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An Explicit Linear Solution
for the Quadratic Dynamic Programming Problem

W. R. S. SUTHERLAND,' H. WoLKowiICZ,? AND V. ZEIDAN®

Communicated by F. Zirilli

Abstract. For a given vector x,, the sequence {x,} which optimizes the
sum of discounted rewards r(x,, x,.,), where r is a quadratic function,
is shown to be generated by a linear decision rule x,,,=Sx,+R.
Moreover, the coefficients R, S are given by explicit formulas in terms
of the coefficients of the reward function r. A unique steady-state is
shown to exist (except for a degenerate case), and its stability is dis-
cussed.
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1. Introduction

Dynamic programming can be used to model a wide variety of discrete-
time continuous-state optimization problems. Some examples include pro-
duction theory (Ref. 1), control theory (Ref. 2), and economic planning
(Ref. 3). These models are often solved, theoretically as well as numerically,
by using the value improvement iterative method. However, for the case of
a quadratic objective function, it has long been known (see Ref. 2 or Ref.
4) that the optimal solution, at least in special models, is characterized by
a decision rule which is a linear function of the state variables. The purpose
of this paper is to show that this result holds in general and that the optimal
rule can be stated explicitly in terms of the coefficients of the quadratic
objective function.
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The dynamic programming problem is defined, and the main result is
presented in Section 2. Section 3 describes the sequence space for which
the problem has finite values. This section also presents the necessary and
sufficient conditions for optimality. Section 4 describes the kinds of general-
ized inverse matrix and square root matrix which are used in the statement
of the main theorem. Section 5 then shows that there exists a linear decision
rule which satisfies the sufficient conditions for optimality and thereby
completes the proof. The existence and stability of a steady solution is also
described.

2. Dynamic Programming Problem

The dynamic programming problem can be stated, in general terms,
for the case of continuous state variables and discrete time, as follows:
Given xo, find a sequence X = {x,} of vectors which maximizes the value of

the objective function
f(x)= Zo 7 (X5 Xp41)- (1)
f= .

The problem is said to be discounted if the reward function satisfies
r(x,y)=8'r(x,y), (2)

for all vectors x,y and all 1=0,1,2,..., where 0< 5 <1 is the discount
factor. The nondiscounted problem corresponds to the case =1.

The reward function r(x, y) is usually assumed to be a strictly concave
function of the transitions (x, y). In this paper, we will require that the
reward be a quadratic function,

r(x,y)=ix'Ax+x'By+3y'Cy+ D'x+E'y, (3)

where the prime superscript denotes the transpose of a matrix. A sufficient
condition that 7 be strictly concave is that the block matrix of its associated
quadratic form,

B
G=i[: C], @)

be a symmetric, negative-definite matrix. Note that we assume that B is
symmetric.
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Since A and C are negative-definite matrices, then so is the matrix
8A+ C for any 6> 0. Consequently, the matrices

M=(6A+C)'B, (5
N=—(8A+C) (8D+E) (6)
exist. These matrices are useful in concisely stating our results.
Next, a problem will be said to be degenerate if the matrix
H=I+(1+8)M) @)

is singular, that is, if A =—1/(1+3) is an eigenvalue of M. The non-
discounted problem can easily be shown, using the quadratic form defined
by G in Eq. (4), to be a nondegenerate problem. A discounted problem
can always be made nondegenerate by a slight change in its discount factor.

The main result of the paper can now be stated. We consider only the
discounted case in this paper.

Theorem 2.1. The quadratic dynamic programming problem has a
unique optimal solution X, for given x,, defined by the linear decision rule

X1 =8x,+R, (8)
fort=0,1,..., with coefficients '

R=(I+8M(I+8S))"'N, 9)

S=(1/28)M*(—1+(I -45M?)'?), (10)

where the superscripts + and 1/2 denote the generalized matrix inverse and
the positive matrix square root, respectively.

The remainder of this paper mostly consists of a sequence of lemmas
which lead up to the proof of this result for the discounted case 6 <1.

3. Sufficient Conditions for Optimality
The feasible solutions of the dynamic programming problem consist

of all sequences X = {x,} of vectors in n-space. Letting | x|| be the Euclidean
norm, then we can define the sequence norm

. 1/2
= ( £ s 1) an
=
and the sequence space
X = {%: ||}l < oo}. (12)

This space is the set of good sequénces, in the sense that, as shown by the
next lemma, the objective function f is finite only for sequences in X.
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Lemma 3.1. Let f be defined by Egs. (1), (2), (3). Then:
(i) |f(x)|<oo, for Xe X;

(i) |f(x)|> o, as %] oo;

(iii) f(X)=-oo, if X£ X;

(iv) f is strictly concave on X.

