
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where P, is some projection onto W. Moreover, a solution is Py (APy)* b,

and Py, (AP, )" is called a W-restricted generalized inverse of A.
Now let

Ag:=A, B,:=B,
S,;: = R(A,)NR(B,) (4.1)
U: = A7(S)NBY(S),
where A7 ! (and B;~!) denotes inverse image, i.e.
U =[A7 (S)+A4(A)]N[B}(5)+ A (B)]. (4.2)
and

A=Ay, B, ,: = By, (4.3)

Lemma 4.1, Letz=(z,)€ Z. Then, fori=0,1,2,..., and — 0 < j<oo,
we have

Az;=A,z, Bz=Bgz, (4.4)
Unacl, §4,C8, (4.5)
z,€U,. (4.6)
Proof. Now
5, = R(A)NR(B,)
= #(Ay, )N R(By,)C S,

U= ATY(S,)N B }(S,)
- Aﬁj.l,(sx)nBu—l:(sl)
C A~Y(S,)NB~(S;) = U,

Moreover, since Az;= — Bz,_,, we see that both Az, and Bz, are in Sp. s0
that z,€ U}, This proves (4.4$ to (4.6). a
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Since S, and U, are finite dimensional, the iteration must stop in a finite
number of steps, say k, i.e.

Sy=Sii1s Ui =Ussy-

Tueorem 4.1. The subspace U, found above is the maximum solvable
subspace relative to A and B.

Proof. If V is the maximum solvable subspace, then we have
AV=BV CS,.

Thus V cU,. Similarly, AV=BV CS, and VCU, i=1,...,k. Since the
iteration stops, we have

AU, = AU, =S§,,
BkUk - BUk - Sk.

Thus since V is the maximal solvable subspace, we must have V = U,. a

Now if (z,}€ Z, i.e. Az, + Bz, ,, - 0, we know that z, € V for all k. Let
Ay be any restricted (to V') generalized inverse of A, i.e. Ay = Py(APy)*.
Then

zk € - AR,sz'Fl + /(AIV).

This shows (again) that Z is finite dimensional if and only if V is deflating, i.e.
if and only if #(Ay)= {0}. [Note that this implies that A"(B,,)= {0} also.]

The steps outlined in (4.1) to (4.3) provide an algorithm for finding V. The
algorithm restricts A and B to smaller and smaller subspaces U, until V is
found. Note that finding #(A)N R(B) is equivalent to finding A"(A, — B).
For, if one finds, using e.g. Gaussian elimination, n X t matrices C and D such
that

.A"(A,-B)-.Q(g),

then
2€85,=R(A)NR(B)
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if and only if
z;Ax-By
for some x and y; i.e. if and only if
Ax—By-[A,-B](;)-O.
Therefore,
S, = R(AC) = R(BD).
Now u € U, if and only if
u-‘a+n¢-b+n,,

with n, € #(A), n, € #(B), and both Aa, Bb€S,. Thus Aa = z, = By,
and Bb = z, = Ay,, for some y, and y,. But then

0.-1(3 )= 4.-3(%) -0,

5o that g € #(C) and b € (D). Now since n, € #(C) and n, € (D), we
get that

Uy=R(C)NnR(D).
Let E be an n X r full column rank matrix such that
R(E)=R(C)NR(D)=U,
[E can be fdmd using #(C, — D) just as S, was found above]. Then
A,=AE and B,=BE.

One now begins again with A, replacing A and B, replacing B. In summary,
there are two basic operations at each step. First, find C and D such that

N(A,—B)= [g]
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Then find E such that

R(E)=2(C)n R(D),
and replace A by AE and B by BE. We stop when E is the identity matrix.

The maximal solvable subspace V is the range of the product of the matrices
E found.

5. CONCLUSION

In this paper we have studied the kernel Z of the biinfinite block Toeplitz
matrix

> ty
]

It was shown that dim Z < oo if and only if the matrix pencil A + AB has no
column singularities—i.e., there are no Kronecker column indices in the
Kronecker canonical form, or equivalently, there is no polynomial vector
g(A)=A%0, +AP"1g, _,+ - + v, such that (A + AB)q(A)= 0. In this case,
dim Z equals the number (counting multiplicity) of nonzero finite eigenvalues
of the pencil A + A B. This was shown using V, the maximal solvable subspace
(relative to A and B). In fact, Vis deflating if and only if dim Z < o0, and in
this case dim Z = dimV.

Now D is one-one (on the sequence space) if and only if dim Z = 0, if and
only if dimV = 0, if and only if A + AB has no column singularities and no
nonzero finite eigenvalues. Similarly, D is onto if and only if dim A°(D*)= 0,
if and only if A + AB has no row indices and no nonzero finite eigenvalues,
Since m <n (m > n) implies that A+ AB has column (row) indices, we
conclude that D is one-one and onto if and only if we have (1) A and B are
square, (2) A -+ AB has no singularities, and also (3) A + AB has no nonzero
eigenvalues. .

