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ABSTRACT

Bounds for various functions of the eigenvalues of a Hermitian matrix A, based on
the traces of A and A%, are improved. A technique is presented whereby these bounds
can be improved by combining them with other bounds. In particular, the diagonal of
A, in conjunction with majorization, is used to improve the bounds. These bounds all

require O(n®) multiplications.

1. INTRODUCTION

Consider an n X n complex matrix A with real eigenvalues A, > -+ 2 A,
n > 2. Bounds for various functions of the eigenvalues were given in (7}, [8],
[9]. These bounds used the two traces, trA and trA% The bounds were
initially obtained using the Karush-Kuhn-Tucker conditions from optimization
and were the best bounds obtainable given only trA, trA%, and n; see [8].
The purpose of this paper is to show how one can use other information from
the matrix to improve the bounds. All the proofs are elementary.

I A is Hermitian, then the eigenvalues majorize the diagonal elements.
The use of this information can provide a large improvement in the bounds.
The bounds referred to above generally became poorer as n became larger.
Bringing in the diagonal elements overcomes this problem, in a large number
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of cases. These improved bounds are the best possible bounds given only n,

trA, trA® and the ordered diagonal elements of A. They all require O(n?)
multiplications.

2. PRELIMINARIES

Let
2
m-Eﬂ‘i, stm TA e

Our bounds actually deal with the ordered vector of real numbers A =(A,)
and the given first two moments

YA, =K, Y=L,

=1 =]

Le., K=trA and L =1trA? are fixed. Thus we would like to get as much
information as possible about the numbers A,, given the first two moments K
and L. (Equivalently, we would like to get as much information as possible
about the eigenvalues A, given trA and tr A%) Bounds for various functions
of A have been presented in (7). [8], [8). (Upper and lower bounds for the
product A, A,,..., A, are given in [3).) For example, for 1 < k < n,let

A’k:-m—s(ﬁi—l)lﬂ. X;‘.=‘m+s(n;k)vz,
X’,:-m+m. X’;:-m-(n:l)l/z. (2.1)
Then
A< ey, (2.2a)
N <A, (2.2b)
A, <AL, ' (2-2¢)
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Equality holds on the left in (2.2) if and only #f
Ap= oo =mA (=2) and A==
on the right in (2.2a) if and only if
Aj=-com=2 and A = -Au(-xk-o-l);
in (2.2b) if and only if
A= =Auy (and A, =A,);
in (2.2¢) if and only if
(Aj=2% and) Ag=... =,

The following lemmas show some relationships between the numbers A,
when their first two moments are fixed.

Lesmma 2.1.  Given K, L fixed, let m, elements of A be equal to A, m,
equal to Aj, andm, to A,, i.e.

mA, +mA;+mA, =K,

m A+ m A%+ m AL = L.

LAY mg("!' A)
aAj mi(Ak-A() )

Proof. Differentiating the two equations with respect to A ; yields

em e
M7 TN, T, O

aA, N,
mIAl + m,A‘a—x; + mkkka—Aj =0,

These can be solved for the partial derivatives. : |
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A/’s. We call such a perturbation consistent. We soe that we need only worry
about maintaining the ordering among the A,’s. Note that when A, Aw A
vary and the other A,s are constant, then by Lemma 2.1,

' aA aa
A,>A,,>A', implies 8—A_;>o and W;<O. (2.3)

Let A, 1 denote a positive perturbation of A, and A, | a negative one. Then
(2.3) says that the only consistent perturbations are necessarily alternating:

MU LA or A LATA L (2.9)

Thusif A, 1 to A, + ¢, with £> 0, and my=m=m,=]1then A, | toA, ~8
and )\,1‘ to A;+e—~8, where §>0and e8>0, Similarly, we can define
the perturbations for A, and Ay if Al to A, ~ e. Multiple AL AL A,’s can
be treated analogously. This restriction on the perturbations is, of course, due
to the fact that the first two moments are fixed,

~ Lemma 2.2 Given the ordered vector A = (A,), then one of the perturba-
tions(2.4)iscomistentifandordyifitdoesnotoontmdicttheordeﬁngofthe

Ajs.