Proof. (i) Since risa quadratic function, there exist constants J, K, L
such that
Ir(x, y)I=J+K[Ix]*+ Ljiyl?,

so that, for any sequence x € X, we get

RS T 81rCh, x|

=JT+KT 8 Ix*+ LT 8'flxn| <.
(4] [4] 4]
(ii) Since the negative-definite quadratic form
x
g(xy)=(x",y)G (y) ={x'Ax+x'By+}y'Cy

dominates the linear terms in r and since
r(x, y)=g(x, y)+ Dx+ Ey,
we get that there exists some constant y> 0 such that
g(x, y)|>2|Dx+Eyl,  whenever max{|lx], [y[}> 7.
Let X € X, and define
N ={e: max{|| x|, |x.+.}> y}.
Then, for some constant K, summing for t € N, we have
If(X)]| =L 8'|g(x:, X1+1) + (Dx, + Ex,11)|+ K
=Y 8'||g(x,, Xi+1)| = |Dx, + Ex,y | + K
>3Y 8'(g(x, x )|+ K
=4, 2 8 min{|x |, Ix,..[*}+ K,

where A, <0 is the eigenvalue of G of smallest magnitude in absolute value.
It now follows that

lf(E)»00,  as ||F]~>c.
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(ili) Since r(x, y)= K, for some constant K, then f(X)<K/(1-6)

holds for any sequence x. Hence, by (ii), it follows that
J(xX)=—o00, ifxe X

(iv) The strict concavity of f is a direct consequence of that forr. O

One of the main requirements for optimality of a sequence X is that it
satisfy a first-order condition, such as the derivative condition Vf(X)=0.
In the case of a discounted dynamic programming problem, this first-order
condition reduces to a second-order difference equation. Consequently, a
sequence X is said to satisfy a first-order condition if

aor or ’
E(x.-n,x.)+83-;(x..x.+,)=0 13)

holds forall t=1,2,....
The next lemma shows for quadratic problems that the first-order

condition is equivalent to solving a pair of matrix equations.
Lemma 3.2. A sequence X satisfies the first-order condition if it is
generated by a linear decision rule (8), where R, S satisfy the equations
((6A+C)+8B(I+S))R=-(8D+E), (14)
SBS*+(8A+C)S+B=0. (15)
Proof. Egquation (13), in the case of a quadratic r given by (3), reduces
to
(Bx,_;+ Cx,+ E)+ 8(Ax,+ Bx,,,+ D) =0. (16)
This difference equation is linear with constant coefficients. Using Eq. (8)

to eliminate the variables x,,, and x,, respectively, this equation can be
rewritten in the form

(B+CS+68AS+6BS*)x,_,
+(CR+E+8AR+8BSR+8BR +6D)=0. a7

With the first-order condition expressed in this form, it is clear that it holds,

for all ¢ and all x,, if and only if both the constant term and the coefficient

of x,_, in (17) are equal to zero. These conditions, slightly rearranged, are

Egs. (14) and (15). 0

Using Eqgs. (5), (6), the system of matrix equations (14), (15) can be
expressed more simply as

(I+8M(I+S))R= N, (18)

SMS*+S+M =0 (19)

The next lemma adds a second-order condition, concavity, and gives

an inequality which will be used to establish the optimality of a sequence.
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Lemma 3.3. Let X*€ X satisfy the first-order condition (13), and let
X € X be any other sequence from x¥. Then

SO ~f%)= im 877 (x8, x%.,)(x~xy). (20)

Proof. Since r(x, y) is concave and differentiable, then

ar
r(x,, X,4p) = r(x¥, x¥%.,) == (x¥, x¥)(x, = x¥)

or
+5 (x¥, x7+l)(xl+l -x7'+n)-

If these inequalities are multiplied by §' and summed from r=0to =T -1,
then

TZ_l 8'(r(x,, x,41) = r(x}, x¥%,))
=0

<2 (x8, x¥)(xo~x3)
ox

KOy | P o + _x *
+’§°8 s;(xl—lvxl)+85;(xl!xl+l) (x:—xr)

a
+a”';}§(x';-.,x$)(xr—x;).

But the first and second terms are zero; and, using (13), the third term can
be written as

ar
—8Ta-x (X?-, x:‘-ﬁl)(xT - x#)’

proving the inequality. O

By Lemma 3.3, a sufficient condition for the optimality of a sequence
X*e X is that it satisfy both a first-order condition and a transversality
condition, namely,

. ar
_}_l_gln sra_x(xg" x?‘-ﬂ)(xT—x"):O, : (21)

for all xe X.
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4. Generalized Inverses and Square Roots

The matrix M, defined in Eq. (5), plays a central role in this paper. In
the definition of the matrix S in Eq. (10), the following generalized inverse
is needed.