If A is nonsingular and A +AB=0 for some scalar A=a%0, then
dimZ = n, since a is a nonzero eigenvalue with n linearly independent
eigenvectors, i.e., the Kronecker form is — al + Al Note that dim Z = n if
and only if A + AB has no column singularities and no nonzero eigenvalues,
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i.e. if and only if the Kronecker form is AI + J where J is an n X n Jordan
matrix with no nilpotent blocks (since necessarily m = n).

If either A or B is nonsingular, then necessarily dim Z < oo, since A + AB
cannot have any singularities. In fact, det(A + AB)#% 0 for A =0 (for JA|
large) if A (B) is nonsingular.

In the case that dim Z < oo, a basis for Z can be found using the maximal
solvable subspace V. In fact,

Z = {z-(..., Z_1vZ0, zl,u.):ZOEV, Ty - -AR’BZ""l}’

where Aj;, is any (restricted to v) generalized inverse of A. Note that
AyB:V -V is one-one and onto.

The maximal solvable subspace V can be found using the (finite) algo-
rithm of Section 4. Also, V corresponds to the span of the generalized
eigenvectors of all grades corresponding to the nonzero (finite) eigenvalues.

The numerical calculation of the Kronecker canonical form might prove
unstable (see e.g. [3]) due to the possible ill conditioning of the transforma-
tions P and Q. One can instead use unitary transformations U, and U, to
reduce the pencil A + AB to the form

A, +AB, 0 0 0
A,+AB 0 0
- £t Ay
U(A+AB), A,+\B, 0
» * s A, +AB,

where (1) A, + AB,and A, + AB, contain the row and column (left and right)
singularities, (2) A, + AB; contains the infinite eigenvalues, and (3) A s+ AB,
contains the finite eigenvalues. The above form can be obtained using a
backward stable algorithm (see e.g. [4]). Thus, dim Z < oo if and only if there
is no block AB, — A,, and in this case dim Z equals the number of nonzero
eigenvalues in A, + AB;. A basis for Z can be obtained from the correspond-
ing columns of Uj.

The numerical stability of finding dim Z (when dim Z <o0) and that of
finding a basis for Z are, in a certain sense, reversed. This is because
dim Z < oo when there are no column singularities, and dim Z corresponds to
the nonzero eigenvalues of A + AB (whereas usually the null space corre-
sponds to finding the zero eigenvalues, which is an unstable process). To find
dim A7(D) of a matrix D is unstable, except in the full rank situation. In fact,
the rank of a matrix is an upper-semicontinuous function and not a continuous
one. Thus, small perturbations of the elements of a matrix D can increase the
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rank from deficient rank to higher or even to full rank, but not vice versa.
Equivalently, small perturbations can reduce the dimension of the null space
but not increase it. However, since dim Z corresponds to the nonzero eigen-
values of A + AB, the situation is reversed. Small perturbations (in A and B)
can increase dim Z but not decrease it. So the value of dimZ is completely
stable when dim Z = n. (For a matrix D, m X n, the value of dim #7(D) is
stable when it is n — m, i.e. when the matrix D is full rank).

We now find dim Z for the following examples, using the algorithm in
Section 4. '

ExampLE 5.1. Let A=Jand

0 0 O
Then
1 1 0
01 0
step 1: .I(A,—B)-Q(S)-Q 00 0f
01 0
0 01
U, = R(C)NR(D)=R(C), E=C.
Then

1 2 0
A= AE=E, BI-BE-[O 1 o].
0 0 O
1 0 0 -1 -1 0
step 2: .A"(A,,—B,)-.A"[O 1 0 o0 -1 0]
0 0 0 0 00

QOO ~OQ
QOO O™
O het © O s s
k=KX —-X-]

U,=R(C)NR(D)=R*, E=L
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So we stop and conclude that

1 1
V=210 1}
0 0

Since S, = R(A,)N R(B,)=V, we get that dim Z = dimV = 2.

ExampPLE 5.2. Let

3 1 4 71 9
Then
0 2 0 2
step 1 (A,B)~]o 1 1 1 0 1},
0 0 0 0 1 2
sSO
2 1 2
1 1 1
-a(Clo 0o -1 0
#(4,B) Q(D) 2 0o o}
0o 0 0
0 0 -1
1 001 01
(C,-D)~|0 10 0 0 1{,
0 010 0 3
1 0 1]
o o0 1
mMeal{F\aoal-1 0 o
#c.-p)=2(g)=2| ¢ o 3.
0 -1 o0
0 0 -1
U= #(C)nA(D)

3 3
-a(cp)-a[ z]. E-[ 2].

-1 1
3 6
L7 14
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Since B, = 2A,, we stop. We get that 2 is a generalized eigenvalue and
dimZ =1. Note that V=®R(E). In fact, the biinfinite vectors in Z are
generated by multiples of

3
zo-[ %] with z,=2z,,.

ExampLE 5.3. Let

1 2 1 3
A=|2 4|, B=|2 8|
1 2 13

()

is in A(A)N A'(B), we conclude immediately that dim Z is infinite. In fact,
we can choose z =(z,) € Z with z, = f(i)v, where f(i) is any real valued
function.

Since the vector
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