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Numerica l  Decomposi t ion  of  a Convex Function 1 

M. L A M O U R E U X  2 A N D  H. W O L K O W I C Z  3 

Communica ted  by A. V. Fiacco 

Abstract. Given the n x p  orthogonal matrix A and the convex func- 
tion f :  R"-~  R, we find two orthogonal matrices P and Q such that f 
is almost  constant on the convex hull of  ± the columns of  P, f is 
sufficiently nonconstant  on the column space of  Q, and the column 
spaces of  P and Q provide an orthogonal  direct sum decomposi t ion of  
the column space of  A. This provides a numerical ly stable algorithm 
for calculating the cone of  directions of  constancy, at a point  x, of  a 
convex function. Applicat ions to convex programming are discussed. 

Key Words. Convex functions, convex programming,  cone of  direc- 
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1. Introduction 

The cone of directions of constancy at x of  a convex function f :  R" ~ R 
is defined as 

Dy(x) = {d c R":  there exists ~ > 0 such t h a t f ( x  + c~d) = f ( x ) ,  

for all 0 <  o~ _< c7}. (1) 

It has recently been used in various characterizations of  optimality in convex 
programming (see, e.g., Refs. 1 and 2). It has proven to be a key ingredient 
in solving ill-posed and ill-conditioned convex programs, i.e., convex 
programs for which no constraint qualification may hold (see, e.g., Refs. 1 
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and 3). An algorithm for calculating Ds(x) when f is faithfully convex has 
been proposed in Ref. 4. 

Stability in convex programs is directly related to constraint qualifica- 
tions. Programs for which no constraint qualification holds are not stable 
with respect to perturbations in the data. They can also be ill-posed and so 
discontinuous with respect to perturbations in the data. The correct calcula- 
tion of Ds(x) proves to be vital in solving these programs (see Ref. 3 for 
a discussion). However, the calculation of Ds(x) is itself an ill-posed 
problem, i.e., it is discontinuous with respect to small perturbations in the 
data. 

In this paper, we reformulate the problem of calculating Ds(x) into 
the problem of  calculating the cone of  directions of  almost constancy and 
derive a stable algorithm for the calculation. Moreover, this reformulation 
allows us to remove the restriction to faithfully convex functions needed 
in Ref. 4. More precisely, given an orthogonal n x p  matrix A, we find 
orthogonal matrices P and Q such that f is almost constant on the convex 
hull of ± the columns of  P, is sufficiently nonconstant on the column space 
of Q, and the column spaces of P and Q provide an orthogonal direct sum 
decomposition of the column space of A (see Theorem 2.1 and Corollary 
2.1 for more precise statements). P and Q are found by postmultiplying A 
by a finite number of orthogonal matrices (Householder transformations). 
This guarantees the backward stability of  the algorithm. The algorithm is 
given in Section 2, while backward stability is proved in Section 3. 

The algorithm can be compared to finding the singular values of  a 
matrix using Householder  transformations. In fact, i f f  is a linear function 
[i.e., f (x )= c'x, where the superscript t denotes transpose], then the 
algorithm finds the n x ( p - 1 )  matrix P and the n x 1 matrix Q, such that 
the columns of P are the right singular vectors of d = etA corresponding 
to the p - 1  zero singular values, while Q is the right singular vector 
corresponding to the single nonzero singular value. If we choose our 
tolerance badly, then we might have P being n x p ;  i.e., the nonzero singular 
value is considered to be numerically zero. Thus, we are making a numerical 
decision on the rank of  d. 

In a forthcoming study, we plan to apply this algorithm to the numerical 
decomposition of  convex functions f :  R " ~  R m, which are convex with 
respect to some partial order on R m. This numerical decomposition can be 
compared to the decomposition of a matrix using the singular value 
decomposition and associated singular vectors corresponding to nonzero 
and numerically zero singular values. Thus, we are making a numerical 
decision on the rank of the function f For discussions of pseudo-rank or 
numerical rank of  matrices, see, e.g., Refs. 5 and 6. The decomposition of 
this vector function f will be used to regularize convex programs. 
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2. Algorithm 

We consider the differentiable convex function f :  R" -~ R. The cone of  
directions of  constancy of f at x is 

Di(x  ) = {d ~ Rn: there exists 6 > 0 such that 

f ( x + a d ) = f ( x ) ,  for all 0 < a - < 6 } .  