Definition 4.1. Let M be a 'square matrix. The generalized inverse of
M, denoted by M*, is the matrix which satisfies the following conditions:

i) MM*M=M, (22)
Gi) M*MM*'=M"*, (23)
(i) MM*=M*'M. (24)

This is known as the group inverse (see Ref. 5, page 162), which exists
if and only if the ranks of M and M? are equal. If the group inverse exists,
it is unique. In the case of a unitarily diagonalizable matrix, the group
inverse is also the Moore-Penrose generalized inverse. The next lemma
shows how to construct M™* for such matrices.

Lemmad.l. Let M be adiagonalizable square matrix, i.c., M = PQP™,
for some invertible matrix P and some diagonal matrix Q. Then, the group
inverse exists and is defined by M* = PQ* P, where Q" is the diagonal
matrix with entries

q:i’ = q;‘, if Qi ¥ 0:

q:=0,. otherwise.

Proof. The matrix M™ clearly exists and it is a straightforward matter
to verify that it satisfies the three identities (22), (23), (24). O

The definition and construction of a matrix square root is quite similar.
Suppose that M is a diagonalizable matrix with nonnegative real eigen-
values, i.e.,

M= PQP~}, with g; =0.
Then, the positive square root of M is defined by
A"’IIZ= PQI/ZP—I’ (25)

where Q"2 is the diagonal matrix with entries g}/2. Notice that, by reversing
the signs of some of these entries, there may be up to 2" distinct square
roots of a matrix, and an infinite number in the case of a repeated eigenvalue.
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Lemma 4.2. The matrix M =(8A+ C)™'B is diagonalizable.

Proof. Since M can be taken to be the product of a pdsitive~deﬁnite
matrix U=—(8A+C)™" and a symmetric real matrix V=—B, then M is
similar to a Hermitian matrix, i.e.,

U—l/:uullz = — Ul/lwllz’
where U'/?is the positive square root of U. Hence, M is diagonalizable. [
Lemma 4.3. The spectral radius p( M), for M = (8A+ C) ™' B, satisfies
the inequality
26" p(M)<1.

Proof. Let a be a real number such that 0« |a| < 8'/?, and let U be
the matrix

al 0
U'[l 1]'

Then, as the matrix G in (4) is negative definite, so is the matrix

a’AC +2aB aB+C]
aB+C c I
This implies that a’AC +2ap is negative definite, and consequently so is

A+8C+2aB. But then, A =-1/(2a) cannot be an eigenvalue of M for
0<|a| < 8"? which places a bound on the size of p(M). O

U'GU=§[

5. Optimal Solution

The results of the pi'evious two sections can now be combined to prove
the main theorem. We begin with the existence of the matrix S.

Lemma 5.1. The matrix S defined in (10) exists and solves (15).

Proof. By Lemma 4.2, the matrix M is diagonalizable, so by Lemma
4.1 its group inverse M* exists. By Lemma 4.3, the matrix 1 —45M? will
be diagonalizable with nonnegative eigenvalues, so that its positive square
root exists. So, S exists. The fact that it satisfies (15), or equivalently (19),
can be verified by direct substitution. The three properties for the group
inverse are used extemsively, with the passing of M~ through the square
root being an essential step in the simplification. v DO
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The existence of the vector R follows next.
Lemma 5.2. The vector R defined in (9) exists and solves (14).
Proof. Since M is diagonalizable, then by Lemma 4.2 the coefficient
of R in Eq. (18) can be rewritten, using (10), as follows:
I+8M(I+S) '
=I+8M(I+(1/28)M*(—I+(I —45M*)"?))
=I1+86M+IMM*(—1+ (I -48M?)"?)
=I+6M—iMM* +IMM™* (I —48M?)'/?
= P[1+5Q-1QQ"* +1QQ* (I -45Q%)'* 1P~ (26)

But the middle matrix in (26) is a diagonal matrix with entries equal to 1,
if g, =0, and otherwise of the form

(3+8q,)+¥(1-458¢3)'"> (27)
Now, by Lemma 4.3,
286" gl <1,

so that all the terms in expression (27) are positive. Hence, this matrix is
positive definite and invertible. . O

The spectral properties of the matrix S are described next.

Lemma 5.3. Let S be defined by (10). Then, the spectral radius p(S)
satisfies the inequality 6'/2p(S) < 1. Moreover, p(S) <1 holds if and only
if p(M)<1/(1+8).