Proof. Necessity is clear. Now, suppose that the perturbation does not
contradict the ordering. Let ¢> 0, { <k < §» and

A=A +e, A=A, -8, A=A—e+8,  S>e
Then we need only satisfy
(A,+e)’+(x,,-s)’+(x,—e+s)’-»3+A&+A2,.

If e is small enough, we show that this quadratic has a solution § > e. By
assumption, the A, A,, A, must satisfy A‘>A,‘>A!. Thus we obtain for
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] 12
28=2,~A+e+{(A—A,+e) —de(A,—A;+e)} " > 2,

since the discriminant is positive for small enough e. The perturbation of the
second type in (2.4) can be treated similary. =

This lemma will enable us to give very simple proofs for bounds of certain
functions f{A). The key is isolating the configuration of the A,’s at which the
particular bound is attained. The proof entails showing that there exists a
consistent perturbation which will increase the value of () if this configura-
tion is not chosen.

3. IMPROVING A BOUND

The bounds (2.1) require O(n®) multiplications. The main work is in
calculating the second moment, trA*="T, /|, |%. Now suppose that we have
obtained, independently, some other information about the eigenvalues. This
new information can sometimes be used to improve our bounds. The strategy
involved is that we get an improvement in a bound if the new information
contradicts the conditions for attainment of that bound. For example, the
upper bound for the kth largest eigenvalue A, is A, < A% with equality if and
only if

Al--.. -Ak

and

k 1,2
Aper=--- =2, =N, [-m_s(n—k) ]

Thus, new information such as

. . -
An<an<xl'-o-l[-'n_’(n_k) ]

or

- /2
Aypa, >N [-m+s(nkk) ].
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for some given a,,a,, does not allow attainment of the bound and can be
used to improve the bound. This new information might come from applying
the Gershgorin’s discs, for example.

Recall that
K=trA, L=trA?
m= %—, 8% m % - ms, (3.1)
Now let
a,>--2a, (3.2)

be given, and for 1 £ ¢ € n define

n n
K,=K- 2 a;, L,=L- E ais’

f=t+1 fmt+]
K
m, ==t sim= L_ ms, (3.3)

For —t, 1<t < n, define

n—t n—t

K_,=K- Za,, L_,=L- Zaizv
i=] i=]1
K_ L_
m_'-_t_!’ sf,-—;—'——m’_,. (3.4)

We also define X, , and X, _, as X, in (2.1) with m, s replaced by m,, 5,
and m_,, s_,, respectively. We similarly redefine A%, X', and A“.

We now show how to improve the bounds in [9] if we are given other
information about the eigenvalues A,. First suppose we have an improved
upper bound for A,. This allows us to simultaneously improve the upper
bound of A, and lower bound of A,,,.

Treorem 3.1.  Suppose that 1 <k < n — 2 and that a,, satisfies

kv
A,(a,(m—s(n_k) (=Xyy)) (3.5)
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Then
Nkn""ku.n—l‘Ahl‘Ak‘Xi.n-x‘}"i- (3.6)

Equality holds in the lefimost and rightmost inéqualities in (3.8) if and only
if it holds on the right in (3.5). Equality holds in the second inequality in
(3.6) if and only if it holds in the fourth if and only if

A,,-a', Ak"'l- .o -An—l’ Al- s -A*. (3.7)

Proof. The improvea bounds in (3.6) and the conditions for equality are
obtained by fixing A, = a, and applying the bounds in (2.2a) to the remain-
ing n —1 eigenvalues A,,..., A, _,. These now satisfy

n~-1 n-1
Z AI-K"—I' A%'Ln-x- (3-8)

=1 =1

We need only show that we must set A, =a,. Suppose not; consider an
ordered vector (A,) with A, <a,. Then the conditions for equality in (2.2a)
are violated; hence we cannot haveboth A, = --- = A, and A, = -+ =X,
First suppose that the latter does not hold. Then for some ,j(k+lgi<jg
n) we have A, = .- =A,>A, Ajy>Ay=--- =X . Now the per-
turbation

Aet A LA (3.9)

is consistent. (We perturb each A;=A, 1, I <Kk, if these exist). Similarly, if
A= oo =X, > AL AI-1>A1- --- = A,, then the perturbation
A‘l,A,T,A,,l is consistent. Since we can do this for each A,-Ak including
Ai we can always increase A, by a perturbation if A, <a,. Thus A, is
maximized if A,=a,, which proves the fourth inequality in (3.6). The
conditions for equality are obtained from the conditions for equality in (2.2a).
The second inequality is proved similarly. |

Note that in (2.2), the upper bound for A, _,, the lower bound for A,,and
the lower bound for A, all hold together, i.e., they hold if and only if
Ap=-oomA =N =X_, and A, =X . Thus (3.5) cannot be used to
improve these bounds. This is the reason k is restricted to be <n — 2 in the
theorem.

