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In this paper we study constraint qualifications and duality results for infinite convex programs
(P) p =inf{f(x): g(x)e-§, xe C},

where g =(g,, g;) and $=§,x S,, S, are convex cones, i =1, 2, C is a convex subset of a vector space
X, and f and g, are, respectively, convex and S;-convex, i =1, 2, In particular, we consider the special
case when S, is in a finite dimensional space, g, is affine and S, is polyhedral. We show that a recently
‘introduced simple constraint qualification, and the so-called quasi relative interior constraint qualification
both extend to (P), from the special case that g = g, is affine and S = S, is polyhedral in a finite dimensional
space (the so-called partially finite program). This provides generalized Slater type conditions for (P)
which are much weaker than the standard Slater condition. We exhibit the relationship between these
two constraint qualifications and show how to replace the affine assumption on g, and the finite
dimensionality assumption on S, by a local compactness assumption. We then introduce the notion of
strong quasi relative interior to get parallel results for more general infinite dimensional programs without
the local compactness assumption. Our basic tool reduces to guaranteeing the closure of the sum of two
closed convex cones.

Key words: Constraint qualifications, characterization of optimum, duality, convex programming,
constrained best approximation, partially finite programs, infinite programs, closure of sums of cones.

1. Introduction

In this paper we study constraint qualifications and duality results for the abstract
convex program (P). We show that the constraint qualifications, introduced in [4,
5] for partially finite programs (P), where g is affine and S is polyhedral and finite
dimensional, can be extended to more general infinite convex programs. We show
the relationships between the two constraint qualifications as well as their relation
to several new ones. In particular, we demonstrate two methods to remove the finite
dimensional assumption. Throughout, our technique is to reduce the problem to
that of guaranteeing the closure of the sum of two closed convex cones.
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The concept of quasi relative interior (qri) is introduced in [4] for partially finite
programs (P). This generalizes the notion of relative interior (ri) to infinite
dimensions. It allows a corresponding weakened generalized Slater condition for
(P), i.e., we essentially need only to find a feasible point £ in the gri of C for which
the nonaffine part of g at £ lies in the interior (int) of the corresponding part of
—S. If g is affine, then this reduces to finding a feasible point in the gri of C, which
is the constraint qualification given in [4]. Since the generalized Slater condition
fails frequently in infinite dimensions, i.e., the ri of a convex set is often empty, this
substantially strengthens optimality results.

The dual approach to the constraint qualification is provided by looking at polar
cones and supporting hyperplanes. This is the approach used in [5], where the
simple constraint qualification is essentially equivalent to a statement about support-
ing hyperplanes to C which contain the feasible set, but do not contain all of C,

In [4], the notion of qri is studied extensively. For example, it is shown that: gri
coincides with ri in finite dimensional normed spaces; qri is convex if C is convex;
and gri C#@ if C is a convex subset of X and X is the dual of a normed space
and has the w*-topology. (We include several of these properties in Section 3, for
the convenience of the reader, along with other needed derived results.)

It is also shown in [4] that the partially finite programs have wide applications
such as in best approximation problems and semi-infinite programming. The import-
ance of gri is seen by the fact that the gri constraint qualification can be easily
checked in many situations by just checking feasibility. Many sets which have empty
ri are seen to have nonempty qri.

The gri in [4] and the simple constraint qualification in [5] (along with
modifications in this paper) provide constraint qualifications for partially finite
programs, i.e., programs with affine constraints and finite dimensional range. We
show that the important property that makes these constraint qualifications work
is not the affineness or finite dimensionality, but rather it is the local compactness
which arises in these situations. We also consider the notion of strong quasi relative
interior (sqri) and show that it provides a constraint qualification when paired with
a finite dimensionality assumption in the domain space. This parallels the partially
finite case where the finite dimensional assumption is made in the range space. We
see that the sqri is equivalent to ri for closed convex sets and also, we show that it
provides a generalization of the classical interiority range constraint qualification.

