
Invariant Ellipsoidal Cones 

Ronald J. Stern” 

Department of Mathematics 
Concordia University 

Montreal, Quebec H4B 1 R6, Canada 

and 

Henry Wolkowicz’ 

Department of Combinatorics and Optimization 

University of Waterloo 

Wuterloo, Onturio N2L 3G1, Canada 

Submitted by Daniel Hershkowitz 

ABSTRACT 

Conditions on the spectrum of a matrix A which are equivalent to the existence of 
a proper convex cone K such that A is K-nonnegative, K-positive, K-irreducible, or 
K-strongly nonnegative are known. We study the effect of adding the requirement 
that K be ellipsoidal. It is shown that the conditions are unchanged, except in the 
K-nonnegative case. 

1. INTRODUCTION 

J. Vandergraft [8] and L. Elsner [2] independently extended the classical 
Perron-Frobenius theory of nonnegative matrices by deriving spectral condi- 
tions on a given n X n matrix A which are necessary and sufficient for the 

*Research supported by The Natural Sciences and Engineering Council Canada grant 
A464 1. 

‘Research supported by The Natural Sciences and Engineering Council Canada grant 
A9161. 

LINEAR ALGEBRA AND ITS APPLKATZONS 150:81-106 (1991) 

Q Elsevier Science Publishing Co., Inc., 1991 

81 

655 Avenue of the Americas, New York, NY 10010 0024-3795/91/$3.50 



82 RONALD J. STERN AND HENRY WOLKOWICZ 

existence of a proper cone K c R” such that A is K-nonnegative. By a proper 
cone K we mean one which is closed, convex, pointed (Kn { -K) = {O}), 
and such that the interior int K +0. They also gave characterizations in 
which the stronger properties of K-positivity and K-irreducibility replace 
K-nonnegativity. Furthermore, Elsner [2] gave conditions on A which are 
equivalent to the existence of a proper cone K such that A is strongly 
K-nonnegative; that is, A is K-nonnegative and has an eigenvector in the 
interior of K. 

In this paper, we investigate how the aforementioned characterizations 
are affected if we add the requirement that the proper cone K be ellipsoidal; 
i.e., K has ellipsoidal cross sections. Unlike the polyhedral cones, the 
ellipsoidal cones have a smooth boundary, but, like the polyhedral cones, the 
ellipsoidal cones can be handled algebraically using the solution set of an 
inequality. The ellipsoidal cones form a subset of the set of rotund cones, i.e. 
the cones whose only proper faces are the one-dimensional extreme rays. We 
show that the characterizations are unchanged in the stronger than K-non- 
negativity cases, but change in the ordinary K-nonnegativity case. For 
example, if the degree (the size of the largest Jordan block) of the spectral 
radius of A is greater than 3, then there cannot exist an ellipsoidal cone K 

such that A is K-nonnegative. 
Section 2 presents several preliminaries. Then in Section 3 we deal with 

the K-positive, K-irreducible, and strongly K-nonnegative cases. It will be 
shown that in these situations, the added imposition that K be ellipsoidal 
does not alter the characterizations derived by Vandergraft and Elsner, in 
spite of the fact that the constructive proofs given by those authors can yield 
nonellipsoidal (and in fact polyhedral) cones. In Sections 4 and 5 we consider 
the more difficult K-nonnegative case. Our conditions characterizing the 
existence of an ellipsoidal proper cone such that A is K-nonnegative are 
more restrictive than those of Vandergraft and Elsner, where K was not 
assume to be ellipsoidal. Many of our results hold for the more general class 
of rotund cones. However, the characterization in the K-nonnegative case, 
given in Theorem 5.1, is specific to the class of ellipsoidal cones. 

2. PRELIMINARIES 

We first present some preliminary definitions and results. 
A set K in iw” is a cone if AK c K for all A > 0. The cone K is called 

proper if it is closed, is convex, has nonempty interior, and is pointed, i.e. 
Kn { - K} = {O}. The cone K is polyhedral if it is the intersection of a finite 
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number of half spaces; i.e., there exist cp’, . . . , cpok E R” such that 

K = {x E R” :(qq x<O,i=l,..., k}. (2.1) 

The convex cone L C K is a face of K if 

The proper cone K is rotund if every face of K, other than K itself and (O), is 
a half line (called an extreme ray). 

The (proper) cone K is ellipsoidal if there exists a symmetric, nonsingu- 
lar, n X n real matrix Q, with exactly one negative eigenvalue A, < 0, and 
corresponding unit eigenvector u”, such that 

K={x~R”:x~Qr~0, (u”)‘x>O}. (2.2) 

In the sequel, an ellipsoidal cone K always has an associated matrix Q = Q” 
with eigenvalues A 1 2 . . . 2 A, _ , > 0 > A, and corresponding eigenvectors 
ul,...,un. Thus Q h as inertia (n - 1, 0, l), where the inertia is defined as the 
triple (p, 2, n) denoting the number of positive, zero, and negative eigenval- 
ues, respectively. Moreover, we let A = U”QV = diag(h,, . , A,) denote the 
orthogonal diagonalization of Q. Note that 

Ku(-K)=(xE[W”:X’QX~~}, (2.3) 

and that the orthogonal complement {u”}l is a supporting hyperplane to 
both K and - K. 

