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Abstract

This research paper looks at portfolio optimization under uncertainty. One approach to
dealing with uncertainty when distributions are unknown is applying robust optimization
with uncertainty sets. The choice for uncertainty sets is often made to guarantee tractabil-
ity of the robust counterpart. We consider the question of how to better determine the
sizes of the uncertainty sets using sensitivity analysis as a guide.

We provide the first order derivative formulae for the perturbations with respect to the
original parameters as well as with respect to the uncertainty set sizes. This results in a
robustness measure. We use the L-shape in the curve of the robustness measure versus the
size parameters under the global minimum CVaR problem. The L-curve is applied to the
determination of size parameters. Therefore, the uncertainty set sizes are decided by both
the data and the problems.
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Chapter 1

Background

1.1 Introduction

In this research report we study robust portfolio optimization with emphasis on the accom-
panying uncertainty sets. We introduce sensitivity analysis results to help the selection of
uncertainty set sizes.

We look at portfolio optimization under uncertainty, including parameter uncertainty
and distribution ambiguity. One approach to dealing with uncertainty, when the type
of distribution as well as parameters are unknown, is applying robust optimization with
uncertainty sets. The choice for uncertainty sets is often made to guarantee tractability of
the robust counterpart. We consider the question of how to better determine the sizes of
the uncertainty sets using sensitivity analysis as a guide.

We provide the first order derivative formulae for the perturbations with respect to the
original parameters as well as with respect to the uncertainty set sizes. This results in
a robustness measure. We use the maximum curvature point in the resulting L-shape in
the curve of the robustness measure versus the size parameters under the global minimum
CVaR problem. This so-called L-curve is applied to the determination of size parameters.
Therefore, the uncertainty set sizes are decided by both the data and the properties of the
problems.
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1.1.1 Modern Portfolio Theory

Modern Portfolio Theory (MPT), put forward by Harry Markowitz in 1952 [12], is a method
for asset allocation with the assumption that investors are risk-averse. Roughly speaking,
it constructs a portfolio by minimizing risk while meeting a minimum on the investor’s
expected return. Variance or standard deviation is used as the risk measure.

We consider a portfolio with n assets and let the random vector X = (X1, X2, . . . , Xn)T

be the unknown rates of return in the given time period. Let

µ = E(X) = [E(X1), E(X2), . . . , E(Xn)]T

be the expected return vector. And let w = (w1, w2, . . . , wn)T be the weighting component
of each asset satisfying the budget constraint

1Tnw =
n∑
i=1

wi = 1,

where 1n is a n-dimensional vector of ones. Then µTw is the portfolio expected return.

Further, we let Σ = Cov(X) = (Cov(Xi, Xj)) ∈ Sn+ be the covariance matrix of the
returns on the assets in the portfolio so that wTΣw is the variance of portfolio return. Here
Sn denotes n×n symmetric matrices, and Sn+ is the cone of positive semidefinite matrices.
Since the variance should always be nonnegative and Cov(Xi, Xj) = Cov(Xj, Xi),∀i, j, the
covariance matrix Σ is symmetric positive semidefinite by nature. It is positive definite
unless one asset return is an exact linear function of the others. In asset allocation, the
potential assets are generically not perfectly correlated. Therefore, we can assume Σ ∈ Sn++,
without loss of generality.

The classic Markowitz model can be expressed as

min
w∈Rn

1

2
wTΣw (risk)

s.t. µTw = µ0 (expected return)

1Tnw = 1 (budget)

(1.1)

Remark 1.1.1. Some researchers consider the expected return as an inequality constraint,
i.e., µTw ≥ µ0. However, this inequality constraint is active (holds with equality) when
µ0 is in a specific set [µmin, µmax]. Here µmin is the expected return when the portfolio is at
the global minimum risk; while µmax is the global maximum expected return. And for all
µ0 > µmax, the problem is infeasible.
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Other constraints, such as: no-short-selling, diversification, box constraints, transaction
costs, turnover, can be added to the model when needed.

The Markowitz problem can be solved explicitly using Lagrange multipliers. The solu-
tion satisfies the following linear system: Σ −µ −1n

µT 0 0
1Tn 0 0

w
λ1

σ

 =

 0
µ0

1

 , (1.2)

where λ1 and σ are two Lagrangian multipliers. Moreover, this problem is equivalent to:

min
w∈Rn

1

2
wTΣw − λ2µ

Tw (expected return adjusted risk)

s.t. 1Tnw = 1 (budget)

if we set λ2 = λ1, the optimal Lagrange multiplier from (1.2).

There is some criticism directed at the Markowitz theory. First, it is impossible to find
the true mean and variance embedded behind each asset. A similar statement holds for
the true correlations between any two assets. Therefore, the two important parameters:
the mean and the covariance matrix, both have to be estimated by historical data or by
personal judgment. This means that biases inevitably creep in. We note that [3] shows
that the weight of an optimal mean-variance model is extremely sensitive to changes in
the mean of assets’ return; while [13] argues that the variance and covariance matrix can
be estimated more accurately.

Second, variance is used as a risk measure in the model. It is a symmetric measure
of the deviation of the portfolio return from its mean, treating the upside risk (gains)
and downside risk (losses) in the same way. In practice, a risk-averse investor will be
more concerned with the downside risk, than with the upside risk. If the portfolio return
satisfies a Gaussian distribution, or any symmetric distribution, variance can be used as a
downside risk measure because the downside risk is the same as the upside risk. However,
much research and empirics show that the return should follow a fat-tailed distribution
(with positive skewness). Variance, therefore, may not be a good risk measure in the
model.

1.1.2 Coherent Risk Measures

We let Ω = Rn be the finite dimensional set of states, G be the set of all risks (set of all
real valued functions on Rn), and we let random outcomes X1 and X2 be any elements
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in G. Then we set r to be the risk free return, if, in any state of nature, there exists an
(risk-free) asset that has an initial value of 1 and a final price of r, in a fixed time period.

Definition 1.1.2 (Coherent measure [2]). A risk measure, ρ: G → R is defined to be
coherent if it satisfies the following properties:

1. ρ(X1 + αr) = ρ(X1)− α, ∀α ∈ R (translation invariance);

2. ρ(X1 +X2) ≤ ρ(X1) + ρ(X2) (subadditivity);

3. ρ(λX1) = λρ(X1),∀λ ≥ 0 (positive homogeneity);

4. ρ(X1) ≤ ρ(X2) if X1 ≤ X2 (monotonicity).

The coherent measures of risk are consistent with investors’ intuition about risk. Be-
sides, a subadditive and positive homogeneous risk measure is convex, which is an attractive
property in optimization problems. Therefore, these assumptions have been well accepted
since they first appeared in 1999.

In addition to the critical inherent symmetrical distribution assumption of variance
as a risk measure, it is not a coherent risk measure because translation invariance and
monotonicity properties cannot be satisfied:

• translation invariance: Var(X + αr) = Var(X) 6= Var(X)− r,∀α ∈ R;

• monotonicity: by counterexample, let X1 = U(0, 2) and X2 = U(2, 3) be two random
variables with uniform distributions. It is clear that X1 ≤ X2. However, Var(X1) >
Var(X2) as Var(X1) = 1

3
and Var(X2) = 1

12
.

1.1.3 Popular Risk Measures

To improve the model with regard to the second disadvantages of Markowitz model men-
tioned above, there are many risk measures that can be used as alternatives to the variance.

Some of the popular measure of the risk of loss are:

1. Value-at-Risk (VaR)

VaR is a common quantile-based risk measure defined as:

VaRβ,F(w) := min

{
α ∈ R :

∫
l(X,w)≤α

dF (X) ≥ β

}
4



for a given confidence level β (usually 99% or 95%) and a known cumulative distri-
bution function F (X) for X. l(X,w) is the loss function with a decision vector w
and a random vector X. If we let w denote the weight of each asset and X be the
random vector for the rates of return, l(X,w) = −XTw is the function of rate of
loss for a given period.

VaR has been well accepted in financial risk management and reporting by investors
and regulators to see how many assets are in need to cover the loss under most of
possible future market conditions. However, it does not satisfy subadditivity and
therefore not a coherent risk measure [2].

2. Conditional Value-at-Risk (CVaR)

CVaR, also called expected shortfall, is closely related to the definition of VaR. It is
defined as the expected loss which exceeds VaR with a given confidence level β:

CVaRβ,F(w) :=
1

1− β

∫
−XTw≥VaRβ,F(w)

−XTwdF (X).

CVaR is a coherent risk measure that has very appealing computational properties.
Let

Gβ,F (w, λ) := λ+
1

1− β

∫
X∈Rn

[−XTw − λ]+dF (X), [t]+ := max(t, 0). (1.3)

Rockafellar and Uryasev [15] propose that one can simultaneously compute VaR and
CVaR by solving the following optimization problem in Theorem 1.1.3, (1.4).

Theorem 1.1.3 (From [15, Theorem 1]). As a function of λ, Gβ(w, λ) is convex
and continuously differentiable. The CVaRβ,F of the loss associated with any w ∈ X
can be determined from the formula 1

CVaRβ,F(w) = min
λ∈R

Gβ,F (w, λ) (1.4)

and
VaRβ,F(w) ∈ argmin

λ∈R
Gβ,F (w, λ).

1X , the feasible set of w, either includes or excludes the target expected return constraint, depending
on the context.
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Theorem 1.1.4 (From [15, Theorem 2]). The following two problems are equivalent
in the sense that their optimal values are equal:

p∗ = minw∈X CVaRβ,F(w)
= min(w,λ)∈X×RGβ(w, λ),

where the pair (w∗, λ∗) attains the minimum for the second problem if, and only if, w∗

attains the minimum for the first problem, and λ∗ ∈ argminλ∈RGβ(w∗, λ). Moreover,
Gβ(w, λ) is convex with respect to (w, λ).

