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NONNEGATIVE SOLUTIONS OF A QUADRATIC MATRIX
EQUATION ARISING FROM COMPARISON THEOREMS IN
ORDINARY DIFFERENTIAL EQUATIONS*

G. J. BUTLERt, CHARLES R. JOHNSONt AND H. WOLKOWICZ§

Abstract. We study the quadratic matrix equation
X2+ 8X +yA=0,

where A is a given elementwise nonnegative (resp. positive semi-definite) matrix and the solution X is
required to be an elementwise nonnegative (resp. positive semi-definite) matrix. When 8=~1 and y=1,
our results may be used, for example, to obtain a simple nonoscillation criterion for the matrix differential
equation

Y()+Q()Y(1)=0,
where Y and Q are matrix-valued functions and ’ denotes differentiation. This generalizes a result of Hille

for the scalar case. Extensions are given when A and X are nonnegative with respect to more general cone
orderings.

AMS(MOS) subject classification. 15A24

1. Introduction. In this paper we characterize the existence of solutions of the
quadratic matrix equation

(1.1) X’+B8X+yA=0,

where vy and B are given real scalars and A is a given “nonnegative” n X n matrix.
We first consider the case when y>0, <0 and A is either Hermitian positive
semi-definite or elementwise nonnegative. The solution X is then restricted to be
Hermitian or elementwise nonnegative, respectively. In these cases we completely
characterize the existence of a solution in terms of the spectrum of A; see § 2.

In § 3 we use the notion of a positivity cone K, see [9], to unify and extend the
results of § 2. Thus, in the case that ¥ > 0, we characterize the existence of nonnegative
or M-matrix (with respect to K) solutions of (1.1) when A is nonnegative (with respect
to K).

The problem of the existence of solutions of (1.1) arises in the context of
comparison theorems for two matrix-valued ordinary differential equations. Consider
the equation

(1.2) Y ()+ Q)Y (r) =0.

Here Y and Q are continuous n X n matrix-valued functions and ' denotes differenti-
ation. Such equations arise both in the self-adjoint case (in the study of Hamiltonian
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systems, for example [7], [8]) and in the nonself-adjoint case [1], [5]. See also the
references in [5]. A solution Y(¢) of (1.2) is said to be nonoscillatory if for some 1,
it is nonsingular for all ¢ = ¢,. In that case we may form the so-called Riccati equation

(1.3) Z(O+Z )+ Q()=0, 121,

where Z(f) = Y'(1) Y"'(2).
Of interest are comparison theorems between two equations of the form (1.2)
with different coefficients. Thus we consider also the equations

(1.2), Y'()+ Q)Y (5) =0,
(1.3), Z'()+Z¥1)+ Qy(1) =0,

In the scalar case (n=1), the classical Sturm comparison theorem yields the result
that if (1.2) has a nonoscillatory solution (and therefore (1.3) has a solution on some
interval [£,)) and if Q(f)Z Q,(1) for all ¢, then (1.2), will have a nonoscillatory
solution (and (1.3), will have a solution on [%, ©0)). There are many other comparison
theorems in the scalar case (see [12), for example).

The extension of comparison theorems to the general matrix case requires some
kind of ordering on the coefficient matrices Q(?), Q,(1); hence some form of positivity
must be defined. Positive semi-definite is the appropriate concept for studying self-
adjoint equations; positive cone versions of positivity are a suitable choice for nonself-
adjoint equations. -

The idea behind comparison theorems is that the oscillatory or nonoscillatory
character of an equation (1.2), may be determined by comparison with some equation
(1.2) whose behavior is known.

Here we shall confine ourselves to obtaining a simple nonoscillation criterion for
(1.2),, which is a generalization of a well-known result of Hille [10] in the scalar case.

Suppose that

T
P(t)= lim Q(s) ds
T

t

and

T
P(t)= }lm Q(s) ds

!

both exist, and are finite, and that
(1.4) P()z|Py(t)]=0 forally

in the sense that P(f) —|P,(¢)| has nonnegative elements, and where | P,(1)| is the matrix
whose elements are the absolute values of those of Py(1).

Under these assumptions, it was shown in [5] that if (1.3) has a positive solution
Z(1) on [to, ), then (1.3), has a positive solution Z,(z), where 0sZ,()sZ(1), 121,
(This is a generalization of the Hille~Wintner theorem in the scalar case [10], [12).

