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POST-PROCESSING PIECEWISE CUBICS FOR MONOTONICITY*
R. K. BEATSONt AND H. WOLKOWICZ$

Abstract. Monotone interpolation schemes of the fit and modify type are considered. Algorithms with
optimal order error properties are developed. Numerical examples are given comparing these methods with
others. The theoretical underpinnings of the algorithms include sufficient conditions for the existence of
monotone splines with specified error and smoothness properties, and a result concerning approximate
projections onto convex sets.
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1. Introduction. Often in interpolating data, {(;, y;)} .0, it is important that the
interpolant, s, inherit some geometric property of the data. This is a requirement when
violation of the geometric property implies that the situation represented by the
interpolated curve is physically impossible. It is also desirable when imposition of the
constraint will lead to stability of some numerical algorithm, or mechanical/electrical
device, built upon the interpolant. On the other hand, the point of interpolating data
is surely to approximate behavior at points x where we have no data. Thus the error
in approximation [ f — s|| should be small. In this paper we present three new algorithms
for monotone interpolation by piecewise cubics. These impose the geometric constraint
without sacrificing the optimal 0(8’w(f”, 8)) order of approximation to C’ functions,
1=j=3. In particular this implies 0(5*) convergence to monotone C* functions.

The earliest work on such problems appears to be that of Chebyshev [6], [7). This
surprisingly little-known work was motivated by an application to the design of a
governor for a stcam engine. Monotonicity of the fitted curve was required in order
that the governor be stable. More recently algorithm developers have been motivated
by diverse applications including various chemical problems, VLSI, and CAD/CAM.

The paper is organised as follows. In § 2 we discuss various criteria for choosing
among interpolation algorithms, and in particular the relevance of error estimates. In
§ 3 sufficient conditions for the existence of monotone spline interpolants with specified
smoothness and error properties are developed. One application is an existence result
for C? monotone cubic spline interpolants. In § 4 we present a general structure, such
that all algorithms with this structure will have optimal order error properties. Section
5 concerns approximate projections onto convex sets. In § 6 we review previous work
on monotone piecewise cubic interpolation algorithms. In § 7 we develop three new
algorithms of this type, all with optimal order error properties. Some numerical
comparisons of these algorithms with others are presented in § 8.

Throughout this paper ||-|| without any subscript denotes the uniform norm on
the interval [1,, 1,]. C,, C;, C;, - - - denote absolute constants not depending on the
function f being approximated, the nodes of interpolation, or the knots of the spline.
By S« we mean the splines of order k with knots t, where these knots are supplemented
by sufficient extra knots, to the left of 1, and the right of 1,, so that there exist B-splines
with support in (-0, ;] and [1,_,, ®©).
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2. Choosing a curve-fitting algorithm. Consider the problem of choosing among
several algorithms which given data {(1, ;)}-. fit a curve through these points satisfying
certain specified constraints. The criterion of “‘visual pleasure,” which is sometimes
used, is inherently subjective and based on a few example data sets. Thus, while the
action of an algorithm on example data sets is certainly relevant, other factors should
also be considered. A possible solution is a “shopping list” of desirable properties
over and above satisfaction of the constraints. For example, numerical stability,
acceptable computational cost, smoothness (preferably measured quantitatively), and
moderately sized operator norms (again preferably measured quantitatively) are all
desirable. Choosing an algorithm can then be thought of as a mixed objective nonlinear
programming problem. At least for general purpose algorithms, intended for use in a
“black-box” manner by nonspecialists, the mixed nature of the objective is probably
essential. For example, the natural cubic spline minimizes f (s”)2 over all unconstrained
interpolants, and thus is optimal with respect to this “pure” smoothness criteria, but
has unsatisfactory error properties. Indeed for such general purpose use, the algorithm
with the longer/better “shopping list™ is probably to be preferred even if it is a little
more expensive computationally.

In our opinion optimal order error estimates deserve a place on the list of desirable
properties. We will call an approximation method, defined for all data sets {(#;, y;)} /-0
with the #’s distinct, j-optimal if the error in approximating £, and f" satisfies

I = s as C& '0(f9,8), . 1=0,1

whenever the data values y; come from a C’ function £, where 8 is the meshsize of t.
Then for some set of j’s, and the larger the set the better, we desire that curve-fitting
algorithms be j-optimal. This is an obvious requirement when the data is known to
come from a smooth function. Even when the data does not come from a smooth
function such estimates are important as they imply that the size of the derivatives of
the interpolant reflects the size of the differences of the data. More precisely,

(i) s depends on t and [f(t,),- - -, f(t,)]" only, and
Gi) 1/ = (NN S Cro(f, 8) whenever fe C/[1,, 1,] together imply
"(-’(f))m"[no.r..]S G m’ax flt,---, ‘l+j]l

whether f is in C’ or not. This follows from the well-known theorem of Favard
concerning the existence of smooth interpolants g satisfying |[g'|=
Cimax, |f[#,- -, 1,)l. This theorem is normally stated with ge L. but simple
smoothing arguments then yield the analogous result for C/ interpolants. The above
can be restated as saying that the operator norms of the derived operators s/, defined
by s = (s(f))", are bounded.