If K is an ellipsoidal cone with corresponding Q, Ai, and ui, i = 1,. . . , n, 
then for cr > 0. 

will be called an ellipsoid in the hyperplane 

Note that upon expanding Q in terms of its spectral decomposition (see e.g. 
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[3]) and x as x = Cr= i aiui, we obtain N = LY,, and 

i 

n - 1 

s,= xE[W”: c Ai(ai)B<-_(y2hn 
i=l i 

The eigenvector U” lies in the interior of the ellipsoidal cone K. The 

hyperplanes Z, are translations of {u”) l, and they intersect the cone to form 

ellipsoids. Moreover, each nonzero point z E dK, the boundary of I<, has a 

unique supporting hyperplane given by H = {Qz} L, and H n K is the 

extreme ray through z. (See Lemma 4.1 below.) Thus K is a rotund cone. 

We will now show that an ellipsoidal cone can be defined using support- 

ing hyperplanes other than (u”} ‘. 

PROPOSITION 2.1. Suppose that K is as above. Then 

K={x~jW”:x’Qx~O,v’x~O) (2.4) 

zy v satisfies 

{v}~ fl {xER~:x’Qx<O} =(O] and v’u”>O. (2.5) 

In particular, c = U” satisfies (2.5). 

Proof. Let x E R” and x = Xy=, (Y,u~. If v = u” in (2.~9, we see that 

x E Iv) 1 implies that (Y, = 0. Moreover, since Ai > 0, i z n, we have that 
rfQx < 0 implies x = 0. Thus v = U” satisfies (2.5). In view of (2.3) if G 

satisfies (2.5), then (v}’ is a hyperplane separating K and - K. Therefore 

(2.4) holds. n 

A particular ellipsoidal cone which proves to be extremely useful is the 

so-called ice-cream cone 

(2.6) 

PROPOSITION 2.2. Let 

Q= [‘a-’ _;I. 
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where I, denotes the k x k identity matrix. Then K ,, is the ellipsoidal cone 

with matrix Q and eigencector un = en, the n th unit rector. 

Proof. Clearly s E K,, if and only if X’QX < 0 and (e”)‘x > 0. n 

WC will now show that every ellipsoidal cone is a nonsingular linear 
transformation of the ice-cream cone. 

PROPOSI~~ION 2.3. K is un ellipsoidal cone $ and only if K = TK,, for 

some nonsingular matrix T. In particular, for an ellipsoidal cone K, we hare 
T = UD, where D is the diagonal matrix with diagonal elements 

dj = (l/ lAi1)“2, i=l,...,n, 

and A = U’QU is the orthogonal diagonalization of Q. 

Proof. Let K be an ellipsoidal cone and T = UD be defined as above. 
Let 

Then 

Q = uAU’= UD-lJD-‘u’ = (T-l)‘JT-‘, 

(2.7) 

(2.8) 

Now, x E K if and only if X’QX < 0, (u”)‘x > 0, or equivalently 

x =Ty, Y’JY G 0, (u”)?,y>,O 

This in turn is equivalent to 

x =Ty, Y EK,, (2.9) 

since (u”)‘T = (u”)‘UD = (l/ 1A,))‘/2(e”)t, which shows that K = TK,,. 
Conversely, suppose that T is given. We need to show that TK,, is an 

ellipsoidal cone. Now, 
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By Sylvester’s theorem (see e.g. [3]), the matrix (T-l)tJT-l has the same 
inertia as J. To see that TK, is an ellipsoidal cone, note that v = (T- ‘>‘e’ 
satisfies (2.5) for Q = (T-‘)‘JT-’ and one of the two possible choices for u”. 

n 

An immediate consequence of Propositions 2.2 and 2.3 is the following. 

COROLLARY 2.1. Zf K c R” is an ellipsoidal cone and T is a nonsingular 

n x n matrix, then TK is an ellipsoidal cone. 

3. THE POSITIVE, IRREDUCIBLE, AND STRONGLY 
NONNEGATIVE CASES 

In the present work it will be convenient to employ the real canonical 

form C(A) of a real n X n matrix A. Recall that C(A) is a block-diagonal 
matrix which is unique up to the order of the blocks and is a real similarity 
transformation of A. For a real eigenvalue A, these blocks can either be 
order- 1 blocks 

B(A;l) = [A], (3.1) 

or order-k blocks of the form 

B(A;k)= 
. . 

1’ A 

Not let A = a + ib be a complex eigenvalue of A with b > 0. Then associated 
with A (and with the complex conjugate h as well), C(A) contains either 
order-2 blocks of the form 

B(a,b;P)=[ _i i] 
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or order-2 k blocks 

B(a, B;2) 

I, 
B(a,b;2k) = 

87 

. (3.2) 

1, B(a,b;2) 

Let a(A) denote the spectrum and p(A) the spectral radius of A. In this 
paper we adopt the following conventions: If A E a(A), then all the blocks 
associated with A in C(A) are (diagonally) adjacent with larger blocks below 
smaller blocks. Furthermore, if A E a(A), w E a(A), and IAl > 1~1, then the 
blocks associated with A are below those for CL. 

We can now conclude the following. 

COROLLARY 3.1. The matrix A leaves an ellipsoidal cone invariant $and 

only if any matrix similar to A, and C(A) in particular, leaves an ellipsoidal 

cone invariant. 

Proof. This follows from Corollary 2.1, since AK C K and A = S- ‘BS if 
and only if B(X) c (SK). n 

We shall denote by d(A) the degree of an eigenvalue A; this is the order 
of its largest block in the Jordan canonical form of A. Note that if A is real, 
then d(A) is also the order of the largest block for A in C(A), and if A is 
complex, then 2d(A) is the order of the largest block in C(A) associated with 
A (and with h). 

