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We study several bounds for the determinant of an n x n positive definite Hermitian 
matrix A. These bounds are the best possible given certain data about A. We find the 
best bounds in the cases that we are given: (i) the diagonal elements of A: (ii) the traces 
tr A, t rA2 and n ;  and (iii) n, tr A ,  t rA2 and the diagonal elements of A. In case ( i )  we 
get the well known Hadamard inequality. The other bounds are Hadamard type 
bounds. The bounds are found using optimization techniques. 

1. INTRODUCTION 

Given the n x n positive definite Hermitian matrix A = (a,-), the 
Hadamard inequality yields the following upper bound for the deter- 

*This work was supported by Air Force Wright Aeronautical Laboratories contract 
number F33615-81-K-3224 while Crone, Sa and Wolkowicz were visitors at the 
Institute for Physical Science and Technology. University of Maryland. 
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306 BOB GRONE 

minant of A, 
n 

det A < IT a,, . 
, = I  

For a general matrix A this implies 

Equality is attained in (1.1) if and only if A is diagonal. Thus, 
increasing the off-diagonal terms of A (in modulus) decreases the 
determinant of A. We propose to use the sum of the squares of the 
modulii of the off diagonal terms to improve (1. l), as well as to find a 
lower bound for det A. 

The upper (lower) bounds for the determinant are based on finding 
upper (lower) bounds for the largest eigenvalue. In Section 2 we find 
a finite nested sequence of upper and lower bounds for the largest 
eigenvalues of an n x n Hermitian matrix A in terms of the traces 
trA, t r ~ ~ ,  n, and the diagonal elements, a,,, of A .  This improves the 
bound given in [7], which does not use the diagonal elements. The 
bound is obtained by applying the Karush-Kuhn-Tucker optimality 
conditions to an appropriate mathematical program. see [6]. The 
diagonal elements are introduced by using the majorization result of 
Horn [2]. The main result of this section is presented as Corollary 2.1. 
We also present a sequence of lower bounds for the smallest eigen- 
value in Corollary 2.2. 

In Section 3 we present the Hadamard type bounds for detA. 
These are of the form 

for appropriate fractions a, and a,, which depend on n. a,, , trA and 
t r ~ ~ .  If m = t rA/n and s2 = trA2/n - m2, then bounds of this type 
given in [ I ]  state that 

(m - s(n - l)lI2)(m + s/ (n  - I ) ' / ~ ) ~ - '  < detA 

Various improvements of Hadamard's inequality (1.1) have ap- 
peared in the literature. A result of Schur (see e.g. [ 5 ,  pg 2241) states D

ow
nl

oa
de

d 
by

 [
U

ni
ve

rs
ity

 o
f 

W
at

er
lo

o]
 a

t 1
3:

44
 3

0 
Ju

ne
 2

01
1 



that 

0 < n u , , -  detA < t r ~ ~  - ~ a :  
2 n - 2  

Marcus [4] states that 

detA ,< n u l , -  A:-' \a,,12, 
I + /  

where A, is the smallest eigenvalue of A. In [3], Johnson discusses the 
problem of improving Hadamard's inequality by using more informa- 
tion about A other than just the diagonal. 

2. AN UPPER BOUND FOR THE LARGEST EIGENVALUE 

Let A = (a,,) be an n x n nonzero Hermitian matrix (not necessarily 
positive definite) with eigenvalues A ,  > . . . 2 A,. Set 

In [7], it was shown that 

with equality if and only if A, = . . . = A, = in - s/ (n  - 1)'12. Thus, 
if we let 

U(A) = { B = (b,,) : B is Hermitian, tr B  = tr A.  and tr B~ = t rA2),  

then (2.2) provides a tight upper bound for the largest eigenvalue 
Al(B) for any B E U(A). The bound is independent of which B  
E U(A) is chosen. We now improve (2.2) (see Corollary 2.1) by 
considering the set 

V(A)= U ( A ) n  { B  :b,, = a , , , i =  1 , .  . . , n ) ,  

and find the maximum of Al(B) over all B  E V(A). This leads to the 
following optimization problem: 

maximize A,(A) : la,12 < L, a l l  = a ,  2 . . - ( 1.1 
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308 BOB GROVE 

i.e. we want to find the largest eigenvalue among all Hermitian 
matrices A satisfying t r ~ '  < L and given the nonincreasing diagonal 
a,,, i = 1, . . . , n .  Let A, > A,, be the eigenvalues of A .  Using the 
majorization of the diagonal by the eigenvalues, see [2], (Pl)  becomes 
equivalent to 

maximize A, 

s.t. a ,  < A , ,  

a ,  + a ,  < A, +A , ,  
. . . . . . . . . . . . . . . . . . . . . . . . . .  