3. Existence of monotone spline interpolants with good approximation properties. In
this section we discuss sufficient conditions on the knots for the existence of monotone
interpolants with good approximation properties. Consideration of step-function data
reveals that the existence of “Heaviside” splines is a necessary condition. It is also a
large part of the sufficient conditions below.

LEMMA 3.1. LetkZ3 and r:rysr =-- - =r,, be a superset of a strictly increasing
knot set t. Suppose r..y_,;>r, for 0sism—k+2, and that each interval [t t.41]
contains at least k knots r,. Then there exists a * Heaviside™ spline H; € S,x< C'1o, 1,]
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482 R. K. BEATSON AND H. WOLKOWICZ
such that
0, 1=y,
(3.1) Hin {l, =1,
3.2) IIHEIIS(k-l)/(tm-t:)

and H, is monotone.

Proof. Fix i,0si<n If necessary by thinning the sequence r we may assume the
interval [4,, 1,,,] contains exactly k of the knots r, namely ty=r, -« 1., ,=1,,. Let
Nii-1 be the B-spline of order k-1 for the knots r supported on [n, rex—y]. The
normalization is such that T ,ez Npxoi(x) = 1. Then let

Hi(x)= J : Nyi-1(u) du.
1 1=l

That H; has the desired properties follows from the formula for the integral of a
B-spline, and the positivity of a B-spline on the interior of its support. [

THEOREM 3.2. Let k2 3. Let a mesh ¢t b<h<---<t, be given with mesh size §.
Letr:rosrn=s---sr.bea superset of t with r.,_,>r, for O0sSisEm-—k+2. Further
suppose that each interval [1,, 4+1) contains at least k knots rn.Let 1sjsk—1. Then
Jor each monotone fe C'[1,, 1,], there exists a spline s€ S, . = C'[1,, t,] such that

(i) s(t)=f(1),05i=n;

(ii) s is monotone on [t,1.];

(ifi) If 5D 1y.0= Cs8 (s 9, 8), 1=0,1.

Remark. If knots of multiplicity greater than one are avoided, then the guaranteed
smoothness increases as S, , c C*~2,

Proof. Suppose, without loss of generality, that f is increasing. Let g =f". Then
g€C’' N4y, 1,]is a nonnegative function. Applying Theorem 1 of [2] there exists a
spline sp€ S, ,_, such that ' '

x

oss(')(x)Sg(x): XE[‘o, 'll]’
g =35l = Cet/'~'w (1, 5).

Set so(x) = f(1) + [ si(u) du.
We will correct so(x) to interpolate to f using the functions H,(x) of Lemma 3.1
Given s5,(x) interpolating to f at ¢, - - - s & define

& =f(ti1)-5(4,,) and Sis1(X) = 5,(x) + e,Hi(x).
Clearly s,.,, interpolates to f at 1, - - -, ti+1. Also since si(x) = si(x), for x2 1,,
0s € Sf(‘,-ﬂ) - sl(‘l+l)
Yt

(3.4) =] J(x)-si(x) dx

%

(3.3)

=Gt~ tt)aj_lw(fm: 8).
Take s(x)=s,(x). Then because H { is supported on (4, 04,

r-so=% e

fem}

"f’_ s,"['h'ml] = ’

= "f,— s")"[l;.hox].‘- ei"”‘"[’i-'tﬂ]
=G w(fY) ),

[20t4,])
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by (3.2), (3.3), and (3.4). Since s interpolates f at all the t,’s;“we find
"f_s"['h'nl]s C”"&]_'w(f(j)’.s)' U

Note that it is not possible, in general, to find a monotone cubic spline interpolant
with simple knots only at the nodes of interpolation t. Existence of “Heaviside™ splines
fails! Indeed something stronger is true. Namely that each interval {1, 1,,,] must contain
at least four knots counting multiplicities in order that monotone cubic spline inter-
polants exist. If not, then consider that step-function data s’ is a nontrivial quadratic
spline supported within [, ¢,,,]. This is a contradiction as quadratic B-splines are
quadratic splines of minimal support and their support spans four knots counting
multiplicities.

However, if we add some extra knots, then Theorem 3.2 applies and monotone
spline interpolants exist. In particular adding 2n extra knots, two in each interval
(t;, t:+,), we obtain Corollary 3.3.

COROLLARY 3.3. Let t: t,<t,<---<t, and a monotone JSunction f € C'[t,, 1,], for
some 1=j=3, be given. Let r: ry<r,<---<r,, be such that

=13 <P < P2 <FPyip3 =4, i=0,--+,n-1.

Then there exists a C? piecewise cubic with knots r such that
() s(t)=f(1), 0=isn;

(ii) s is monotone on [1,, 1,];

(iii) 1S" =5, 0a= Cro8 " w(F, 8), 1=0,1,
where 8§ = max, (t;,,—1,).

Similarly adding n+1 extra knots, one at each node of interpolation, thereby
decreasing the guaranteed continuity to C !, we obtain Corollary 3.4.