3. Other Popular Risk Measures

• Entropic value at risk:

EVaR(X) = min
t>0

t lnMX(
1

t
)− t lnα

where MX(·) is the moment-generating function. It is a coherent risk measure
introduced in [1] in 2012.

There are also many risk measures using the concept of lower partial moment:

• Semi-deviation
SD =

√
E[([E(X)−X]+)2].

This is equivalent to standard deviation for symmetric distributions so that it
is not a coherent risk measure.

• Target semi-deviation

TSD(τ) =
√
E[([τ −X]+)2].

• Omega ratio

Ω(τ) =
E(X)− τ
E(τ −X)+

+ 1,

where τ is a threshold of desirable gain. This is not a coherent risk measure
as it violates positive homogeneity. For counterexample, let X = U(0, 1) be a
random variable with uniform distribution. Then Ω(2X) 6= 2Ω(X) as Ω(X) = 0
and Ω(2X) = 1 6= 0 when τ = 1.

6



1.2 Robust Portfolio Optimization

In many optimization problems, the parameters, or the inputs of the models are unknown
or are estimated inaccurately when the problems need to be solved. It can be a serious
concern if the outputs (optimal values and objective function value) of the model are sen-
sitive to the inputs. When it comes to portfolio optimization, as it has been discussed in
the disadvantages of MPT, the measures of risk and return are usually calculated using
historical data and are deemed to be wrong, which can lead to highly unreliable portfolios.
Cornuéjols, Peña, Tütüncü, in [5], define robust optimization as the modelling of optimiza-
tion problems with data uncertainty to obtain a solution that is guaranteed to be ”good”
for all or most possible realizations of the uncertain parameters. The possible realizations
is described through uncertainty sets, U .

According to the definition above, the robust optimization can be divided into two
types: absolute robust optimization (”good” for all possible realizations) and relative robust
optimization (”good” for most possible realizations). Absolute robust optimization can be
formulated as:

min
x∈K

f(x, p)

s.t. g(x, p) ≥ B, ∀p ∈ U ,
where p is the uncertain parameters and K is a feasible set of x.

It can be reformulated as a min-max optimization:

min
x∈K

max
p∈U

f(x, p)

s.t. min
p∈U

g(x, p) ≥ B.

Relative robust optimization can be formulated as:

min
x∈K

max
p∈U

f(x, p)− f(x∗(p), p)

s.t. min
p∈U

g(x, p) ≥ B,

where x∗(p) = argmin
x∈K

f(x, p).

Comparing to the fact that absolute robustness only cares for the optimization in the
worst case, relative robustness measures the worst case relative to the best case under each
scenario in the uncertainty set and is less conservative than the absolute robustness. It is
more consistent with investment targets of many decision makers as the worst case might
be very unlikely to happen. However, it introduces more computational complexity and
can lose some good properties that the absolute robustness preserves.

7



The size and shape of uncertainty sets decide the desired robustness of the models. A
consistent approach to choose the uncertainty sets does not exist. Some common types
of uncertainty sets include finite scenario sets, convex hull sets, box uncertainty sets, el-
lipsoidal sets, etc. By implementing different types of uncertainty sets, the problems will
be transformed into linear programs, semi-definite programs, second-order programs, conic
programs, etc.

To determine the size of uncertainty set, Goldfarb and Iyengar proposed the confi-
dence regions of a robust multivariate factor model as ellipsoidal uncertainty sets in [8].
Tütüncü and Koenig [16] use bootstrap method as well as moving averages to generate a
box uncertainty set. The bigger the uncertainty set is, the more conservative the model
will be.

1.2.1 Robust Mean-CVaR Portfolio Optimization

Recall the definition of Gβ,F in (1.3). The (non-robust) mean-CVaR problem (MC-general)
can be formulated as:

CVaRβ,F
∗ = min

(w,λ)∈X×R
Gβ,F (w, λ)

s.t. µTw ≥ µ0.
(MC-general)

For most portfolio selection problems, decision makers only know the realized data, X[i], i =
1, . . . , T , rather than X itself. Therefore, the integral part of Gβ,F (w, λ) can be replaced
by sample estimation:

G̃β(w, λ) := λ+
1

1− β

T∑
i=1

p[i][X
T
[i]w − λ]+,

where p[i] is the weight for X[i] and
T∑
i=1

p[i] = 1. Some investors will give greater weight/im-

portance to more recent data. Usually, without other information, we set

p[i] =
1

T
. (1.5)

For time series, a common choice of p[i] is the weighted moving averages ,

p[i] =
i∑T
i=1 T

=
2i

T (T + 1)
. (1.6)

8



Similarly for µ, one can use the sample mean µ̂ :=
T∑
i=1

p[i]X[i].
2 Note that G̃β(w, λ) is

convex and piecewise linear, with respect to λ, and is convex as a function of w.

After a substitution using sample statistics, the sample-based mean-CVaR problem (SMC)
is:

min
(w,λ)∈X×R

G̃β(w, λ)

s.t. µ̂Tw ≥ µ0.
(SMC)

Although the mean-CVaR optimization model has gained popularity, Lim et al. [11]
show that portfolios obtained by solving mean-CVaR and global minimum CVaR problems
are unreliable. This is due to estimation errors of CVaR and/or the mean. Moreover these
errors are magnified by optimization. Therefore, we need to introduce more robustness
into the models.

Based on the discussion in the previous sections about CVaR and robust portfolio opti-
mization, the absolute robust optimization model of mean-CVaR portfolio (RMC-general)
selection problem is:

WCVaR∗β = min
w∈X

max
F (·)∈U

CVaRβ,F(w)

s.t. min
F (·)∈U

µTw ≥ µ0,
(RMC-general)

where F (·) is the cumulative distribution function of X and U is the uncertainty set of the
possible distributions that X might follow.

In the situation that F (·) is ambiguous and characterized as a set U , Zhu and Fukushima [18]
define worst case risk measures ,

ρw(X) = max
F (·)∈U

ρ(X),

and worst case CVaR as

WCVaRβ(w) = max
F (·)∈U

CVaRβ,F(w).

They then prove that WCVaRβ(w) is a coherent risk measure.

2Similar to sample weighted covariance matrix Σ̂ :=

T∑
i=1

p[i](X[i] − µ)(X[i] − µ)T .

9



Proposition 1.2.1 (From [18, Proposition 1]). If ρ associated with determinate probability
measure F is a coherent risk measure, then the corresponding ρw associated with ambiguous
probability measure U remains a coherent risk measure.

Huang et al. [9] propose the relative robust CVaR model, RCVaRβ, and claim that

RCVaRβ(w) = max
F (·)∈U

{CVaRβ,F(w)− CVaRα(w∗)} ,

where w∗ = argmin
w∈X

CVaRβ,F(w), is not a coherent risk measure. As it is not the main

focus of this research report, we do not discuss relative robustness further. We note that
Delage and Ye [6] divide the uncertainty into distribution form as well as into moments
form.

Much of the research of mean-CVaR portfolio selection focuses on the uncertainty of
the first and/or second order moments. The concept of distribution ambiguity , referring to
events for which the probabilities of the future outcomes are unknown so that it does not
require the distribution of X to be specified, is integrated into some of them. For example,
Quaranta and Zaffaroni [14] utilize the box uncertainty set of expected return

U =
{
E(X) = [E(X1), . . . , E(Xn)]T : |E(Xi)− µ̂i| ≤ si,∀i = 1, . . . , n

}
,

where µ̂i is the weighted average of asset i to amortize the ghost effect. And they then use
Soyster’s approach to build a linear program. Delage and Ye [6] use the set of ambiguous
distribution with conic constraints of first and second order moments:

U =

F (·) :

P (X ∈ Ω) = 1, P ∈M+,

(EF (X)− µ̂)T Σ̂−1((EF (X)− µ̂) ≤ γ1,

EF [(X− µ̂)(X− µ̂)T ] ≤ γ2Σ̂.

 ,

where µ̂ and Σ̂ are empirical mean and covariance matrix, respectively andM+ is the set
of all probability measures. Kang et al. [10] propose a simpler set of ambiguous distribution
with ellipsoidal constraints,

U(F,γ1,γ2) =

F (·) :

P (X ∈ Ω) = 1, P ∈M+,

(µ− µ̂)T Σ̂−1(µ− µ̂) ≤ γ1,

‖Σ− Σ̂‖F ≤ γ2,

µ = EF (X), Σ = CovF (X) � 0

 , (1.7)

10



They also add a zero net adjustment constraint to reduce the conservativeness in the
absolute robust model. We implement (1.7) in this work.

Other researchers take the uncertainty of the distribution form into consideration.
Huang et al. [9] use a simple finite set of possible distributions. Zhu and Fukushima [18]
investigate distributional uncertainty of mixture distribution uncertainty, box uncertainty,
and ellipsoidal uncertainty.

For the mean-CVaR portfolio selection problem with moment uncertainty, the following
Lemma 1.2.2 is useful:

Lemma 1.2.2 (From [4, Theorem 2.9]). Let the random vector X ∈ Rn have mean µ,
covariance matrix Σ � 0, and an uncertain probability distribution function F (·) that
follows a family of distributions

F(µ,Σ) = {F (·) : P (X ∈ Ω) = 1, EF (X) = µ,CovF (X) = Σ} ,

with Ω = Rn. Then there exists a tight upper bound for the worst case CVaR with respect
to the uncertainty set F(µ,Σ):

max
F (·)∈F(µ,Σ)

CVaRβ,F(w) = −µTw + κ
√

wTΣw, (1.8)

where κ=
√

β
1−β .