To apply this result, we look for a suitable candidate for Q(r).

If Q(1)=1"2A, where A is a constant nxn matrix, we can try to find a solution
of (1.3) of the form Z(t) =¢"'X, where X is a constant n X n matrix. This leads to
the quadratic matrix equation

(1.5) X~ X+A=0,
To use the comparison theorem quoted above we require that A and X are positive.
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Then the solvability of (1.5) reduces to that of (1.1) with 8 =—1, y=1. Let p(A) be
the spectral radius of A. Theorem 2.3 of § 2 will show that (1.5) has a nonnegative
solution X if and only if .

p(A) <}, or p(A) =}and the eigenvalues

(1.6) of A which have modulus } have degree equalto 1,

where the degree is the size of the largest Jordan block. Denoting the set of nonnegative
matrices A satisfying (1.6) by s, we have: ‘
THEOREM 1.1. Let Q,(t) be continuous, such that

IQ Q,(s)ds|=sA

t
for all sufficiently large t, for some A€ A.
Then (1.2), has a nonoscillatory solution Y, whose associated Riccati variable Z,
satisfies |Z,(1)| = 7' X, t sufficiently large, where X is the unique positive solution of (1.5).
In the scalar case, A can be any constant =}, and we have Hille’s result.

2. Existence of solutions. By using the substitution X =—pgY, we may consider
the equation

(2.1) ' X2-X+A=0

rather than'(1.1), and this we choose to do.

We answer the following two questions concerning existence of solutions:

1. A is given Hermitian, positive semi-definite (psd) and we require X to be
Hermitian;

2. A is given real and nonnegative (elementwise) and we require X to be real
and nonnegative.

The Hermitian case essentially reduces to a scalar problem, and we have:

THEOREM 2.1. Suppose that A is a given Hermitian matrix. Then (2.1) has a
Hermitian solution X if and only if

(2.2) o(A)e (-,
where o(A) is the spectrum of A.

Proof. Since A=X~-X % is a polynomial in X, A commutes with any solution X
and so A and X can be simultaneously diagonalized by some unitary matrix U. Thus

X is a Hermitian solution of (2.1) if and only if
(2.3) . D*-D+A=0

has a solution, where D= UXU® and A = UAU* are the diagonal matrices of eigen-
values of X and A, respectively. Thus the diagonal elements satisfy

di-d;+A=0, i=1,---,n

Since d; =4(1£v1-4),) is real if and only if 1-4A,20, the result follows.
COROLLARY 2.1. Let A be psd. Then (2.1) has a Hermitian solution X if and only
if 7(A) =[0,1], and in this case o(X)<[0, 1}, ie. all Hermitian solutions are psd.
Proof. The result follows since we need 1 +yJ1-4A,20 for all i
Now we consider the case that 0 # A & 0 elementwise, and weseek X & 0 (element-
wise) to solve (2.1). The solution of this problem again rests upon the spectrum of A.
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If X solves (2.1), then v SRERE
0=X>-X+A=(X-1)?~-}I+A,
SO .
(2.4) X=}1+8),
where
(2.5) S=(I-4A)3 ‘
If S should admit a series expansion, then
(2.6) X=21 :i:%go (—1)‘(?)(4,4)‘,
so
@7) x=-3 £ co(}aar

choosing the negative sign in (2.6), so that X 0. This series will converge if 4p<1
and diverge if 4p> 1.
Now consider the following iterative scheme:

(2.8) X,=A, X.u=A+X2 n=1,2,---.

If X, converges to X as n-» o, we shall have X = A+ X?2; clearly X 20, and so will
be a nonnegative solution of (2.1). The iterative scheme has the following properties.
LeMMA 2.1. Suppose that X 2 0 solves (2.1). Then the sequence of iterates in (2.8)

satisfies

2.9) 0sX,=X,.,sX, n=12.--,
and
(2.10) SpsSX,585, n=1,2,-..,

where S, denotes the pc;m'al sum of degree k of the series in (2.7).
Proof. X,=AsSA+X*=X, and

Xi=ASA+A’=X,=A+ X5 A+ X=X,
i.e. (2.9) holds for r =1. Assume that (2.9) holds for a particular value of n. Then
Xn+l—xn ‘(X'zn—xnzn—l)zoa

and similarly, X — X,., 2 0. Thus (2.9) follows by induction. _
To obtain (2.10), observe that the power series X defined by (2.7) formally satisfies

(2.11) X=X*+A.