COROLLARY 3.4. Let t: t,<1,<---<t, and a monotone function fe C'[1,, 1,), for
some 1=j =3, be given. Define r by

bh=rh=n<h=n=n<:--<t,=r,=r,.,.

Then there exists a C* piecewise cubic with knots r such that
(i) s(t)=f(1), 05 i=n;

(ii) s is increasing on [1,, t.);

(iii) "f“)—s(')"[lo.l.]s Cllaj—’w(f(j)’ 6)3 ""—'0: 1)
where 8 = max; (t,,,-1¢).

4. Meta-algorithms. Several constrained spline-fitting algorithms proposed in
recent years (see, e.g., McAllister and Rouljer [13], Fritsch and Carlson [11], Yan
[14]) have the following fit and modify structure.

META-ALGORITHM 1. Given data {t SN} oand k2 3, choose a knot sequence
r,r>t. Then

Step 1. Fit an initial interpolant s, € S,.« possibly not satisfying the constraints.

Step 2. Modify s, to obtain a spline s, € S..« satisfying the constraints, whereu >r.

We will classify all such algorithms as being of the fir and modify type. All
monotonicity preserving interpolation algorithms with the related structure below are
Jj-optimal for 15j=k-1. That is, they satisfy the optimal order error estimates

(4.1) 1P =5 Ny = Ca8 (£, 8),  1=0,1,

whenever fe C’ for some 1 = J=k—1. In this meta-algorithm certain natural approxi-
mation properties are required in Step 1 and Step 2.
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META-ALGORITHM 2. Given monotone data {(¢,, f(1,))}/-o and k=3 let 5§ denote
the meshsize of t. Choose a knot sequence r, r > t, satisfying the hypotheses of Lemma
31 ’

Step 1. Fit an initial interpolant s,€ S,, with, for some subset of the j’s in

1sjsk—1, the optimal order approximation property |f'—si|=
0(8 (S, 8)).
Step 2. Modify s, to obtain a monotone interpolant s,€ €N S, x with
Isi-silsA inf lsi-sl,

where u, u >r, satisfies the hypotheses of Lemma 3.1, A is a constant not
depending on t, f or s, and € is the space of monotone functions
interpolating the given data values f(1,) at the nodes ¢,.

To see the error estimates let s, be the monotone spline interpolant whose existence
is guaranteed in Theorem 3.2. Then

Isi—ssll s lsi—f N+l - s3l
SCpé e (fY, 8).
Hence
N =ssll =N = sill+llsi szl
=l -sill+Allsi—ssll
=Cé'w(fVY, 8).

The estimate of || f—s,]| follows from this since s, interpolates f at all the ¢’s.

5. Approximate projections onto convex sets. Suppose we have a convex set € in
R" and a point a outside it. Then provided the boundary, or at least the relevant part
of it, is smooth, the shortest path to € is a line segment that intersects its boundary
at right angles. It turns out that the distance from a to € along suboptimal line segments
can be bounded in terms of the angle of intersection and the optimal distance.

Recall that the angle 6, 0= 0= 7, between two vectors x and y is given by
cos 8 =x"y/(Ix|l2ly]l2)- If ¥ is on the surface of a body and a is outside it, define the
angle 8 between @ and the surface to be the angle between @ and its projection on
the tangent plane to the surface at y. Clearly, 0= 6= /2.

LEMMA 5.1. Let € be any closed bounded convex set in R" with C' boundary 3°6.
Let a be a point outside € and B be the nearest point in € to a. Let y be any point on
3€ such that Y& meets € only at y and at an angle 6, 0< 6= 7/2. Then

1+cos 6
fla—Bl.

sin 0
In order to prove this lemma we need the following technical result.
LEMMA 5.2. Let 0< 6= n/2 and D be the 2 x2 matrix such that

a1 coso]
D [0 siné ]’

1+cos 6
"Dllzs'_si;;_ and |D7'|;=v1+cosé.

Proof. Note |B]l;=+vp(B"B) and calculate.

la —yl.=

Then
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Proof of Lemma 5.1. Consider the change of coordinates x’= Ax, where A is a
nonsingular matrix. This transformation takes points to.points, lines to lines, and
convex sets to convex sets. In particular 3%’ = A3%. Suppose A is chosen so that the
angle between Y'a' and €' is 7/2, as in Fig. 1. Then ' is the closest point in €’ to
a’. Hence

[4] a'

g

Fic. 1
e =i/ fA7 2= o'~ ¥’ S la’ - Bl S |All:)la - B2,

implying
lle = vll.= [ALNA™ 2la - B]..

It remains to show that there exists a matrix A with the required angle spreading
property and [|A}l.JA™"|},= (1+cos 8)/sin 6.