The Euclidean norm of a vector x E R” is denoted by Ilrll. For an n X n 

matrix B, we denote by l(BJI the associated operator norm 

IlBll = max{()BxII:Ilx(( = 1) = [~(B~B)]“‘. 

We shall require the following estimates for the norms of real canonical 
blocks: 

LEMMA 3.1. 

(a) IIB(a;1)(1’=u2. 
(b) ~~B(a;2)~~2~a2+~a~+1. 
(c> ~~B(a;k)~~2ga2+2~aJ+1 fork>3, 

(d) )(B(a,b;2))12=a2+b2. 

(e) ~~B(a,b;4))(2~~z+b2+IaI+l~(+l. 

(0 ((B(a,b;2k)l12 < a2 + b2 +2(lul+ lb])+1 fork > 3. 
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Proof. The equality in (a) is trivial, while (d) follows from the fact that 

B(a, b;.Z)‘B(a, b;Z) is a diagonal matrix with diagonal entries a2 + b”. The 

inequalities in (b), (c), (e) and (f) all follow directly from a straightforward 

application of Gersgorin’s theorem (see e.g. [3]) to the matrix BfB, where B 

is the particular block under consideration. n 

A real n X n matrix A is elementwise positive if and only if A(R;\{O]) C 

int R:, where iw: denotes the nonnegative orthant. The following definition 

generalizes this idea to proper cones other than Ri;. 

DEFINITION 3.1. Let A be a real n X n matrix, and let K C iw” 
K 

be a proper cone. Then A is K-positive (denoted A >> 0) provided that 

A(K\{O))c int K. We let rip (n:) d enote the set of n x n matrices A for 
K 

which there exists a proper (an ellipsoidal) cone K such that A B 0. 

The following result appeared 

THEOREM 3.1. Let A be u 

following are equivalent: 

The spectral radius of A, 

greater than the modulus 

in [8] and [2]. 

real n X n matrix with n > 1. Then the 

AEIIP; (3.3) 

p(A), is a simple eigenvulue of A, 

of any other eigenvalue. (3.4) 

In [8] and [2], the implication (3.4) * (3.3) in the above theorem is proven 

by construction of a proper cone K such that A is K-positive. In general, this 

cone is not ellipsoidal. (Actually, if the spectrum of A is real, then K is 

polyhedral.) The following result asserts that (3.3) and (3.4) are in fact 
K 

equivalent to the existence of an ellipsoidal cone K such that A z=- 0. (This 

result was also proved in [I] using results on matrix norms.) 

THEOREM 3.2. For fixed n we have 

TIP= II:. (3.5) 

Proof. Let A satisfy (3.4). I n view of Theorem 3.1, our only goal is to 

show that A E II:. Due to Corollary 3.1, we can assume that A is in real 

canonical form. We shall in fact prove that (3.4) implies A 2 0. 
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Write the set of distinct eigenvalues of A as 

a(A) = {Al,A2,...,&,,}> 

where 

h,=p(A) and lAjl>,IA,l if j<p. 

89 

(3.6) 

(3.7) 

Then 

(3.8) 

where Qj denotes the aggregate of all blocks for the eigenvalue Aj. 
Upon writing each eigenvalue as Aj = aj + ibj (where bj = 0 for real 

eigenvalues), let us temporarily assume that 

(aj)z+(bj)‘+~(l~jl+Ib~l)~1~[~(A)]2~ j=2 ,...,m. (3.9) 

Let 0 # x E K,. Then 

AX = ((Q,,,x"')',...,(Q~x~)~,P(A)~,,)', (3.10) 

where x has been partitioned as 

r=(Xfn,X- )..., X2,X”) 

and where, for j = 2,. . . , m, the number of components of xj is equal to the 
order of Qj. Then Lemma 3.1 implies that 

IIQjII’ < [P(A)]‘, j=2 >..., m. (3.11) 
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Now since x E K, and x # 0, it follows that x,, # 0 and 

jF2 IIQjXjII’ G j~211QjI1211~jI12 < [ P( A)]“( x,)2> (3.12) 

which implies that Ax E int K,,. 
Hence we have verified that A E IIT in case (3.9) holds. Now suppose 

that (3.9) fails. Since, by our hypothesis, p(A) strictly dominates every other 
eigenvalue in modulus, it follows that, for y > 0 chosen sufficiently large, the 
matrix C(yA) will satisfy (3.9), since for each j = 2,. , m, we have 

lim 
h(A)]’ [P(A)]” 

7-m (y~j)“+(y~j)e+2(lyajl+lyz?jl)+l = (aj)e+(~,.j)2 
> 1. (3.13) 

In view of Corollary 3.1, yA E II: if and only if C(yA) E II:, which in turn 
is equivalent to A E II:. This completes the proof. n 

Vandergraft [8] and Elsner [2] introduced the following generalizations of 
nonnegativity and irreducibility with respect to a proper cone. 

DEFINITION 3.2. Let K c Iw’ be a proper cone. Then a real n X n matrix 
is said to be K-nonnegative provided that AK c K. We denote this property 

by A 2 0. We let IIM (II:> denote the set of n x n matrices A for which 

there exists a proper (an ellipsoidal) cone K such that A 5 0. 