In Section 2 we provide the preliminary definitions and results used in the paper.
We also include several conditions which guarantee that the sum of two closed
convex cones is closed. The constraint qualifications are presented in Section 3.
Sections 4 and 5 present the main duality (Karush-Kuhn-Tucker conditions)
theorems for (P). We provide proofs based on the closure of the sum of two cones
and show that nonclosure of the sum is an alternative to the constraint qualification.
The results in these sections apply to the partially finite programs (P) and are
extended to more general infiite programs using a locally compact assumption and
the notion of strong quasi relative interior. We conclude in Section 6 with a discussion
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on the various constraint qualifications presented in the paper, as well as some
directions for future research.

2. Preliminaries and the closure of the sum of cones

Consider the abstract convex program
(P) u =inf f(x)
subject to g(x)e S,
xeC,

where f: X >R, g: X > Y; X and Y are real Banach spaces; Cc X and Sc Y are
convex and moreover, S is a cone, i.e.,, Ase S, for all A=0 and all se S, fisa
continuous convex functional and g is continuous and S-convex, ie.,

12(x,)+(1-1)g(x2) - g(tx, +(1-1)x;) €S, 2.1

for all x,, x, and all ¢ in [0, 1]. We let f°(x, h) denote the directional derivative of
S in the direction d, and df denote the subdifferential of £, see e.g. [9, 17].
We further assume that g =(g,, g,) and

S=S|x52c Y=Y|><Y2.

In many of the results, we will assume that Y, is finite dimensional, g, is an affine
function and S, is a polyhedral cone. Thus

g:0x)=Ax~b for some linear A: X > Y,, be Y,,
S;={ye Y,: By=0} forsome matrix B.

If, in addition to these assumptions, g =g,, then (P) is called a partially finite
program, see [4].
We let

D={xe X: g,(x)e.—S,}
and
E={xeX:g(x)e-8,}.
The cone S induces a partial order on Y given by
X, ZgXy & X;—Xx,€ 8.
We let
F=g ' (-S)nC= CADNE

denote the feasible ser of (P).

We say that x is a nonsupport point of C if every closed supporting hyperplane
to C at x contains C. We say that a hyperplane properly supports C if it supports
C and does not contain all of C.




88 V. Jeyakumar, H. Wolkowicz / Slater's constraint qualification

K is a face of a convex set C if K is a convex subset of C, and, whenever
¢, ¢,€ C, then

Ha+e)eK = ¢, ce K (2.2)
A face K is exposed if there exists & €K and ¢ €(C —-&)* such that
K={ceC:p(c-&)=0}. (2.3)

Note that for any set K in X, we let
K*'={peX*: ex=0V¥xe K}

denote the polar cone of K and K~ = —K *, where X* denotes the topological dual
space of X equipped with the w*-topology. The annihilator of K is K* = K'nK".
Correspondingly, if L< X*, then

L*={xeX:px=0VpeL}. (2.4)
The cones L™ and L* are defined similarly. Note that
K** =come K,

where Tone denotes the closure of the generated convex cone. Moreover, if K, L
are closed convex cones, then

(KnL)'=K*+1L*, (2.5)

We shall need conditions that guarantee that the sum of two closed cones is
closed. Two well known conditions are given in the following lemma (see e.g.,[11,
Section 15.D}):

Lemma 2.1. (a) If K, L are convex sets and 0e K N L, then
KnintL#@ implies (KnL)*=K*+L"
(b) If K and L are closed convex cones, then
Kn(-L)={0}, K locally compact implies K+ L closed, O

Three new conditions are:

Lemma 2.2. (a) Suppose that K and L are closed convex sets, 0c K L and
cone(K — L) is a closed subspace. (2.6)
Then
(KnL)*=K*+L*.
(b) Suppose that X is a Hilbert space, K and L are closed convex cones, and the
angle between K and ~L is >0, ie.,
inf{kl: k| =|ll| =1, ke K, Ie L}<i1.,