The lemma indicates that the robust mean-CVaR model is an extension of the mean-
variance model but magnifies the error of the bias from estimation of µ and Σ.

Kang et al. [10] propose the following Proposition 1.2.3 but without a detailed proof.
We include the details below for completeness.

Proposition 1.2.3 (From [10, Proposition 2.2]). Let w ∈ Rn be given. Then

max
F (·)∈U(F,γ1,γ2)

CVaRβ,F(w) = max
(µ,Σ)∈U(µ̂,Σ̂,γ1,γ2)

max
F (·)∈F(µ,Σ)

CVaRβ,F(w), (1.9)

where

U(µ̂,Σ̂,γ1,γ2) =
{

(µ,Σ) ∈ Rn × Sn++ : (µ− µ̂)T Σ̂−1(µ− µ̂) ≤ γ1, ‖Σ− Σ̂‖F ≤ γ2

}
. (1.10)

Proof. We need to prove that the feasible sets for both problems in (1.9) are the same.

11



1. (⊆) : ∀F (·) ∈ U(F,γ1,γ2),

(µ− µ̂)T Σ̂−1(µ− µ̂) ≤ γ1, ‖Σ− Σ̂‖F ≤ γ2, Σ ∈ Sn++ ⇒ (µ,Σ) ∈ U(µ̂,Σ̂,γ1,γ2),

where EF (X) = µ and CovF (X) = Σ are as defined. So F (·) ∈ F(µ,Σ) follows.

2. (⊇) : ∀F (·) ∈ F(µ,Σ),
EF (X) = µ and CovF (X) = Σ,

and since (µ,Σ) ∈ U(µ̂,Σ̂,γ1,γ2),

Σ ∈ Sn++, (µ− µ̂)T Σ̂−1(µ− µ̂) ≤ γ1, ‖Σ− Σ̂‖F ≤ γ2 ⇒ F (·) ∈ U(F,γ1,γ2).

The proof for Proposition 1.2.3 also works for

min
F (·)∈U(F,γ1,γ2)

CVaRβ,F(w) = min
(µ,Σ)∈U(µ̂,Σ̂,γ1,γ2)

min
F (·)∈F(µ,Σ)

CVaRβ,F(w).

We can see that the problem depends on the size parameters (γ1, γ2) of the uncertainty
set, and (RMC-general) can be formulated as:

WCVaR∗β(γ1, γ2) = min
w∈X

max
(µ,Σ)∈U(µ̂,Σ̂,γ1,γ2)

max
F (·)∈F(µ,Σ)

CVaRβ,F(w)

s.t. min
(µ,Σ)∈U(µ̂,Σ̂,γ1,γ2)

min
F (·)∈F(µ,Σ)

µTw ≥ µ0.

By Lemma 1.2.2, the problem becomes:

WCVaR∗β(γ1, γ2) = min
w∈X

max
(µ,Σ)∈U(µ̂,Σ̂,γ1,γ2)

−µTw + κ
√

wTΣw

s.t. min
µ∈U1

(µ̂,Σ̂,γ1)

µTw ≥ µ0.
(RMC-Uγ)

Note that U(µ̂,Σ̂,γ1,γ2) can be separate as the union of two sets:

U1
(µ̂,Σ̂,γ1)

=
{
µ ∈ Rn : (µ− µ̂)T Σ̂−1(µ− µ̂) ≤ γ1

}
andU2

(Σ̂,γ2)
=
{

Σ ∈ Sn++ : ‖Σ− Σ̂‖F ≤ γ2

}
.
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Accordingly, the robust global minimum risk problem, which is the original problem
without the target expected return constraint, is,

WCVaR∗β(γ1, γ2) = min
w∈X

max
(µ,Σ)∈U(µ̂,Σ̂,γ1,γ2)

−µTw + κ
√

wTΣw. (1.11)

The global maximum expected return problem, which instead maximize the worst case ex-
pected return, WR without considering risk, is,

WR∗(γ1) = max
w∈X

min
µ∈U1

(µ̂,Σ̂,γ1)

µTw. (1.12)

1.3 Sensitivity Analysis

As discussed in Section 1.2, it is a nontrivial problem to determine the best size of an
uncertainty set. For the uncertainty set U(F,γ1,γ2), γ1 and γ2 are the size parameters for
the set. Sensitivity analysis reflects the impact of small perturbations in the inputs to the
outputs. It can be a complementary alternative to robust optimization. We continue now
to combine the sensitivity analysis into the determination for the size of U(F,γ1,γ2).

We consider a general nonlinear program and general perturbations ε ∈ Rk appearing
in the objective function and in the constraints:

min
w

f(w, ε)

s.t. g(w, ε) ≥ 0
h(w, ε) = 0.

Pg(ε)

Here f : Rn×Rk → R, g : Rn×Rk → Rm, and h : Rn×Rk → Rp. The Lagrangian of Pg(ε)
is

L(w,u,v, ε) = f(w, ε)−
m∑
i=1

uigi(w, ε) +

p∑
j=1

vjhj(w, ε),

where u = (u1, . . . , um) and v = (v1, . . . , vp) are vectors of Lagrangian multipliers.

From Fiacco [7], the following results are useful.

Theorem 1.3.1 (From [7, Theorem 3.2.2, Corollary 3.2.4]). Let the following four assump-
tions in Items I to IV hold:

I the functions defining Pg(ε) are twice continuously differentiable in w and their gra-
dients with respect to w and the constraints are once continuously differentiable in ε
in a neighborhood of (w∗, 0);
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II the second-order sufficient conditions for a local minimum of P (0) hold at w∗, with
associated Lagrange multipliers u∗ and v∗;

III the gradients ∇gi(w∗, 0) (for i such that gi(w
∗, 0) = 0) and ∇hj(w∗, 0) (all j) are

linearly independent (linear independence constraint qualification, LICQ);

IV u∗i > 0 when gi(w
∗, 0) = 0 (i = 1, . . . ,m), i.e., strict complementary slackness holds.

Then:

(a) w∗ is a local isolated minimizing point of P (0), and the associated Lagrange multipliers
u∗ and v∗ are unique;

(b) for ε in a neighborhood of 0, there exists a unique, once continuously differentiable vec-
tor function y∗(ε) = [w∗(ε),u∗(ε),v∗(ε)]T satisfying the second-order sufficient con-
ditions for a local minimum of problem Pg(ε) such that y∗(0) = [w∗,u∗,v∗]T = y∗,
and hence w∗(ε) is a locally unique local minimum of problem Pg(ε) with associated
Lagrange multipliers u∗(ε) and v∗(ε);

(c) for ε near 0, the set of binding inequalities is unchanged, strict complementary slackness
holds, and the binding constraint gradients are linearly independent at w∗(ε);

(d) a first-order approximation of [w∗(ε),u∗(ε),v∗(ε)] in a neighborhood of ε = 0 is given
by w∗(ε)

u∗(ε)
v∗(ε)

 =

w∗

u∗

v∗

+ (M∗)−1N∗ε + o(‖ε‖), (1.13)

where φ(ε) = o(‖ε‖) means limε→0 φ(ε)/‖ε‖ = 0. M∗ = M(0) and N∗ = N(0), where
M(ε), N(ε) are defined below:

M(ε) =


∇2

wwL · · · −∇wgi · · · · · · −∇whj · · ·
...

. . .

ui∇wg
T
i gi 0

...
. . .

∇wh
T
j 0 0

 ∈ R(n+m+p)×(n+m+p),

N(ε) =
[
−∇2

εwL, · · · ,−ui∇εgi, · · · ,∇εhj, · · ·
]T ∈ R(n+m+p)×k.

(1.14)
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Theorem 1.3.2 (From [7, Theorem 3.4.1]). Let the local optimal value function be f ∗(ε) =
f(w∗(ε), ε), and the optimal value Lagrangian be L∗(ε) = L(w∗(ε),u∗(ε),v∗(ε), ε). If
the conditions of Theorem 1.3.1 hold for Pg(ε), and if the problem functions are twice
continuously differentiable in (w∗(ε), ε) near (w∗, 0) then, in a neighborhood of ε = 0,

f ∗(ε) = L∗(ε). (1.15)

From (1.13), we denote the first order approximation asŵ(ε)
û(ε)
v̂(ε)

 =

w∗

u∗

v∗

+ (M∗)−1N∗ε (1.16)

By Theorem 1.3.1(b), w∗(ε) is the unique local minimum of problem Pg(ε). For a
convex optimization problem, w∗(ε) is the unique global minimum.

1.3.1 Perturbation Towards the Original Parameters

Let’s consider the direct perturbation towards the original parameters.

First, assume that the population statistics are estimated exactly by the sample statis-
tics, which means γ1 = γ2 = 0. RMC-Uγ becomes RMC-U0:

WCVaR∗β(0, 0) = min
w∈X

−µ̂Tw + κ
√

wT Σ̂w

s.t. µ̂Tw ≥ µ0.
(RMC-U0)

We now introduce a perturbation, ε, to the sample statistics, and denote the statistics
under the perturbations as µ̂ε and Σ̂ε. We use sensitivity analysis to test how much the
output w∗ and the expected return µ̂T

ε w∗ are sensitive to ε. That is we need to test: if
we have sample estimation that is wrong, then how serious is the influence on the final
decision? The intuition is that, if either the w∗ or µ̂T

ε w∗ is sensitive to error, then RMC-
U0 will behave badly once the sample statistics are not equal to the population statistics.
Therefore γ1 and/or γ2 should be large.

