Linear and Multilinear Algebra, 1986, Vol. 19, pp. 389-393 0308-1087/86/1904-0389 \$10.00/0 © 1986 Gordon and Breach Science Publishers S.A. Printed in the United States of America

A Note on Maximizing the Permanent of a Positive Definite Hermitian Matrix, Given the Eigenvalues*

ROBERT GRONE

Department of Mathematics, Auburn University, Auburn, Alabama 36849

CHARLES R. JOHNSON

Mathematical Sciences Department, Clemson University, Clemson, South Carolina 29631

EDUARDO SA

Departamento de Matematica, Universidade de Coimbra, 3000 Coimbra, Portugal

and

HENRY WOLKOWICZ

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

(Received April 4, 1985; in final form October 4, 1985)

As a step toward understanding the unsolved problem of determining how large the permanent of a positive semi-definite matrix can be, given the eigenvalues, we note that a necessary condition for A to be a permanent maximizing matrix is that A commute with its permanental adjoint.

^{*} This work was supported in part by Air Force Wright Aeronautical Laboratories contract F33615-81-K-3224 and by National Science Foundation grant MCS 80-01611 and was carried out in part while Grone, Sa and Wolkowicz were visiting Johnson at the Institute for Physical Science and Technology of the University of Maryland.

For an *n*-by-*n* matrix $A = (a_{ij})$ the permanent is defined by

$$per A = \sum_{\tau \in S_n} \prod_{i=1}^n a_{i\tau(i)}$$

in which S_n denotes the full symmetric group on n objects. It is well known that if A is positive semi-definite Hermitian, then

$$\det A \leq \operatorname{per} A$$
.

For given $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, $\lambda_1 \geq 0$, the following question has long been open [1, 2]:

maximize per
$$A$$
 (*)

subject to: A Hermitian;
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
.

The minimum of per A subject to the same conditions is clearly det $A = \lambda_1 \cdots \lambda_n$. The problem (*) has a finite solution, as an equivalent formulation is

maximize per
$$U^*\Lambda U$$
 (**)

subject to: U is n-by-n unitary

in which $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Since the permanent is a continuous function of the entries and the unitary group is compact, a finite maximum must be achieved for at least one U. We do not solve the problem (*) here, but simply wish to note an interesting necessary condition for A to be an optimizing matrix.

For an *n*-by-*n* matrix $A = (a_{ij})$ the permanental adjoint of A is defined to be the *n*-by-*n* matrix padj A whose i, j entry is the permanent of the (n-1)-by-(n-1) submatrix of A resulting from deletion of row i and column j. Our observation is the

THEOREM If the matrix A is a solution to (*), then A and padj A commute.

Proof Let $M = C^{n \times n}$ be the space of $n \times n$ complex matrices, $k(U) = U^*\Lambda U$, $g(U) = U^*U - I$, and $f(U) = \text{per}(U^*\Lambda U)$. We let $\langle A, B \rangle = \text{tr } A^*B$ denote the inner product in M. The Frechet differentials of the above functions acting on the increment $h \in M$ are:

$$dk(U;h) = k'(U)h = U^*\Lambda h + h^*\Lambda U,$$

$$dg(U;h) = g'(U)h = U^*h + h^*U.$$

$$\begin{split} d\operatorname{per}(V;h) &= \langle \operatorname{padj} V, h \rangle = \operatorname{tr}(\operatorname{padj} V)^*h, \\ df(U;h) &= d\operatorname{per}(V;dk(U;h)) \\ &= \operatorname{tr}(\operatorname{padj} V)^*(U^*\Lambda h + h^*\Lambda U), \qquad V = U^*\Lambda U. \end{split}$$