Then K + L is closed.
(c) Suppose that C is a closed subspace and D is q Jfinite dimensional subspace.
Then C + D is closed.
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Proof. (a) Let ¢ and ¢ be the indicator functions for the sets K and L, respectively.
Then they are lower semi-continuous convex functions with domains K and L,
respectively. Also, the subdifferential
op(0)={ve X*: vx<~¢(0)+¢(x) Vxe X}
={ve X*: vx< ¢(x)Vxe X}
={ve X*: x=0Vxe K}
=-K",
Similarly, d¢/(0)=—L" and (¢ +¢)(0)=—(K A L)*. The result follows from the
theorem in [1] which states that
e+ ¢)(x)=d¢(x)+ayY(x) Vxedom ¢ ndom ¢, 2.7)
if
cone(dom ¢ —dom ¢) is a closed subspace, (2.8)
where dom ¢ denotes the domain of ¢.

(b) Suppose that k,eK, I,eL, and k,+1,=2,>z¢ K+ L. Since K and L are
closed, we can assume that both sequences are unbounded. In fact, we can assume
that ||k, || = c. Therefore,

lim k. /||, | =1lim(z, = 1)/ || ]| = tim =1,/ |1, ||,
which implies that the angle between k, and —/, approaches zero, a contradiction.

(c) By decomposing D into the sum of two subspaces, we can assume that
C n D ={0}. The result now follows from Lemma 2.1(b). J

We will also need to relate the subdifferentials and the cones of feasible directions.

Lemma 2.3. Suppose that g(X) € —int S and g(x*)e ~S. Let
G={x: g(x)e -5}
Then

(G—x*)'=( M {d: (z\g)°(X"‘,d)S0})

AeS‘,Ag(x')-O

=cone{p: ¢ € 3(Ag)(x*) for some A € S* with Ag(x*) = 0}.
(2.9)

Proof. Let Ps be a compact, convex, generating set (base) for the intersection of
S™ with {A: Ag(x*) = 0}. Note that 0¢ Ps. The existence of the base is guaranteed
by the fact that the interior of S is nonempty, see e.g. [7, Lemma 2.3]. Since the
directional derivative is positively homogeneous, we can take the intersection in
(2.9) over the base Ps. Then the right-hand side of (2.9) becomes

(AQ (a(Ag)'(X*))')-= 2 coned(Ag)(x*)

AePg

=cone{g: ¢ €3(Ag)(x*) for some A ePs}.  (2.10)
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The last two expressions are closed by the compactness of the base Ps and the fact
the 023(Ag)(x*), a compact convex set.
It only remains to show that

cone(G~x*)= (M {d: (Ag)°(x*, d)=<0). (2.11)

AePg

Containment (<) is clear. Now let d be an element of the right-hand side of (2.11).
Let e =X —x*. Then

ae+(1-a)d e cone(G - x*) (2.12)
for all 0< a <1. Therefore, d is an element of the left-hand side of (2.11). O

Lemma 24. If A: X > Y is a continuous linear operator with closed range,
G={x:Ax—be-S},

and Ax*—be -8, then

(i)  (G-x*)"=range of A*, (2.13)
ifs={0};

(i) (G-x*)"={A*A:AeS", A(Ax*~ b)=0},
if Y is finite dimensional and S is polyhedral,
Proof. The proof of (i) follows from the fact that the left-hand side of (2.13) is
equal to the orthogonal complement of the null space of A and the range of A* is

closed when the range of A is closed. The proof of (ii) is similar to the proof of
the previous lemma. O

3. The constraint qualifications

In this section we consider several constraint qualifications, including those studied
in [4, 5]. We also study the notion of quasi relative interior introduced in [4] and
introduce the notion of strong quasi relative interior. We first define the generaliz-
ations of relative interior.

Definition 3.1 [4]. For convex Cc X, the quasi relative interior of C (qri C) is the
set of those x € C for which cone(C - x) is a subspace.