Definition 1.3.3. Let chol(·) denote the Cholesky decomposition of a positive definite
matrix, i.e., for A ∈ Sn++, we get L = chol(A), where A = LLT , and L is a lower triangular
matrix.

Define the triangular number, t(n) = n(n+ 1)/2.
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Definition 1.3.4. Let LMat(·) : Rt(n) → Rn×n be the transformation that generates a
lower triangular matrix from a vector.

For example,

LMat(a) =

(
a1 0
a2 a3

)
reshapes a ∈ R3 into a 2-by-2 lower triangular matrix. It is clear that LMat(·) is a linear
transformation.

Now let

ε = (ε1, ε2) ∈ Rn × Rt(n), µ̂ε = µ̂ + ε1, Σ̂ε = (L+ LMat(ε2))(L+ LMat(ε2))T ∈ Sn+,

where L = chol(Σ̂). Note that we obtain positive definiteness of Σ̂ε if ε2 is small. Besides,
ε1 = [In,0n×t(n)]ε, ε2 = [0t(n)×n, It(n)]ε.

Recall that the constraint set X =
{
w ∈ Rn : w ≥ 0n,1

T
nw = 1

}
. We need to write

RMC-U0 with the perturbation explicitly:

WCVaR∗β,ε(0, 0) = min
w∈Rn

−µ̂T
ε w + κ

√
wT Σ̂εw

s.t. µ̂T
ε w ≥ µ0,

1Tnw = 1, w ≥ 0n.

(RMC-Uε)

The Lagrangian for (RMC-Uε) is:

L(w,u,v, ε) = f(w, ε)−
n∑
i=0

uigi(w, ε) + vh(w, ε)

= −µ̂T
ε w + κ

√
wT Σ̂εw − u0(µ̂T

ε w − µ0)−
n∑
i=1

uie
T
i w + v(1Tnw − 1)

= −(1 + u0)εT1 w + κ
∥∥∥(L+ LMat(ε2))T w

∥∥∥
2

+ C(w),

where ei denotes the i-th unit vector. Note that

g0(w, ε) = µ̂T
ε w − µ0,

gi(w, ε) = eTi w, i = 1, . . . , n,

h(w, ε) = 1Tnw − 1.
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And

C(w) = −(1 + u0)µ̂Tw − u0µ0 −
n∑
i=1

uie
T
i w + v(1Tnw − 1)

is a function independent of ε.

Then, by (1.14), for elements in M(ε) ∈ R(2n+2)×(2n+2),

∇2
wwL = κ

(
wT Σ̂εw

)− 3
2

[(
wT Σ̂εw

)
Σ̂ε −

(
Σ̂εw

)(
Σ̂εw

)T]
,

∇wg0 = µ̂ε,

∇wgi = ei, i = 1, . . . , n,

∇wh = 1n,

(1.17)

and for elements in N(ε) ∈ R(2n+2)×(n+t(n)),

∇2
εwL = − (1 + u0)

[
In 0n×t(n)

]T
+ κ∇2

εw

∥∥∥(L+ LMat(ε2))T w
∥∥∥

2
,

∇εg0 =
[
In 0n×t(n)

]T
w,

∇εgi = 0n+t(n), i = 1, . . . , n,

∇εh = 0n+t(n).

(1.18)

The detailed calculation of ∇2
εwL can be found in appendix B, see (B.9).

With the first order approximation in (1.16), the perturbed optimal CVaR and expected
return can be approximated as well. This sensitivity results towards the original parameters
can be used to determine both the sizes and the shape of uncertainty sets. However, when
the portfolio size n is large, the analysis could become very complicated. This application
could be an interesting topic for the future work.

1.3.2 Perturbation Towards Size Parameters of Uncertainty Set

If a size of an uncertainty set is given, we can use sensitivity analysis to analyze whether
the given size is appropriate. From Kang et al. [10], for the given γ1, γ2, the robust
counterpart (RMC-Uγ) becomes3:

WCVaR∗β(γ1, γ2) = min
w∈Rn

−µ̂Tw + κ
∥∥∥(Σ̂ + γ2In)1/2w

∥∥∥
2

+
√
γ1

∥∥∥Σ̂1/2w
∥∥∥

2

s.t.
√
γ1

∥∥∥Σ̂1/2w
∥∥∥

2
≤ µ̂Tw − µ0,

1Tnw = 1, w ≥ 0.

(P0)

3It can be reformulated as a second-order cone program with auxiliary variables.
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By separating max
(µ,Σ)∈U(µ̂,Σ̂,γ1,γ2)

−µTw+κ
√

wTΣw from the (RMC-Uγ) into two subproblems,

the worst case is attained when

µwc = argmax
(µ,Σ)∈U(µ̂,Σ̂,γ1,γ2)

−µTw = µ̂−
√
γ1Σ̂w∥∥∥Σ̂1/2w

∥∥∥
2

,

and Σwc = argmax
(µ,Σ)∈U(µ̂,Σ̂,γ1,γ2)

κ
√

wTΣw = Σ̂ +
γ2wwT

wTw
.

(1.19)

Now let
ε = (ε1, ε2) ∈ R× R, γε1 = γ1 + ε1, γ

ε
2 = γ2 + ε2.

Substitute (γ1, γ2) in (P0) by (γε1 , γ
ε
2):

WCVaR∗β(γε1 , γ
ε
2) = min

w∈Rn
−µ̂Tw + κ

∥∥∥(Σ̂ + γε2In)1/2w
∥∥∥

2
+
√
γε1

∥∥∥Σ̂1/2w
∥∥∥

2

s.t.
√
γε1

∥∥∥Σ̂1/2w
∥∥∥

2
≤ µ̂Tw − µ0,

1Tnw = 1, w ≥ 0.

(Pε)

The Lagrangian for (Pε) is:

L(w,u,v, ε) = f(w, ε)−
n∑
i=0

uigi(w, ε) + vh(w, ε)

= −µ̂Tw + κ
∥∥∥(Σ̂ + γε2In)1/2w

∥∥∥
2

+
√
γε1

∥∥∥Σ̂1/2w
∥∥∥

2

−u0(−
√
γε1

∥∥∥Σ̂1/2w
∥∥∥

2
+ µ̂Tw − µ0)−

n∑
i=1

uie
T
i w + v(1Tnw − 1)

= κ
∥∥∥(Σ̂ + γε2In)1/2w

∥∥∥
2

+
√
γε1 (1 + u0)

∥∥∥Σ̂1/2w
∥∥∥

2
− (1 + u0) µ̂Tw

+u0µ0 −
n∑
i=1

uie
T
i w + v(1Tnw − 1).

Note that
g0(w, ε) = −

√
γε1

∥∥∥Σ̂1/2w
∥∥∥

2
+ µ̂Tw − µ0,

gi(w, ε) = eTi w, i = 1, . . . , n,

h(w, ε) = 1Tnw − 1.
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Then, for elements in M(ε) ∈ R(2n+2)×(2n+2),

∇2
wwL = κ

∥∥∥∥(Σ̂ + γε2In

)1/2

w

∥∥∥∥−3

2[∥∥∥∥(Σ̂ + γε2In

)1/2

w

∥∥∥∥2

2

(
Σ̂ + γε2In

)
−
((

Σ̂ + γε2In

)
w
)((

Σ̂ + γε2In

)
w
)T]

+
√
γε1 (1 + u0)

∥∥∥Σ̂1/2w
∥∥∥−3

2

[∥∥∥Σ̂1/2w
∥∥∥2

2
Σ̂−

(
Σ̂w
)(

Σ̂w
)T]

∇wg0 = −
√
γε1

Σ̂w∥∥∥Σ̂1/2w
∥∥∥

2

+ µ̂,

∇wgi = ei, i = 1, . . . , n,

∇wh = 1n,
(1.20)

and for elements in N(ε) ∈ R(2n+2)×2,

∇2
εwL =

1 + u0

2
√
γε1
· Σ̂w∥∥∥Σ̂1/2w

∥∥∥
2

2

∥∥∥∥(Σ̂ + γε2In

)1/2

w

∥∥∥∥2

2

In −wTw
(

Σ̂ + γε2In

)
2

∥∥∥∥(Σ̂ + γε2In

)1/2

w

∥∥∥∥3

2

w


T

∇εg0 =
[
1 0

]T 1

2
√
γε1

∥∥∥Σ̂1/2w
∥∥∥

2
,

∇εgi = 02, i = 1, . . . , n,
∇εh = 02.

(1.21)
The first order approximation of CVaR and w is as (1.15) and (1.16). Besides, the first n
rows of (M∗)−1N∗ is the first order derivative dw

dε
, which can be seen as the sensitivity of

w to ε. Note that γ1 6= 0 is implied by N∗.
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Chapter 2

Methodology and Simulation
Analysis

In this chapter, we will illustrate the sensitivity analysis results in section 1.3.2 to show
how to pick appropriate uncertainty sizes. We will use the example below to generate
random samples for a simulation analysis. First, we will compare the true size parameters
with the bootstrapping parameters in order to see how the bootstrap method could be
improved. Then, the analysis is done separately for the global minimum risk problem
and for the mean-CVaR problem. We will show how the first order approximation in the
sensitivity analysis from section 1.3.2 performs. For the global minimum risk problem, we
will propose three methods to find the size parameters by finding the elbow points and/or
by controlling the robustness measure. Finally, we will compare the different methods by
the efficient frontiers and portfolio compositions.

