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As a step toward understanding the unsolved problem of determining how large the
permanent of a positive semi-definite matrix can be, given the cigenvalues, we note that a
necessary condition for 4 to be a permanent maximizing matrix is that 4 commute with its
permanental adjoint.
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For an n-by-n matrix 4 = (a;;) the permanent is defined by

perd=3 []au,

T€S, i=1

in which S, denotes the full symmetric group on n objects. It is well
known that if A4 is positive semi-definite Hermitian, then

det A < per 4.
For given 4, <4, <---<4,, 4, 2 0, the following question has long
been open [1, 2]:
maximize per A *)
subject to: A Hermitian; ¢(4) = {7itreeey ).
The minimum of per 4 subject to the same conditions is clearlydet 4 =

4y Z,. The problem (*) has a finite solution, as an equivalent
formulation is

maximize per U*AU (**)
subject to: U is n-by-n unitary

in which A = diag(4,,...,4,). Since the permanent is a continuous
function of the entries and the unitary group is compact, a finite
maximum must be achieved for at least one U. We do not solve the
problem (*) here, but simply wish to note an interesting necessary
condition for 4 to be an optimizing matrix.

For an n-by-n matrix 4 = (a;;) the permanental adjoint of A is defined
to be the n-by-n matrix padj A whose i, j entry is the permanent of the
(n — 1)-by~(n — 1) submatrix of A4 résulting from deletion of row i and
column j. Our observation is the

THEOREM If the matrix A is a solution to (*), then A and padj A
commute.

. Proof Let M =C"*" be the space of n x n complex matrices,

k(U) = U*AU, g(U)=U*U -1, and S(U) = per(U*AU). We let
{A,B) = tr A*B denote the inner product in M. The Frechet
differentials of the above functions acting on the increment he M are:

dk(Ush) = k'(U)h = U*Ah + h*AU,
dg(U;h) = g'(U)h = U*h + h*U,
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d per(V; h) = <padj ¥, b} = tr(padj V)*h,
df(U; h) = d per(V; dk(U; h))
= tr(padj V)*(U*Ah + h*AU), V= U*AU.

The above derivatives can be verified directly from the definition of a
Frechet differential. Let us now write (*) as

max{ f(U): g(U) =0, Ue M},

and try to solve this problem using Lagrange multipliers. The
Lagrangian is

L(U,0) = f(U) + £o,9(UD,

where the Lagrange multiplier ¢ = 0* € M. Note that we can assume ¢
Hermitian since g(U) is Hermitian for each U. Now suppose that U
solves (*) and A = U*AU. Note that the Frechet derivative g'(U), for U
unitary, is a linear operator from M onto the Hermitians in M, i.e. for
K = K*€e M, set h = $UK. Thus the standard constraint qualification
holds for (**) and U is a stationary point of Lfor some g, i.c.forallhin M,
we have .

é
0=LU:9) . ar Ui k) + <o, dg(U; b))
eu
= tr[(padj A)(U*Ah + h*AU) + o(U*h + h*U)]
= (AU(padj A) + Ua, h) + <h, AU(padj A) + Us)
since tr BC = tr CB and ¢ = o*.
This implies

AU(padjA)= -Ues
or equivalently
_ A(padj A) = —o.
Since o, padj A and A4 are Hermitian, the above yields the theorem.
We note that the commutativity condition A(padj 4) = (padj A)A is
also necessary for minimization of the permanent when 4, > 0. Then the
minimum occurs if and only if per A = det A4, or if and only if 4 is

diagonal. If A4 is diagonal, padj 4 is diagonal and they commute. In
general commutativity with padj A does seem to place a significant
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restriction upon A, in contrast to the case of the determinantal adjoint
(A(adj 4) = (adj A)A4, always).
The theorem does permit a simple solution of (*) when n = 2,

COROLLARY  If'n = 2, the solution to (*) is _(/'.f + 42)/2 and a maximizing
matrix is characterized by equal diagonal entries.

Proof If
a b
[

then a calculation reveals that 4 and padj 4 commute if and only if either
a =c or b= 0. In the latter case the permanent is minimized. Thus,

L At A
30y + 45 i\/(—lz—z) = A4

A+ i\ L N
:t\/(l—z‘—) - lly 10, + 4y)
for maximization, and a further calculation reveals that perA =
3T + 23). ‘ (]
If 'n =3, application of the commutativity condition is already
complex. Let

A=

a c
A= |b d e
c

Then A(padj A) = (padj A)4 if and only if
(a—d)(bf + ce) = b(e? - ¢?),
(@a— f)(be + cd) = c(e* — b?),
(d — f){ae + bc) = e(c? — b2).

This permits a number of solutions. A diagonal matrix again
corresponds to minimization. The matrix A = af + BJ, J the matrix of
I's, generalizes the 2-by-2 maximum (equal diagonal entries and equal
off-diagonal entries) and gives the maximum when the smallest
eigenvalue has multiplicity two. But there are other cases, such as
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matrices of the form

a 0 c
4 0 a c
= ’
a -
c ¢
a

among others. It is not immediately clear what solution corresponds to
the maximum in the general case of three distinct eigenvalues.

The first part of the above corollary is a special case of the Marcus—
Minc inequality, see [2, p. 113],

1
prA<-y. (***)
i
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