We will use the following constraint qualification:
(CQl) 3XeqriC st g,(£)e—int S, g(%X)e-S5,,

and refer to it as (CQ1). If we replace gri by ri (the relative interior), then we get
the usual generalized Slater condition for the abstract convex program. Note that
if Y, is finite dimensional, then we can replace int by ri, since we could add affine
constraints to restrict g, to lie in the span of §,.
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(CQ1) with g =g, is the constraint qualification studied in [4]. It is used along
with the g affine, S polyhedral and Y finite dimensional assumptions. We present
several equivaient forms of (CQI1) and its relation with the simple constraint
qualification used in [5]. We now introduce a new definition which generalizes the
notion of relative interior and will allow us to get parallel results for more general
infinite programs. Note that we no longer take the closure of the generated cone.

Definition 3.2. For convex C c X, the strong quasi relative interior of C is the set
of those x € C for which cone(C —x) is a closed subspace.

We now get the stronger constraint qualification
(8CQ1) 3xXesqriC st g(X)e—int$,, g,(£)e-S,.

The notion of gri is studied extensively in [4]. We include several useful properties
which we shall need in the sequel.

Proposition 3.1. Let X be locally convex, C = X be convex, and % ¢ C.

(a) [4, Proposition 2.4] If X is a finite dimensional normed vector space, then
griC=riC.

(b) [4, Proposition 2.8] e qri C if and only if (C—X)" is a subspace of X*.

(c) [4, Proposition 2.16] qri C equals exactly the nonsupport points of C.

(d) [4, Proposition 2.5] Suppose X =Hf,,, X, the product of topological vector
spaces, and C,c X,, i=1,..., Kk, are convex, then gri ﬂf_, G =Hf_, qri C,.

(e) [4, Proposition 2.7] Suppose A:X -»R" is a continuous linear map. Then
A(qri C)cri(AC). DO

In finite dimension, x e ri C if and only if cone(C ~x) is a subspace. Moreover,
every subspace in finite dimensions is closed. Thus we see that gri and ri coincide
in finite dimensions. We get a stronger result for sqri. (Note that every finite
dimensional convex set is ideally convex.)

Proposition 3.2. Let C < X be an ideally convex set and sqri C # 0. Then

sqri C=ri C=icr C, 3.1

where icr denotes the intrinsic core of C, see e.g., [11].

Proof. Without loss of generality, suppose that O¢ sqri C. Then
cone(C) =cone(C ~ C) is a closed subspace.

We can assume that this subspace is all of X and talk about core and int. But core
-equals sqri in this case, by definition, and it equals int for ideally convex sets, see
[(11}. O
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The gri and sqri provide generalizations of the Slater constraint qualification to
infinite dimensions. These are primal conditions using feasible points in qri C or
in sqri C. The dual approach, used in [5], requires the minimal faces of C and S
and their polar cones, which we now introduce.

Definition 3.3. (a) C"denotes the (unique) smallest face of C containing the feasible

set.
(b) For i=1,2, S denotes the (unique) smallest face of S, containing —g;(F).

We let Ps. be a generating set for S, i=1,2, i.e.,
cone Ps = S;. (3.2)

Similarly P._; is a generating set for (C —¢)*.

Definition 3.4. Let e F. Then
(@) Pe={pePc_pe(D-&)\(C-¢)).
(b) Fori=1,2,P5 ={pePs: pec(SH\S;}.

These sets differ slightly from the ones defined in [5, 6] in that we do not include
points in (C - &)* (or S}). The sets are equivalent in the case that cone(C - C) =X
(or §;=S;=Y, resp.). The sets are a generalization of the indices of the implicit
equality constraints used in [2], as well as in [6, 7] and other places. Since the
constraint g(x) € —§ holds if and only if pg(x)<0 Ve ecP, where Pis a generating
set for S, we can consider the set P as being the index set of constraints 8. = og.
We define the constraint qualification

(CQ2) 3XeF st _g,(i)e —int S; and P2 =¢.