An improved lower bound for A, allows similar improvements.
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THEOREM 3.2. Suppose that 2<k < n— 1 and that a, satisfies

n--k)‘/2

A1>a1>m+s( 3 (=2y). (3.10)

k3Nl o2 A3 Araz Xy ~-p> Ny (3.11)

Equality holds in the lefimost and rightmost inequalities in (3.11) tf and only
if it holds on the right in (3.10). Equality holds in the second inequality in
(3.11) if and only if it holds in the fourth if and only if

Al-al, Az- e -Al" Ak"‘l- o -An- (3.12)

Proof. The improved bounds in (3.11) and the conditions for equality are
obtained by fixing A, =a,, analogous to the proof of Theorem 3.1. We can
again use the perturbation technique to show where the bounds are attained
and that we must fix A;=a, We then apply the bounds in (2.2a) to the
remaining n — 1 eigenvalues A,,..., A,. Since the first eigenvalue is Ag and
not A, we get a difference among the indices, e.g. A, < AL —n-) ]

Now suppose that we have improved the upper and /or lower bound for
A, as above, e.g., given (3.5) and 1< k < n — 2, we obtain (3.6) and (3.7). If
we have additional information about A eg

A..—1“1..-1 &€m, ;- sn-l(m) (‘ Ak+l.n-l)! (3.13)

then we can perform thesameproceduretoget,forl(k<n—3, that
Ne€Nosr o1 €N s €A, <A, < Min-2 €A% . €0y (3.14)
* Equality holds in the leftmost and rightmost inequalities if and only if it holds
on the right in (3.5). Equality holds in the second and sixth inequalities if and
only if it holds on the right in (3-5) and (3.13). Equality holds in the third and
fifth inequalities if and only if
X,‘_l-a,‘_l, A'-a“, Ak‘#l- b -An_z, Al- "'Ak. (3-15)

We can continue improving the bounds using additional information on
A.-3 and/or on Ag In fact, the above provides a valid algorithm for
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improving any of the bounds in [7), [9). For example, suppose we wish to
improve the upper bound for A, given some additional information. Then we
need only check if the conditions for attainment of the bound are violated. In
the next section, we see how to use the diagonal elements to improve the
bounds. We complete this section by deriving improvements for X, and A,

THeoREM 3.3.  Suppose that a, satisfies

Aza,3m—s(n—1)"(=N). (3.16)

Then
AMeN LN (3.17)

and
LY 9 CERRIY 2 L 3NY (3.18)

Equality holds on the right in (3.17) and (3.18) if and only if it holds on the
right in (3.18). Equality holds on the left in (3.17) if and only if

A -a,‘, Al- e -An_’ (afd An—l-A'n-l.n-l)' (3-19)

Equality holds on the left in (3.18) if and only if
An'-an' Az" te -An—l (aﬂd Al-x'i,n—l)' (3’20)

Proof. Again we need only show that necessarily A, =a,. Then, the
improvements come from applying (2.2) to the remaining n — 1 numbers
ApseessAn_y, which must now satisfy Z'-!A, = K, _, and IoiN=L, ..
Suppose not, i.e. A, > a,,. From the conditions for equality for the attainment
of X, we see that A;>A,_; Let i be such that AM2A>A 20,
Then the perturbation A, },A,,, t,A, | is consistent. Since we can do this
for each j, 1< § < ¢, we see that we can decrease A,. Similarly, since we can
do this for each j, {+1< j<n =1, we see that we can increase A, _,. Thus
in both cases we must have A, = a,. ]

By applying the above theorem to — A we get equivalent improvements
to A'; and A¢.