Denote the partial sum of degree k of the formal series for X2 by T,. Since X has
no constant term, formally squaring the power series shows that T,,,, S S2,n=1,2, - - -,
From (2.11), we have S,,,=T,.,+ A, and so

(2.12) - S, SSi+A, n=1,2,..-
Again, we see that Ty & $2--1, and so _
(2.13) ' Sp2Sh-+A, n=1,2,-
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Since §,=S;0=X,=A, a simple induction argument with (2.12) and (2.13) gives
(2.10), which completes the proof of the lemma. .

In fact, by considering the case when A is a scalar, we see that the infinite series,
obtained by expanding the iteration (2.8), must be the same as (2.7).

Now we can obtain the following existence result.

THEOREM 2.3. (i) 4p <1 implies that thereé is a nonnegative solution to (2.1).

(ii) 4p>1 implies that there is no nonnegative solution to (2.1).

(iii) If 4p =1, then (2.1) has a nonnegative solution if and only if the eigenvalues
of A which are equal to the spectral radius in modulus, have degree 1, that is,

(2.14) Al =p=>A, has degree 1.

Proof. 1f 4p <1, the nonnegative solution X is given explicitly by (2.7).

Now suppose that 4p > 1 .and that X 0 is a solution of (2.1). By (2.9) of Lemma
2.1, the iterates of (2.8) are monotone increasing and bounded above by X. Without
loss of generality, we may assume that X, X, X a positive solution of (2.1). But
then (2.10) of Lemma 2.1 shows that X satisfies (2.6), which will be a divergent power
series when 4p < 1. This is a contradiction and gives (ii).

Finally suppose that 4p = 1. Suppose that (2.14) holds, and let

(2.15) A=PJp!

where J is the Jordan canonical form of A. Convergence of the power series in (2.7)
depends only on the individual blocks of J. Since these blocks have spectral radius less
than or equal to §, with equality only if they have degree 1, the power series converges
and yields a nonnegative solution to (2.1). , :

Conversely, suppose that X &0 is a solution of (2.1) and that (2.14) fails to hold.
First assume that there is exactly one défective Jordan block corresponding to an
eigenvalue equal to p. X satisfies (2.4) and S satisfies (2.5). This contradicts the
criterion in [2] for the existence of a square root of a singular matrix, which states
that the defective Jordan blocks must come in pairs. This then implies that the series
in (2.7) diverges if J is replaced by a single defective Jordan block J. Since the
convergence of the series in (2.7) depends only, on the individual Jordan blocks, it
follows that A cannot have any defective blocks corresponding to an eigenvalue equal
to p. (We have already seen that the existence of a positive solution of (2.1) implies
convergence of the series in (2.7) as the limit of the iterates X, of (2.8).)

The result now follows, since |A,| = p implies that the degree of A, i.e. the size of
the largest block in the Jordan canonical form of A that contains A, is not larger than
the degree of the eigenvalue equal to p, see e.g. [6). Thus there can be no defective
blocks, and (2.14) must hold.

The above results are related to the notion of an M-matrix. Recall that A is an
M-matrix if A=rI-P, where P20 and p(P)sr. If p(P)=r, then A is a singular
M-matrix. Note that if A is an M-matrix then A has the Z-matrix sign pattern, i.e.
a;=0if i#j If A is an invertible M-matrix, then A™'=20 and moreover, A has a
square root A'/? which is also an M-matrix. See ¢.g. [3]. The M-matrix property
arises in (2.5), for if 4p <1, then S? is an invertible M-matrix and so has a square
root § which is also an M-matrix. This implies that X =§—8I+S)= 0. Our proofs
yield the following for singular M-matrices. .

COROLLARY 2.1. The (singular) M-matrix pI — A has a square root if and only
if (2.4) holds.
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The series (2.6) yields two solutions to (2.1). Choosing the negative sign yields

X, = —%( T (-1)‘(?)(414)') z0.