We may assume without loss of generality that ¥ =0. Also the result is trivial
when 6= 7/2. Hence we may assume 0<8<w/2. Then a—y=a can be resolved
into two nonzero components, ¢, lying in the tangent plane T, and » perpendicular
to the tangent plane. Let §, and 8, be two unit vectors in the directions of ¢ and 7,
respectively and choose §,,- -, 8, so as to complete an orthonormal basis for R".
Change to coordinates with respect to this basis given by « =Bx where B=
[8,:8,:+--:8 ]'r is an orthogonal matrix. In the new coordinates ¢ and %, the
components of & — ¥ = & in and perpendicular to the tangent plane, T,, may be written

y=[acos8,0,---,0]" and #=[0,asin6,0, --,0]",

where a is positive.
Now choose D as the 2x2 matrix, which as a premultiplier opens the angle
between [1,0]” and [cos 6, sin )7 to /2. More precisely, choose

a_[1 cos 0]
D [0 sinf ]’
Then, by Lemma 5.2, [|D||.)|D™*|l,= (1+cos 8)/sin 6. Let

€= [g lgz]

and A =CB. Then in the x'= Ax = C< coordinate system the angle between y'a’ and
T, is =/2 as required. Also |A[,=||D|; and JA'},=|D7'|l, so [|A[.}A7"},=
{1+ cos 8)/sin 6 and the result follows. [u]

6. Previous work on monotone plecewise cubic interpolation slgorithms. Fritsch and
Carlson [11] obtained the following set of necessary and sufficient conditions for a
cubic to be monotone on an interval. Define the “‘monotonicity region” 4 to be the
closure of that part of the first quadrant bounded by the coordinate axes and the
“upper half” of the ellipse

6.1) a’+p*+aB-6a—-68+9=0,

=l I
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FIG. 2. The monotonicity region 4.

as shown in Fig. 2. We note that the boundary 3.4 is horizontal at (1,4) and (3, 0)
and vertical at (0, 3) and (4,1). Let s be a C' piecewise cubic, with knots only at the
t’s, interpolating the given data {(1,y,)}/o- Define d,=s'(t) and S;=
(Pi+1— )/ (1= ). Then [11] s is monotone on [1,, £,,,] if and only if

(di, div\) e M= S, M

Motivated by these necessary and sufficient conditions Fritsch and Carlson [11],
and later Hyman [12], developed fit and modify cubic spline interpolation algorithms
with Step 2 implemented as follows. They choose a subset < 4 and if (a, 8)=
(d,/Si, dis\/ S,) does not belong to & then modify (d,, d,.,) until it does. They recom-
mend choosing & as that part of 4 within the disc a’+B8?S9 and the square
[0, 3]1x[0, 3], respectively. Such a procedure has the advantage of being very simple
to implement. However, it limits the order of approximation. Indeed, Eisenstat, Jackson,
and Lewis [9], [10] show that if (4,1)# &% then the method is at best third-order
accurate. It follows that the Fritsch-Carlson, and Hyman methods are at best third-order
accurate, and thus not three-optimal. Using the methods of [9], [10] we obtain Lemma
6.1.

LeEMMA 6.1. Consider a monotone interpolation algorithm of the type described above.
Then if the elliptical part of the boundary of M is not contained in & the algorithm is at
best third-order accurate. That is, there exists at least one monotone functionf € C°[-1, 1]
and a sequence of meshes {t,}, t; having mesh length 8, for which the error || f — s, || % 0(8*)
as 8 -» 0. Consequently, the method is not three-optimal in the sense defined in § 2.

Proof. Consider f(¢)=1> on [-1, 1]. Fix a point y on the elliptical boundary of
A but not in & Then for each & sufficiently small and each 0= 6 51, there exists a
mesh t, with mesh length 8, such that for some i, t, =—65 and ¢,,,=(1—6)é. But as 6
varies between zero and 1

f'(t) f'(fia1) 36° 3(1-0)?
(a,p)a( S’ Sil)g((1—0)3+o”(1—a)’+e’)

sweeps out the upper half of the ellipse (6.1). Hence, for a suitable choice of @ this
point coincides with . Thus the first derivative approximations produced by the
algorithm satisfy ||(d;, di+)) — (f'(), ' (t;+1))2> C8* for some C >0 not depending
on 8. Markov's inequality then implies |s ~f|l¢,...,& Cis6°. O

Eisenstat, Jackson, and Lewis [9] [10] obtain several other results relating the
choice of & to the order of approximation. They also present a fir and modify type
algorithm that is shown to give fourth-order approximation to C* monotone functions
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under certain additional assumptions. The extra hypothesis in [9] takes the form of a
stronger smoothness assumption in the neighbourhood of multiple zeros of f. In [10]
this is replaced by the more pleasant condition that the local mesh ratio be bounded
away from zero and infinity. Their algorithm uses cubic splines with double knots at
the ¢’s. Yan [14] develops a C' monotone cubic spline interpolation algorithm that
gives fourth-order approximation to C* monotone functions f. In this fir and modify
type algorithm two extra knots, which may have multiplicity greater than 1, are
judiciously inserted in every subinterval within which the initial interpolant is not
monotone. This allows monotone interpolation on [4, t,+,] without changing the initial
values of s'(#) and s'(1,,,), thereby decomposing the problem of finding a monotone
interpolant into small and easily solved subproblems.