DEFINITION 3.3. Let K C [w” be a proper cone. Then a real n. X n matrix 
K 

is said to be K-irreducible provided that A > 0 and A has no eigenvector in 
dK (the boundary of K). We let II’ (II:) d enote the set of n X n matrices A 

for which there exists a proper (an ellipsoidal) cone K such that A is 
K-irreducible. 

The following result appeared in [8] and [2]. 

THEOREM 3.3. Let A be a real n X n matrix. Then the following are 

equivalent : 

A E II’; 

p(A) is a simple eigenvalue of A 
A E c+(A) such that /Al = p(A). 

We can now prove the following result. 

(3.14) 

and d(h)= 1 for all (3 15I 
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THEOREM 3.4. For fixed n we have 

ll’= Tl;. (3.16) 

Proof. Because of Theorem 3.3, we need only verify that (3.15) implies 
A E II:. By Corollary 3.1, we can assume that A is already in real canonical 
form. We again will use the notation of (3.8). Let us partition the index set 

{K..., m}=JU.L 

where \A( < p(A) for j E J and IAl = p(A) for j E j. Since we are presently 
assuming that (3.15) holds, we have d(Aj) = 1 if j E j, while there is no 
degree restriction on A~ for j E J. Let us temporarily assume that 

(aj)‘+(bj)‘+2(IajI+ IbjI)+l< [p(A)]’ for all j E J. (3.17) 

Then Lemma 3.1 implies that 

IIQjII” < [p(A)]’ for all j E J (3.18) 

and 

IIQ.jII' = [p(A)]” for all j E j. (3.19) 

Now let x E K,. Similarly to (3.12), we have 

jc211Qjx’II’ G [ P( A)]“(x,,)“> (3.20) 

which implies that 
K,, 

Ax E K,,. This shows that A > 0. Now observe that if a 
vector c E Iw” is an eigenvector of A corresponding to a real eigenvalue 
A # p(A), then u is necessarily a nonzero linear combination of a subset of 
the vectors (e’)::,‘, where e’ denotes the ith column of the n X n identity 
matrix. Consequently, v E K,,. Since p(A) is simple, the only real eigenvec- 
tor of A in K,, (up to scalar multiples) is e” E int K,. Therefore A is 
K ,,-irreducible, as required. 

Now note that (3.17) holds for C(yA) when y > 0 is sufficiently large. 
Similarly to the conclusion of the proof of Theorem 3.2, we apply Corollary 
3.1 and conclude that A E II i. n 
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We now introduce a concept which is more general than K-positivity or 

K-irreducibility. 

DEFINITION 3.4. Let K c R” be a proper cone. A real n X n matrix A is 
K 

said to be strongly K-nonnegutiue provided that A > 0 and A has an 

eigenvector in the interior of K. We let II’.” ’ <n”“) denote the set of n X n 
matrices A for which there exists a proper (an ellipsoidal) cone K such that 

A is strongly K-nonnegative. 

The following result may be found in [z]. 

THEOREM 3.5. Let A be a real n X n matrix. Then the follou;ing ure 
eyuiualent : 

A E fls.\‘, (3.21) 

p(A) E a(A), and d(A) = 1 for ecery A E a(A) such that 

IA/= p(A). 

(3 22) 

In fact, the following result holds. 

THEOREM 3.6. For fixed n we huue 

nss = flsx 
,’ . 

(3.23) 

Proof. The proof is similar to that of Theorem 3.4 except that in the 

present situation the existence of an eigenvector in a(K,!> is not precluded, 

since the real canonical form of A may have more than one 1 X 1 block for 

p(A). In particular, if Q2 is the 1X1 block [p(A)], then c = e” + en-’ is a 

boundary eigenvector. n 

It is clear that Theorems 3.2, 3.4, and 3.6 hold for any class of proper 

cones which contain the ellipsoidal cones. Thus they hold for the class of 

rotund proper cones. 

4. THE NONNEGATIVE CASE 

In the previous section we saw that characterizations of properties 

stronger than ordinary K-nonnegativity were unchanged when we restricted 
ourselves to ellipsoidal cones. We shall see that this is not true for ordinary 
K-nonnegativity. That is, we shall show that IIx# l2:. 
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We first present some known results which are required. 

THEOREM 4.1 ([8] and [z]). Let A be an rr X n matrix. Then the following 
are equivalent: 

AEIIN; (4.1) 

p(A)= o(A), and $ A E a(A) is such that IAl = p(A), 
then d(A) < d(p(A)). 

(4.2) 

Furthermore, if A $ 0 fn- a proper cone K, then K contains an eigenvec- 

tor of A corresponding to p(A). 

THEOREM 4.2 [2]. Let K c R” be a proper cone such that A 5 0, and 

assume that A has an eigenvector in int K. Then the associated eigenvalue is 

p(A) and its degree is 1. 

We shall also need the following geometrical lemmas. 

LEMMA 4.1. Let K be an ellipsoidal cone with 0 # z E 8K. Denote 

H = (Qz) I. Then the following holds: 

(i) H is the unique supporting hyperplane to K at .z. Furthermore, v = QZ 
is an outward normal to K at z: i.e. 

vtx <o forall XE K. (4.3) 

(ii) H f~ K = {CU : (Y > 0). 
(iii) z - EV E int K for all sufliciently small E > 0. 

Proof. The gradient of the quadratic function f(x) = xtQx at z is 
v = 2Qz, which is normal to the tangent plane to K at z. It is an outward 
normal, since f is increasing at z in the direction of its gradient. This 
proves (i). 