Tueorem 3.4. Suppose that a, satisfies

M<a,<m+s(n—1)"*(=2). (3.21)
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An <X.:l—l.—(n-l)<x':| (3'22)
and
Aex X .- n> Ny (3.23)

Equalityholdsontheﬁght (in both) if and only ifitholdsontherightin
(3.21). Equality holds on the left in (3.22) if and only if

Ay=a,, Ag=--- =A, (and A,-A‘i_ -(n—l))' (3.24)
Equality holds on the left in (3.23) if and only if
Ai=a,, Ag=--. =Ano) (“"d An-Aln—l, —(n-l))' (3.25)
We can continue to get further improvements if we have an upper bound
for A; and/or a lower bound for A3, and 50 on. We can also improve the

bounds for a general A; using modified forms of (3.16) and /or (3.21). For
example, suppose 2<kgn-1 and we are given

k 2 !
A,,;a,,;:m—s(n_k) (-A,‘“). (3.26)

Then in fact A, > -.. >A,>a,, and the conditions for equality on the
right in (2.2a) cannot be attained. Set @y, ;= .- ma_. Then we get that

A Ay Ay (3.27)

with equality on the right if and only if equality holds on the right in (3.26),
Equality holds on the left if and only if

Akﬁ-l- e -A,,-a,,, Aa- o -Ak (md Al-Ag.k)' (3-28)

4. BEST BOUNDS WITH A FIXED DIAGONAL

The bounds in [7], [9] are the best possible given n, trA, and tr A% We
now use the results of the previous section to obtain the best possible bounds
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given n, trA, trA® and the diagonal elements a,, = a,, i =1,..., n. Without
loss of generality, we assume that @, --- > a,.

Equivalently, we obtain the best bounds for the ordered vector A =(\,)
given n and the first two moments

ZAI-K! ZA%'L
and that the vector A = (A,) majorizes the vector a = (a;)

A >a,,
Ai+Ay>a,+a,,

M+ A 1 2ay+ e +a,,,

A+ +A,=a,+---+a,

(see [4], [5)).

The following program, written in a pseudo programming language,
calculates the best possible upper and lower bounds for A k=1,....n The
bounds are the best possible using only n,tr A, tr A%, a. The main work is still
the calculation of trA? and thus the bounds require O(n%) multiplications.
We improve the bounds (2.2) using the techniques of Theorems 3.1 and 3.2.
Note that it might be possible to improve a bound for A, _, (or Ai.) whenit
could not be done for A,.

BEGIN PROGRAM:

ComMENT: Let 1<k < n—1. Calculate the best upper bound for A, and
lower bound for A;., given n, trA, trA% and the ordered diagonal

al>"'>an-
IntTiaLIZATION: Input A, k,and a,, i=1,...,n.
Set
n n
K=Y a, L=% a?+22|au|2,
=1 =] i<j
m==, s’-é—m’,
n n
k \ n—k\2
)\'k“-m—s(n_k) , A';-m+s( 3 ) .
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WrrTe:  The first upper bound for A; and lower bound for Ay, are
respectively: Af and X, , .

Set i=1, ju=n, t=n, k=k, y=A% =X, .

Loor: While (p>a, or » <a,) do:
If (0> a,) do:

K=K-a, L=L-a} jmj_1,
Else do:

K=~K-a, L=L-a}, {=i+l, Fk=k-1
End if

L
t=t—1, ma= — 32_? 2

p-m—s(t—fz)lﬂ, v-m+s(t—£—’é)lﬂ.

WRITE:  The (n — ¢)th improved upper bound for A & and lower bound
for A, ., are respectively:

vand u.

ENDLOOP: Endwhile
WRiTE: The last bounds are the best possible given n,

trA, trA% and
a>-.- >a,,.Equalityholdsifandonlyif
Aj=a,,..., Aily=a,_,, Aje1=8,,,..., A,=a,,
A‘-.-- -Ak' Ak+l-.“-A]’ (4-2)