Proposition 3.3. The equality set
Pcc(C-8)"n(CT-2)*\(C ~&)~. (3.3)

Proof. Let ¢ ePZ. Then,

pe(C-8)"c(C-&) c(F-¢)* (3.4)
and

ee(D—-¢) c(F-¢).
Thus pe(F-¢)* and ¢* is a proper supporting hyperplane of (C—E) which

contains (F—¢). If ¢* does not contain (C"'— ), then (¢*+é&)n C is a face of C
which contradicts the definition of C". O

The set PZ consists of normals of proper supporting hyperplanes of C which
contain the minimal face C'. We now see that P¢ is independent of ¢e F and so
Definition 3.4 makes sense.
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Proposition 3.4. The equality set P¢ is independent of ¢ F.

Proof. The result follows since PZ < (C"-¢)* and so, if ¢ € P2, then
p(C-0)=9(C-x), @(D-¢)=¢(D~-x), (3.5)
forall xeF, O

We now define the constraint qualification
(CQ3) 3xeF st g(fe-intS, and C'=C
(CQ2) and (CQ3), in the case g=g,, C is a cone, and C* = {0}, is used in [5].

Proposition 3.5. Suppose that C'= C. Then PZ =9.

Proof. If € P, then ¢ #0and, C'< ¢*, a proper supporting hyperplaneof C. [0

Thus (CQ3) implies (CQ1). We now see that (CQ1) guarantees that there are no
proper supporting hyperplanes of C which contain the minimal face C', i.e., (CQ1)
implies that (CQ2) holds.

Proposition 3.6. Suppose that (CQ1) holds. Then
Pz=0. (3.6)
Proof. If ¢ € P¢, then ¢ # 0 and, by Proposition 3.3, Fc C'c ¢* a proper support-
ing hyperplane of C. Thus each point of F is a support point of C, which contradicts
the definition of (CQ1). O
It is clear that the set of sqri points is a subset of the set of qri points. Thus
(SCQ1) = (CQ1) = (CQ2) (3.7

i.e., the constraint qualifications guarantee that the set C does not have a proper
supporting hyperplane which contains the minimal face C'. We shall see that Pc=¢
is one of the conditions needed to guarantee a Lagrange multiplier for (P). A possibly
weaker condition to guarantee that P2 =9 is given by the following.

Proposition 3.7. Suppose that

K =tone(C — D) is a subspace. (3.8)
Then
Ps=¢.
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Proof. First, let us show that C* D cK*'.Let e C* D" and ke K. Without
loss of generality, k # 0. Then k =lim k, with k, =a,(c,—-d,), a,=0,¢c,¢ C, d,eD.
We see that

¢kn = a,,(cpc,, —¢dn);0 = ¢k>0'

But, since K is a subspace, we get that ok =0.

Now, if e P, then ¢ 2 C* by Proposition 3.3, and so ¢ ¢ K*. But eeC*nD",
by definition of PZ, contradiction. 0O

The above suggests the following constraint qualification
(CQ4) 3%feF st g(f)e—intS,, cone(C - D) is a subspace.
and the stronger
(SCQ4) 3feF st g(£)e—int S, cone(C - D) is a closed subspace.

We see that (SCQ4) and (CQ4) are related in a similar fashion to (SCQl) and
(CQ1). We will also use the following constraint qualification

(CQ5) 3AKeF st gi(X)e~int S,, besqri(A(C)),

which generalizes the usual interior condition that beint(AC), see e.g. [13]. We
will see, in Section 5, that (CQS5) is the property that connects (CQ1) for partially
finite programs and the extensions to more general infinite programs. In fact, (CQn)
for partially finite programs is equivalent to (CQS), while (CQS5) is a valid constraint
qualification for more general infinite programs and extends the classical be
int{A(C)) constraint qualification.

4. Characterization of optimality I

We now present a duality result for extended partially finite programs (P). In
actuality, we first relax the affine and finite dimensional assumptions to that of local
(weak-*) compactness.
Theorem 4.1. Suppose that x* is Seasible and (CQ2) holds for (P), ie,
IXe F st g,(£)e—int S, and PZ=9.
Furthermore, suppose that the cone
(D~x*)* is locally compact, (4.1a)
and
(D~x*)"=cone{p: g€ 3(2g2)(x*), A € S7, Agy(x*) =0}. (4.1b)
Then x* solves (P) if and only if the ( Karush- Kuhn- Tucker) system
0€af(x*)+a(A121)(x*) +5(A,g,) (x*) - (C - x*)*,
A=(A,A)eS", Ag(x*)=0

is consistent.