a l  + . . . + a n - ,  < A , +  . . . + A r , - , ,  
(P2) 

a , +  . . .  + a n = A l +  . . . +  A , ,  and 
12 

By using the inequality constraint < L. rather than the equality 
constraint = L, we maintain the convexity of the problem (P2). 

We now state the solution of (P2). Let 

A, := C a , ;  '2, := 2 A,;  L, := L -  2 a:;  

THEOREM 2.1 Suppose that the constants L ,  a l  > . . . a,, > a,, , 
= - oo are given such that 

Let 

Then there exists an integer t such that 

and the solution of (P2)  is 
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HADAMARD'S INEQUALITY 309 

Proof The Karush-Kuhn-Tucker optimality conditions. e .g  [6], 
for (P2) are 

a , > O ,  y ( A , - A , ) = O .  j = l ,  . . .  n - 1 .  (2.10) 

.I,, = A,, , (2.1 1) 

where the solution vector (A,) must satisfy the majorization constraint 
as well as 

A ,  > . >A,, and C A ~ S  L. 
I =  1 

First, suppose ,B = 0. Then, from the last equation in (2.9), we have 
a = 0. Similarly a, -, = a,, - = - . . = az = 0. The first equation is 
now - 1 - a ,  = 0, which is impossible since a ,  2 0. Therefore 

n 

O > O  and C X ; = L .  (2.13) 
,= I 

We can now solve for the A, to get 

We also have 

aJ(.\,-A,)=O, j = l  , . . .  n - 1 .  
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310 BOB GRONE 

so that 

aJ>O implies i l ,=A, ,  j = l ,  . . . ,  n - 1 .  (2.15) 

But by (2.14) 

a,=O implies hJ=h,+,,  j = 2  , . . . ,  n - 1 .  (2.16) 

We conclude that 

A , = A ,  or h , = h J + , ,  j = 2  - 1  (2.17) 

Now suppose that 

A , = A J ,  j = n , n - 1 ,  . . . ,  n - k ,  (2.18) 

and 

A J > A , ,  j = n - k - 1 ,  . . . ,  n - k - 1 .  (2.19) 

Let us show that either ,I, > A,, for j = n - k - I - 1, or that n - 
k - 1 = 1 .  Suppose not. i.e. suppose 

= A l  j = n - k - I -  1. (2.20) 

From (2.18), we have 

h J = L I J - i l , - , = A , - A l l = a , ,  j = n  , . . . ,  n - k + 1 ,  (2.21) 

while (2.19) implies that oJ = 0 so that (2.16) yields 

h J = h , + , ,  j = n - k -  1 , . . . ,  n - k - I .  (2.22) 

Now (2.20) and (2.19) imply 

- - A  ,,,-, > a , , - , Z . . .  > a , , , .  (2.23) A,,-,-, - . . .  - 
Therefore 

- ~ n - k = l ~ , - ~ - / - l + ~ n - A - [ +  . . .  + X n - k - I + X n - ,  

= A n - k - l - l  +An- , - ,+  . . . + A n p k ,  by ( 2 . q  
- - A , - k , l + ( I +  l ) X , , - k , ,  by (2.22), 

> A 1 + ( + 1 )  - 1  2 A ,  by (2.23), 

which contradicts (2.18). Therefore, we conclude that strict inequality 
holds in (2.20). Continuing, we get 

A J > A J ,  m = n - k - 1 ,  . . . ,  2 , l .  (2.24) D
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By (2.16) we now have 

X 2 = A 3 =  - .  . = :=Ar (2.25) 

and 
h I =a, .  j = n - k + l  , . . . ,  n. (2.26) 

This, together with (2.13) and A,, = A,,, yields an explicit solution for 
the A,, i.e. we solve 

The solution is 

This is the given solution with n - k = t .  
Now, except for the trivial case when L = nu:, the Slater constraint 

qualification, see e.g. [6], is satisfied for the convex (bounded) pro- 
gram (P2). Therefore, the Karush-Kuhn-Tucker conditions are nec- 
essary and sufficient for optimality. This implies that a feasible 
solution satisfying (2.28) and (2.29) must exist. Moreover, this solution 
must satisfy (2.5) by the above arguments. 