I f f  is differentiable, then Ds(x ) is a convex cone (e.g., Ref. 1). A convex 
function is called faithfully convex (see Ref. 7), if it is affine on a line 
segment only if it is affine on the whole line containing that segment. Analytic 
convex, as well as strictly convex, functions are examples. As in Ref. 4, the 
algorithm is based on the fact that Ds(x ) C dC'(Vf(x)), for all x, where W 
denotes null space and V denotes gradient. In addition, if both 

d W f ( 0 ) < e  and d W f ( d ) < e ,  

t h e n f i s  almost constant, in the direction d, at 0. Though we restrict ourselves 
to differentiable functions, the results can be easily extended to nondiffer- 
entiable convex functions by using subgradients. Moreover,  this algorithm 
is not restricted to faithfully convex functions as was the case in Ref. 4. 

Without loss of  generality, we restrict ourselves to Ds(0), which we 
denote by Df  The algorithm does not find Df exactly. Given the orthogonal 
(or thonormal  columns) n x p  matrix A, the algorithm decomposes the 
column space of A into two orthogonal complements,  given by the range 
spaces of  P and Q, such that the function f is almost constant on the convex 
hull of  + the columns of P and effects a sufficient nonconstant behavior  
on R(Q) ,  the range space of Q. This is accomplished by postmultiplying A 
by a finite number  of  orthogonal matrices Ai, found by deleting a column 
of a certain elementary Hermitian matrix (a Householder  transformation).  
Thus, the error analysis is similar to that of  Householder 's  method for 
finding the eigenvalues of  a matrix, and the algorithm is backward stable; 
see Section 3. 

We first present a lemma for the computat ion of an orthonormal basis 
for the null space of a nonzero vector. 

Lemma 2.1. Suppose that O ~ d ~ Rk, k >_ 2, and that d~ is a component 
of d with largest absolute value. Let 

u = d + sign(d~o)[I d tt e6, 

where e~ is the i0th unit vector in R k. Form the k x ( k - 1 )  matrix A by 
deleting the ioth column from the elementary Hermitian matrix 

H = Ik -- OUU', (2) 
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where Ik is the k × k identity matrix, 0 = 2 /u 'u ,  and the superscript t denotes 
transpose. Then, 

A ' A  = Ik-~, ~ ( A )  = W(d). (3) 

Proof. The matrix H is the Householder  transformation (or elemen- 
tary Hermitian) which transforms the vector Ildl]e~o into the vector 
-sign(d~) d. Thus, H H '  = Ik and the i0th column of H is -(1/I]  d II) sign(d~)d. 

[] 

We use the component  of  largest absolute value to enhance stability 
and reduce roundoff error. In fact (see Ref. 8), the matrix H is continuous 
with respect to the data d if and only if we use a nonzero component  of  
d. I f  d is not a negative multiple of  e~, we could have chosen 

u = d - sign(d 0 II d II e~. 

The only arithmetic step involved in computing u is d~+ sign(d~)l] d I]. We 
choose + rather than - to guarantee a low relative error, no cancellation 
error. We could more simply use io = 1, regardless of the sign of magnitude, 
and then set 

u = d + [ I d l l e i ,  

provided d is not a negative multiple of  el. Then, we would delete the first 
column of H. This has an added advantage in that we need never explicitly 
form H, but can leave it as Ik-- OUU ~. For, it is much cheaper to perform 
matrix multiplications with H in this form. Since we will be post multiplying 
by a finite number  of  these H ' s ,  we can wait and delete the first column 
after performing all the multiplications. The formation of H with this rule 
is still stable (see Refs. 9 and 10). 