The above derivatives can be verified directly from the definition of a Frechet differential. Let us now write (*) as

$$\max\{f(U):g(U)=0,\,U\in M\},$$

and try to solve this problem using Lagrange multipliers. The Lagrangian is

$$L(U,\sigma)=f(U)+\langle\sigma,g(U)\rangle,$$

where the Lagrange multiplier $\sigma = \sigma^* \in M$. Note that we can assume σ Hermitian since g(U) is Hermitian for each U. Now suppose that U solves (*) and $A = U^*\Lambda U$. Note that the Frechet derivative g'(U), for U unitary, is a linear operator from M onto the Hermitians in M, i.e. for $K = K^* \in M$, set $h = \frac{1}{2}UK$. Thus the standard constraint qualification holds for (**) and U is a stationary point of L for some σ , i.e. for all h in M, we have

$$0 = \frac{\partial L(U, \sigma)}{\partial U} h = df(U; h) + \langle \sigma, dg(U; h) \rangle$$

$$= tr[(padj A)(U^*\Lambda h + h^*\Lambda U) + \sigma(U^*h + h^*U)]$$

$$= \langle \Lambda U(padj A) + U\sigma, h \rangle + \langle h, \Lambda U(padj A) + U\sigma \rangle$$
since tr $BC = tr CB$ and $\sigma = \sigma^*$.

This implies

$$\Lambda U(\text{padj }A) = -U\sigma$$

or equivalently

$$A(\text{padj }A) = -\sigma.$$

Since σ , padj A and A are Hermitian, the above yields the theorem.

We note that the commutativity condition A(padj A) = (padj A)A is also necessary for minimization of the permanent when $\lambda_1 > 0$. Then the minimum occurs if and only if per $A = \det A$, or if and only if A is diagonal. If A is diagonal, padj A is diagonal and they commute. In general commutativity with padj A does seem to place a significant

restriction upon A, in contrast to the case of the determinantal adjoint (A(adj A) = (adj A)A, always).

The theorem does permit a simple solution of (*) when n = 2.

COROLLARY If n = 2, the solution to (*) is $(\lambda_1^2 + \lambda_2^2)/2$ and a maximizing matrix is characterized by equal diagonal entries.

Proof If

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix},$$

then a calculation reveals that A and padj A commute if and only if either a = c or b = 0. In the latter case the permanent is minimized. Thus,

$$A = \begin{bmatrix} \frac{\frac{1}{2}(\lambda_1 + \lambda_2)}{2} & \pm \sqrt{\left(\frac{\lambda_1 + \lambda_2}{2}\right)^2 - \lambda_1 \lambda_2} \\ \pm \sqrt{\left(\frac{\lambda_1 + \lambda_2}{2}\right)^2 - \lambda_1 \lambda_2} & \frac{1}{2}(\lambda_1 + \lambda_2) \end{bmatrix}$$

for maximization, and a further calculation reveals that $\operatorname{per} A = \frac{1}{2}(\lambda_1^2 + \lambda_2^2)$.

If n = 3, application of the commutativity condition is already complex. Let

$$A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}.$$

Then A(padj A) = (padj A)A if and only if

$$(a-d)(bf+ce) = b(e^2-c^2),$$

$$(a-f)(be+cd) = c(e^2-b^2),$$

$$(d-f)(ae+bc) = e(c^2-b^2).$$

This permits a number of solutions. A diagonal matrix again corresponds to minimization. The matrix $A = \alpha I + \beta J$, J the matrix of 1's, generalizes the 2-by-2 maximum (equal diagonal entries and equal off-diagonal entries) and gives the maximum when the smallest eigenvalue has multiplicity two. But there are other cases, such as

matrices of the form

$$A = \begin{bmatrix} a & 0 & c \\ 0 & a & c \\ c & c & \frac{a^2 - c^2}{a} \end{bmatrix},$$

among others. It is not immediately clear what solution corresponds to the maximum in the general case of three distinct eigenvalues.

The first part of the above corollary is a special case of the Marcus-Minc inequality, see [2, p. 113],

$$\operatorname{per} A \leqslant \frac{1}{n} \sum_{i} \lambda_{i}^{n}. \tag{***}$$

Acknowledgement

The authors are indebted to an anonymous referee for the reference to inequality (***) and for pointing out a gap in the original proof of the theorem.

References

M. Marcus and H. Minc, Permanents, Amer. Math. Monthly 72 (1965), 577-591. M. Marcus and H. Minc, Permanents, Amer. Math. Monthly 72 (1965), 577-591.
 H. Minc, Permanents, in The Encyclopedia of Mathematics and its Application,

Addison-Wesley, London, 1978.