The Karush-Kuhn-Tucker conditions are used above not only to 
prove the result but also to generate it (see [6]). Once the structure of 
the solution is found a slmpler proof can be constructed. The struc- 
ture of the solution 

X 2 =  . . .  = A , ,  h , = a , ,  i = t + l ,  . . . ,  n 

uniquely determines the solution (2.6)-(2.8), using C:=,A, = A ,  and 
C:= ,A; = L. Now, suppose that the optimal solution does not have 
this structure, i.e. suppose that for some t  > 2, we have 

A , - , > h , f a , ,  A , = a , ,  i = t + 1 ,  . . . ,  n. (2.30) 

Then necessarily, 

h , < a , ,  A , = b ,  and A , - , < A  ,-,. D
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312 BOB GRONE 

We now fix xi =A,, for all i # 1, t - 1, t and set, for c , 6  > 0, 

For sufficiently small c, 6 ,  all the majorization constraints are satisfied 
by ( I , ) .  Moreover, by solving A,' + A,121 + = + A:, + A;, 
with ~ , 6  > 0, the constraint C','=,X,-~ = L is also satisfied. Note that 
we get 

> 0, for small 6  > 0, since A,- ,  > A, . (2.3 1) 

The above theorem yields a nested sequence of upper bounds for 
the largest eigenvalue of a Hermitian matrix A .  

COROI~LARY 2.1 Given A Hermitian with L = trA2 and t defined in 
(2 .5) ,  let 

u, := m, + ( k  - 1)"2s,. 

Then 

A l  < u, < u,+,  < . .  . < u,. (2.32)  

Proof After applying the unitary similarity P'AP, where P is a 
permutation matrix, we can assume that a , ,  > . . . > a,,. We now set 
L = t r ~ '  and apply the theorem. Adding one constraint ~ : = , a , ,  
< c)= ,A,, at a time, for k = n - 1, n - 2,  . . . , t, provides the nested 
bounds. rn 

Note that when t = n is chosen by (2.5), the bound reduces to the 
one in [7]. Thus choosing t = n always provides an upper bound for 
A,. Similarly, choosing t to be any integer ( <  n)  larger than the t 
satisfying (2.5) provides an upper bound for A,. The best of these, of 
course, is the t satisfying (2.5). A procedure for calculating these 
bounds efficiently is given in Section 3. 

We can also obtain a lower bound for the smallest eigenvalue A, by D
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looking at  the largest eigenvalue of - A .  for this, let 

COROLLARY 2.2 Given A Hermitian with L = t r A 2 ,  and cc = a, > a ,  
> . . . a, representing the ordered diagonal elements of A ,  let 

U - k  := m-k + S L k / ( k  - 

1 / 2  h-, := n z ~ ,  - s - , ( k -  1) . 

Then there exists an integer r such that 

2 < r < n ;  a,,-,+, < L, < a,_, 

and 

A , >  b - , >  b-(,+,, > . . .  > 6- , .  

3. HADAMARD TYPE BOUNDS 

Given the n x n positive definite Hermitian matrix A = (a,), then 
Hadamard's inequality states that the determinant 

n 

detA < fl a,, . 
, = I  

(1.1) 

Upper and lower bounds for the determinant given in [I]  state that 

( m  - s ( n  - ~ ) l / ~ ) ( m  + s / ( n  - I ) I / ~ ) ~ - '  < detA 

Equality holds on the right i f f  A, = . . - = A,, , in which case 

A,, = m - s / ( n  - A l  = m + s ( n  - I) ' /*.  

In the case that m - s (n  - I) '/* > 0, equality holds on the left iff 
A ,  = . . . = A , - , ,  in which case 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 1

3:
44

 3
0 

Ju
ne

 2
01

1 



3 14 BOB GRONE 

These latter bounds are the best possible bounds one can obtain given 
only the three facts n ,  trA and trA2. We now improve these bounds 
by using the ordered diagonal elements of A, i.e. we find the best 
upper and lower bounds for detA given only n,  trA, t r ~ l  and the 
ordered diagonal elements a ,  > . . . > a,, see Theorem 3.1. We also 
consider the bound obtained by applying (1.2) to the matrix B 
= DAD, where D is the diagonal matrix with diagonal entries 
d, = 1/1,%. 