Let the matrix A ~ R" ×P, with orthonormal  columns, and let the scalars 
to, el > 0 be given. 

Algorithm 2.1 

Initialization. Set Po = A and i = 1. With x = 0, if 

II P'oV f(x)II  > to, 

then denote xl = x = O, set 

1 
PoP'oV f ( x l ) ,  

q' - II PoP~V f(x,)II 

and proceed to case (I);  while, if (4) fails, then proceed to Step i =  1. 

(4) 
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Step i. i = l,  . . . , s ~ p. Find a point  x in the set o f  2(p - i + l ) vectors 
{± columns of P H }  such that 

t x 'V f ( x ) t  = max{[y~Vf(y)[: y = ± a column of Pi_l} > el. (5) 

I f  the point x exists, denote it by x~ and set 

1 
P,-1P~-lVf(x , ) .  

q~ - tl P~-, Pt~-lV f(xJ)!1 

Case ( I ) .  I f  such an x exists and i < p ,  then, using Lemma 2.1, 
determine 

A i e  R (v-i+~×(p-O, (6) 

such that 

~ ( A , )  = W( P~_~V f ( x )  ). (7) 

Set 

= P~-IA,, (8) 

and proceed to Step i +  1. 

Case (H) .  I f  such an x exists, but i = p, then set s---i, k = p -  s - - 0 ,  
P~ = 0, and stop. In conclusion, 

D~c~ ~ ( A )  =0.  (9) 

Case ( I I I ) .  I f  such an x does not exist, then set s = i - 1 ,  k = p - s ,  
and stop. In conclusion, 

D~-c~ ~ (  A)  = ~ (  P~_O. (10) 

The above algorithm finds the numerical cone of  directions of  constancy 
with precision E = (co, el). We make this precise in the following theorem 
and corollary. Numerical  stability is proved in the next section. 

Theorem 2.1. Let p l , . . . ,  Pk be the columns of  Ps. The algorithm finds 
the p or thonormal  direction vectors 

Pl . . . .  , Pk, qt, - . . ,  qs, 

such that the span of  the pj and qj equals ~ ( A )  and 

Ip;V/(O)] ~ *o, 

Ip~V f (  ±p))t <- el, 

f((1 + t ) q j ) - f ( o )  >- -Eo+ re,, 

[q~Vf(O)[-< Eo, 

j = l , . . . , k ,  

j = l  . . . .  ,k ,  

j = l , . . . , s ,  t E R ,  

j = 2 , . . . ,  s. 

(tl) 

(12) 

(13) 

(14) 

(15) 
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Proof. Let f denote the composite function 

f ( y )  = f(Pcv). 

When the algorithm stops, 

f~(Y) = f (  PsY). 

Note that 

f~+l(Y) =f(A,+ty) ,  

and so f+ l  is the restriction o f f  to ~(Ai+l).  Also, 

Vf (y )  = PIVf(P~y). (16) 

Thus, 

Vf(xl) = Vf(±Piej) = Vf~(~=ej), 

where e~ is the particular j th  unit vector in R p-i+1 corresponding to the 
x = xi chosen at the ith step. At the ith step, the algorithm uses the function 
f -a(Y)  = f ( P H Y ) .  q~ is then the normalized projection of Vf(x~) onto the 
subspace ~ (P~_~), while Pi is constructed so that ~ (P i )  is a proper subspace 
of  ~(Pi-1)  and is also a subspace of ~"(P~-lVf(xi)). 

Now, if (4) fails, then, for j = 0 , . . . ,  s, 

]IVf~(0) 11 = It PjVf(0)tt 

- - I l m f f  • • • a~P'oVf(O)ll 
= II P;Vf(0)[[ -< Eo. 