Proof. Since M = PQP™}, for Q diagonal, we see by (10) that

p(S) = p((1/28)M™* (=1 +(I —456M?)''%))
=p((1/28)PQ* (-1 +(I-48Q%)"*)P")

=(1/28)p(Q")p(~1+ (I -45Q%)"?). _ (28)
Now, if u is a nonzero eigenvalue of S, then .
] = (1/28)IA7"| [-1+(1-482%)'7), (29)

for some nonzero eigenvalue A of Q. But, as p(Q) = p(M), then 25'/3A| <1
holds by Lemma 4.3, which implies that

1-28"3A|<(1-48A%)"2,
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Using this inequality in Eq. (29) proves the inequality
lul<1/8'2

The second inequality for p(S) is also based on Eq. (28). Assuming
that p(S) 0, then p(S) <1 if and only if

1-(1-45p(Q%)"*<28p(Q).
Bui this inequality is equivalent to
(1-(1+8)p(Q))p(Q)>0,
which proves the result, since p(Q) =p(M) and p(M )>.0. (]

Lemma 54. If R, S .are defined by (9) and (10), then the sequences
X generated by the decision rule (8) belong to the space X.

Proof. Let a=|S|. By Lemma 5.3, we can assume that a <52,
Moreover, there exists some constant 8>0 such that a+B8>1 and
a+pB<8Y2 since § <1. Next, let

T=min{z: |x,| = |R}l/B},
noting that, whenever this inequality holds, then by (8),
Ixerll = USH 0+ I RI < (a+B)x..
On the other hand, if this inequality fails to hold, for some ¢> T, then
lxeeall = UST llx |+ | R
=[SI =<l +IRI, as [|x ]| < llxrl,
S(a+B)|xr|l
=(a+B)" " Vxz], as(a+B)>1
Upon combining these cases, we have
el = L &'llx >+ T &I
1<T t=T
= I &8lxl’+ T 8'((a+B))" Plx I,
<T =T

which is finite, since §(a +8)><1. 0

Finally, we are now in a position to prove the main theorem.

Proof of Theorem 2.1. The existence of R, S such that the sequence
X* generated by (8) satisfies the first-order condition and belongs to the
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space X is given by Lemma 5.1, 5.2, and 5.4. By the comment which follows
Lemma 3.3, the optimality of X* is assured if the transversality condition
(13) also holds, that is, if

. or
lim 8'; (x?, x¥)x, =0

holds for all sequences x¢€ X, including x*. But this follows from the
inequality

= ll8"’(AX’.'+ Bx¥,, + D)l ||§"%x, I

ar
] '5; (x¥, x¥)x,

where each term on the right tends to zero, since each of the sequences x*

and X are in X.
The uniqueness of the optimal sequence follows by part (iv) of

Lemma 3.1. 0

Thus far, we have established the existence of a unique optimal
sequence, for every x, in the case of the discounted problems. This sequence
can, by iterating (8) and using (9) to eliminate R, be expressed in the
following form:

x=(I+S+---+S"")R+S'x,
=(I+S+:--+8")I+8M(I+5))"'N+S'x,. (30)
The next lemma shows how this formula can be simplified for most
problems.
Lemma 5.5. If M is nondegenerate, then Eq. (9) becomes
R=(I-S)(I+(1+8)M)™'N.
Proof. The nondegeneracy assumption ensures that the matrix
(I+(1+8)M) is invertible. So it is sufficient to show that the vector R, as

given above, satisfies Eq. (18). This is shown below, using the fact that the
matrix S satisfies (19):

(I+8M(I+S))R=(I+6M(I+S))(I-S)(I+(l+6)M)"N
=(I+56M-S-6MS*)(I+(1+8)M)"'N
=((I+(1+8)M) - (8MS*+ M+ S))
x(I+(1+8)M)'N .
= N. |
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So, for nondegenerate problems, Eq. (30) can be simplified,
x=(I+8+:--+8"YI-SYI+(1+8)M)'N+S8'x,
=(I=-SYI+(1+8)M)'N+S'x,

=(I-8)x*+8",.
Thus,
X, =x*+5'(x,—x*), (31)
where the vector
x*=(I+(1+8)M)'N (32)

is variously known as the equilibrium, turnpike, or steady state.

Theorem 5.1. Let x* be the optimal sequence, from some arbitrary x,
in a nondegenerate problem. Then, x¥ converges to the equilibrium state
x* if the spectral radius satisfies p(M)<1/(1+6§).

Proof. By Lemma 5.5, it follows that the equilibrium state x* exists
and that any optimal sequence can be expressed in the form of Eq. (31).
Thus, x} converges to x*, for an arbitrarily given x,, if p(S) <1. However,
by Lemma 5.3, this is equivalent to the condition that p(M)<1/(1+8). O

Note that, if x,=x* and §(M)<1/(1+8), then (31) implies that
x*=Sx*+ R and that x* =(x}) = (x*) is an optimal sequence.
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