(4.2)

“é
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Proof. We can restate (P) as
inf f(x) st. xeCnDnNE.
Then, x* solves (P) if and only if
0eaf(x*)—(CNDNE-x*)". (4.3)
But,
(CADNE-x*)"=((C—-x*)n(D-x*)*+(E - x*)*,
by Lemma 2.1(a) and the interiority condition in the (CQ2) assumption. Moreover,
(C=x*)n(D-x*))*=(C—x*)"+(D-x*)*,

since (CQ2) implies that ((C —x*)™ ~ (D - x*))* = {0} and the second cone is locally
compact, see Lemma 2.1(b). The result now follows from Lemma 2.3 and (4.1). O

We have made four assumptions to guarantee the existence of Lagrange multipliers
A =(Ay, A;) in (4.2). First, the constraint qualification (CQ2) involves two assump-
tions. The Pc =@ condition guarantees the recession condition C*AD ={0}. To
conclude that the sum of the polar cones is closed, we use the local compactness
condition. Finally, to represent the elements of the polar cone by elements in the
subdifferential, we use (4.1b). This guarantees the existence of the Lagrange multi-
plier A, for the constraint with g,. The interiority condition in (CQ2) guarantees
the Lagrange multiplier A, for the constraint g,. This guarantees both the closure
of the sum of the appropriate polar cones as well as the representation in terms of
subdifferentials, see Lemma 2.3. The basic proof technique is to use the optimality
condition (4.3), apply (2.5) to get a sum of cones, and then apply the constraint
qualifications to guarantee that the sum is closed. This theme is followed throughout
the paper. It is also the approach used in e.g., [8, 11}, as well as many other papers.
In [18], the so-called cHip condition is studied which guarantees that the sum in
(4.3) can be split up.

The assumption that (D —x*)" is locally compact (along with the gri condition)
guarantees closure in the sum. This is a condition in the dual space X*. (In the
next section we consider parallel results using a condition in the primal space X
(along with the sqri condition).) One obvious case where the local compactness
condition is satisfied is the case of partially finite programs.

Corollary 4.1. Suppose that (P) is a partially finite program in Theorem 4.1, ie, Y,
is finite dimensional, S, is polyhedral, and g, is affine. Then (4.1) holds and so, (4.2)
characterizes optimality for feasible x*.

Proof. By the hypothesis, the cone(D — x*)* is a finite dimensional polyhedral cone
and so is locally compact, see Lemma 2.4, [J

In the case that g =g,, C is a convex cone, and C* = {0}, the above corollary is
given in [5]. We also recover results in [4].
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Corollary 4.2 [4]. Suppose that in Corollary 4.1, 8=g, and (CQ2) is replaced by
(CQ1). Then (4.1) holds and (4.2) characterizes optimality for feasible x*

Proof. The proof follows from the fact that (CQ1) implies (CQ2). O

The above corollary is proved in [4] using conjugate duality. It is also presented
in the case that the infimum is unattained. Our proof technique in this section shows
that the finite dimensionality of Y, and affiness of &: are not essential. Rather, they
can be replaced by the local compactness assumption.

5. Characterization of optimality I1

‘In this section we establish duality results for (P) by using the notion of strong
quasi relative interior introduced in Section 3. We see that (CQ5) gives the connection
between the gri and sqri conditions and thus the condition needed to remove the
finite dimensional assumption in the partially finite programs. We restrict g, to be
affine and consider the infinite program

(P1) K =inf{f(x):g,(x)€ -S,, g.(x) = Ax— b =0, xe C},

where now A: X - Y, is a continuous linear operator. We could consider the more
general constraint Ax~b e —S,. This more general constraint can be simplified to
the one in (PI) by adding a slack variable, Recall that x e sqri C if cone(C —x) js
a closed subspace; while x e qri C if cone(C -x) is a closed subspace.