7. New monotonicity preserving cubic spline interpolation algorithms. In this section
we will present three algorithms that, given monotone data {(ti, ¥} o, fit a C!
monotone piecewise cubic interpolant. The algorithms are of the fir and modify type
described in § 4. They are constructed to be J-optimal for 1=j%3." Recall from § 2
that the error is then 0(8’w(f"), 5)) whenever the data comes from a C’ function f,
1=j=3. In particular this implies ©(6*) approximation to C* functions. Of the three
we recommend the third, which is labeled Algorithm 2, as a reasonable compromise
between approximation and smoothness considerations. The first algorithm was
announced in [3].

Before constructing the algorithms we need some preliminary material. The reader
will recall that there is a two-parameter family of C? cubic splines s with simple knots
only at the data points satisfying the interpolation conditions s(r;) = Y,08isn scan
be uniquely determined by specifying two more end conditions. In the absence of
derivative data some suitable choices are the “not-a-knot™ condition

(7.1) sP(n)=s(1) and  s9(1,_,) =s9(1,_))
of de Boor, and the conditions

(7.2) s'(t)=ci(t) and s'(t,)=ci(1,),

or

(7.3) s"(t)=ci(t) and s*(1,)=c(s,),

where ¢, and c, are cubic polynomials such that
a(t)=y, and ¢y (t,_,) =Yn-iy 0Si=3.

These end conditions are analyzed in [4] and the resulting splines are Jj-optimal for
1=j=3." Subsequent work [5] indicates that the condition (7.2) is significantly better
than the other two for general purpose use.

We now present the first algorithm. Because this is not presented in a sufficiently
concrete form so as to be immediately implementable, we will call it a meta-algorithm.
It involves a nonlinear programming approach that is not as yet competitive in terms
of computational cost with the algorithms to come later. However, it has a flexibility
the others do not, and could easily be modified to accommodate mixed approximation
and smoothing criteria in the objective.

! For j = 1 this requires the additional assumption that (1, — 1,)/(t,— 1,) and (r, ~tuy)/(8y_y—1,_3) be
bounded above as the mesh changes. However, some mesh dependence is required of all (unconstrained)
interpolation schemes with error 08w (S, 5)) that use only function value information. See [4] for details.
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META-ALGORITHM 3. Given monotone data {(t;, y:)}iwo:
Step 1a. Fita C? cubic spline s corresponding to one of the sets of end conditions

(7.1), (1.2), or (7.3). .
Step 1b. For i:=0 to n if s'(s;) has the wrong sign set

(7.4) s'(t;) = min {-5'(¢), S;-,, S;}.

Step 2. Further modify the new vector of s°(t,)’s the least amount possible in the
I norm to obtain monotonicity on [1,, 1,].
Step 3. Construct the piecewise cubic Hermite interpolant to the final data
{(t, yi, s" (8.
Meta-algorithm 3 fits a monotone C' cubic spline interpolant. It is easily seen to be
an instance of Meta-algorithm 2 and to be j-optimal for 15j53.2 Step 1b is imple-
mented as shown, rather than simply setting s'(t,) to zero, to try and avoid flat spots
in the fitted curve when this is possible. Given this, and noting that if s’(¢,) has the
wrong sign it is in error at least by |s'(1,)], (7.4) seems a reasonable way of correcting
the sign.
In Step 2 there are a lot of choices to be made. The nonlinear programming
problem underlying this is:

Find [d,, - - -, d,]” minimizing

max |d;—si(#)]

subject to
(di,d‘.'.l)es‘.“, i=0, l,"',n—l,
where s, is the spline interpolant at the end of Step 1.

This is, of course, a convex programming problem with a nondifferentiable objective
and, for most data sets, a nonunique solution. However, it has a lot of structure that
could be exploited by a special purpose code. Thus solving is not inherently excessively
expensive. Also if s'(%)’s are not changed unnecessarily the C? continuity will be
maintained where possible. This is since C? continuity is maintained at the knot ¢ if
s'(4-,), s'(1;), and s'(1,,,) are unchanged from their initial values. General purpose
nonlinear programming algorithms can be used if the problem above is restated in the
differentiable form:

Minimize A subject to

and
(dh d“.l)QSpa, OSiSIl-l.

Actually, in implementing such an approach we recommend first projecting the 5{(#)’s
onto some suitable superset of 4, say [0, 45;] %[0, 4S;], and then finding the nearest
feasible vector d to this new vector of derivatives. This maintains the desirable error
properties of the algorithm, while giving a better-conditioned optimization problem.
With this refinement we have had success both with a simple, but very slow pattern
search and with the Harwell routine VF03.

2 This is subject to the earlier restriction on the local mesh ratios at both ends of the interval when j=1.
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We now turn to the second algorithm. This is based on the idea of projecting
(s'(#)), 5'(1;4,)) onto a superset of the monotonicity region 4 for each interval (1, 1,,,)
and then adding an extra knot where necessary to allow monotonicity without further
modifying the derivatives at the data points.> The superset chosen is &, = S,&, where
€ is the union of monotonicity region 4 with the squares [0, 1]x[3, 4] and [3,4]x
[0, 1], as shown in Fig. 3. The geometry of € is such that the approximate projection
onto & can be chosen to never increase a or 8, and then projections corresponding
to neighbouring intervals will not move (s'(;), s'(1,.,)) outside &.. The algorithm is
derived from the following technical lemma giving one method for adding an extra
breakpoint.