Example 2.0.1. In the following and continuing below, we use an example of four under-
lying assets in Yam et al. [17] whose true mean vector and covariance matrix are given
by:

µ =


0.061166
0.109547
0.090358
0.040923

 , Σ =


0.018632 0.020056 0.020646 0.015213
0.020056 0.034507 0.027412 0.020652
0.020646 0.027412 0.048680 0.021663
0.015213 0.020652 0.021663 0.018791

 .
We assume that the returns of the four assets follows a multivariate Gaussian distribution
Gaussian(µ,Σ) if without specific note.

Notation 2.0.2. As in (1.13) and (1.16), we continue denoting the optimal value of (Pε)
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as w∗(ε), and its first order approximation as ŵ(ε). Similarly, we denote WCVaR∗(ε) =
WCVaR∗β(γε1 , γ

ε
2) when (γ1, γ2) is clear.

2.1 Bootstrap Method

As we discussed in the previous chapter, the bootstrap method has been used to determine
the size parameters γ1 and γ2. Suppose we have the realized data of length T : X[i], i =

1, . . . , T with mean µ̂ and covariance matrix Σ̂. Recall that we use (1.7) as the uncertainty
set. We follow the bootstrapping procedure in Kang et al. [10]:

Step 1. Construct B bootstrap samples Xb = {Xb
[i]}Ti=1, b = 1, . . . , B by drawing random

samples with replacement from the available observations. The length of each
bootstrap samples is T .

Step 2. For each bootstrap sample Xb, compute the corresponding mean µ̂b and covari-
ance matrix Σ̂b, and then generate a sample

C =
{

(µ̂b, Σ̂b), b = 1, . . . , B
}
.

Step 3. For sample C, define data set Cγ1 and Cγ2 as

Cγ1 =
{
γ1b : γ1b = (µ̂b − µ̂)T Σ̂−1(µ̂b − µ̂), b = 1, . . . , B

}
,

Cγ2 =
{
γ2b : γ2b =

∥∥∥Σ̂b − Σ̂
∥∥∥
F
, b = 1, . . . , B

}
.

Step 4. Pick η as the confidence region. Compute the upper quantile of the corresponding
data set:

γ1 = quantileη(Cγ1), γ2 = quantileη(Cγ2).

In the following, we will always take 95% as the confidence region.

2.1.1 Performance of Bootstrap Method to Pick Size Parameters

In the simulation analysis with the true mean and covariance matrix given, the parameter
uncertainties due to the estimation error can be computed by:

true γ1 = (µ̂− µ)T Σ̂−1(µ̂− µ), true γ2 =
∥∥∥Σ̂− Σ

∥∥∥
F
. (2.1)
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We want to compare bootstrapping values with the true values of γi by taking random sam-
ples (30 in multivariate Gaussian distribution and 30 in multivariate t distribution, using
the parameters in Example 2.0.1), and then calculating their true γi and bootstrapping γi
with B = 10000 resamples. We can see in figure 2.1 that for most cases, the bootstrapping
values are larger than the true values, for both γ1 and γ2. Therefore, we can treat the
bootstrapping values as a reference of upper bounds for each γi.

Figure 2.1: Bootstrapping values tend to overestimate true γi

2.2 Robust Global Minimum Risk Problem

Recall that the global minimum risk problem in (1.11) can be reformulated as the robust
counterpart:

WCVaR∗β(γ1, γ2) = min
w∈Rn

−µ̂Tw + κ
∥∥∥(Σ̂ + γ2In)1/2w

∥∥∥
2

+
√
γ1

∥∥∥Σ̂1/2w
∥∥∥

2

s.t. 1Tnw = 1, w ≥ 0.

In this section, we analyze the sensitivity analysis results for the global minimum risk
problem. We also propose three methods to pick and analyze the size parameters for the
uncertainty set. We have to notice that the above problem is dependent on the pair of
parameters (γ1, γ2). We set β = 0.95.1

1Due to the complementary slackness, u0 = 0 is set to calculate M∗ and N∗; or it is equivalent to set
µ0 to a very small nagative number in (P0) so that the target expected return constraint is inactive.
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2.2.1 Performance of the First Order Approximation

We generate 20 random samples with length T = 200 and compare their first order approx-
imation results to w∗(ε) and WCVaR∗(ε) of (Pε) with the exact solutions in figures 2.2
and 2.3 on pages 24, 25, respectively. The plots on the left show the first order approxima-
tions of WCVaR∗(ε) = WCVaR∗β(γε1 , γ

ε
2) versus the exact function values. When the points

are almost on the identity line y = x, the first order approximations are good to approxi-
mate the optimal function value. The plots on the right show the difference ŵ(ε)−w∗(ε)
for 4 assets. When the differences for all 4 assets are small, the first order approximations
are good.

We can see that the plots indicate the first order approximations of w∗(ε) and WCVaR∗(ε)
after perturbation are good when |ε1| = 1/10γ1 (the scale for the w∗(ε)−ŵ(ε) is 10−5) but
not as good even with the small change |ε2| = 1/50γ2 (the scale for the w∗(ε)−ŵ(ε) is 10−3).
Note that in this analysis (γ1, γ2) are taken as the bootstrapping values for each sample (20
pairs of bootstrapping (γ1, γ2) with means 0.0474, 0.0199, variances 2.58×10−7, 3.82×10−6,
respectively) and µ0 = 0. But we can also take other initial values for the γi.
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Figure 2.2: first order approximation is good when ε1 = ±1/10γ1 and ε2 = 0
(upper ε1 = 1/10γ1, lower ε1 = −1/10γ1)
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Figure 2.3: first order approximation is not as good when ε2 = ±1/50γ2 and ε1 = 0
(upper ε2 = 1/50γ2, lower ε2 = −1/50γ2)

Therefore, in this case, we can trust the first order approximation of w∗(ε) and WCVaR∗(ε)
within ±10% of γ1 (we need to find a smaller ”trust region” for the first order approxima-
tion or have to investigate the higher order approximation for γ2) and compute the relative
change of optimal w,

∆1 :=
‖w∗(ε)−w∗‖1

‖w∗‖1

= ‖w∗(ε)−w∗‖1 ,
2 (2.2)

2Recall the budget constraint ‖w∗‖1 = 1.
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or that of the optimal worst case CVaR,

∆2 :=
WCVaR∗(ε)−WCVaR∗

WCVaR∗
(2.3)

to see if the output is sensitive to the uncertainty parameters. We will focus on the sensi-
tivity of w and take (2.2) as a robustness measure. Note that ∆1 can also be approximated
by

∆̃1 := ‖ŵ(ε)−w∗‖1 ≈ ∆1.

2.2.2 Three Methods to Determine Size of Uncertainty Set

Method 1: Find Elbow Point for the L-Curve

By fixing one of (γ1, γ2) and changing the other, we can plot the curve of cumulative w
and ∆1 by solving (P0) multiple times, see figures 2.4 and 2.5. Note that although the
grid of γi (i.e. x-axis) is evenly-spaced in the examples, ∆1 will be normalized. When
the grid is not evenly spaced, the uneven space will influence ∆1 so that normalization
∆1

εi
is necessary. Furthermore, we need to test the consistency about the normalized ∆1,

which means different grids generate the curve with similar shape and elbow point (see an
example in figure 2.6).

In statistics as well as ill-conditioned problems in optimization, a curve with a negative
first derivative and a unimodal second derivative is often termed an L-curve as it typically
has an L-shaped graph. The point with maximum absolute curvature

k =
|y′′|

(1 + y′2)
3
2

is the elbow point of the curve. In general, the elbow point is the point with most informa-
tion preserved in a small space. Figures 2.4b and 2.5b are very similar to an L-curve with
some random noise. In fact, the small change around γ2 = 0.025 in figure 2.5b is from the
asset 3 being added to the portfolio.
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(a) cumulative w v.s. γ1 (b) ∆1/ε1 v.s. γ1

Figure 2.4: w and normalized ∆1 versus γ1 by solving P0 40 times, with γ2 = 0.0584

(a) cumulative w v.s. γ2 (b) ∆1/ε2 v.s. γ2

Figure 2.5: w and normalized ∆1 versus γ2 by solving P0 40 times, with γ1 = 0.0485

Therefore, we can choose the elbow points as γi because they are conservative enough.3

The steps for this method are:

3There are some risk in the calculation of κ: when there are significant difference between the scale of
x and y, κ cannot be found properly. So in our algorithm to find the elbow point, we will first adjust the
axis: yadj = y/max(y)×max(x).
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Figure 2.6: even and uneven grids will generate similar L-curves

Step 1. Pick an initial pair of (γ
(0)
1 , γ

(0)
2 ). It can be from the bootstrap method4 or by

subjective judgment.

Step 2. Find grids5 for γi.

Step 3. Repeat the following steps till convergence (i.e. (γ
(r)
1 , γ

(r)
2 ) = (γ

(r−1)
1 , γ

(r−1)
2 )6):

a. Fix γ2 = γ
(r−1)
2 . Solve P0 for each γ1 on the grid and compute the normalized

∆1.

b. Find γ
(r)
1 as the elbow point of the normalized ∆1 versus γ1.

c. Fix γ1 = γ
(r)
1 . Solve P0 for each γ2 and compute the normalized ∆1.

d. Find γ
(r)
2 as the elbow point of the normalized ∆1 versus γ1.

Step 4. Take (γ
(r)
1 , γ

(r)
2 ) as the final pair.

Back to the simulation example, step 3 ends after two loops. Start from the bootstrap-
ping pair (γ

(0)
1 , γ

(0)
2 ) = (0.0485, 0.0584) with the grids equally spaced between 0 and γ

(0)
i

by 40 points, the final pair (γ
(2)
1 , γ

(2)
2 ) = (0.0062, 0.0209).

