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Zero Duality Gabs
in Infinite-Dimensional Programming'?

V. JEYAKUMAR? AND H. WoLkowicz*

Communicated by A. V. Fiacco

Abstract. In this paper we study the following infinite-dimensional
programming problem:
(P) u=inffy(x), subjectto xeC, fi(x)=0,i€el,

where I is an index set with possibly infinite cardinality and C is an
infinite-dimensional set. Zero duality gap results are presented under
suitable regularity hypotheses for convex-like (nonconvex) and convex
infinitely constrained program (P). Various properties of the value
function of the convex-like program and its connections to the regularity
hypotheses are studied. Relationships between the zero duality "gap
property, semicontinuity, and e-subdifferentiability of the value function
are examined. In particular, a characterization for a zero duality gap
is given, using the e-subdifferential of the value function without
convexity.

Key Words. Zero duality gaps, convex-like infinite programs, value
function, semi-infinite programming, subdifferentiability.

1. Introduction

In this paper, we study the following optimization problem:
(P) p:=inf fo(x),
subject to x€ C, fi(x)=0, iel,
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where X is a separated, locally convex, topological vector space, C is a
nonempty subset of X, / is an index set with cardinality (card I) possibly
infinite, and f;: C->R, ie I =1 U {0}. We let Y =[], R denote the product
space in the product topology and Y™ the continuous dual space of Y with
the convex core topology; Y™* is the generalized finite sequence space
consisting of all functionals f:I-R with finite support; see Charnes,
Cooper, and Kortanek (Ref. 1).
For Ae Y*,

@(A)=inf L(x,A)

xeC

denotes the dual functional of (P), where

L(x, )= fo(x)+ -‘Z:: Afi(x) (1)

is the Lagrangian function of (P). Then, the Lagrangian dual of (P) is
(D) vi=sup d(d),

AcA
where the dual cone
A={A=(A)eY* A,=0,iel and A,=0
for all but a finite number of i}.

The value u — » is called the duality gap for (P); the term defect has also
been used (Ref. 2). Weak duality implies that the gap is nonnegative. If
there exists a Lagrange multiplier vector A € A such that u = v =¢(A), then
the duality gap is zero and strong duality holds. However, it is well known
that a Lagrange multiplier vector may not exist; see, e.g.,, Example 1 of
Duffin and Karlovitz (Ref. 3), where u =0> v =-—00 is a nonzero duality
gap. On the other hand, a Lagrange multiplier vector may not exist while
the duality gap is zero, e.g.,

0= =inf{-x: x*< 0},

0=v=supinf—x+Ax’= lim inf— x+ Ax>. )

AZO x As o
Thus, the regularity conditions that guarantee a zero duality gap can be
significantly weaker than the regularity conditions needed for the existence
of a Lagrange multiplier vector. _
It is well known that the existence of a Lagrange multiplier is equivalent

to stability of the program.' Let V(u) be the value function of (P), i.e., the
objective value subject to perturbations of the right-hand side. Then, for
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convex programs, the existence of a Lagrange multiplier is equivalent to
the subdifferential of the value function being nonempty (e.g., see Refs. 4
and 5). This guarantees that the value function V(u) is bounded below by
an affine function h(u), where V(0) = u = h(0), and that V cannot decrease
too rapidly at u=0. However, no Lagrange multiplier may exist, and we
can still have a well-posed program,; i.e., we can still have a zero duality
gap, primal attainment, and lower semicontinuity of the optimum value
with respect to perturbations of the right-hand side. Moreover, the value
function can still be bounded below by affine functions h,(u), where now
h,(0) = u — ¢, €>0 arbitrary. See Sections 3 and 4.

Further, many algorithms solve (P) by working with the dual problem
(D), and for many problems it is known that, as one solves a perturbed
problem of (P), say (P.), where the perturbations are a result of, e.g.,
numerical approximations in the data, then the corresponding optimal
values (€)= v as the perturbations € » 0*. This is also true if one discretizes
or solves finite approximations of (P) formed by using only a finite number
of the constraints (e.g., see Refs. 3, 6, and 7). Thus, from theoretical and
computational points of view, a zero duality gap u = » is important. In fact,
a central issue in infinite-dimensional programming has been the iden-
tification of sufficient conditions for zero duality gap.