The bound (1.1) is extremely easy to calculate. It requires exactly 
n - 1 multiplications. The other bounds require knowing t r ~ '  
= x,,,,/a,,12 and so require of the order of n' multiplications. 

To improve (1.2), we again solve an optimization problem: 

maximize {det A : A is n x n Hermitian positive definite, tr = L ,  

where the a, and L are given positive numbers satisfying 

We also solve (P3) with maximize replaced by minimize. First, let us 
note that: 

PROPOSITION 3.1 An n x n Hermitian positive semi-definite matrix A 
exists with diagonal a,i = a, > 0 and trA2 = L if and o n 4  if (3.1) holds. 

Proof Since C','= ,A, = trA and x:= ,A,? = t r ~ ~ ,  necessity of (3.1) 
follows from 

n 

The last inequality follows from applying the Cauchy-Schwarz in- 
equality to the vector (Ai). To prove sufficiency, we use the majoriza- 
tion result of Horn 121. Thus we need only find an ordered vector (A,) 
which majorizes (a,) .  The solution is given by the solution of (P2) in 
Theorem 2.1. Note that A, > a,,, > 0 if t < n and p, = m ,  - s , / (n  - 
I) ' /* > 0, by (3.1), if t = n.  Note that the extremal case is given by the 

matrix a ,  = 6. This matrix has t r ~ :  = ( ~ : = , a i ) 2  and rank = 1. . D
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The determinantal bounds are obtained using Theorem 2.1 and the 
somewhat isotonic property of detA and A,(A). More precisely, we 
show that if B E V(A) does not solve (P2), then there exists C 
E V(A) such that det C > detB. The following lemma shows the 
isotonic character of det A and A,(A). 

LEMMA 3.1 Suppose that K, L > 0 are given and consider the set 

Then, on this set, the product A,A12A3 is isotonic in each of A ,  and A, and 
is reverse isotonic in A,. 

Proof Applying implicit differentiation on CA, = K and cA: = L 
and solving, yields 

ax, - 3 - A, , i, j ,  k distinct. ax, A, - A, 

Differentiating the product, yields 

A,, i ,  j ,  k distinct. (3.3) 

Since the derivatives exist, except possibly at the points where A, = A,, 
we get the isotonic properties from thelr signs. 

Alternatively, A,, A,, A, are the roots of 

where P = 4 ( K 2  - L )  and c = A,A,A, . Differentiating with respect to 
A yields 

The discriminant 4~~ - 12 P = 2(3 L - K2) > 0. by the Cauchy- 
Schwarz inequality. Thus d c / d A  has exactly two sign changes and 
must be positive for large A. This implies 

THEOREM 3.1 Let A = (a,,) be an n x n positive definite Hermitian 
matrix with eigenvalues A ,  > . . . > A,, > 0; let co = a,, > a ,  2 . . . 
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316 BOB GRONE 

> a, > a,, , = - oo contain the ordered diagonal elements of A ; let 

Then there exists integers t and r such that 

~ ~ ~ < a , ~ ~ + , ,  j = n , n -  I , .  . . , r +  1; an- ,>  c - r  > 
and we get 

detA < u , ( p , ) ' ~ ' a , + ,  . .  . a n  

. . . . . . . . . . . .  

< Ll,, ( p,, ) I1 - ' . (3.6) 

. . .  Equalit?, holds throughout the first j inequalities if A, = = A, 
- - . . .  = A,+J-I and A,,,,, = a,,,,,, i = 0 , 1 , .  . .  , n - t - j ;  in this 
case A, = p,+,-, and A, = u,+,-, ; 

detA > b-, .(c- ,) ' - 'a,  . . .  a,-, 

. . . . . . . . . . . .  
> b- , , ( c -  I .  (3.7) 

Equahtv holds throughout the last j inequalities i f f  A,,-, = . . .  = A,-, 
- - . . .  - - A  +,  andh ,  = a,, I = 1 . .  . .  , n - r - j :  in this case A,,-, 
- - c- , ,+~)  and A, = b , , , , ,  . 