4There is no need for many bootstrapping resamples because we just want to get the sense about how
large it should be.

5The grids can be either evenly-spaced or unevenly-spaced between 0 and kγ
(0)
i with k ≥ 1.

6Because we have a discrete grid for γi, the equality can be satisfied.
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Method 2: Control the Sensitivity with a Threshold

Let D = (M∗)−1N∗. We can observe from (1.16) that

w∗j (ε) = w∗j +D(j, :)ε + o(‖ε‖), j = 1, . . . , n.

Therefore,

D(j, i) =
dwj
dεi

, j = 1, . . . , n; i = 1, 2.

In the meantime,

lim
εj→0+

∆1

εj
= lim

εi→0+

‖w∗(ε)−w∗‖1

εi
= lim

εi→0+

1

εi

n∑
j=1

|wj(ε)− wj|

=
n∑
j=1

lim
εi→0+

|wj(ε)− wj|
εi

=
n∑
j=1

∣∣∣∣dwjdεi

∣∣∣∣ , i = 1, 2.

So,

‖D(1 : n, i)‖1 = lim
εi→0+

∆1

εi
, i = 1, 2. (2.4)

Let d1 = ‖D(1 : n, 1)‖1 and d2 = ‖D(1 : n, 2)‖1 If, as we observed from figures 2.4b
and 2.5b that the normalized ∆1 has a decreasing trend, it will be safe to use the following
procedure to pick (γ1, γ2):

Step 1. Decide a termination condition. For example, di < L, i = 1, 2 for some small
threshold L.

Step 2. Decide a magnification factor, f> 1.

Step 3. Start from a small pair of (γ
(0)
1 , γ

(0)
2 ).

Step 4. Repeat the following steps till the termination condition is satisfied:

a. Solve P0 with the pair (γ
(r)
1 , γ

(r)
2 ) and compute d1 and d2.

b. For i = 1, 2, if di ≥ L, update γ
(r+1)
i = f × γ(r)

i . Otherwise, keep γ
(r+1)
i = γ

(r)
i .

Compared with Method 1, this method doesn’t need to compute all the optimal solution
on the grid but take L as good threshold and believe that w∗ is stable enough. In the
algorithm, it updates γ1 and γ2 at the same time.
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The biggest challenge for this method is how to pick L and f . Smaller L and f will
increase the computation. L can also have an important impact on the search route as
well as on the final pair. In intuition, di will tend to 0 (L can be very small) when the
uncertainty set gets larger (i.e. both γi are larger). This is because when the uncertainty
set is large enough, the worst case w will be so bad7 that, further enlarging the uncertainty
set will not make the result worse much. In addition, when the number of assets increase,
L should be smaller.

Figures 2.7 and 2.8 in pages 31, 32 show the surfaces of d1 and d2 versus γ1 and γ2. Both
di tend to decrease when γi are larger. We also show the search routes from 0.1γ

(0)
i with

f = 1.25 and L = 0.5, 0.8 on the surface. (γ
(0)
1 , γ

(0)
2 ) = (0.0485, 0.0584) is the bootstrapping

pair. The final pairs are (0.0095, 0.0849) for L = 0.5 and (0.0049, 0.0679) for L = 0.8.

7The worst of all cases is to put all the money in the asset with lowest risk and expected return, as
long as it can satisfy the expected return constraint.
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Figure 2.7: d1 versus γ1 and γ2 with search routes L=0.5 & L=0.8
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Figure 2.8: d2 versus γ1 and γ2 with search routes L=0.5 & L=0.8

Method 3: Find Elbow Point with the First Order Derivative

With the relationship of the first order derivative and normalized ∆1 in (2.4), mixing with
the idea of elbow points and L-curves in Method 1, we can alternatively find the elbow
points of d1 and d2. The procedure is as follows:

Step 1. Pick an initial pair of (γ
(0)
1 , γ

(0)
2 ).

Step 2. Find grids for γi.

Step 3. Repeat the following steps till convergence (i.e. (γ
(r)
1 , γ

(r)
2 ) = (γ

(r−1)
1 , γ

(r−1)
2 )):
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a. Fix γ2 = γ
(r−1)
2 . Solve P0 for each γ1 on the grid and compute d1.

b. Find γ
(r)
1 as the elbow point of d1 versus γ1.

c. Fix γ1 = γ
(r)
1 . Solve P0 for each γ2 and compute d2.

d. Find γ
(r)
2 as the elbow point of d2 versus γ1.

Step 4. Take (γ
(r)
1 , γ

(r)
2 ) as the final pair.

In our example, step 3 ends after two loops. Start from the bootstrapping pair (γ
(0)
1 , γ

(0)
2 ) =

(0.0485, 0.0584) with the grids equally spaced between 0 and γ
(0)
i by 40 points, the final

pair (γ
(2)
1 , γ

(2)
2 ) = (0.0087, 0.0224).

This method is much more compute-intensive than method 2. It is also slightly more
compute-intensive than method 1 because in addition to solve P0 multiple times till con-
vergence, it needs to calculate M∗ and N∗ for di.

2.3 Robust Mean-CVaR Problem

Recall the robust mean-CVaR problem in (P0). In this section, we will analyze the sen-
sitivity analysis results for the robust mean-CVaR problem. µ0 = 0.05 and β = 0.95 are
set.

2.3.1 Performance of the First Order Approximation

Using the same method and scale of ε1 = 1/10γ1, ε2 = 1/50γ2 in section 2.2.1, we plot
the figures 2.9 and 2.10. Note that the perturbed problem is infeasible for some samples
(e.g. sample 5, 11, 16, 20 when ε1 = 1/10γ1 and ε2 = 0).

The performance of the first order approximation in the mean-CVaR problem is not so
good as that of global minimum risk problem in the last section. The additional target
expected return constraint introduces a more complicated shape to solution space for the
problem.
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Figure 2.9: first order approximation is bad when ε1 = 1/10γ1 and ε2 = 0
(Similar result when ε1 = −1/10γ1)

Figure 2.10: first order approximation is not good when ε2 = 1/50γ2 and ε1 = 0
(Similar result when ε2 = −1/50γ2)

2.3.2 No L-curve for Mean-CVaR Problem

In section 2.2.2, we have observed that the normalized ∆1 (or di) versus γi is similar to an
L-curve. Based on the observation, we have proposed three methods to pick γi. Therefore,
we need to test whether the L-shape preserves with the target expected return constraint.

In figure 2.11 in page 35, we plot ∆1 versus one of γi with the other γi fixed. We can
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see that when γi is small, there are several small points, indicating the similarity of the
optimal strategy, w∗. The target expected return constraint is inactive for the first two
γ1 while the constraint is always active for the γ2 in the plot. In figure 2.12 in page 36,
we plot di versus the pair of (γ1, γ2) and show each three-dimension plot in two directions.
The shape of the surfaces are not as smooth as in figures 2.7 and 2.8 in pages 31, 32. The
range of di (i.e. d1 as large as 60) also shows the instability of the strategy, w∗.

Both figures indicate the failure of L-shape for the mean-CVaR problem so the methods
we proposed in section 2.2.2 are no longer appropriate. We will leave the reason for the
observation as an open question.

(a) ∆1 versus γ1 with γ2 = 0.0584 (b) ∆1 versus γ2 with γ1 = 0.0485

Figure 2.11: There is no L-curve for mean-CVaR problem
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Figure 2.12: The surfaces of d1 and d2 are not L-shape

Although we don’t observe the L-curve for the robustness measure, the sensitivity
analysis result can still be applied to decide whether a given pair of (γ1, γ2) is robust
enough. Recall the interpretation of di. It shows the relative change of w∗ measured
by 1-norm when γi is perturbed by a unit of small noise. In our example with given
(γ1, γ2) = (0.0485, 0.0584), d1 = 26.4814, d2 = 0.6456. As d2 is smaller than 1, γ2 = 0.0584
seems to be appropriate. However, the large d1 indicates the inappropriateness of γ1. One
possible re-selection is γ1 = 0.0243 where d1 is the smallest when γ2 = 0.0584 is fixed.
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2.4 Comparison of Efficient Frontiers and Portfolio

Composition

Below is a summary of γi selected by multiple methods for the global minimum risk problem
in section 2.2. The last column shows the true values as in (2.1).

γi Bootstrapping M1: Elbow M2: L = 0.5 M2: L = 0.8 M3: Elbow True

γ1 0.0485 0.0062 0.0095 0.0049 0.0087 0.0238
γ2 0.0584 0.0209 0.0849 0.0679 0.0224 0.0400

Table 1: Summary of γi in the simulation analysis for different methods

Although the pairs of (γ1, γ2) are selected for the global minimum risk problem, it is
interesting to use them to solve the mean-CVaR problem and compare their performance.

The portfolio cumulative compositions (cumulative composition versus expected return)
under each pair of γi are shown in figure 2.13 in page 38.

For a given w and a given pair of (γ1, γ2), the worst case µwc and Σwc are in (1.19).
Accordingly, the worst case CVaR and expected return (WR) can be computed by:

WCVaRw = −µT
wcw + κ

√
wΣwcw, WRw = µT

wcw.