In order to prove (ii), let x E H f~ K = H n aK. Then 

0 = .ztQz = x’Qx = z’Qx. (4.3) 
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Let x = E:~=~(Y~u~ and .z = E~=,@,u,. Then (4.3) yields the following implica- 

tions: 

kA,(&)‘=O 

n-1 

=) C ‘i(Pi)” = - h,,( p,,)‘, (4.41 
i=l i=l 

c Ai( aJ2 = 0 

r, - 1 

d iFlh,(ai)‘=-An(an)“, (4.51 
i=l 

5 Ai~i/3i = 0 
n-1 

* c Aiai& = - A,cr,P,,. (4.61 
i=l i=l 

Hence 

which is equality in the Cauchy-Schwartz inequality. Thus, for some LY, 

&cri = a&Pi, i = 1,. , n - 1. By (4.4) and (4.51, (Y, = k LYE,,, and then 

by (4.6) we have (Y, = a/3,,. This proves (ii). 

By Taylor’s theorem, 

f(z - EV) =f(z) - EdV + O(E) < 0 

for small positive E. Continuity now yields (iii). n 

LEMMA 4.2. Let A 2 0, where K is an ellipsoidal cone, and assume that 

z E aK is an eigenvector of A. Then v = Qz is a left eigenvector of A belonging 

to a nonnegative eigenvalue. 

Proof. The result of Lemma 4.1(i) implies that - Q.z E K*, where K* is 

the dual cone 

If K = TK, for a nonsingular matrix T, then since K, = K,* it follows that 

K* = (T’)-~K,, and consequently, by Proposition 2.3, K* is ellipsoidal and 



INVARIANT ELLIPSOIDAL CONES 95 

therefore rotund. Then 1~)~ is the unique supporting hyperplane to K* at 
- Qz, and therefore 

span( - Qz) = {z} 1 n K* 

Now, since both (z}’ and K* are invariant under A’, it follows that 
span( - Qz) is invariant under A’. Consequently, QZ is a left eigenvector of 
A, and the pointedness of K * implies that the associated eigenvalue is 
nonnegative. n 

The next result follows from Lemma 5.3 in [7], which is itself based on 
results in [5]. We include a direct proof for completeness. The following 
terminology is adopted: Let A be a matrix in Jordan canonical form, and let 
B be a block corresponding to A E o(A). Then an eigenvector associated 
with A is said to correspond to B provided that all its nonzero entries 
correspond to the position occupied by B in A. Similarly, we say that an 
eigenvector of a matrix not in Jordan canonical form corresponds to a Jordan 
block provided that the appropriately transformed eigenvector satisfies the 
above definition with the Jordan canonical form of A. The same terminology 
applies to left eigenvectors. 

LEMMA 4.3. Let A 5 0, where K is an ellipsoidal cone. Assume that 

d( p( A)) > 1. Then the Jordan canonical form of A has only one maximal-order 

block for p(A). Furthermore, A has only one eigenvector in K, this vector lies 

in JK, and it corresponds to the maximal-order block for p(A). 

Proof. In view of Theorems 4.1 and 4.2, 8K contains an eigenvector z of 
A corresponding to p(A). Furthermore, K contains no other eigenvector y 
corresponding to p(A), since the rotundity of K would imply that the vector 
;(z. + y), which is an eigenvector corresponding to p(A), is in int K. 

Let o be as in Lemma 4.2. Since v is an outward normal to the rotund 
cone K at Z, upon appropriate scaling, Lemma 4.l(iii) implies 

.z-oEintK. 

Now let x be an eigenvector which corresponds to a maximal-order block B 

for p(A). Then for an appropriately scaled left eigenvector w corresponding 
to B we have 

9=u”- v+wEintK. 

There are now two cases to consider. 
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Case 1: p(A) > 0. In this case consider the sequence in K given by 

This sequence has as its limit an eigenvector u E K belonging to p(A), and 
unless z corresponds to B, u is not a scalar multiple of Z, which is a 
contradiction. Furthermore, from this argument it is clear that B is unique, 
by considering an alternative choice for x. 

Case 2: p(A) = 0. In this case, consider the vector s = Adco)-‘q. Then 
s E K is an eigenvector, and unless z corresponds to B, s is not a scalar 
multiple of Z, a contradiction. Furthermore, upon consideration of alternative 
x, we see that B is unique. n 

We can now apply the above lemmas to obtain a negative example about 
invariant cones. (See also Lemma 5.3 below.) 

EXAMPLE 4.1. Let 

0 0 0 
A=B(0;3)= 1 0 0 I 1 0 1 0 

Then there does not exist an ellipsoidal cone K such that A 5 0. Indeed, 
suppose that such a K did exist. Then Lemma 4.3 implies that the eigenvec- 
tor z = (O,O, /3)” E dK, and Lemma 4.2 implies that the outward normal 
u = (y, 0, O)t is a left eigenvector of A. Now let E > 0 be sufficiently small so 
that 

p = z - en E int K. 

[Here we are applying Lemma 4.l(iii).] Then Ap = (0, - E,O)~ E H f~ K, 
where H = {v} ‘, but Ap # (YZ for any cy E R. This contradicts Lemma 4.1(n). 

The above example along with Theorem 4.1 proves the following. 

THEOREM 4.3. For n Q 2 we have n,“= IIN, but II,” 5 II“’ for n > 3. 