The model program (P) includes a large class of problems. Duality
gap results have been studied for special classes of (P). For example, if (P)
is a semi-infinite linear program (i.e., the functions f;, i € I, are linear and
C =R"), then conditions that guarantee a zero duality gap have been given
in Ref. 2. Conditions for semi-infinite convex programs, where f;, i€ I, and
C CR" are convex, have been obtained, in terms of recession cone conditions
in Ref. 8 and by using certain constraint regularity conditions in Ref. 9.
Asymptotic duality results for semi-infinite programming problems are given
in Refs. 10 and 11. Duality results which use modified dual programs are
also known in the semi-infinite case (Refs. 12, 13, 14). A unified approach
using conjugate duality is given in Ref. 5. ’

Most conditions need the convexity of the functions and the finite-
dimensional structure of the set C. The purpose of this paper is to examine
zero duality gap results for (P) without these restrictions. In Sections 2, 3,
4 of this paper, the convexity hypotheses are substantially weakened and
the set C is not restricted to be finite dimensional. Throughout this paper,
the set IT introduced in Section 2 plays an important role in conditions for
a zero duality gap and conditions for attainment of the optimum.

We now sketch an outline of the paper. In Section 2, we introduce our
notions of regularity and strong regularity in terms of a set I in a product
space, and we present a zero duality gap result for regular convex-like
programs (P); see (3). These convex-like programs provide a class of
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programs which are not convex, but possess many of the nice properties
that convex programs have. In fact, we get some of the results which can
be derived from conjugate duality theory as in Ref. 5. Sufficient conditions
for the regularity condition are given. In Section 3, we examine various
properties of the value function of (P) and relate the regularity condition
in terms of the lower semicontinuity of the value function. Section 4
characterizes a zero duality gap for (P) using an e-subdifferential of the
value function, but without convexity assumptions. Section 5 presents zero
duality gap results for convex and generalized linear programs as consequen-
ces of results in Section 2.

2. Convex-Like Programs

The program (P) in Section 1 is called convex-like if, for all x,, x,€ C,
there exist x; € C such that

filxs) s kfi(x)+kfi(x)), el (3)

Here and elsewhere in the paper, k=1/2. We note that the condition (3)
is a weaker form of the concept of convex-like functions introduced by Fan
in Ref. 15, which we call F-convex-like and define as follows: for all
x,, x2€ C, and a € (0, 1), there exist x; € C such that

fix)safi(x)+(1-a)fi(x), el )

Difierent versions of convex-like cone constrained minimization problems
were examined in Refs. 16, 17, 18, where Slater-type constraint qualifications
are used. )

The convex-like programs (P) share an important property, i.e., that
the closure of the set IT defined in Proposition 2.1 below is convex, and
moreover this closure equals the closure of the epigraph of the value function
of (P). These problems provide a class of nonconvex problems which possess
many of the nice properties of convex problems. Note that, by convex
problems, we mean those problems for which C is convex and f; is convex,
i€ 1. We could have used the property that the closure of Il is convex as
in our definition of convex-like programs, but we keep the above definition
for concreteness.

_Problem (P) is convex-like if C is a midpoint convex set and each f;,
i€ I, is midpoint convex (Ref. 19). If (X, =) is a partially ordered space
with the partial order =, C is a totally ordered subset of X; and if, for
each i€ I, f; is isotonic [that is, x = y=>£(x) = fi(y)], then (P) is convex-like.
In fact, if x, = x,, then we can choose x;:= x, in (3).




JOTA: VOL. 67, NO. 1, OCTOBER 1990 91

Let CCX and h:C->R. Let (1 be a midpoint convex set containing
h(C); and let g; :0-:R, for i e I, be a midpoint convex isotonic function.
Define, for each i€ I, the composite function f;: C+R as

fix)=(gich)x)=gi(h(x)), xeC.

Then, (P) is a convex-like program.
The following is a concrete example of a nonconvex convex-like pro-
gram. Let

C={(x,, x2)€eR: x; 20, x;20, x, + x;> 1}
v{(1,0), (0, 1), (0,0)},
and let T = N, the set of all positive integers. Define f;: C >R by
Silxi, x)=x/i+[(i-1)/ilx2,  (x1,X)eC. (%)

Note that the set C is not convex [consider the points (1,0) and (0, 1)].
For related definitions and examples, see Refs. 16 and 17.

The next proposition provides an interesting characterization for an
infinite convex-like program in terms of convexity of a set. Define F: X - R’
by

F(x)=(fi(x))ic1- . - ()
Proposition 2.1. Program (P) is convex-like [respectively, F-convex-
like} if and only if the set
M =(F,fo)0(C)+RixR,
={(u,r)eR'xR: Axe C, fo(x)=r, and fi(x) sy, ie I}
is midpoint convex [resp., convex].
Proof. Necessity follows immediately from the definitions of convex-
like programs. To prove sufficiency, let x;, x,€ C. Then,
((fi(x1))ic 1 Jo(x1)), ((SfiX2))ie s, Jo(x2)) € IL.
Since II is midpoint convex,
((Kfi(x)) + kfi(x2))ie 1 » Kfo(x1) + kfo(x))) € T1.
Then, there exists x; € C such that
S s ki) +hf(x), el

and hence (P) is convex-like. The proof for F-convexlike is similar. 0O
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We call a program consistent if it has a feasible point, and we call it
regular if u is finite and there exist a neighborhood U of 0 in Y and a
constant y > u such that

Q=MnTx (-, y] (7

is closed in Y xR. The program (P) is said to be strongly regular if IT is
closed in Y. The set IT is the tool that we use to guarantee zero duality gap.
Clearly, the strong regularity condition implies the regularity condition of
(P). The following elementary property, used to study minimax theorems
in Borwein and Jeyakumar (Ref. 18), will be useful in the proof of our
main theorem in this section.