On the other hand, if (4) holds, then, for j = 1 , . . . ,  s, 

ttvfj(0) 11 = II At1P;Vf(0)It = 0, (17) 

by the choice of A~ in (7). In either case, we have 

[]Vfj(0) H = IIPjVf(0)H-< e0, j = 1 , . . . ,  s. (18) 

This proves (13), since pj is the j th  column of  P~. Moreover, if 

ui = Pt ~qi ,  i = 2 , . . . ,  s, 

then q~ = Pi-lu~ and 

Iq~Vf(0)l-< II u, II [I P~_IVf(0)II ,<- ,0- (19) 

This prove (15). That (13) holds follows from the test at the final step. 
It remains to prove (14). Suppose that [Id]l <- 1 and d = P~u, for some 

u and i -> 1. Then, 

lluil = IIPSdll -< 1. 
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Thus, 

td'Vf(O)[--- I[ P~V/(0)[I - eo, (20) 

for any d of norm 1 in ~(P~), i - 1 .  By convexity o f f ,  this implies that 

f(xJ - f (O)  >- -Eo, i = 1 , . . . ,  s. 

Also, by convexity, we now conclude that 

f((1 + t)q,) >-f(x~) + Vf(x,)'((1 + t)q~- x~) 

since 

(21) 

t t X • Vf(x,) P,_IP~-qVf(,) 
>--f(O)-eo+(l+t) ~ Vf(x,)'x, 

=f (o )  - ~o+ (1 + t)[IP,_~PL~Vf(E-~ej)tl -vf(P,_~ej)'P~_~ej 

>--f(0) - Co+ re,, 

[W( P,_~ej)*P,_,ej[ ~ {]E_,P~_,v f( P,_lej)ll ]]P,.-,ej]] 

and 

by the test (5). [] 

The theorem provides an orthogonal direct sum decomposition of ~ (A) 
with respect to f We can now see the behavior o f f  on ~ ( P )  and ~ ( Q ) ,  
where P = P, and Q = [ q l , . - . ,  q,]- Note that cony denotes convex hull. 

Corollary 2.1. Let A, P, Q be as above, and construct O by deleting 
the first column q~ of Q. LetfA denote the composite functionfA(x) =f(Ax), 
and define jP, fQ, fQ similarly. For d = (di) e R ~, let 

d=max{di}.  

The algorithm decomposes the composite function fA so that 

IIWP(O)I[ ~ ~o, 

IfP(d) -fP(O)[--- max{eo, el}, 

fQ(td) -fO(O) >- -Eo+ ( td-  1)<, 

[IVfO(0) II -< co. 

(22) 

for all d ~ conv{:i=ej} ~=1 C R k, 
(23) 

for all d = (d,) e R *, t e R, (24) 

(25) 
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Proof. The bounds on the gradients in (22) and (25) follow from (18) 
and (19), respectively, and correspond to (12) and (15). From (12), (13), 
and the convexity of  f, we see that 

I fP(d)  - f P ( 0 )  l <- max{Eo, ~}, for all d ~ {±ej}~=~, 

which yields (23). To prove (24), we use a similar argument to the proof  
of  (t4). We have 

fQ(  td) >- f ( x i ) -  V f (x i ) tx i  + tV f ( x l ) ' Q d  

>-f(0) + Vf(0) tx~ - V f(x~) tx~ + tV f (x , ) 'Qd  

>-f(O) - Eo+ tdi [[ Pi-lP~-lVf(xi)[I - Vf (x , ) 'x ,  

>- fQ(O) - Co+ ( td, - 1)E1. (26) 

[] 

Note that we are finding a subspace of the cone of almost directions 
of constancy. For example, if we set 

~x 2, ifx_>O, 

f =  [0 ,  otherwise, 

then we find that 

Dy = {0}, Q = [1], 

rather than 

Ds = {x: x-<0}. 

Note that (24) guarantees a nonconstant behavior for all d not in the 
negative orthant. Thus, f can be considered nonco,lstant on N(Q) .  

3. Error Analysis 

Calculating the exact cone of directions of constancy of a convex 
function is an ill-posed problem. This can be seen easily when we consider 
the functions 

f , ( x )  = Ex 2, E > 0 .  