TuEoREM 4.). Let 1<k<n—1. The above program finds the best
possibleupperboundfor}‘kandthebestlowerboundfor}\,‘ﬂgioenn,h-A,
&A’,andthemdaedd@ndekmentsa,)-u)a,,.
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Proof. We need only apply Theorems 3.1 and 3.2 and check the
conditions for equality to hold at each improvement step of the program. At
the first step, the majorization yields that necessarily a, > A..Nowif p>a,,
we cannot attain theboundsandstillsatisfya,,})\,,. since A, > u. Thus we
fix A, =a, The majorization now yields that @, y2A,_,, and we can
continue thus. Similarly, if a, > », we must fix @y = A,. In this case we must
change the index k to k — 1, since we have left the n — 1 numbers Ag> .-
> A,, and so A, becomes now the (k — 1)th ordered number. Also, once we
fix a, = A,, the majorization implies that @3 € Ag. The algorithm continues
by applying Theorem 3.1 and 3.2 to the remaining ¢ numbers A, > --- 3],
2 -+ 3 A, Note that when the algorithm stops, we have equality if and only
if (4.2) holds, and then necessarily this satisfies the majorization. Note also
that if j=k +1 ori-k—l,thennecessaﬁlyn<a, and » 3 a, respectively.

|

5. EXAMPLES

We now illustrate the above algorithm with several examples. We recall
that the bounds (2.2) satisfy X = A% _,, A% = L.

ExamPLE 5.1. Let
2 4 1 1
4 -1 2 -1
A 1 2 -3 2
1 -1 2 3

The eigenvalues of A are
5.48,3.44, —2.60, — 5.32.
The ordered diagonal is
(a,)=(3,2, -1, - 3).
Starting with k = 1, we find that
~228<A; €, 7.84.

Since —2.28>a,= —3, we can improve these bounds by fixing Ai=a,
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We then get
—190< ;< A, < 7.80.

The conditions for equality (A; =780, Ag=A,= —190, and A,=-3)

satisfy the majorization constraint (780> a,=3 and -190ga;= -1)

Thus we cannot get a further improvement. For k = 2, we get
—413<A;<A;<4.63.

Since 463> a,=3 and —413<a,= ~3, we cannot get a further im-
provement. For k = 3, we see that

=734 <€A, €1;52.78.

Now 2.78 < a, = 3, so that we can improve these bounds by fixing A, = g,.
We then get

—733<A, <A, =267,

No further improvement is possible, since 267>a,=2 and - 733<a,
= —3. By the above, A, >3 and A, < =3 (better than A, > AY = 2.78 and
A <Ag= —228). In conclusion, we have inclusion regions,
3<A;<7.80,
-1.90< ;< 4.63,
—-4.13<1;52.67,

_7-33<A‘< -3.

The eigenvalues of A are
4.52,1.39, —-1.91.
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The ordered diagonal is
(a,)=(3,2, -1).
Starting with k =1, we find that
-052<A; <A, <5.05.
Since —0.52 > — 1, we can improve this by fixing A; =a,= — 1. Then
00<A; <A, <5.0.

For k=2,
- 2.38 " Aa < Aa < 3-19-

This cannot be improved, since 3.19> a, =3 and —2.38<a;= —1. Be-
cause A7'=A4=23.19 and A;< —1 (better than A, < A, =0), we finally
have

3.19<A;<5.0,
00<A,<3.19,
-238<A;x1.
ExamPLE 5.3. Let
2 4 11 3 1
4 -1 2 3 1 2
A=|1 2 -3 2 1 -1
1 3 2 3 1 1y
3 1 11 1 -2
1 2 -1 1 -2 -2
which has eigenvalues

8.82,2.74,1.12, — 291, — 4.16, — 5.62,

and

(a,)=(3,2,1, -1, - 2, - 3).
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Starting with k = 1, we see that

—219<A; <A, <1095,

Since —2.19> a; = — 3, we can obtain an improvement by setting Ag=a,.
Then

-1.98<A, <A, <10.92.
Now —198>a,= ~2 so we can improve again by fixing As=as. Then
—1.97<€ A, <A, <10.92.

