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ABSTRACT

A characterization of the spread of a normal matrix is used to derive several simple
lower bounds for the spread. Comparisons are then made with several known bounds.

1. INTRODUCTION

We are interested in estimating the maximum distance between two
eigenvalues of a given n X n matrix. For the matrix A with eigenvalues
AL, A, we et

5(A) = maxiA, =\, (1.1)

denote the spread of A. Bounds for s(A) have been given in {1] and [5-9]. In
particular, Mirsky [6] has presented the following characterization for the
spread.
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TueoreMm 1.1.  If A is normal, then
s(A)= sup |[(u, Au)— (v, Av)]
u,v

> V3 sup |(u, Av)|, (1.2)

while if A is Hermitian, then

s(A)-2sup|(u,Av)|, (1.3)

where the upper bounds above are taken with respect to all orthonormal
vectors u, ©.

If we let
W(A)= {(x,Ax):(x,x)= 1}

denote the numerical range of A (e.g. [3]), then it is well known that for
normal matrices, W(A) is the convex hull of the spectrum of A, denoted
co o(A). Thus the equality in (1.2) follows, and moreover the sup is attained if
we choose u and v to be the eigenvectors corresponding to the eigenvalues
for which the max is attained in (1.1). In fact, it is clear that this relation holds
whenever W(A)= coo(A). A characterization of such matrices A is given in
[3]).

By compactness and continuity, the sup is attained in (1.3) as well. In [2]
it is shown that, for any A,

sup  |(u, Av)|= min||A - al|l,,, (1.4)
lulf=(lc]|=1 «
(u,0)=0

where || ||, denotes spectral norm.
We derive lower bounds for s(A) for A normal [or more generally for A

satisfying W(A) = co 6(A)] and for A Hermitian, from appropriate choices of
u and o in (1.2) and (1.3). In particular, two bounds derived are

1
S(A)>;:T| Z"Ul’ (1.5)
inj

and, if R, denotes the ith row sum, » denotes the standard deviation of the
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row sums,and R, >R, > --- > R, then (for A symmetric)

172

' ((n+1)/2) 0 9 [(n +1)/2)
S(A)>2v} {; j?l (R‘l—R‘.—lol) } >; j;l (R‘,—R'u—pl)

where [-] denotes greatest integer part. Comparisons of the bounds derived,
with several known bounds, are made in Section 3.
In the remainder of this section we list some lower bound for s(A), A

normal or Hermitian, which have appeared in the literature.
Mirsky [6,7] presents the following lower bounds for s(A), A normal:

S(A)?ﬁmaxlaijlv
i

2 RS ]
s(A)> x‘pfyj({(Rea,-,. ~Rea;) +la;+ a,,.|’} ,

172
S(A)>';"3}‘{|an"an|2+(|aq|'|aji')} :

s(A)z ",“f;‘(laly"" ]aﬂl)'

s(A)> x.p:.}t(éc‘,)vz, (1.6)

where
c;=la; —a”|2+|(a“ -—a”)2+4auaﬂ|+2laulz+2|aﬂ|2.
While if A is Hermitian, then:
s(A)> 2maxla, |
inj

172

(1.7)

s(A)> "“:-}‘{(au - a”)z.,.qa,-,lz}

Brauer and Mewbor [1] present the following lower bounds for s(A), A
normal. Let n > 2, 5, be the trace of any principal minor matrix B of order
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k>3, and s, ihe sum of the principal minors of order 2 of B. Then _

%—l(k -1)si- 2ksz|l/2, k even,

s(A)> (1.8)

172
(et o

Let ¢, and ¢, be the first and second symmetric functions of the eigenvalues
of A respectively. Set Ky= {2(1 —1/n)ci~ 4c,}!/% If A has real roots,

then
‘/ 2 K, n even,
n

172
( 2n ) K, nodd.

n—-1

s(A)> (1.9)

With A Hermitian,
1 2 2]1/2
s(A)?5',-“3’,-‘{"ff+au+[(au—an) +4ja,°] )

-3 min{a,+a,-[(a,=a,) +4ia,2]7).  (110)
Lha¥ ]

and if in addition, n > 3, s, is the trace of any principal minor matrix B of
order k > 3, and s, is the sum of the principal minors of order 2 of B, then

-i—{(k—l)sf—2ksz}l/2, k even,

s(A)> (1.11)

172
(k241) {(k=1)s2~2ks;}"%, & odd.

* Wolkowicz and Styan [9] present lower bounds for matrices A with real ‘
eigenvalues. Let
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then

2s, n even,

’ s(A)>{2sn/(n2—l-)'/2, n odd.

Lower bounds for general matrices are given in [10].

For matrices with real eigenvalues A; > -+ > A, we get that s(A)=A,
—A,. Thus lower bounds for A, and upper bounds for A, provide lower
bounds for s(A). For example, in [4] it is shown that, for A Hermitian,
A, =(1/n)E, ja,; Since A, <(1/n)L,a,;=(1/n)L,A,, we conclude that

S(A)>;l" Z G4

iwj

This lower bound is improved in Theorem 2.1.