At e = 0, Dy, = R, while, for e > 0, Dy, = 0. Instead of  trying to find Dy 
exactly, the above algorithm finds the cone of directions of almost constancy. 
Reformulating the problem this way changes it to a well-posed problem if 
we choose our parameters Eo, ~ correctly. 
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As in all algorithms, the accuracy of  the solution is limited by the 
accuracy of  the input data. Errors introduced by numerical calculations 
may be recast as a perturbat ion of  the input data. I f  this perturbation is 
within the bounds of  uncertainty of  the input data, we say that the algorithm 
is backward stable (see, e.g., Refs. 10 and 11). In this section, we show that 
our algorithm is backward stable. 

The input data is the n x p  matrix A and the function Vf(x)  at a finite 
number  of  points. The solution is given as p vectors Pl, • • •, Pk, ql, .  • •, q~, 
which we write as the matrix 

S, = [ p ~ , . . . .  ,Pk, q~, . . . ,  ql] = [Ps ~ Qs]. (27) 

We let 

So= Po, 

Si = [p, ,  P2, • . . ,  Pp-, i % qi-,, • • •, q~] = [Pi i Q~] (28) 

be, respectively, the initial and intermediate matrices. At the ith step, we 
define the t ransformation matrix 4 

0 ] (29) 
k o : Ii_,J 

where 0 and u are as in Lemma 2.1, with 

d = P~_,Vf(x~). 

The index j~ indicates the component  of  P~_iVf(x~) with maximum value, 
and e~ denotes the jith unit vector in R p-~+'. Thus (see Lemma 2.1), Hi is 
the t ransformation obtained by moving the jith column of  the Householder  
transformation which transforms ej~ into Pl-~qi, i.e., 

Hi= !: Pi-,ql ");-i 

where A, satisfies (7). The transformation yields S~ = S,_~Hi, and so the 
solution satisfies 

S s = A J l ,  (30) 

where 

JI= H, H2 " " Hs. 

Suppose that E is the unit roundoff of  our arithmetic unit, and suppose 
that, due to roundoit,  we find at Step i that 

4 With the j~th column moved to position p - / .  
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I f  our arithmetic unit is good, we can assume that 

IIF, II --- ~ ,  (31)  

see Ref. 10, p. 96. We can now recast the numerical error as a perturbation 
in A. 

Theorem 3.1. Suppose that the n ×p  orthonormal  matrix A is given 
and that the arithmetic unit is good, so that (31) holds. Then, the algorithm 
finds 

= ( A +  M1)JI, (32) 

where 

II M l  [I <- sne ,  J ,  = HA H2  " " " H~. 

Proof. The proof  is similar to the argument in Ref. 10, p. 94. Due to 
roundoff error, we do not find Hi precisely, but instead we find 

/~  = Hi +/~.  (33) 

By our assumption,  (31) holds. We then find 

where r~ is the result of  roundoff error in the product. This yields 

Si = Si_ , ( n i  -F ff'i ) + r~/'i : gi_ l Hi "4- Wi, 

where 

w , :  

Then, 

S s = L - 1 H s + W ,  

= ( s ~ _ 2 n , _ l +  W~_l)Hs + w, 

= SoJ 1 + ~ W/Ji+l, 
i - - 1  

where Js+l = I and 

Ji = H~H~+I " • Hs. (34) 

Simplifying, we have 

Ss = ( Po + M , ) J , ,  
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where 

is called the equivalent perturbation matrix induced by the computation (see 
Ref. 10). The perturbation is bounded since 

II Mltl -< 2 II W~ll, (36a) 
i = I  

fl W~If -< f11'~ [I + Ils, II [l~l[- (36b) 

Since the arithmetic unit is good, we may assume that 

t1L I1 -< e (roundoff unit); 

and, since II Hill = 1, we may assume that 

II ~!1-< n~[],9,[I, (37) 

IIs,+all-< (1 + ~-)3llgi [I. (38) 

From (36a), this implies that the perturbation satisfies 

II M1 !t <- sn, IIA II =sne. (39) 