Lemma 2.1. Let ACX. If A is midpoint convex, then A is convex.

Proof. Since the closure of a midpoint convex set is midpoint convex,
let us assume that A is closed. Let x, ye A and let

z=Ax+(1-21)y, for some 0<A <1, (8)

We need to show that z € A. Without loss of generality, assume that A > k =
1/2. Set

z=kx+ky,

and then rename kx + ky as y. This gives z in terms of x, y and a new A in
(8). We can continue this process and rename the midpoint kx+ ky as y,
ifA>k=1/2,0ras x, if A <k=1/2. We get a possibly finite sequence {z*}
converging to z; so, z€ A. (]

We now present the main result of this section. This theorem provides
a sufficient reguliarity condition to guarantee a zero duality gap. We provide
a direct proof using a hyperplane separation argument. In Section 4, we
relate this result with the value function, the attainment in (P), the conjugate
duality, and the e-subdifferential.

Theorem 2.1. If (P) is a regular convex-like program, then there is
zero duality gap for (P) and (D).

Proof. Since (P) has a finite value u, we see that (0, » —68) 11, for
any fixed real constant 6 > 0. Otherwise, there exists a net {(y', r')} CIT such
that y'>0 and r'-» u — 6. Since 6> 0, we can choose a subnet {(y°, r*)}
such that S

(»*, r*)elnUx (-, y]=0;
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see (7). From the regularity hypothesis,
lim(y®, r*)=(0, u— 0)6 1.

Then, there exists x,€ C such that
fi(x0)=0,iel, and fo(xo)=pn—6.
So, '
p S fo(x)=p—6,

a contradiction. Therefore, by Lemma 2.1, theset I =f+{(0,0-u)}isa
nonempty closed convex set and moreover {0} "I’ =3, since Il is midpoint
convex and (0, 0 —u +fo(X)) €Ty, where % is any feasible point for (P).

Now, from the strong separation theorem (e.g., Ref. 19), there exists
a nonzero (A, Ao) €R’” xR such that, for each (y, 7)€ |

(AQ }’>+Aor>0-
Thus,
Ao fo(x) = (n—0))+ }_‘.’ Afi(x)>0, xeC

Fix x,¢€ C. Let zeR/. Then, for each §>0,

Ao(fo(x0) — (. — 8))+8(A, 2) + ‘Z’ Afi(x0) > 0.
Letting 8 » 0, we get A €A, the nonnegative dual cone. Similarly, for each
>0,

Ao(fo(xo) = (n—0)+€)+ ‘Z' Aifi(x0)> 0.

€
Letting € >0, we get Ao=0; i.e., we have shown that 0# (Ao, A)ER,. XA,
Suppose that Ao=0. Then,
A¥0 and Y ASi(x)>0, xeC.
iel

This contradicts the consistency assumption that there exists x€ C such

that f(x) =<0, i € L. So, without loss of generality, we can assume that Ao=1
and get that

fo(x)*’E’ Afix)>p-0, xeC.

Since 6> 0 is arbitrary, it follows that
sup inf fo(x)+ ‘Z’ Afi(x)z .

AeA xeC
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The proof is completed by noting that the reverse inequality always
holds. O

It is clear that the program (P) is regular if C is compact and, for each
i€ i, fi(+) is lower semicontinuous. However, our interest here is to find
conditions for regularity with noncompact C. The following propositions
give us such results.

Proposition 2.2. For the program (P), assume that, for each i€ f, Ji(+)
is lower semicontinuous. If there exists a finite index set I, C I, such that
the set

{xeC:fo(x)sy and fi(x)=s ¢ i€ Iy}
is compact, for some €>0 and y> pu, then (P) is regular.

Proof. Define a neighborhood of 0 in Y by
Uy=(—¢,€)x - - x(—¢, €)x [] R.

iel\lg
Then, we shall show that the set
Qo=Tn Upx(—, y]

is closed in Y xR. Let {(y*, r*)} be a net in 2, which converges to (y, r) €
Y xR. Then, there exists a net {x“}C C such that

So(x®)=r®, fix")=yi, i€l
yi=e jel,, r"sy.