By

- N W

1 2 3 4 a

F1G. 3. The extended monotonicity region €.

LEmMA 7.1. Let 15 y=2 and data g(0), g(1), g'(0), g'(1) be given with g(1)—
8(0)=1and g'(0), g'(1)Z 0. Let (a, B) = (g'(0), g'(1)), and suppose that (a, 8) € € — M.
Then the cubic polynomial c interpolating the given Hermite data at 0 and 1 is not
monotone increasing and ¢’ has a negative minimum, —¢, at a unigue point x* in either
(0,1) or (3,1) accordingly as (a, B) belongs to [0, 1]x[3,4] or [3,4]x[0, 1. In the first
case define

ex(x—2x*)

- ]
(x*)? 0=x=2x",
r(x)= 2x* 2 2
- * — * <
e(l_zx‘)(l_zxt) (x 2x )(l x)’ 2x <x-l,

and
é(x)=c(x)—y J.x r(u) du.
0

Then ¢ is monotone increasing on [0, 1], interpolates the same function and first derivative
data at zero and 1, and satisfies ||&'—¢'|| to11= Ciee. When (a, B)€[3,4]x[0, 1], r and
& may be constructed analogously.

Proof. Let ¢'(x) = q(x). The functionals J(0), (1), and L', JS(x) dx form a basis for
w3 dual to the basis {3(x—{)(x-1), 3x(x-1%), 6x(1-x)} for r,. Hence

(7.5) q(x)=3(a+B8-2)x’+(6-4a-28)x+a.

Since g is nonnegative at zero and 1, and negative somewhere in between, it has a

3 In the context of monotone cubic spline interpolation, the device of adding extra knots is due to Yan
[14]. It has also been used for constrained quadratic spline interpolation by McAllister and Roulier [13),
and for convex cubic spline interpolation by de Boor [8].
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minimum value —¢ on [0, 1]. Elementary calculus shows that this minimum value
occurs at

. 2a+8-13
(7.6) (a+B-2)
and that
a2
7.7) =(2¢z-§-ﬁ 3)

(a+B-2) ©

Using the expression for x* above, we see that if (e, B)€[0,1]x[3, 4] then
x*€[0,1]. Substituting in the expression for g, we see q(}) =4(4-B) 2 0. Rewriting ¢
in the alternative form

g(x)=a(x—x*)*~¢

where a, £> 0 if (a, B)) € ([0, 1]x[3, 4])\ K, g(}) =0 implies & = a(}— x*)>.
Now consider correcting g to be nonnegative on [0, 1] with a piecewise quadratic
correction —yr as in Fig. 4 and the statement of the lemma. The integral L', r, is zero

y |

S

FIiG. 4. ¢=¢' and the corrector r.

since if p is a quadratic with zeros at a and b, and value « at (a+b)/2 then
I: p=2(b-a)x/3. Clearly r is convex on (0, 2x*), concave on (2x*, 1), and r(x) = g(x)
for x € (0, 2x*). Hence g — yr is nonnegative on (0, 2x*). It remains to show that g — yr
is nonnegative on (2x*,1).

Since g—yr is convex on (2x*,1), and (g—yr)(2x*)2 0, it suffices to show
(g—yr)(2x*+)=0. Now

(g—yrY(2x*+) 2 (g —2r)'(2x*+)
. 8¢
=2 (a a —2x‘)’)

8/1-3x* ’]
* ——
& 2ax [l 9(1_21‘*)

=0

since 0 (1-3x*)/(1-2x*)=1 for x*€[0, i]. This completes the proof of the
Jemma. 8]

Lemma 7.1 can be applied to the general situation. We obtain from it the following
algorithm fragment for adding an extra breakpoint and “artificial” data s(u), s'(v) so
as to correct a C' piecewise cubic Hermite interpolant for monotonicity on what was,
before the extra breakpoint was added, a single subinterval.
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ADDING A BREAKPOINT. Let s be a C' piecewise cubic with breakpoints t. Suppose
5(fie1)>s(8;) and s'(1;), s'(1,4,) 2 0. Set h = 1,4, — 1, S, = (5(t)) = 5(1))/ h, @ = 5'(1,)/ S,,
and B = s'(t.,,)/S,. Further suppose 1=y=2 and (a, 8)€ €/4 Then

Step 1. Let
_hQa+g-3) _ V;((2a+B—3)2_ )
———_3(a+ﬁ—2) nd e=§ _3(a+ﬁ—2) al.

Step 2. If a <1 then insert an additional breakpoint at u:=t,+28 with s(u):=

s(u)+4+yed/3 and s'(u) unchanged.
Else (i.e., when B <1) let §:= h—§& and insert an additional breakpoint

at ui=f,,—2»§ with s(u):=s(u)—4y£8/3 and s'(u) unchanged.
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Step 3. Modify the original piecewise cubic replacing the single cubic span on
(%, ;) by the two cubic spans forming the Hermite cubic interpolant to
the modified s and unmodified s’ data atf, u and t,,.