Proof To prove the mequalitles, we need only show that the 
determinant 1s a maxlmum (minimum) in (P3) only lf A, (regp. A,,) IS a 
maximum (resp. mlnlmum). Suppose not, i e. suppose that A solves 
(P3) but the eigenvalues (A,) of A do not have the structure of the 
solutlon of (P2). Then, as in the second proof of Theorem 2.1, we 
keep all the A,'s flxed except for A,, I = 1, t - 1, and t .  Then the result 
follows from Lemma 3.1. 
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Let us review the procedure for calculating upper (and then lower) 
bounds for detA, from Theorem 3.1. We use pseudo-programming 
language. We include the subscripts for A , ,  L, etc. . . . , for clarity 
only. 

Comment Calculate upper bounds for detA from (3.6). The diago- 
nal elements of A are assumed ordered. 

INITIALIZATION 

A, = a,, , L,, = 2 a: + 2 2  la,I2; 
i =  I I =  1 ' < I  

Set k = n 
Write The first (upper) estimates for A , ,  A,, A, and det A are: 

A , , < u , :  A 2 2 ~ > A k ;  

det A < u, ( y,)'" I). 

LOOP While y, > a, and k > 3 do: 
s e t k = k -  1 

m , = ~ , / k ;  s , Z = L , / k - m ; ;  

, = , - / - 1 ;  rr, = nz, + s , ( k  - I )" ' :  

Wrire Improved (upper) estimates for A , ,  A,, A, and det A are: 

End while 
Set t = k. 

We see that it takes (n2  + n) /2  + 8 multiplications and (n' + n) 
/2 + 3 additions for the first estimates. Each improvement takes 8 
multiplications and 5 additions. There are at most rr - 2 improve- 
ments. 

Comment Calculate lower bounds for detA from (3.7). The diago- 
nal elements of A are assumed ordered. 
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318 BOB GRONE 

Initialization 

Set k  = n 
Write The first (lower) estimates for A,, A, _, , A, and det A are: 

h - 1 )  detA > r n a x ( 0 , b - , ( c )  , 
LOOP While c, < a,-, + , and k 2 3 do: 

Set k =  k -  1 

Write Improved (lower) estimates for A,, , A, - , , A,, -, + , and det A 
are: 

An > h - A  ; A,-, < C - ,  < h,,-,+l 

det.4 2 max(0, h - , ( e - , ) k - l ) a l  . . . a, 

End while 
Set r = k. 

We have taken the lower estimates as a maximum with 0, since the 
lower estimates for A,, denoted b -, , can be negative. The complexity 
of calculating these bounds compares with the upper bounds. Of 
course, we do not have to redo the bulk of the work, which is to 
calculate L , = L, . 

In the above theorem, we see that we can obtain improved esti- 
mates as long as p, > a,. Moreover, the last estimate satisfies a,,, 
< p,a,. Thus, we cannot obtain any improvements if the diagonal 
elements of A are all equal, i.e. a ,  = . . . = a,. We now scale A to 
obtain equal diagonal elements and apply (2.1). This yields very good 
estimates for detA. 

THEOREM 3.2 Let A = (a,) be an n x n Hermitian positive definite 
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matrix; let 

Then 
n n 

bcn-'  IT a,,< detA < up1'- '  11 a,, 
1 = 1  r = l  

(3.8) 

Proof Let B = DAD, where D is the diagonal matrix with ele- 
ments l/G. Then the diagonal elements of B are all equal to 1 and 

tr B * = L. Moreover det A = det B n:= ,a,, . Applying (1.2) to B, yields 
the result. 

The bounds in (3.8) require (3n2 - n)/2 + 8 multiplications and so 
are still of the order of nZ multiplications. 

4. EXAMPLES 

We now present several examples illustrating our bounds. Let us 
number the bounds as follows: 

1. the bound from Hadamard's inequality (I. 1); 
2. the bounds from (1.2); 
3. the bounds from (3.6) and (3.7) in Theorem 3.1; 
4. the bounds from (3.8) in Theorem 3.2. 

Bound 1 is the best possible bound given the diagonal elements of A .  
Equality is attained if and only if A is diagonal. Bounds 2 are the best 
possible bounds given n, trA and t r ~ l .  Conditions for equality 
depend on the eigenvalues of A (see Theorem 3.1). The upper bound 
from bound 2 can be better than bound 1 and vice-versa. 

Example 4.1 If A is diagonal, then bound 1 is exact. This is not 
true for bound 2. Let A = diag(l,2,3). Then 

detA = 6 = bound 1 < bound 2 = 6.385 D
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320 BOB GRONE 

Conversely, bound 2 might be better than bound 1. Let 

Then the upper bounds are 

det A = 50 < bound 2 = 5 1.065 < bound 1 = 60. 