Hence,
{x*}C{xeC: fo(x)=y,fi(x)s ¢ i I},

which is compact. Then, choose a subnet {x?} - X e C. Since the functions
fi, i€ I are lower semicontinuous,

fo(X)sr and f(X)sy, iel

Thus, (y, r) €y, since y;<¢, jel,, and r=y. 0o

Remark z.l. We note from Proposition 2.2, that (P) is regular if C is
closed, f;, i € I, are lower semicontinuous, and the set {x € C: fi(x) s ¢, i € I}
is compact, for some € > 0, and some finite subset I, of I This holds, since

{xeC:fl(x)=v,filx)=¢ i€k}

is a closed subset of {xe C: fi(x)s ¢, i€ L)}.

We call a set C C X weakly closed if it is closed in the weak topology
of X. Similarly, we say that a real function f is weakly lower semicontinuous
if it is lower semicontinuous in the weak topology of X.
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Proposition 2.3. Assume that X is a reflexive Banach space and Cis
a weakly closed subset of X. If, for ea.ch iel, f,(-)is weakly lower semicon-
tinuous on C and if there exists j€ I such that -
liminf fj(x)=o00,

x€C, fx}~0

i.e., f; is coercive, then (P) is strongly regular.

» Proof. Let {(u',r'): te T} be a net in IT which converges to (y,r)€
R’ xR. Then, there exists a net {x'}C C such that
fo(x')sr' and fi(x')su, iel

Assume that {x'} is bounded. Since C is a weakly closed subset of the
reflexive Banach space X, we can choose a subnet {x”} which converges
weakly to some xo€ C. From the weak lower semicontinuity hypothesis on
fi, i€ I, we get

fO(xO) =7, .’:(XO) =u, i€ I,

and hence (u, r)ell.
Suppose that {x'} is unbounded. Then, we can choose a subnet {x*}

such that
xP#0 and |x*]-co.

Hence,
liminf fy(x®)<r and liminff(x?)=u, iel
This contradicts our assumption. ' O

Remark 2.2. The above proposition can be applied to several classes
of infinite interpolation problems, where objective functions are often norms.
Since norms are coercive functions, these problems have a zero duality gap.

We shall show in Section 5 how our regularity conditions can be related
to general recession cone conditions used to study semi-infinite program-
ming problems. In fact, in Section 5, a generalization of the Clark-Duffin
theorem of Karney (Theorem 2, Ref. 20) is given.

3. Value Function and Regularity

The value function (Ref. 21) V:R' »[—c0, ] for the program (P) is
defined by ' _

V(z)=inf{fo(x)|xe C, fi(x)=z,iel}
Note that the infimum over the empty set is +o and that V(0) = u.
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In this section, we present various properties of the value function and
its relation to our definition of regularity. In particular, we show the
relationships between semicontinuity of V, closure of 11, and attainment

in (P).

Proposition 3.1. If the program (P) is convex-like [resp., F-convex-
like], then the value function is midpoint convex {resp., convex].

Proof. Suppose that (P) is convex-like. Let z', € R’ and €>0. Then,
there exist x,, x, € C, with
fi(x)=z] and fi(x;)szi, foralliel,
f(x)<V(z')+e and fo(x) < V(z)+e
Then, since (P) is convex-like, there exists x; € C such that, with k=1/2,
Si(xs) s kfi(x,) + Kfi(x2) s kzi + kzi,
Fo(x3) = kfo(x,) + kfo(x2) <kV(z') +kV(z¥) +e.
Hence,
V(kz'+ kz) < fo(x;) <kV(2'")+kV(z') +¢,
and so
Vikz'+ kz?) = kV (2" )+ kV(Z?),
since €> 0 is arbitrary. The proof for the F-convex-like case is similar and

is left for the reader. 7 0O

Proposition 3.2. If the program (P) is convex-like [resp., F-convex-
like}, the functions f;, i€ I, are positively homogeneous, and C is a cone,
then the value function V is midpoint convex [resp., convex] and positively
homogeneous.

Proof. Let (P) be convex-like. If we show that V is positively
homogeneous, then the conclusion would follow from Proposition 3.1. From
the positive homogeneity of f;, i€ 1, we get, for all a >0,

V(az) =inf{fy(x)|x€ C, filx)=az, i€ I}
=inf{fy(ax)|axe C, f(ax)s az, ic I}
=ainf{fo(x)|xeC, fi(x)<z,iel}
=aV(z). ‘ (]
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Proposition 3.3. If the program (P) 'is regular, then the value function
V is lower semicontinuous at 0 and (P) attains its minimum.

Proof. Suppose that V is not lower semicontinuous at 0. Then, there
exists a net {z.} in R’ with z_ -0 such that V(z,)=» V< V(0) = u. Since
(P) is regular, there exists a neighborhood U of 0 and y> V(0) such that
Q=Mn Ux (-, y] is closed. Now, choose a subnet {2,} such that, with
k=172,

(25, V(25)+(k[V(0)- V])), in Q.
Since Q is closed,
lim(z, V(25) + k[ V(0) - ¥]) = (0, k[ V(0) + V) e Q.