The derivation of this algorithm fragment from Lemma 7.1 is by means of a change
of variable of the form £ = a(x - %), ¥ = by. Step 1 comes directly from (7.6) and (7.7),
and Step 2 from writing things in terms of the integral of the derivative corrector r.

Finally before presenting the algorithm we need to define a method for approximate
projection onto ¥,. This is stated in terms of the scaled variables a and g8 occurring
in the definition of the monotonicity region 4 (see $6).

Fritsch Carlson algorithm
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APPROXIMATE PROJECTION ONTO &. Given (a, B) outside 4
Ifasllet p=4

elseif sl let =4

else project (a, B) to ¥ along the ray joining (a, 8) to (1, 1).

Since rays joining (1, 1) to 8% are never tangential to 3%, we can see from Lemma

5.1 that this moves points outside &; an amount less than some constant times the
minimum amount to bring them to 3%;. We are now ready to present Algorithm 1.

ALGORITHM 1. Given monotone data {(#, y;)}/-oc and 7, 1S y=2:

Step 1a. Fita C? cubic spline s corresponding to one of the sets of end conditions
(7.1), (1.2), or (7.3).

Step 1b. For i:=0 to n, if 5'(7,) has the wrong sign, set s'(#,) = —s'(t,).
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Step 2a. For i:=0to n—1 by twos, if (s'(1,), s'(#;+,)) £ &,, approximately project
(s'(t;), 5'(t;41)) onto &,

Step 2b. For i:=1 to n—1 by twos, if (s'(t;), s'(t,+.)) £ &, approximately project
(s’(1;), s'(1,+,)) onto €,.

Step 2¢c. Fori=0to n—1,if (s'(t,), s'(#;+.)) £ 4;, then add a breakpoint and extra
data according to the scheme of the algorithm fragment so that the new
spline is monotone on (1, 4.,).

It is clear from the discussion above that Steps 2a and 2b ensure that the Hermite
data for each subinterval (t;, #,.,) corresponds to a point in the extended monotonicity
region. Extra breakpoints are then added as required to ensure monotonicity. Hence
the output of Algorithm 1 is monotone. It remains to show the error estimates.
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Denote by s,4, S1s, etc. the piecewise cubic at the end of each of the respective
steps. The j-optimality of s,, for 1553 follows from [4). The separation of the
correction steps within 2a and 2b prevents possible error propagation—each correction
being entirely local and corresponding to a single interval. Hence from the equivalence
of norms in two-space and the properties of approximate projection discussed above,
we see that ‘

: [ et 3 ' !
“;"Af;m"-’zb s'll=llsze Snb“SCn“}‘!}‘f;M“Sw s'l,

where € is the set of monotone functions interpolating the given data and r, = t;/3;,
0s=i=2n+1. Also an application of Lemma 7.1 gives

' oo s e
|20 ”‘“SC“.&%&M""" s').

Algorithm 2

90

80

% Nodes of interpolation

70

No extra breakpoints

50 60

40

20

|
i

=) + + -+

0 2 4 6 8 10 12 14

Akima data
Fi1G.9




496 R. K. BEATSON AND H. WOLKOWICZ

Combining these results, we see

isio—s2ll=Cis “i'l‘!‘f;“ |s1s— S'"

Hence the algorithm is an instance of Meta-algorithm 2 and is j-optimal for 1S Jj=3
by the argument given in § 4.

We now turn to Algorithm 2. This is based on the idea of relaxation—points
outside of ; will be moved further than necessary into the interior of &,. The primary
motivation for trying this approach is that points on the boundary of ., correspond
to s” having a zero in [t;, #,4,]. As could be anticipated this algorithm adds fewer extra
knots than Algorithm 1 in many cases.

Cubic spline

1.0 1.1

.9

% Nodes of interpolation

8 10 12 14 16 18 20
RPN 14 data
FiG. 10




POST-PROCESSING CUBIC SPLINES 497

We will call a nonnegative function g € C[0, 1] a relaxation function if
(a) g(x)=x, forall xe[0,1],
(b) (1—-g(x))/(1~x) is bounded on [0, 1).

For example,

x/2, x<i,

“")'{2::-1. xzd

2x/3, x<%,
“""{(sx—z)/s, xzd,

and g(x)=(x+x?)/2 are relaxation functions. With this definition in hand we can

Fritsch Carlson algorithm
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define another method of projecting onto &; in which the point outside of 4; is moved
into the interior of &,.

RELAXED PROJECTION ONTO &. Given a relaxation function g and a point (a, B8)
in the first quadrant and outside 4:
Step 1. Calculate A >0 such that (1,1)+A(a—1, 8—1) lies on 3.4.
Step2. Ifasllet B=1+g(A)B—1)
elseif =tleta=1+g(A)a=-1)
else let (o, B)=(1,1)+g(A)(a—1,8~1).