Proof. The assertion for n = 1 and n = 2 is readily verified. The rest 
follows from the fact that Example 4.1 generalizes in a straightforward way in 
case A = B(0; n) for n > 3. n 
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The content of Theorem 4.3 is contained in our main result, Theorem 5.1 
below. Note that in view of the geometric approach taken in the present 
section, we may replace “ellipsoidal” with “rotund’ in Theorem 4.3. 

5. COMPLETING THE CHARACTERIZATION OF 
THE NONNEGATIVE CASE 

We now complete the characterization of fl: in terms of spectral 
conditions. We first present a result on invariant ellipsoidal cones. This result 
was first presented by Loewy and Schneider in [4] for the special case of the 
ice-cream cone; see also [l]. Our extension to ellipsoidal cones follows readily 
from Proposition 2.3. For a proper cone K, let us denote by II(K) [H(K)] the 
set of all matrices A such that AK c K [AK = K]. 

LEMMA 5.1. Let K c R” be an ellipsoidal cone in R” with an associated 
matrix Q, and let A be an n X n matrix. Then the following hold: 

(i) A necessary condition for A E II(K) U { - II( K 1) is 

A’QA - PQ is negative semidefinite for some I_L 2 0. (5.1) 

Furtheme, this condition is sujjkient in case rank A > 1. 
(ii) A necessary and suficient condition f~ A E H(K)U { - i?(K)} is 

A’QA-pQ=O forsome pcL>. (5.2) 

We let l?r denote the set of n X n matrices A such that AK = K for 
some ellipsoidal cone K. 

LEMMA 5.2. Let 

A 

A=1 i 

0 0 

A 0 1 0, 1 A 
(5.3) 

where h > 0. Then A E fif, 
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Proof. First note that 

AtQA-pQ=O 

if and only if 

for any cy > 0. Hence by Lemma 5.1 and Corollary 2.1 we may assume that 
A = 1 in (5.3). To complete the proof, note that p = 1 and 

(5.4) 

satisfy (5.2), and that Q has inertia (2,0,1). Let K be given by (2.2). By 
Lemma 5.1(n), either AK = K or AK = - K. But the latter case is impossible 
in view of Theorem 4.1 and the fact that 1 is the only eigenvalue of A. n 

The matrix Q in (5.4) can be obtained by a heuristic method. Consider 
the matrix A in (5.3) with A = 1. Let p = (LO, l)t, and consider the “orbit” of 
p given by 

s = (A”p : s E R) . 

Points (x, y, z)’ E S satisfy x = 1, y = s, and z = s(s - 1)/2 + 1 for varying 
values of the parameter s. Upon eliminating the parameter, we obtain the 
relation 

2.2x = y2 - yx +2x”, 

which describes a surface W in R3. Furthermore, it is a straightforward 
exercise to check that W is a nonconvex A-invariant cone. This leads 
naturally to the conjecture that the set 

{(r, y,+: -2zx + y2 - yx +2x” Q 0) 

equals K U( - K} for an ellipsoidal cone K in ii,“. Note that the associated 
Q describing the quadratic form is given by (5.4). Furthermore, for different 
vectors p one obtains different surfaces W, but the associated Q will always 
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be of the required form. One can also determine appropriate matrices Q by 
this method, for positive values of A other than 1. 

REMARK 5.1. By applying Proposition 2.1 one can show that the cone K 
in the proof of Lemma 5.2 is actually given by 

We shall make use of the following well-known fact. 

FACT A. If a diagonal element of a semidefinite matrix is 0, then the 

corresponding row and column must also he 0. 

The next lemma characterizes the nilpotent members of fl:. 

LEMMA 5.3. Let A be a nilpotent n X n matrix. Then A leaves an 

ellipsoidal cone invariant if and only if d(O) < 2 and the Jordan canonical 

form of A has at most one 2 x 2 6lock. 

Proof. In view of Corollary 2.1, we can assume that A is in real 
canonical form. If A = 0, then there is nothing to prove. So we assume that 
A f 0. Then 

A=*’ 
[ 1 0 I (5.5) 

where J is a largest Jordan block corresponding to p(A) = 0, and its order is 
greater than 1. For the case where B = 0 and J is 2 X 2, we use the matrix 

Q=I’ _: -a]. 
Then U’ = (0,. . . , l,(l + &I/2)’ and 

i 

r, - 1 

K= X=(X ,‘...’ Xn)$ c x;-2x,,_,x,<O,x,_,+ 
(1+dqx, 

2 >o 
i=l 1 

i 

n - 1 

= x=(x, ,..., X,)? c x~-2x,_,x”,<O,r,,_,,x”~O 
i=l 1 

NOW, we see that A maps K onto the ray generated by en, which lies in K. 
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If the size of J is 3 or more and a Q exists that satisfies (5.1), first note 

that the last column of A’QA is 0. By Lemma 4.3, we have that the 

eigenvector u = e” (or - e”) is in aK. Thus U’QU = 0 and therefore y,,,, = 0. 

If p # 0, we conclude that the last column of Q is 0, which contradicts the 

inertia requirement. If p = 0, then A’QA must be negative semidefinite. 

Since Q has n - 1 positive eigenvalues, Q is positive definite on an (n - l>- 

dimensional subspace V. Since the dimension of the range of A exceeds 1, 

there exists x such that 0 f Ax E V. But then x’A’QAx > 0, contradicting the 

negative semidefiniteness of A. The proof of the lemma is completed upon 

noting that A cannot have two blocks of order 2 = d(O). W 

The case n = 3 in Lemma 5.2 is quite special, as we now show. 