Proposition 5.1. If one of the Jollowing three conditions hold :

(i) there exists % ¢ ari C with A% =b and Y, finite dimensional;

(ii) there exists £ € core C with A% =b and range of A is closed
(iii) there exists £ ¢ int C with A% =b and range of A is closed; then, we get

besqri(A(C)). (5.1)
Moreover, (5.1) or the condition

XesqriC and Dis finite dimensionél | (5.2)
implies that |

cone(C - D) is a closed subspace, (5.3)
which, in turn, if C is closed, implies that

C*+ D" is closed,
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Proof. That (i) implies (5.1) follows from Propositi'on 3.1(e) and Proposition 3.2
(Recall that a finite dimensional convex set is ideally convex.) To show that (ii) (or
(iii)) implies (5.1) we note that

cone(A(C)) - b)=cone(A(C)— AX)
=cone(A(C - X))
= A(cone(C — %))
= A(X)=range of A, (5.4)

which is a closed subspace.

Now, if (5.1) holds then, since D is the inverse image of b under A, we see that
cone(A(C)—b)= A(cone(C — D)) is a closed subspace. Therefore, cone(C — D)
is a closed subspace by continuity of A. If (5.2) holds, then cone(C—D)=
(cone(C —xX)—(D—Xx)) is the sum of a closed subspace and a finite dimensional
subspace and so is closed, by Lemma 2.2(¢c). That C*+ D" is closed follows from
Lemma 2.2(a). O

We now see that one of the constraint qualifications (CQ5) or (SCQ4) and the
standard closed range assumption on A are sufficient to guarantee the existence of
a Lagrange multiplier for (PI). In contrast to Theorem 4.1, we use Lemma 2.2(a)
to prove the result, i.e., we use a condition in the primal space X to guarantee the
closure of the sum of the cones.

Theorem 5.1. Suppose that, for (P1), we have one of the constraint qualifications (CQS5)
or (SCQ4). In addition, C is closed and the range of A is closed. Then x* (feasible)
is optimal if and only if the system

0eaf(x*)+a(A,g)(x*)—A*A,—(C —x*)",
AIEST! Alg(x*)=0, AZEY*

(5.5)

is consistent.

Proof. The proof is similar to that of Theorem 4.1. We have that x* is optimal if
and only if

0eaf(x*)—(CnDNE-x*)*.

Now (SCQ4) or, by Proposition 5.1, (CQ5) implies that (5.3) holds. We can now
apply Lemmas 2.1(a), 2.2(a), 2.3 and 2.4 to get (5.5). O

We can also get parallel results to the partially finite case in the previous section,
i.e., we replace qri by sqri and replace the finite dimensional range space assumption
with a finite dimensional assumption in the domain space.
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Corollary 5.1. Suppose that in Theorem 5.1, D is finite dimensional and the two
constraint qualifications are replaced by (SCQ1). Then the conclusion of the theorem
holds.

Proof. The closure in Lemma 2.2(a) is guaranteed by (5.2) in Proposition 5.1. O

We now show how certain results for infinite constrained interpolation problems,
studied recently in [8], can be easily derived with a weaker constraint qualification
from the main result of this section. Following [8], we let X be a Hilbert space and
{x,, x,,...} be an unconditional basis, i.e., each element x in H =35pan{x,, x,} has
the unique representation in terms of the basis, x =Y. a.x; and the convergence is
unconditional. Let A: X - £, be defined by

Ax = ((x’ xl)’ ('x’ xZ)) .. ')’ xe X. (5-6)
Then A*: 4, X is given by

A*(a,, [« STIN .)=Z axX;.

Consider the infinite constrained interpolation problem
(IP) inf{Jlk~x|: xe C, x,x)=d,i=12,..},

where ke X, C< X is a closed convex cone and d = (d)e A(C)<c ¢,. Then (IP) is
a problem of type (PI) with b=d and f(x)= [k —x|l. We define D as before, i.c.,
it is the inverse image of d under A.