This cannot be further improved, since — 197€a,= ~1. For k=2,

—346<A;<1,<6.93;
for k=3,

—490<A, <A ;< 4.90;
and for k = 4,

-693<A;5),<3.46;

none of which can be improved. For k =~ 5,

—1095€As <A< 2.19.
This can be improved, since 2.19 <a,;=3. Fixing A, = g, yields
-10.92<A,<A5<1.98.
This can be improved again, since 1.98 <ag=2. Fixing A, = g, gives
| -1082<A, <A <1.97, |

which cannot be improved. Moreover, A 1> 3 (better than A, > A% = 2.19),
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Ag < — 3 (better than Xy = — 2.19). In conclusion,

3<A, <1092,
-1.97<A<6.83,
"3-46‘&3‘4-%,
? -4-m<k‘<3-46,
) -893<A;<1.97,
’ -1092<Ag< — 3.
ExaMPLE 54. Let

1 3 2 1 4 2 1]

3 -1 2 -1 -1 2 3

2 2 -4 -2 -1 -11

A=]1 -1 -2 2 -2 1 0]

4 -1 -1 -2 -3 0 0

2 2 -1 1 0 3 1

[ 1 3 1 (1] 0 1 4]

The eigenvalues are
8.31,4.12,3.06,0.92, —1.08, —5.26, — 8.06.
The ordered diagonal is
' (a,)=(4,3,2,1, -1, -2, -3, - 4)

For k=1 we get three improvements. The first estimate and the improve-

ments are
-184< A <A, <13.03,
=137 ceiiiiine, 12.83,
-083.........0nee 12.71,




110 JORMA KAARLO MERIKOSKI AND HENRY WOLKOWICZ

For k = 2, we have two improvements:

—-300<A; <A, <851,
-274 ............. 8.48,
-265............. 8.48.

For k = 3, there are no improvements:

—422<A,<A;56.29.
For k = 4, there are no improvements:

=572 A< <4.79.

For k = 5, there is one improvement:

—794< A€ A;<3.58,

—793 3.47.

For k = 8, there are three improvements:
—-1246< A, €A <241,

=1235 ............. 2.07,
=1231 ............. 1.83,

-1231 ............. 1.77.

In conclusion,
2411, <1271,

-0.90 <A, < 8.48,
-265<1,;56.29,
-4.22< A< 4.79,
=5.72< A ;< 3,47,
-793<As< —1.77,

-1231< A, < - 1.84.
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6. USING SOME OTHER EXTRA BOUNDS

A general method to find upper bounds for the spectral radius (i.e., the
largest absolute value of the eigenvalues) is to use (submultiplicative) matrix
norms. It is well known that for any A,

p(A) < n(4A), (6.1)

where p is the spectral‘ radius and g is an arbitrary matrix norm. Better
bounds, but more complicated, can be obtained if u is a suitable matricial

norm [1]; then
p(A) < p(p(A)). (6.2)

K A, =p(A) (such happens, e.g., if A is (elementwise) nonnegative or
symmetric nonnegative definite), we can use these results to overestimate A
If A is symmetric, every Rayleigh quotient is a well-known lower bound

for A,. Especially, the bound

1
;Z%W::‘Ax (6.3)
i

often seems to be good if A is also nonnegative [6). Then a still better more
complicated bound is

[IR} /R, (6.4)
i

the R,s denoting the column sums, see [2). Thus we can use (6.3) or (6.4) for
symmetric nonnegative matrices.
For example, let

A=

[XRTR-TN
XK~
oo M
NO W

with eigenvalues 9.376, 6.423, 4.775, and 1.426. The bounds (2.2) are [9]

7.158 € A, 10475,
3.842< A, £8.372,
2628 <A, <7.158,
0.525 < A, < 3.842.
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The bound (6.3) yields
A, >85.
Hence, by Theorem 3.2, |
0.758 <A < A;<6.371,
2629< ;€A ;<8.242.

Slightly better results could be obtained by using (6.4), which gives A, > 8.696.
To find an extra upper bound for A}, we use the matricial norm

("Anuz "Am”z)

MA= 1 laally TAmls

where A is partitioned into 2X2 submatrices and ll-llz denotes the largest
singular value. Then we obtain

A, <9.835,

which is better than the bound obtained using standard easily computable
matrix norms (|| A||, = J|A[|, =11, llA]lz = 12.4). Theorem 3.4 now implies

Ag > 5.208, A, < 2.905.
In conclusion, we have
5.208 < A, < 8.242,
2.629 ¢ A;<6.371,
0.758 € A , £ 2.905.

WearegmteﬁdtohofasorCeorgeP. H. Styan for valuable discussions.
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