Therefore, taking the true γi in table 1, as well as all the w on each efficient frontier (with
different γi), we can compare the frontiers in figure 2.14 in page 39. We can see that each
frontier has an approximately identical shape to the efficient frontier (blue in figure 2.14),
which supports our use of γi by each method (for the global minimum risk problem and
even for mean-CVaR problem). The frontiers of portfolios got from (SMC) and (RMC-U0)
are also graphed as a reference.
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(a) True γi (b) Bootstrap method (c) Method 1

(d) Method 2: L = 0.5 (e) Method 2: L = 0.8 (f) Method 3

Figure 2.13: Composition of portfolios on the efficient frontiers under each (γ1, γ2)
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Figure 2.14: Mean-CVaR Frontiers under true (γ1, γ2) = (0.0238, 0.0400)
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Chapter 3

Empirical Analysis

This chapter reports the empirical study of the robust portfolios based on real data. We
use the moving window analysis to evaluate the out-of-sample performance of different
inputs in the model.

3.1 Data and Methodology

The real data used here is the Credit Suisse Hedge Fund Index comprised by 12 subsets
in table 1. The sample period is from January 2000 to October 2019. The return on
revenue, ROR is given on a monthly basis. Figure 3.1 shows a histogram of Credit Suisse
Convertible Arbitrage Hedge Fund Index ROR during this period. The ROR observations
below -10% are in September and October 2008 during the financial crisis period.

The analysis picks the period of January 2000 to December 2014 as the initial training
set with 180 observations and rebalances the portfolio once a month. We use a moving
window of 180 observations, which means, when the data is realized after a month, it will
be added into the training data set and the oldest one will be removed. Accordingly, the
investment window is from January 2015 to October 2019. We have to point out that
the moving training window always contains the extremely high loss period during the
2008 financial crisis. Therefore, the problem is how to make a robust investment decision
while some extreme data has been included in the training dataset. In other words, the
investment strategy should avoid being too conservative.

To calculate the sample mean and covariance matrix, we use the time-weighted esti-
mates with p[i] in (1.6).
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1 Credit Suisse Convertible Arbitrage Hedge Fund Index
2 Credit Suisse Emerging Markets Hedge Fund Index
3 Credit Suisse Equity Market Neutral Hedge Fund Index
4 Credit Suisse Event Driven Hedge Fund Index
5 Credit Suisse Event Driven Distressed Hedge Fund Index
6 Credit Suisse Event Driven Multi-Strategy Hedge Fund Index
7 Credit Suisse Event Driven Risk Arbitrage Hedge Fund Index
8 Credit Suisse Fixed Income Arbitrage Hedge Fund Index
9 Credit Suisse Global Macro Hedge Fund Index
10 Credit Suisse Long/Short Equity Hedge Fund Index
11 Credit Suisse Managed Futures Hedge Fund Index
12 Credit Suisse Multi-Strategy Hedge Fund Index

Table 1: Subsets of Credit Suisse Hedge Fund Index

Figure 3.1: Histogram of Credit Suisse Convertible Arbitrage Hedge Fund Index monthly
ROR during January 2000 to October 2019
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To mostly take advantage of our methods to choose different (γ1, γ2) but save the
computation, we re-calculate it once a year.

We use bootstrapping method with 5000 resamples, Method 1, Method 2 with L = 0.1
and L = 0.3 to calculate γi. For Method 1, 2 and 3, (γ

(0)
1 , γ

(0)
2 ) is taken as bootstrapping γi

from each moving window for re-calculation. The grids for both Method 1 and Method 3
are evenly spaced between 0 and 1.1γ

(0)
i by 20 points. We decide the magnification factor

f = 1.25 for Method 2. In addition to the robust problem, we also solve the non-robust
sampled base problem as in (SMC) as a reference. We use the time-weighted estimates
with p[i] in (1.6) for both the objective function and the expected return.

For each method, we compute the accumulative wealth, Wi in the investment window
with initial wealth W0 = 1 by the equation:

Wi+1 = Wi × [(1n + RORi+1)Tw∗i+1],

where RORi+1 is the vector of recently realized return on revenue for according assets. We
also compute the actual ROR of the portfolio, RORP,i+1 by:

RORP,i+1 = Wi+1/Wi − 1 = RORi+1
Tw∗i+1.

The variance of {RORP,i} will be reported as an indicator for the fluctuation of actual
ROR during the investment period.

3.2 Global Minimum Risk Portfolio

In this section, we solve for global minimum risk portfolios using different methods. Recall
the global minimum risk problem is (P0) without the target expected return constraint:

WCVaR∗β(γ1, γ2) = min
w∈Rn

−µ̂Tw + κ
∥∥∥(Σ̂ + γ2In)1/2w

∥∥∥
2

+
√
γ1

∥∥∥Σ̂1/2w
∥∥∥

2

s.t. 1Tnw = 1, w ≥ 0.

The pairs of (γ1, γ2) from different methods, re-calculated once a year, are shown in table 2.
It is shown that for γ1, the method 2 with L = 0.01 generates extremely large values
compared to the other methods. The sensitivity of γi to L indicates the importance as
well as the difficulty to choose an appropriate L. For γ2, the bootstrapping values are the
largest.

Figure 3.2 shows the accumulative wealth by different methods. In addition to the
robust problems (P0), we also solve (SMC) without the expected return constraint. We
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γi Method
Year

2015 2016 2017 2018 2019

γ1

Bootstrapping 0.3329 0.2973 0.2036 0.2223 0.2074
M1: Elbow 0.0964 0.0861 0.0589 0.0644 0.0600
M2: L = 0.01 8.9642 12.5079 10.7072 11.6931 10.9090
M2: L = 0.05 0.6160 0.5501 0.5886 0.4114 0.4798
M3: Elbow 0.0964 0.3098 0.1179 0.0644 0.0600

γ2

Bootstrapping 19.2412 19.8333 21.1493 22.7042 24.7905
M1: Elbow 2.2279 9.1860 7.3466 6.5723 5.7410
M2: L = 0.01 9.3332 9.6204 10.2587 8.8104 9.6200
M2: L = 0.05 1.5659 1.6140 1.3769 1.4781 1.6140
M3: Elbow 2.2279 2.2965 3.6733 6.5723 5.7410

Table 2: 5 year γi from different methods

can see that the method 2 with L = 0.05 has the overall best performance. Note that it also
has the smallest γ2 but the second largest γ1 of all years. Specifically, in figure 3.3 we plot
the actual ROR of each portfolio for the bootstrap method and method 2 with L = 0.05,
which has the overall best and worst performance concerning the final accumulative wealth
in figure 3.2. In addition, we also plot the actual ROR from the method 2 with L = 0.01
as it has the largest γ1 and from (SMC).
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Figure 3.2: Accumulative wealth by different methods

Figure 3.3: Actual ROR by different methods
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In figure 3.3, we can see that method 2 with L = 0.05, which has the overall highest
accumulative wealth, is not the one with the highest RORP,i but the one with the most
stable RORP,i. The variance of its actual ROR is 3.9737× 10−5. The most fluctuate ROR
is by the bootstrap method with variance of 6.5163 × 10−5. The variance of the ROR is
reported in table 3.

Method Bootstrapping M1: Elbow
M2:
L = 0.01

M2:
L = 0.05

M3: Elbow SMC

Variance
(×10−5)

6.5163 5.1847 4.9617 3.9737 4.9548 5.0626

Table 3: Variance of actual ROR by different methods

3.3 Robust Mean-CVaR Portfolio

Recall the global maximum expected return problem in (1.12). It can be reformulated as:

WR∗(γ1) = max
w∈Rn

µ̂Tw −√γ1

∥∥∥Σ̂1/2w
∥∥∥

2

s.t. 1Tnw = 1, w ≥ 0.

By solving the global maximum expected return portfolio, we get an upper bound of feasible
µ0 for (P0) with bootstrapping γi. We decide a target expected return, µ0 = −0.2%, which
means, under the worst case characterized by (γ1, γ2) in (P0), the expected loss is less
than 0.2%. Although there is no L-curve for the mean-CVaR problem, the frontiers in
figure 2.14 in page 39 support γi picked for the global minimum risk problem to be used in
the mean-CVaR problem. Therefore, we use the γi in table 2. As in the last section, the
result from the non-robust problem (SMC) will be presented as a reference.
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Figure 3.4: Accumulative wealth by different methods with µ = −0.2%

In figure 3.4, the accumulative wealth with different γi is shown. Method 2 with both
L is infeasible with the expected return constraint. Method 1 with µ = −0.2% has the
expected return constraint always inactive, which means they are the same as the global
minimum risk portfolio. The bootstrap method has a trend very similar to method 3,
with the final accumulative wealth 1.1311 and 1.1325, respectively. The variance of actual
ROR is 6.2693 × 10−5, 4.9861 × 10−5, respectively, indicating a more stable investment
strategy by method 3. The non-robust problem has a very different pattern compared
with the other lines in the plot. It outperforms the robust problem significantly during the
first half year of 2016 but the performance gets worse till the end of year 2018. Its final
accumulative wealth is 1.1303. The actual ROR is shown in figure 3.5. The variance of
the ROR is reported in table 4.
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Figure 3.5: Actual ROR by different methods with µ = −0.2%

Bootstrapping M1: Elbow M3: Elbow SMC
Variance(×10−5) 6.2693 5.1847 4.9861 5.0491

Table 4: Variance of actual ROR by different methods with µ = −0.2%
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this report, we illustrated sensitivity analysis results in the robust mean-CVaR optimiza-
tion problem in order to improve the size parameters for uncertainty sets in the prospect
of the underlying problem but not only the data. The robustness measures are proposed
to quantify the robustness of the results directly. They have a closed relationship with the
first order derivative resulting from the sensitivity analysis.

Especially, we utilized the result of perturbation result towards size parameters of
uncertainty set and observed the L-shape under the global minimum CVaR problem. As
a result of the L-curve, we proposed three methods to select size parameters. The three
methods include finding the elbow point for the L-curve with respect to the computed
robustness measure and to the first order derivative of the optimal solution, as well as
controlling the sensitivity with a threshold.