Hence, there exists x,€ C such that
fi(x0)=0,iel, and fo(x,)s k[V(0)+ V],
and so
V(0) = fo(x0) < k[ V(0) + V).
This is a contradiction.

We shall now show that (P) attains its minimum. For each positive
integer n, the sequence {(0, V(0)+1/n)} CIL Since V(0) < y, we can choose
a subsequence {(0, V(0)+1/m)}, in 2. From the closedness of 0,00, V(0) e
§). Hence, there exists e C with fj(X)<0, ie I, and Jo(X)= V(0). Thus,
V(0) = fo(x). O

We recall that the epigraph of the value function V is given by

epi V={(y,r)eR' xR|V(y)sr}.
Itis worth noting that epi V and the set IT, used in the definition of regularity,
satisfy I Cepi V CII. This fact will be used in the proof of the following
theorem and proposition. To see this, let (y, r)eepi V. Then, V(y)=r. If
V(y) <r, then there exists x € C with f,(x)s y,, ie I, and r> fo(x), and so
(y, r)ell. If V(y) =", then there exists a net {x,}C C, filx,)=<y, i€l and
O0se, =fo(x,)—r-+0, as a-+co. Then, the net {(y, fo(x.) —¢€,)}CIT and
(0, r)=lim(y, fo(x,) —€,) €Il. The inclusion M Cepi V holds from the

definition of the sets IT and epi V.
Now, let zeR’. Then, the perturbed problem is defined by

(P,)=inf fo(x),
~ subjecttoxeC, fi(x)sz, iel

The next theorem provides a characterization result for strong regularity
and conditions for existence of primal optimal solutions.
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Theorem 3.1. Characterization of Strong Regularity. The program
(P) is strongly regular if and only if the value function V(-) is lower
semicontinuous on R’ and (P,) attains its minimum, whenever V(z) is finite.

Proof. (=) Assume that (P) is strongly regular. Then, V(-) is lower
semicontinuous on R’, since epi V=1l is closed. Let V(z) be finite. Then,
for each positive integer n, there exists x, € C, fi(x,) =z, i€ I, with V(z)+
1/n> fo(x,). Thus (2, V(z)+1/n)ell and

(z, V(2))= 'l'i_n; (z, V(z)+1/n)ell=TL

Hence, there exists xo€ C such that fo(xo) = V(») and f(xo)=2z;, i€ L
(&) Assume that V( -) is lower semicontinuous and that (P,) attain
its minimum, when V(z) is finite. Let (2, r)ell. Since NCepi VCIl, M=
epi V=epi V,and so V(z)=rIf —0< V(z) <+00, then by the assumption,
there exists xo € C, f;(xo) = z;, i € I such that V(2) = fo(xo) = r. Hence, (2, 7) €
1. If V(z)=—, then by the construction of V(z), there exists x€ C,
fi(x)s 2z, i€l such that fo(x)=r, which implies (z,r)ell..Hence, IT is
closed, and so (P) is strongly regular. O

Proposition 34. Let the program (P) be convex-like. If the value
function V is lower semicontinuous on R’, then it is convex.

Proof. Since (P) is convex-like, the set 1 is midpoint convex. Then,
by Lemma 2.1, the set li=epi V=epi V is convex, since [ICepi VCII and
V is lower semicontinuous on R'. Hence, V is convex. 0

We finish this section by noting that the value function of a strongly
regular convex-like problem is convex and that a strongly regular convex-like
problem is F-convex-like. '

4. Characterization of Zero Duslity Gaps and €-Subdifferentials

Let € = 0. The e-subdifferential of a proper convex functionp: X +RuU
{+oo} [i.e., p is not identically equal to +c0 and p(x)> —co, for all xe X]
at a € X, where p(a) <+, is denoted by a.p(a) and is defined by

a.p(a)={ve X“:p(x)Zp(a)+(v,x—a)—e,VxeX}.

Then the set 3.p(a) is a weak* closed convex set in X* which reduces to
the subdifferential of p at a, for €e=0. _

If p is a proper convex function, then p is lower semi-continuous at a
if and only if a,p(a)*J, whenever €>0. If p is also positively
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homogeneous, then 4,p(0) =ap(0), for all ¢ =0. For details see Hiriart-
Urruty (Ref. 22). For the program (P), if V(0) is finite and if 3,V(0) # &,