2. LOWER BOUNDS FOR THE SPREAD

Given a Hermitian matrix A, the Rayleigh principle states that the
spectral radius '

lu*Au|
u*u

(2.1)

p(A)= max|A,| = max
i uws0

Thus, evaluating the Rayleigh quotient u*Au/u®u, for any choice of u,
yields a lower bound for p(A). In particular, choosing u =¢e =(l, 1,...,1)
yields the lower bound

a
p(A)>|T L
. ij n

. (29

Merikoski [4) shows that (2.2) is a particularly good estimate when A is real,
nonnegative elementwise, and symmetric. ' '

From Theorem 1.1, we see that any choice of u, v orthonormal yields a
lower bound for the spread s(A). For example, Mirsky [6] notes that choosing
u=e¢,and v=g¢, the ith and fth unit vectors respectively, with i # j, yields
_ (for A Hermitian)

s(A) }2m|ai,l. (2.3)
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We now consider different choices for the orthonormal vectors « and v in
(1.2) and (1.3). The first choice yields the following easily computable lower
bound for s(A).

Tueorem 2.1. Suppose that A is real and normal (or more generally
W(A)=coo(A)). Then

: (2.4)

1
S(A)>n_llzau
ing

Proof. Choose u=(1/Vn)e=(1/VnXL1,...,1) and v=(1/V2)e, -
(1/V2)e,, where e, and e, are the kth and Ith unit vectors respectively.
Then (1.2) implies that

1 - akk+all_2akl)
s(A) > " ?ja” !:l:t;(———z
11

1 1
>;§ai1_m2 L (entan)t L ay

k%l (n kwi

1 1 1
= — L — 2 - + —
n ga,, 2n(n-1) zk: (n—1)ay, n(n-1) kg,a“

1
= Y a,, (2.5)
n-1 i%j !

The result now follows by noting that s( — A)=s(A). |

The above lower bound for s(A) is extremely easy to calculate. Note that
it differs from the lower bound for the spectral radius in (2.2) only in that the
diagonal elements are ignored and 1/n is replaced by the larger 1/(n —1).
Moreover, the bound is attained when A = ], the matrix whose elements are
all equa! to 1. In Section 3 we will see that the bound (2.4) is particularly
good when A is nonnegative elementwise and symmetric.

Now consider the partitions defined by the disjoint sets I, J, K

@+Ic{l,..,n},
g+Jc{l,.,n}\I,
K={1,..,n}\(IU])
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Let s and t denote the cardinality of I and J respectively. We then get:

THEOREM 2.2. Suppose that 1, ] define a partition as above.
(i) If A is normal (or more generally W(A)=coo(A)), then

S(A)> )y aij__ > a;;l (2.6)
i.jel i.jej
(ii) If A is Hermitian, then
s(A); ): (2.7)

Proof. Let u =(l/)/_)£,s,e, and v ==(l/v,/_)2,e,eJ Then (2.6) follows
from (1.2), while (2.7) follows from (1.3). [

The above bounds depend on the choice of the partition defined by I and
J. In Section 3 we provide simple strategies for choosing a partition.
Now let

n
R;= Zaij
i=1

denote the ith row sum of A. The following two theorems use the row sums
to obtain lower bounds for s(A).

THEOREM 2.3. Suppose that
R"(Ri)
is the vector of row sums of A and that R is real. Let
l n
m-;iglﬂ,.

and

:Iv-‘

): (2.8)




168 C. R. JOHNSON, R. KUMAR, AND H. WOLKOWICZ
be the mean and variance of R respectively. Then

s(A)2v3v»  if Aisnomnal, (2.9)
s(A)> 2 if A is Hermitian. (2.10)

Proof. First suppose A is Hermitian. Let v=e=(1,1,...,1)' and u=
(u;) with
R,—m
uls—f/:’—. (2.11)

Then (1.3) implies that

s(A)> iu’Au-= 2v.
n

=

Note that the vector u is the solution of the optimization problem
maximize {u'R:u'e=0, |jul =1}, (2.12)

which can be verified using Lagrange multipliers. The normal case follows
similarly if we use (1.2) rather than (1.3). |

Now let [-] denote greatest integer part. If we order the row sums by
magnitude we obtain the following.

THEOREM 2.4. Suppose that A has real row sums and that the row sums
of A are ordered
R,>R, >---2R,.

[(n+1)/2) 172

s(A)){-’; Yy (H,’—R,;,+l)2} , (2.13) *

j=1

((n +1)/2]

s(A)> — ,Zx (R,,—H,.”_M), (2.14)
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where K = 3 if A is normal, while K = 2 if A is Hermitian.