Bounds 3 improve on bound 1 and also improve on bounds 2 by 
using the diagonal elements of A .  Bounds 3 give the best possible 
bounds given n, trA, t r ~ *  and the ordered diagonal elements of A. 
Conditions for equality again depend on the eigenvalues (see Theo- 
rem 3.1). 

Bounds 4 are obtained by applying bounds 2 to the matrix B 
= DAD, obtained by scaling A. Here D - '  = diag(&, . . . , &). 

Equality is attained if and only if equality is attained when applying 
bounds 2 to B. Thus, equality depends on the eigenvalues of B. Since 
the diagonal elements of B are all 1, bounds 2 and bounds 3 are equal 
when applied to B. Moreover, bound I is exactly 1, so the upper 
bound 2, for B, must be < 1. Thus the upper bound 4 is always an 
improvement on bound 1. However, this is not the case for bounds 2 

det A = 4 = bound 2 = bound 3 = 4 > bound 4 = 3.983 

Thus bound 2 is better than bound 4. However the reverse is true for 
the upper bound in this example, i.e. 

det A = 4 < bound 4 = 4.09 1 < bound 2 = bound 3 = 4. I48 

The eigenvalues of A are 1,2,2. Thus equality holds for the lower 
bound 2. If we choose A with eigenvalues 1,1,2, then we would get 
equality for the upper bound 2 which would now be better than the 
upper bound 4. 

(and so not for bounds 3). 

Example 4.2 Let 

A =  
11/6 1/3 1/6 

1/3 4/3 - 1 / 3  
1/6 - l / 3  11/6 

Then, the lower bounds are 
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However, it appears that the bounds 4 usually yield the best 
estimates. We see this in the following examples. 

Example 4.3 Let 

5 - 2  

3 - 3  10 

Then the eigenvalues are 3.682, 12.607, ,711; and detA = 33. 

bound 1: det A < 100 
bound 2: det A < 56.092 
bound 3: det A < 56. < 56.092 
bound 4: det A < 37.235 

The lower bounds 2 ,3 ,4  are all negative. The eigenvalues of 
B = DAD are 2.158, .577, .265. The upper bound 3 was improved 
once. 

Example 4.4 Let 

Then the eigenvalues are 16.813, 9.081, .705, 4.401; and detA = 474. 

bound 1: detA < 750 
bound 2: detA < 142 1.42 
bound 3: det A < 655. < 684.766 < 1421.42 
bound 4: 190.019 < detA < 496.184 

The lower bounds 2 ,3  are negative. The eigenvalues of B = DAD are 
1.852, ,908, .527, ,714. The upper bound 3 was improved twice. 

Example 4.5 Let 

Then the eigenvalues are 16.674, 9.028, 4.299; and detA = 647 

bound 1: detA < 750 
bound 2: 516.256 < det A < 703.743 
bound 3 : 5 16.256 < 540. < det A < 680. < 703.743 
bound 4: 617.667 < detA < 652.333 
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BOB GRONE 

The eigenvalues of B = DAD are 1.436, .886, ,678. The bounds 3 were 
improved once. 

In the last three examples, the bounds 4 were distinctly better than 
the other bounds. The scaling B = DAD appears to 'average' the 
eigenvalues; i.e. the variance of the eigenvalues of B is smaller than 
that of A .  Thus, we are closer to the conditions for equality when the 
bounds 2 are applied to B. This raises the question of which is the 
best scaling and suggests that if we are interested in a good upper 
bound, then we should scale to get closer to the condition A, = . . . 
= A,; while if we are interested in a good lower bound then we 
should scale to get closer to the condition A ,  = . . . = A , , .  Initui- - 
tively, we could let D;' = diag(l Jazz , . . . . &;) or D l '  = 

d i a g O G ,  . . . , i c ,  1). (Where we have assumed that the a,, are 

ordered.) For example. if we apply the second scal~ng D 
= d l a g ( 6 ,  1 . 1m)  to A in Example 4.3. we get that detA < 34.333 
which ~mproves our prevlous bounds. The e~genvalues of B In t h ~ s  
case are 3.047, .578, .265; so that we see we have come clmer to the 
condit~on A, = A,. 
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