Hence, the backward error analysis tells us that, given the initial matrix 
Po = A, the algorithm calculates a solution matrix 

Ss = [P~ . . . . .  Pk, q s , . . . ,  q~] = (A+  M1)J~, 

where the columns of S~ satisfy the conclusions in Theorem 3.1. J~ is the 
orthogonal transformation matrix for the solution and M~ is the equivalent 
perturbation matrix induced by the algorithm. By (39), we see that we have 
obtained the exact solution of a nearby problem. [] 

The tests (4) and (5) cannot be performed exactly all the time. One 
approach could be to choose eo, e~, but then modify it appropriately if the 
test (4) or (5) is ambiguous. Since there are only a finite number of tests 
performed, we would end up with appropriate scalars Eo, E~ dependent on 
the specific function f 

If exact calculations were possible, we would find, with e0 = e~ = 0, that 

g~(s,) = ~(A) ,  

~ (  Qs) = ~ ( A )  ~ span{P~_lPl_~Vf(x~)}~=l ; 

therefore, since Df is orthogonal to Vf(x) for all x, 

~ ( P , ) = ~ ( A ) ~ D f .  

(40) 

(41) 

(42) 
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The error ~ in (32) arises from calculating Hi using Vf(xi). We have 
seen that this is small; see (31). We can reflect this error back as well into 
an uncertainty in the data Vf(xi), rather than just reflecting the total error 
back into an uncertainty in A. 

4. Example 

We now illustrate the above algorithm with the following example.  
We assume three decimal places of  accuracy and also that we have an exact 
accumulator.  Thus, arithmetic between two numbers is done exactly and 
then is rounded to three decimals. We choose co = el = 0.01. The example 
uses the same functions as in Ref. 4. 

Initialization. 

P o = A o = I 3 ,  

Since 

we see that 

Example 4.1. Consider  the convex function 

f ( x )  = - [ 4  + (xl + x2)2] 1/2 + x, + xz + x3 2. 

Set 

i = l .  

' 4+ -x  2)2J ' 

l] P*oVf(O)II = I[(1, 1, 0)II = ~ > co. 

Thus, (4) holds and we proceed to Step 1, Case (I). 

Step 1. Using Lemma 2.1, with 

d = V f (0 )  = (1, 1, 0), 

we get 

P1 = PoAl = 
--0.708 i ]  

0.706 . 

0.000 

Step 2. With x = P2 = (0, 0, 1) being the second column of  P1, we have 

[x 'V f (x )  I = 2 > el. 
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Thus, (5) holds and we are in Case (I) again. Lemma 2.1, with 

d = P'lVf(x) = (0, 2), 

yields 

and so 

F-o. oq 
P2= P1Az= [ 0.706|. 

L o.oooj 

Step 3. With 

x = ±(-0.708, 0.706, 0.000), 

we see that 

I x ' V f ( x ) [ - -  0.002 < <. 

Therefore, Case ( l i d  implies that 

fr-o,oq  
D}=Yt ~| 0.70611. 

\L o ooo_]/ 

Now, suppose that 

g ( x )  = - x ,  - x2 + x~. 

Let us find D} c~ D~. Note that both f and g are convex and analytic and 
so faithfully convex. This implies that Dy and Dg are subspaces independent 
of x. 

Initialization. Set 

F-0. oq 
Po = Ao= | 0.706|. 

k o.oooj 

Let 

p'~ = (-0.708, 0.706, 0.000). 

Then, 

1t PgVf(O) II = [l±p{Vf(+p',}[t = 0.002 < eo = "1. 
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Therefore, 

D ; ~ D ~ = ~ ( P o ) .  

Note that the exact solution, as found in Ref. 4, is that the above holds with 

P o  = . 

The critical accuracy was 0.002. In fact, if  we choose our numerical zeros 
eo, e~ < 0.002, then we would have obtained {0} as the solution, rather than 
the one-dimensional  subspaces ~(Po).  
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