" then the value function satisfies the following relation: there exists A € E,

such that
(S.) V(2)=V(0)—(r,z)~¢ zeR’,

and the vector A can be interpreted as an approximate lower bound on the
marginal rate of decrease in the optimal value of the objective function
when the problem (P) is perturbed. Hence, we say that problem (P) is nearly
stable if the value function V satisfies the relation (S,), for € > 0, and stable
(Ref. 4) if (S,) holds for € =0. In these cases, the components of A are
called approximate equilibrium prices and equilibrium prices, respectively
(Refs. 23 and 24). We shall see that A €3,V(0) implies that A € A as well.
We note that the regular F-convex-like (or the strongly-regular convex-
like) program (P) is nearly stable, since V() is proper convex and lower
semicontinuous at 0. If, in addition, the functions involved in (P) are
positively homogeneous, then (P) is always stable, since V(-) is a proper
sublinear functional. Moreover, if the regular F-convex-like program (P)
satisfies the following calmness condition [see Clark, Ref. 21] that

liminf [ V(ty) - V(0)])/t> -0 9)
y=0

140

(this is true in particular if V is Lipschitz near 0 or V is bounded above
on a neighborhood of 0), then by a theorem of Rockafeller (Ref. 25) [see
also Borwein and Strojwas (Ref. 26)] and by our Propositions 3.1 and 3.3,
(P) is stable.

The following proposition characterizes a zero duality gap for (P) and
(D), extending a result of Geoffrion (Theorem 7, Ref. 27) to nonconvex
infinite probiems. Note that we do not require that V is proper convex and
so0 cannot assume that a nonempty e-subdifferential implies that V is lower
semicontinuous. We define clco V as the function with epigraph given by
the closure of the convex hull of the epigraph of V; see Ref. 5, where it is
shown that (ii) and (iii) below are equivalent.

Theorem 4.1. Consider problems (P) and (D). Assume that V(0) is
finite. Then, the following statements are equivalent:

(i)  (P) is nearly stable;
(ii) there is zero duality gap between (P) and (D);
(iii) clco V(0) = V(0).
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Proof. (i)=>(ii). Let €>0. From (i), there is A € Y* such that, for
all zeR’,

V()= V(z)+{A, 2)+e
If x € C, then by choosing 2, = f/(x), for i € I, we have f/(x) = Z, and, for A € E,
Jo(x)+ Z’ AS(x)z V(2)+(A, D)= V(0)—e.
i€ )

Hence,
ingji,(x)-é- Y Afix)zV(0)-e
x€ iel

If Ae(RL)*:= A, then
sup inf fo(x)+ ¥ ASfi(x)= V(0),
iel

A€A xeC

since €> 0 is arbitrary. The reverse inequality follows from weak duality.

It remains to show that A € A. Suppose the contrary. Then, by a
separation theorem, there exists u € R. with (A, u) = —1, since R} is a closed
convex cone. So, N

V(2eu)= V(0)—(A, 2€u)— ¢
=V(0)+2e—¢
=V(0)+e

But since 2ex € R., we have that V(2eu)= V(0), a contradiction.
(ii)=>(i). Assume that there is no duality gap between (P) and (D).
Let €> 0. Then, there exists A € A such that

inf fo(x)+ ¥ Afi(x)=2V(0)—-e
xeC iel

Thus, for all xe C,
Jo(x)+ -‘E Afilx)zV(0)-e

Ifﬁ(x)s z;, i€l then
- 'Z’ ASi(x)+ ‘ZI Az =0,

and so
Ib(x) = V(O) - 2 AiZzi—€
iel

Hence,
V(Z) = V(O) - Z 4\,2, - €,
iel

and (P) is nearly stable.
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That (ii) and (iii) are equivalent is proved in Ref. 5 using the properties
of conjugate functions. Note that, since (i) and (iii) are clearly equivalent,
the above provides a proof of the equivalence of (ii) and (iii) without
conjugate functions. O

Remark 4.1. We observe from the above theorem that the zero duality
gap problem can be viewed geometrically as the (strong) separation property
of the closure of the epigraph of V and the point (0, V(0) - ¢), for every
€>0. This is in contrast with strong duality, which is obtained with a

" supporting hyperplane with € = 0. For various characterizations and detailed

classification schemes for linear and convex programming duality results,
we refer the reader to Refs. 28-30. It is known that, even if (P) attains its
minimum and there is zero duality gap between (P) and (D), problem (D)
does not, in general, attain its maximum, unless some additional regularity
conditions are satisfied. The following example illustrates this situation
where a primal convex infinite program attains its minimum, but the dual
program does not attain its maximum. However, there is zero duality gap
between the primal and the dual programs.

Example 4.1, Considér the problem

inf x2+y,
(xy)eR?

subject to x<0, -y ~-1=0,
x/i-y=0, i=34,....