Example 5.1. For (IP), suppose that cone(C - D) is a closed subspace. Then, (IP)
atains its infimum at some point x,€ C, and

|k = xol| = min{|[k + A*A —x,||: ke C} (5.7)

Jor some A € 4.

Proof. Since the objective function of (IP) is coercive, i.e., its value converges to
infinity as ||x[|-» oo, the infimum is attained, see e.g. [12]. Also, the fact that the
range of A* is closed is shown in [8]. (This implies that the range of A is also
closed.) The result follows from the theorem if we note that the optimality conditions
for the right-hand side of (5.7), after squaring the objective function, are the same
as for the original problem, after squaring the norm. O

The above result also holds if the subspace H has finite dimensional codimension,
i.e., if the operator A has a finite dimensional null space. This follows from Corollary
5.1.
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6. Conclusion

We have studied the convex program (P) defined in Section 2. Under suitable
assumptions, we have provided various constraint qualifications for (P). This resulted
in two types of multiplier theorems to characterize optimality of a feasible point
x*. (Note that g, is not necessarily affine.)

(LM1)  0€af(x*)+3(A,81)(x*) +3(A28:)(x*) = (C —x*)",

A=(Ai, A S, Ag(x*)=0 (61
is consistent, and
(LM2) 0eaf(x*)+a(A,g,)(x*)+ A*A,—(C—x*)", 62)

A=(A,A)€eS", A8 (x*)=0, S,=0

is consistent.
We summarize the constraint qualifications here for convenience:

(CQ) 3feFnintC with g(X)e~int S (Slater’s condition),

(CQ1) 3AKe FnqgriC with g,(X)e—int S,

(SCQ1) ILe Fnsqri C with g,(X)e—int §,,

(CQ2) 3xeF with g,(£)e—int S, and P =4,

(CQ3) 3feF with g(£)e—int S, and C'=C,

(CQ4) 3xe F with g,(x)e —int S, and Tone(C — D) is a subspace,
(SCQ4) 3xe F with g,(X)e—int S, and cone(C — D) is a closed subspace,
(CQ5) 3I£eF with g,(X)e—int S, and besqri(A(C)).

These constraint qualifications needed additional assumptions taken from the
following:

(AS1) g,(x)=Ax-b (affine constraint),

(AS2) A has closed range,

(AS3) S, is polyhedral,

(AS4) Y, is finite dimensional,

(AS5) Cis closed,

(AS6) (D -—x*)" is locally compact,

(AS7) the subdifferentiability representation (4.1b) holds,
(AS8) S,={0},

(AS9) D is a finite dimensional affine space.

We now summarize the various constraint qualifications and the accompanying
assumptions in Table 1.
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Table 1
Constraint qualifications and accompanying 'assump(ions

(cQmn) (8CQ) (CQ2) (CQ3) (CQ4) (SCQ4) (CQ3)

(LM1) (AS6) x (AS6) (AS6) (AS6) x X
(AS7) X (AS7) (AS7) (AS7) x x
(LM2) (AS1) (AS1) (AS1) (AS1) (AS1) (AS1) (AS1)
(AS3) (AS2) (AS3) (AS3) (AS3) (AS2) (AS2)
(AS4) (ASS) (AS4) (AS4) (AS4) (ASS5) (ASS)
(AS8) (AS8) (ASS)
(AS9)

- Applications of partially finite programs to constrained approximation as well as

to many other areas are given in [4]. The above allows extensions to nonlinear
interpolation as well as infinite dimensional interpolation problems. In particular,
we get parallel results to the partially finite case if we use sqri and D finite
dimensional. For example, this case arises if A is a Fredholm operator of the second
kind, since these operators have finite dimensional null space. We could also treat
nonlinear constrained interpolation problems rather than just linear ones, see e.g.
[14]. If the constraints are differentiable, then we could get multiplier rules by
linearization and applying the above results. We could then use sequential quadratic
programming (SQP) in infinite dimensional spaces. The individual steps in the SQP
methods will be tractable as they will fall into the partially finite class of problems.
These numerical results will be studied in a future paper.
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