The second solution is

xz-—1+1( T (—1)‘(*)(4;4)‘).
2\;=1 \i
Thus X, =1~ P, where P&0, and so is a Z-matrix. But, if p <}, then p(P) <1 which
implies that X, is in fact an M-matrix. The case p =1} is similar. In fact, we have a
nonnegative solution if and only if we have an M-matrix solution. For if X is an
M-matrix solution, then X =3I —S) with p(S)=1, see (2.4). But then ¥J—S) is a
nonnegative solution.

3. Extension to positivity cones. The notion of a positivity cone was introduced
in [9] to give a unified treatment of results on M-matrices and positive definite matrices.
We now extend our results to such cones. Following [9], we define K to be a positivity
cone of matrices if K is a pointed, closed, convex cone, i.e. if KN—K ={0}, K+K<cK
and AKcK, for all A 20, and if

3.1 PeKimplies P'eK, i=0,1,2,--.

The cones K;, of all nonnegative (elementwise) matrices, and K, the cone of positive
semi-definite Hermitian matrices to which we addressed ourselves in § 2, are examples
of positivity cones, as is K; N K,. Additional examples are given in [9].

We let K denote a positivity cone and partially order C™ with respect to K, i.e.
Pz0 if PeK. Associated with K are the sets :

(3.2) Z={AeC": A=sI-P,seR,PeK},
(3.3) M={AeZ:Re A &0,forall eigenvalues A of A}..

Corresponding to K, and K, above, Z=Z, is the set of Z-matrices, M =M, is the set
of M-matrices, Z = Z, is the set of Hermitian matrices and M = M, is the set of positive
semi-definite matrices.

We would like to unify our results from § 2 as well as extend them to general
positivity cones. We shall require the series solution defined by (2.6) and a result
corresponding to Lemma 2.1 concerning the iterative scheme (2.8). For the lemma to
hold in the new partial order, we need an additional condition, (3.4) below.

LEMMA 3.1. Lemma 2.1 holds if the partial order induced by a positivity cone K
is closed under commuting products, i.e. K satisfies

(3.4) B,, B,eK, BlengB|=>B|Bze K.
(this is condition (2.4) in [9]).

Proof. Since A €K and (3.1) holds for a positivity cone, it follows inductively that
the iterates X, of (2.8) are in K and are polynomials in A with nonnegative coefficients.
Thus we have
(3-5) Xn-ﬂ-l—Xn =(X02|-X=—I)‘(xu—xn-l)(xu+xn—l)’

since the two factors on the right-hand side commute. It follows inductively from (3.5)
that 0= X, =X, ,n=1,2,--".
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Now suppose that X 20 solves (2.1). Then X = X2+ A, so
X=X+ AX =X+ XA,

so X commutes with A. Since the X, are polynomials in A, it follows that X commutes
with each X, It is now easy to show that X,=X for all n, and we have (2.9) of
Lemma 2.1.

The proof of (2.10) proceeds as before.

We remark that K, and K, are both positivity cones that satisfy (3.4).

Next we prove the following result which includes a generalization of Theorem
2.3 to positivity cones satisfying (3.4).

THEOREM 3.1. Let K be a positivity cone satisfying (3.4) and let A=0 (with
respect to K). Then (2.1) has a solution X e K if and only if

(3.6) 4ps1,

with (2.13) holding if 4p=1.

Proof. 1If 4p <1, then the series in (2.7) converges to X, which is a solution to
(2.1). From the definition of the positivity cone, T2 (~1)'(*/?)(4A)’ € =K. Thus X 2 0.
If 4p=1 and (2.3) holds, then we still obtain convergence. (Sce the argument in the
proof of Theorem 2.3.) Conversely, suppose that X solves (2.1)and X 2 0. To complete
the proof we need only show that the existence of a solution X 20 of (2.1) implies
that the series in (2.7) converges. First we show that the order interval [0, X]=
{Y:0= Y = X} is compact. Suppose not. Then there is a sequence {Y,} < [0, X] with
| Yall > c0. We may assume that Y,/||Y,||> Y e K. But then (X-Y,)/| Y.l €K, and
upon taking the limit as n - o, we find that — Y €K, a contradiction, since K is pointed.
It follows that [0, X] is compact. Using Lemma 3.1, we deduce that X, = Y, a solution
of (2.1), which implies that the series in (2.7) converges.

Note that an M-matrix solution (with respect to K) is obtained by using the
positive sign in the expansion (2.6).
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