LEMMA 5.4. Suppose that A = p(A) is an eigencalue of an n X n matrix 

A where degree d(A) > 4. Then A does not leave an ellipsoidal cone invariant. 

Proof. From Lemma 5.3, we see that we can assume p(A) > 0. More- 

over, by Corollary 3.1 we can assume that A = 1 and that A is in real 

canonical form; i.e. 

where J is a t X t Jordan block corresponding to A = p(A) and t = &A). To 

complete the proof we need only show that no Q exists that satisfies (5.1) 

and has inertia (n - IO, 1). 

Suppose that such a Q (and corresponding K) did exist. Let us verify the 

result for t = 4. The general result follows similarly. Partition Q as 

so that 

A’QA = 
BtEB B’FJ 

J’F’B J’HJ 1 (5.6) 
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W= J’HJ-pH= “’ I h,,+h,,+h,, h,, 
2h,, + h,, h,, 

+(1-p)H. (5.7) 

h 44 0 

By Lemma 4.3, the eigenvector of A, u = e” (or - e”), is in JK, i.e., 

U’QU = 0. Thus y,,,, = h,, = 0. Since W is negative semidefinite, this implies 

that the last column of W is 0 by Fact A. 

First consider the case I_L = 1. Since h,, = hS4 = h,, = 0, the (3,3) ele- 

ment of W is 0, which implies that h,, = 0 by Fact A. Therefore the bottom 

right 2 x 2 block of Q is 0. But then aK U { - dK) contains a 2-dimensional 

space, which violates rotundity. 

Now suppose that p # 1. We again conclude that h,, = h .34 = h,, = 0. 
Since the signature of Q implies that no 2X2 principal submatrix of ZZ can 

be negative semidefinite (e.g. [3, Theorem 4.3.15]), we obtain h:,,, > 0. 

Moreover, since w is negative semidefinite, we have (1 - p)h,10 < 0 and SO 

p > 1. Since the (n, n) element in A’QA - /.LQ is 0, we conclude that the last 

collmln 

(5.8) 

where ( .)A denotes the 4th column. Here we have used the fact that 

(FJ), = F4 and (HJj4 = H,. S’ mce p > 1 and p(A) = 1, both the matrices 

B’ - pZ and J’ - pZ are nonsingular, which means that the last column of Q 

is 0. This again contradicts the inertia requirement on Q. n 

LEMMA 5.5. Suppose thut the Jordun canonical form of A contains at 

least two blocks of order > 2 correspondin, (7 to eigencalues with modulus 

p(A). Then A does not leave an ellipsoidal cone invariant. 

Proof. We proceed as in the proof of Lemma 5.4. We can assume that A 

is in real canonical form, p(A) = 1, and 

B 

A= 

[ 1 J2 

I, ’ 
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where J1 is a canonical block of maximal order ( > 2) corresponding to the 

eigenvalue A, = 1, and J, is a canonical block of maximal order ( > 2 if A, is 

real and 2 4 if A, is complex) corresponding to the eigenvalue lAzl = 1. Now 

suppose that Q satisfies (5.1) and has inertia (n - l,O, 1). We can partition Q 

as the symmetric block matrix 

so that the block multiplication A’QA makes sense. As above, we can use the 

fact that the eigenvector u = + e” E dK in order to obtain that u’Qu = 0; i.e., 

Y nn = 0. 

Let us first consider the case that p # 1 and proceed as in the proof of 

Lemma 5.4. Since A, is real, the matrix J:H,JI - pHI has the same 

expansion as in (5.7), though it may be only of order 2. We conclude that 

4 = 4P-l.” = 0, q, _ l,n_ 1 > 0, (1 - p)y,,_ ,, n _, < 0, p > 1, and that the last 

cgiumn of Q is 0. This contradicts the inertia requirement on Q. 

Now suppose that p = 1. As above, the matrix J:H, J, - Ii, has the same 

expansion as in (5.7) and must be negative semidefinite. As above, we have 

4 nn = 0, and the unit vector en (or - e”) is in JK. Furthermore, the matrix 

Jz contains a 2 X 2 principal block 

c=” 0 
[ 1 1 a (5.9) 

in its bottom right-hand corner, with a = + 1; or it contains a 4 X 4 principal 

block C = B(a, h;4) defined in (3.2). 

In the case that C is 2 ~2 and a = + 1, calculation shows that (e’)” 

Qej = qjj = 0, w h ere (j, j) is the position of the last main-diagonal entry of 

Jz in A. Hence + ej E aK and is an eigenvector of A corresponding to + 1. 

The case - 1 is impossible, since AK c K. The case + 1 contradicts 

Lemma 4.3. 

Otherwise [i.e. if C = B(a, b;4)], then as above, the matrix 

is negative semidefinite, where H is the 4 X 4 block in H, corresponding to 

C. Let us show that this is impossible. 

CtHC- H 
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First suppose that H is positive definite with positive definite square root 
D = HI/“. Then 

T=(DCD-‘)‘(DCD-‘)-I (5.10) 

is negative semidefinite. But Z = DCD-’ is a nondiagonalizable and so 
nonnormal matrix with eigenvalues of modulus 1. Now Schur’s inequality 
(see Schur [6]) states that 

5 lhi(Z)12=4< &(z)” 
i=l 1=1 

with equality if and only if Z is normal. Here h,(Z) and a,(Z) are the 
eigenvalues and singular values of Z, respectively. Therefore a,(Z) = ]]Z]] > 1, 
i.e., 112x11 > 1 for some x with unit norm. But then x’Z’X > 0, which is a 
contradiction. 