The infimum for the problem is attained at (x, y) =(0,0). The Lagrangian
dual for the problem is the problem

sup{w(A)'ﬁ=infx’+y+A1x—Az(y+l)+ § A.-(x/i-y)lt\aao}.
x.y i=3

with only finitely many nonzero A;. Choosing
A=1, fori=n=3,
A =0, for i# n,
¢(A) becomes
¥(A)=-1/(4n),
$0
$(A)=0, as n-»00,

Hence, value(dual) =0, and there is zero duality gap. However, the dual
problem does not attain its maximum.
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If the regular F-convex-like program (P) satisfies the additional calm-
ness condition (9), then (P) is stable and so there is zero duality gap between
(P) and (D), and (D) attains its maximum. In this case, 4V (0) # & and

aV(O)={—A: A €A and V(0)= inf fo(x)+ ¥ A,ﬁ(x)}.
x€C lel

The latter equation holds_for the regular F-convex-like program (P) in
which the functions f;, i € I are positively homogeneous, without the addi-
tional calmness hypothesis, since V is sublinear.

Let €> 0. We recall that the feasible A of (D) is called the e-optimal
solution to (D) if ¢(A)> » — €. As a consequence of Theorem 4.1, we obtain
a characterization of the e-subdifferentials of the value function for a regular
convex-like program in terms of e-optimal solutions of the dual program.

Corollary 4.1. If (P) is a regular convex-like program and ¢ > 0, then
3.V(0) is nonempty and
8.V(0)={-A|A is an e-optimal solution to (D)}.

Proof. This is immediate from the proof of Theorem 4.1. 0O

We now use Theorem 4.1 to show a relationship between e-subgradients
of the value function and Lagrange multiplier vectors for an e-optimal
solution of an infinitely constrained convex program.

Corollary 4.2. Assume in (P) that C = X, the functions f, ie I v {0}
are convex, and one of them is continuous on X. If (P) is regular, then for
every €>0,

a,V(O)C{-—A |A €A, 3%€ X, a finite number of points ¢,,...,1, in I,
=0,i=0,1,2,...,ne=Y ¢,
=0

0ed fo(®)+ T 0, (AS)(E), —€S T A,.f,,(f)so}. (10)

im)
Proof. Since (P) is regular, (P) attains 2 minimum at some feasible

point X € X; thus, V(0) = fo(%). Let €>0 and ~A €3,V(0). Then, as in the
proof of Theorem 4.1, '

:2£ ﬁ)(x)+ ,‘_2, Aiﬁ,(X) Zfo(f) —€,
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for some ¢,,...,1,€l, since A, »0, for only-ﬁnitely many je I Since X is
feasible,

inf f()+I ML) ZRE+ T L)
By the definition of the e-subdifferential,

0ca, ( ﬁ,(f)+§',‘ A f,,(f)).
Now, by Proposition 1.3 of Hiriart-Urruty (Ref. 24),

(04 £ asi0) = U asitr+ £ a0t

oz

Teme
i=0

Hence, A belongs to the right-hand side of the inclusion (10). O

8. Convex and Generalized Linear Programs

In this section, we obtain zero duality gap results for semi-infinite
convex and generalized linear programming problems as a specialization
of our main theorem of Section 2. We begin by fixing some preliminaries
about recession cones. Let A be a nonempty subset of X. Following Rocka-
fellar (Ref. 31) and Dedieu (Ref. 32), the recession cone of A, denoted by
rec A, is defined by

recA={xe X:3{x,}CAand {A.}CR,,A. -0, A.x,~>x}.

It is clear from the definition that rec A is a closed cone containing 0.
We see in the following proposition that the boundedness of a set in
a finite-dimensional space is characterized in terms of its recession cone.

Proposition 5.1. Let X =R" and ACR". Then, A is bounded if and
only if rec A= {0}.

Proof. If A is bounded, then clearly rec A = {0}. Conversely, assume
that rec A = {0}. Suppose that A is unbounded. Then, there exists a sequence
{x,} in A such that x, ¥ 0, for all n, and ||x, ] - . Let u, =x,/||x, . Then,
{u,} is a sequence of points in the unit ball

S={xeR": |x]|=1}.
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Since S is compact, there exists a subsequence {u,} which converges to
u€S. So, u#0. This is a contradiction, since '

u=li,r,n u,.=li'1'n[l/||x,.||]x,,erecA=={0}. (m|

Proposition 5.2. (i) IfAis a convex set, then
0*A={xeX:a+txcA, forall t=0 and all ae A}Crec A.
(ii) If Ais closed and convex, then rec A=0"A, and rec A is a closed
convex cone.
Proof. (i) Let xe€0"A. Then, for fixed ae A, a+nx=x,€ A and so

x =li:n(l/n)(a +nx)= li:n(l/n)x,. erec A

(ii) Assume that A is closed and convex. Then, it suffices to prove
thatrec ACO%A. Let x € rec A. Then, there existnets {x,}C Aand {A,}CR,,
A, =0, such that A.x, = x. For fixed 1 =0, choose a subnet {A,} such that
tA,=1. Since A is convex, for each t=0 and each a€ A,

yy=(1-1)a+Ax, €A

Since A is closed and y, > a+tx, a+tx € A, and so x € 0" A. The convexity
of rec A follows from the convexity of 0 A. 0

In the following theorem, we present the Clark-Duffin theorem due to
Karney (Theorem 2, Ref. 20) under more general conditions.