Since rays joining (1, 1) to 3.4 are never tangential, Lemma 5.1 guarantees radial
projection onto 3.4, which moves points by a distance bounded by a multiple of the

Yan's algorithm
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minimal distance. Relaxed projection in turn moves points by a distance bounded by
a multiple of the distance of radial projection. In terms of the parameter A above
points (a, B) with a, 8> 1 are moved (1-g(A))/(1-A) times as far as they would be
by radial projection. Thus the distance moved by relaxed projection is bounded by a
multiple of the minimal distance. Using this result at the appropriate point, we find
that the error estimates for Algorithm 2 below now follow by an argument analogous
to that used for Algorithm 1.

ALGORITHM 2. Given monotone data {(, y,)}/=0, ¥, 1S y=2, and a relaxation
function g:
Step 1a. Fita C? cubic spline s corresponding to one of the sets of end conditions
(7.1), (7.2), or (7.3).
Step 1b. For i:=0 to n, if s'(1;) has the wrong sign, set s'(¢,) = —s'(s,).

Algorithm 1
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Step 2a. For i=0 to n—1 by twos, if (s'(,), 5'(t,+,))# M,, perform a relaxed
projection of (s'(t,), s'(4;+,)) onto €,.

Step 2b. For i:=1 to n—1 by twos, if (s'(t,), 5'(f;+,)) £ M, perform a relaxed
projection of (s'(t,), 5'(t,+,)) onto &,.

Step 2¢. Fori=0to n-1,if (s'(1,), s'(#;+,)) £ 4,, then add a knot and extra data
according to the scheme of the algorithm fragment so that the new spline
is monotone on (1, t.,).

8. Numerical results. In this section we compare various piecewise cubic interpola-
tion algorithms on some example data sets. The algorithms used are the following:

Cubic spline. Cubic spline interpolation with end conditions (7.2).

Fritsch-Carlson. The Fritsch-Carlson algorithm with derivatives initialized using

Algorithm 2

.9 1.0 1.1
X
%

.8

# Nodes of interpolation

No extra breakpoints

0.0

8 10 12 14 16 18 20

RPN 14 data
FiG. 14




i bl LA MBS i tm e e - et e e o e e L e e e e e e

POST-PROCESSING CUBIC SPLINES 501

three-point formulas and & a quarter of the disk center, the origin, and radius three,
as recommended in [11]. ' ‘

Yan. Yan’s algorithm as given in [14].

Algorithm 1. Algorithm 1 of this paper with y = 1 and derivatives initialized using
a cubic spline with end conditions (7.2).

Algorithm 2. Algorithm 2 of this paper with ¥ =1, derivatives initialized using a
cubic spline with end conditions (7.2), and

x/2, x<%,

g(x)g{Zx-l, x4

The first set of results show the error behaviour of the algorithms on data coming
from the sigmoidal function

0, - xs0.25,
fx)= {exp (-1/(4x=1)?), x>025.

The interpolation mesh consists of n+1 uniformly spaced points on [0, 1] including
zero and 1. The error was approximated by evaluating f—s on a 64-times finer mesh
and calculating the maximum absolute error over this mesh. The numerical results are
consistent with the Yan and Algorithm 2 methods being €(8*) to smooth functions,
while the Fritsch-Carlson method is only €(5°). (See Table 1.)

TABLE 1

n Fritsch-Carlson Yan Algorithm 2
4 1.21940E - 1 1.14144E -1 1.14295E -1

8 1.14952E -2 1.70767E -2 1.76598E -2
16 3.73562E -3 5.19677E -3 2.40882E -3
32 7.86227E -4 5.36681E —4 2.08481E -4
64 9.88770E - S 3.79518E -5 1.59S01E -5
128 1.07709E -5 2.28413E -6 6.50118E -7
256 1.30483E -6 1.33182E-7 3.75526E -8

Next we consider the action of the algorithms on some example data sets from
the literature. The first is the data set

xlo]2]3|s5]6]l8] 9 |11]12]14]15
yitof10f10f10]10}10{105]15]5060]85
of Akima [1]. The second is the RPN 14 data of Fritsch and Carlson [11]:

x|799] 8.09 8.19 87 | 92
yl| 0 |2.76429E —5 | 4.37498E —2 | 0.169183 | 0.469428
x| 10 | 12 | 15 | 2

y 10.943740 | 0.998636 | 0.999919 | 0.999994

The corresponding interpolants are shown in Figs. 5-9 and Figs. 10-14 respectively.

The unconstrained cubic spline is clearly nonmonotone on these data sets and is
therefore unacceptable in applications where monotonicity is a requirement. The
“rounder” look of the Fritsch-Carlson and Algorithm 2 fits, compared with the two
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other constrained methods, is almost certainly due to the avoidance of points on the
boundary of 4. ]

9. Discussion. Of the algorithms developed in this paper Algorithm 2 seems to
offer the best combination of computational cost, optimal order error properties, and
smoothness of fitted monotone curve. If desired, it can be made into a local method
by replacing the initial spline derivatives with four-point derivative approximations.

Pascal code for Algorithms 1 and 2 is available from the first author.

Several problems remain for the future. These include handling data of changing
monotonicity, combining monotonicity and convexity constraints, and fitting subject
to an explicit quantitative mix of smoothness and approximation properties. Work on
these questions is in progress.
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