The inertia of Q implies that the 4X4 matrix H has at least three 
positive eigenvalues. Thus H cannot be negative semidefinite. If H is 
indefinite, ~then Lemma 5.1 states that C E II(L) [or - II(L)] for the 
ellipsoidal cone L determined by H. This contradicts the fact that f 1 = 
k p(C) P a(C). If is positive semidefinite, nonzero, and singular, then the 
inertia of Q implies that it must have exactly one 0 eigenvalue. Suppose 
Hx = 0. Then 

0 > xt( C’HC - H)x = x’C’HCx > 0, 

since H is positive semidefinite. Therefore H(Cx) = 0, i.e. Cx = ox, for some 
real Q. This contradicts the fact that C has no real eigenvalues. 

Thus we have shown that no such H can exist. W 

We can now summarize the characterizations. 

TEIEOREM 5.1. LRt A be an n X n matrix. Then the following are equioa- 

lent: 

(i) A E fix. 
(ii) p(A) ;a(Al, and if A E a(A) is such that Ihl= p(A), then d(A) < 

d(p(A)). Furthermore, d(p(A)) G 3 (d(p(A)) < 2 if p(A) = Ok and the Jar- 
dan canonical form of A has at most one block of order >/ 2 corresponding to 

eigenvalues with modulus p(A). 
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Proof That (i) implies (ii) follows from Theorem 4.1 and Lemmas 

5.3-5.5. That (ii) implies (i) in case p(A) = 0 is settled by Lemma 5.3. Hence 

it remains to prove the implication in case p(A) = A > 0. 

First suppose that d(A) = 1. Th en from Theorem 3.6 we conclude that A 

leaves an ellipsoidal cone invariant. 

Next suppose that d(h) = 2. From this point on we assume that A is in 

real canonical form. Then A is of the form 

‘=[” B(A;2)]' 

and we take 

where D is a diagonal positive definite matrix such that B’D’B - h”D” is 

negative semidefinite. This is equivalent to 11 DBD-‘11 < A. Note that such a 

D, with 11 Dll = 1, always exists. This can be seen as follows. We can choose 

the diagonal element dji = 1 if the corresponding block in B is 1 X 1. 
Otherwise, for a block B(a, b;2k) of B, choose the corresponding block of D 
to be DE = diag(l, 1, E, E, c2, E’, . . . , E k-l,~k-l). Then D,B(a,b;2k)Dee1 has 

main-diagonal blocks all equal to B(a, b;2), subdiagonal blocks all equal to 

l IZ, and zero elsewhere. As E -+ 0, the matrix D, B(a, b; 2k)D,-’ tends to 

diag( B(a, b; 21, . . . , B(u, b;2)) (k times), which has norm u2 + b” < A. Hence 

one can choose a positive E such that (( D, B( a, b;2 k) Dee’ 1) < A. For a block 

B(a; k) of B (where (Y is real), choose the corresponding block of D to be 

D,=diag(I,e,e” ,,.., E ‘-‘), and a similar argument applies. (If n = 2, then 

A = B( A; 2) and we take 

instead.) Now consider the cone 

K = {x E R":x'Qr 6 0, x,, > 0). (5.11) 

It is easily checked, using Proposition 2.1, that K is ellipsoidal, since Q has 
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the correct inertia. Furthermore, rank A > 1 and by direct calculation 

A’QA - /_LQ = -2A -h”fjJ . 

-h”+j_l 0 II 
This matrix is negative semidefinite if and only if p = A’. Thus AK C K by 
Lemma 5.1. Theorem 4.1 is needed here to rule out the possibility that 
-AKCK. 

Finally, suppose that d(A) = 3, and let us assume that A = 1. Then 

A= 
B 1 B(A;3) ’ 

In this case we take 

where Q is the matrix given in (5.4) and D is as above. (If n = 3, we have 
A = B(A;3) and we simply take Q = 0.) Then Q has inertia (?I- l,O, l), and 
by Proposition 2.1, the cone 

K = {X E R” : xtQx < 0: X, 2 0) 

is an ellipsoidal cone. As above, we calculate that 

A’QA - /.LQ = 

I i 

2/P-Ahl-2p -$P+;p -P+p 

- $P + ;/J h” - /L 0 

-/i”+/.l 0 0 I 

which is negative semidefinite if and only if p = A’. Since rank A > 1, we 
again conclude that AK C K by Lemma 5.1. n 

An interesting open problem remains to be answered, that is, can 
“ellipsoidal” be replaced by “rotund’ in Theorem 5.1? 

The argument in the above proof can also be used to deduce Theorems 
3.2, 3.4, and 3.6. Assuming that p(A) = 1, and that A is in real canonical 
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form with the 1 X 1 block [l] at its bottom right comer, choose the matrix Q 
to be D2@[ - 11, where D is a positive diagonal matrix such that BID”B - 0’ 

is negative semidefinite with B equal to the direct sum of all blocks of A 
except its last block. In Theorem 3.4, to show the irreducibility of A with 
respect to K, note that f e” E int K is an eigenvector corresponding to 1, 
and all eigenvectors corresponding to real eigenvalues other than 1 lie in 

1e”) I, which meets K only at the zero vector. 

We would like to thunk Raphael Loewy for several helpful discussions and 
for pointing out Reference 01. We are also indebted to the referee for his very 
careful reading und for correcting several errors. 
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