Proof. Let r=(r)) with
r=R. -

) iy in-ge1

for j=1,...,[(n +1)/2], and let v=e=(L1,...,1) and u=(u;) with

. n+l

a; if 1<. 2 ],
u,={ —ap_ . i j> ";1], (2.15)

. . fn+1l

0 if j | 2 ]

for some a=(a;) to be determined. Then (1.3) implies that, in the Hermitian

case,
2
/22«? Vn
i

2 1,,
=V 7 fag /¥R

s(A)> |u'Av|

7 1 [n+1/2)
= ; Trall Z aj(R‘j-R’u-'ol)
el =,

-\/g("—iﬁa,r). (2.16)

This is a maximum for a = r. This proves (2.13); (2.14) follows by choosing
a;=1for j< [(n +1)/2] in (2.15) or by the Cauchy-Schwarz inequality. The
normal case follows similarly using the inequality in (1.2). [ ]

Note that (2.10) in Theorem 2.3 resembles (1.12), but (2.10) uses the
variance of the row sums whereas (1.12) uses the variance of the eigenvalues
themselves, found from trA and tr A2, Theorem 2.3 is proved using an
optimization problem. We find the best possible choice in (1.2) and (1.3) for
the vector u once the vector v =e is chosen. Thus Theorem 2.3 provides
better bounds than Theorem 2.4.




170 C. R. JOHNSON, R. KiTMAR, AND H. WOLKOWICZ

3. COMPARISONS OF BOUNDS

In this section we compare several of the bounds presented above. The
comparisons are done using 50 10 X 10 real, symmetric matrices. The matrices
are chosen using a uniform random number generator on [0,1]. The test is
preformed twice, once for nonnegative (elementwise) matrices and once for
general symmetric matrices.

The bounds compared are
s(A)=-2— Ya
' /s—t iel i
je’

where I, ] defines the partition [see (2.7)] found by the strategy given below;
sg(A)=2max|a,;
i%j
s;(A)=2s,

where s2=trA%/n —(trA/n)%

2
s{A)=-=3 'zja.', ;
[(n+1)/2) . 172
s5(A)= {; 21 (Ri,"Ri,_N)} ;
,-
2
Se(“)‘ﬁ E sl
s

where s + t = n and I, J defines a random partition;
s,(A)=2p,
where » is the standard deviation of the row sums; and
[(n +1)/2}
ss(A)= n )Y (Ri, - Rl.._,..)'

i=1

where R, are the ordered row sums.
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The strategy used to obtain the partition for $)(A), in pseudo program-
ming language, is: .

SET [=]J=@2, k=1
wHILE {((k € n(n —1)/2) axp (I,J#+(@1,2,...,n})) Do
a;; = kth largest off-diagonal element of A
1F ((i, j) & [(I X )U(J X ])]) THEN
lF(zkE,a‘k +2,,€,a,,,+a,j>0)'rﬂEN
1F (j€1 on i €]) THEN
ser I=1U{j} ann]=]JU(i}
ELSE
ser I=TU{i} anp J=JU{j}
END IF
END IF
END IF
END WHILE
STOP

We first present the results for nonnegative (elementwise), symmetric
matrices. The relative error for the ith bound is

s(A)— s,(A)
s(A) ’

The means and standard deviations for the relative errors for the eight bounds
are:

Mean: 0.15326, 0.69717, 0.46146, 0.23500, 0.75504, 0.23377, 0.74966,
0.79687.

Standard deviation: 0.05521, 0.01992, 0.01199, 0.02854, 0.06194,
0.06580, 0.06347, 0.05553.

Thus s,(A) appears to be the best bound, followed, by s¢(A) and s,(A). The
random partitions s¢(A) do surprisingly well. The row sums do not do very
well. The i, jth position of the following 8 X 8 matrix gives the number of
times s,(A) was the jth best bound:

46 8 1 0 0 o0 0 O
o 0 0 o0 3 1 9 1

0o 0 05 o0 0 0 O

3 234 0 0 0 O O

0 0 0 0 O 10 4 O

6 19 25 0 0 0 O O

o 0 o0 o0 1 3 0 O
Lo 0 0 O O O 1 49
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Thus we see that s,(A) was the best bound 41 out of 50 times, while s4(A)
and s,(A) again did very well. The i, jth position of the following upper
triangular array gives the number of times s(A)> s (A):

0 50 50 46 50 44 50 50
0 0 0 40 0 39 49
0 0 5 o0 50 50

0 5 25 50 350

0 0 0 50

0 50 50

0 50

0

We now present the above data for general, symmetric matrices.

Mean: 0.67687, 0.66358, 0.36987, 0.87802, 0.45679, 0.86221, 0.44488,
0.5503.

Standard deviation: 0.13219, 0.02669, 0.03295, 0.09104, 0.12825,
0.10370, 0.13184, 0.11397.

0 3 3 6 1 2 2 3
0 1 0 5 2419 1 0
3 01 2 0 0 0 0
0 0 0 1 0 2 23 24
0 14 30 5 0 0 1 0
0 0 1 0 3 4 2 2
14 32 3 0 0 1 0 0O
0 0o 1 3 12 2 3 1
0 22 1 46 5 46 3 13
0 0 4 2 46 2 11
0 50 36 50 36 49
0 1 22 1 1
0 4 0 50
0 1 4
0 50

0 r ]

We see that the results are drastically different: s;(A) and the row sums »
s,(A) do quite well, while the sums s,(A), s,(A), and s¢(A) no longer do as
well. '
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