Theorem S.1. For problem (P), assume that X =R", C is a closed
convex subset of X, and the functions f;, for all i€ I, are convex and lower
semicontinuous. If (P) is consistent and has the finite value u and if there
exist y> u and €> 0 such that

rec{xe C: fo(x)s y}nrec{xe C: fi(x)=¢ icl}={0},

then there is a zero duality gap for (P) and (D).
Proof. The conclusion will follow from Theorem 2.1 and Propositions

2.2 and 5.1 if we show that

rec{xe C: fi(x)se¢ iecl}={0}
is equivalent to

rec{xe C: fi(x)=¢ ie I} ={0},
for some finite set I, of I It suffices to show that

rec{xe C: fi(x)=s¢ i I} ={0}.
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Suppose that
' rec{xe C: fi(x)=¢ Viel,} = {0},
for every finite subset I, of I. Then, there exists a sequence {y.} of nonzero
elements of R" such that '
ya€rec{xe C: fi(x)=<eViel,}.
Without loss of generality, we can assume that ||y, =1. Choose a sub-
sequence of y, which converges to yo. Now, for any i€ ], for all A >0, and
for xe{ye C: fi(y)=¢e},
filx+ry.)=¢
for sufficiently large a. Hence,

filx+Ay))se;
thus,
" yeerec{xe C: fi(x)s ¢ Viel},
a contradiction. 0

Remark 5.1. If the feasible set of the convex semi-infinite program
(P) is bounded, then '

‘ {0} =rec{xe C: fi(x)s0,ieI}=rec{xe C: fi(x)s ¢ i ]},
and hence our recession condition in Theorem 5.1 holds.

We now apply Theorem 2.1 to obtain a zero duality gap theorem for
the following generalized linear program:

(SP) inf fo(x),
subject to xe C, gi(x)=sb, ie I;'
here, CC X is a closed convex cone; f, and, for each i€, g;: C >R are
convex, positively homogeneous and lower semicontinuous functions; and
b, eR, for i€ I. The dual program for (SP) is the following program:
(SD) sup inf fo(x)+ ‘Z’ Ai(gi(x) = by).

AeA x¢C
Following Anderson and Nash (Ref. 33), a closed cone C is said to
have a compact sole if there exists a compact set B such that
0gB and C=1{J AB

Ax=0

Theorem S5.2. Assume that problem (SP) has a finite value and is
consistent. If C has a compact sole and there is no x € C, other than zero
with fy(x)=<0 and g,(x) =0, i € I, then there is a zero duality gap for (SP)
and (SD).
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Proof. The conclusion will follow from Theorem 2.1 by taking f;(x) =
8i(x)—b,, for i€ I, if we show that problem (SP) is strongly regular. We
shall prove that the set

M= {(,NeR'xR: Ixe Ch(x)srg(x)sb+y,iel)

is closed. Let {(y’, r')} be a net in IT which éonverges to (y, r)eR’ xR. Since
C has a compact sole, there exists a compact set B, 0¢ B such that

C=J AB.

Ax=0
Then, for each t, x'€ C, A" =0, and z' € B such that x' =A'z',
Jo(x')=r'" and g(x')sb+y!, iel (11)

We shall first show that the net {A'} is bounded. Suppose that {A'} is
unbounded. Then, without loss of generality, we can assume that A® -» o
for some subnet {A®} and that all A* are positive and {2 }JCB Letz?>:z€B.
Then, z2#0 and ze C. From (11) and the positive homogeneity hypothesis,

Jo(z?) =A%),

g(z°)<(A?)7'[b;+yP), iel
Then, by lower semicontinuity,

Jo(z)=0 and g(z)s0, iel

This is a contradiction to our assumption.
Now, we can choose subnets {A°} and {z®}suchthat A°>iand z° > 3
Let

limx*"=if=%feC
-4

From (11) and lower semicontinuity,
So(X)sr and f(£)sy, iel,
and hence (y, r)ell. 0O

6. Conclusions

As published papers in the mathematical programming literature
confirm, zero duality gap results are significant and have played an important
role in infinite-dimensiona! linear and convex programming. In this paper,
we have shown that zero duality gap results are not limited to convex or
linear infinite programs, but continue to hold for a much larger class of
nonconvex (convex-like) infinite programs. In particular, the class of con-
vex-like programs includes certain composite nonconvex programs. We
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established relationships between our new regularity condition and general-
ized continuity and differentiability properties of the value function for
convex-like programs.

We also note that several characterizations and classification schemes

for the duality of linear and convex programming problems are known (e.g.,
see Refs. 28-30). Here, we added to these schemes one more simple charac-
terization for zero duality gap using the e-subdifferential of the value
function without convexity.
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