4.2 Future Work

One future work which naturally follows from here is to understand the L-shape we ob-
served for the global minimum risk problem but not for the mean-CVaR problem. Another
direction is to better determine the size parameter by utilizing the sensitivity analysis
towards the original parameters as in section 1.3.1 and the direct inputs to the problem.
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Appendix A

Additional Notation

Notation A.0.1. For symbolic consistency, bold lower case letters (e.g. w) are (non-
random) vectors, bold upper case letters (e.g. X) are random vectors, bold upper case
letters with square bracket subscripts (e.g. X[i]) are realized data of random vectors, non-
bold upper case letters (e.g. X1) are random variables or matrices without further notations.
In is the n × n identity matrix. 0n is the n-dimensional zero vector. 0m×n is the m × n
zero matrix. Sn is the space of n×n symmetric metrics and Sn+ (Sn++) is the cone of n×n
symmetric positive semidefinite (positive definite, respectively) matrices, For two matrices
A,B ∈ Sn, we let A � B or B −A � 0 refer to B −A ∈ Sn+ (similarly for � 0 and Sn++).

Notation A.0.2. The submatrix notation in the following will be in consistence with MAT-
LAB.
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Appendix B

Calculation of the Second Order
Derivative ∇2

εw‖(L + LMat(ε2))
Tw‖2

First, by differentiating the quadratic form in w ∈ Rn, we note that the gradient is

∇w‖(L+ LMat(ε2))Tw‖2 =
(L+ LMat(ε2))(L+ LMat(ε2))Tw

‖(L+ LMat(ε2))Tw‖2

. (B.1)

Now for ε ∈ Rn+t(n), since this is only a function of ε2, we see that the gradient is

∇ε2‖(L+ LMat(ε2))Tw‖2 = ∇ε2‖LTw + LMat(ε2)Tw‖2

= ∇ε2‖bw + Lw(ε2)‖2

= 1
2‖bw+Lw(ε2)‖2∇ε2 〈bw + Lw(ε2),bw + Lw(ε2)〉

= 1
2‖bw+Lw(ε2)‖2∇ε2(〈Lw(ε2),Lw(ε2)〉+ 2 〈Lw(ε2),bw〉),

(B.2)
where bw = LTw and Lw(ε2) = LMat(ε2))Tw : Rt(n) → Rn is a linear transformation as
LMat(ε2)) is a linear transformation. We note that the partial with respect to ε1 is 0n, so
that:

∇ε‖(L+ LMat(ε2))Tw‖2 =

[
0n

∇ε2‖(L+ LMat(ε2))Tw‖2

]
=

[
0t(n)×n It(n)

]T ∇ε2‖(L+ LMat(ε2))Tw‖2

(B.3)

Recall that the adjoint L∗ of a linear transformation L : V → W is defined by

〈w,L(v)〉 = 〈L∗(w), v〉, ∀v ∈ V, ∀w ∈ W.
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Proposition B.0.1. Let L : Rn → Rm be a linear transformation with adjoint L∗. Then
the gradients satisfy

∇ε 〈L(ε),L(ε)〉 = 2L∗(L(ε)) (B.4)

∇ε 〈L(ε),b〉 = L∗(b) (B.5)

Proof. Let f(ε) = 〈L(ε),L(ε)〉 and g(ε) = 〈L(ε),b〉. Use expansion with εδ = ε + δ:

f(εδ) = 〈L(ε + δ),L(ε + δ)〉
= 〈L(ε),L(ε)〉+ 2 〈L(ε),L(δ)〉+ 〈L(δ),L(δ)〉
= f(ε) + 〈2L∗(L(ε)), δ〉+ 1

2
〈2L∗(L(δ)), δ〉

g(εδ) = 〈L(ε + δ),b〉
= 〈L(ε),b〉+ 〈L(δ),b〉
= g(ε) + 〈L∗(b), δ〉 .

Therefore, by the definition of gradients, ∇εf(ε) = 2L∗(L(ε)) proves (B.4), and ∇εg(ε) =
L∗(b) proves (B.5).

Definition B.0.2. We denote vec(·) to be the vectorization of a matrix, columnwise, i.e.,

A ∈ Rm×n, vec(A) = (a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn)T ∈ Rmn.

Now we need to find the adjoint L∗w(u). Note that

〈Lw(ε2),u〉 =
〈
LMat(ε2)Tw,u

〉
= wT LMat(ε2)u
= trace(wT LMat(ε2)u)
= trace(uwT LMat(ε2))
= trace((wuT )T LMat(ε2))
= vec(wuT )Tvec(LMat(ε2)).

(B.6)

Definition B.0.3. We denote lvec(·) to be the lower vectorization of a matrix, i.e.,

A ∈ Rn×n, lvec(A) = (a11, . . . , an1, a22, . . . , an2, . . . , an−1,n−1, an,n−1, ann)T ∈ Rt(n).

lvec(·) is a linear transformation. For a vector x ∈ Rt(n), lvec(LMat(x)) = x. For a
lower triangular matrix L ∈ Rn×n, LMat(lvec(L)) = L.
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Therefore, continuing from (B.6), we find the desired adjoint from

〈Lw(ε2),u〉 = vec(wuT )Tvec(LMat(ε2))
= lvec(wuT )Tε2

=
〈
lvec(wuT ), ε2

〉
=⇒ L∗w(u) = lvec(wuT ).

We now continue on finding the gradients and parts of Hessians. By Proposition B.0.1,

∇ε2 〈Lw(ε2),Lw(ε2)〉 = 2L∗w(Lw(ε2)) = 2 lvec(wLw(ε2)T ) = 2 lvec(wwT LMat(ε2))
∇ε2 〈Lw(ε2), bw〉 = L∗w(bw) = lvec(wwTL)

Therefore, continuing from (B.2), the first partial derivative with respect to ε2 is:

∇ε2‖(L+ LMat(ε2))Tw‖2 = 1
‖(L+LMat(ε2))Tw‖2 (lvec(wwT LMat(ε2)) + lvec(wwTL))

= 1
‖(L+LMat(ε2))Tw‖2 lvec

(
wwT (L+ LMat (ε2))

)
(B.7)

For the second derivative with respect to w, use expansion with wδ = w + δ:

lvec((w + δ)(w + δ)TL) = lvec(wwTL) + lvec(wδTL) + lvec(δwTL) + lvec(δδTL).

If we can rewrite lvec(wδTL)+lvec(δwTL) as an inner product of 〈Aw, δ〉, then∇w lvec(wwTL) =
Aw.

Proposition B.0.4.
lvec(wδTL) = 〈LFw, δ〉

where Fw ∈ Rn×t(n) is as below:

Fw =


w1 w2 · · · wn 0 · · · 0 0 · · · 0 · · · 0
0 0 · · · 0 w2 · · · wn 0 · · · 0 · · · 0
0 0 · · · 0 0 · · · 0 w3 · · · wn · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...
. . .

...
0 0 · · · 0 0 · · · 0 0 · · · 0 · · · wn


For the i-th row, wi in the (2n + 2 − i)(i − 1)/2 + 1-th column with wi+1, . . . , wn in the
following columns and 0s in the other columns.

The readers can verify it by running the following code by Symbolic Math ToolboxTM

in MATLAB:
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Require: real number n

tn=(n+1)*n/2;

w=sym(’w’,[n 1],’real’); delta=sym(’d’,[n 1],’real’);

L=sym(’l’,[n n],’real’); L=tril(L);

vec1=lvec(w*delta’*L);

F = sym(’f’,[n tn],’real’); F(:,:)=0; % construct the matrix F

for i=1:n

begin_index=(2*n+2-i)*(i-1)/2+1; end_index=(2*n+2-i)*(i-1)/2+1+n-i;

F(i,begin_index:end_index)=w(i:end);

end

vec2=(L*F)’*delta;

isequaln(vec1,vec2)

where lvec is consistent to Definition B.0.3:

function y=lvec(X)

y=[];

n=size(X,1);

for i=1:n

y=[y;X(i:n,i)];

end

end

Proposition B.0.5.
lvec(δwTL) = 〈GL,w, δ〉

where Gw ∈ Rn×t(n) is a block matrix as below:

Let the coefficient vector c ∈ Rn be c = LTw = (c1, . . . , cn)T . Then,

GL,w =


c1In 0

c2In−1

. . .

cn−1I2

cnI1


The code for verification is as followed:
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Require: real number n

tn=(n+1)*n/2;

w=sym(’w’,[n 1],’real’); delta=sym(’d’,[n 1],’real’);

L=sym(’l’,[n n],’real’); L=tril(L);

vec1=lvec(delta*w’*L);

c=L’*w;

G=[]; % construct the matrix G

for i=1:n

temp=[zeros(i-1,n-i+1);c(i)*eye(n-i+1)]; G=[G,temp];

end

vec2=expand(G’*delta);

isequaln(vec1,vec2)

By Propositions B.0.4 and B.0.5,

∇w lvec
(
wwT (L+ LMat (ε2))

)
= (L+ LMat(ε2))Fw +G(L+LMat(ε2)),w (B.8)

Therefore, from (B.3) and (B.7) and by the Quotient Rule as well as (B.1) and (B.8), we
get that

∇2
εw‖(L+ LMat(ε2))Tw‖2 =

([
0t(n)×n It(n)

]T 1
‖(L+LMat(ε2))Tw‖22

)((
∇w lvec

(
wwT (L+ LMat (ε2))

))T ‖(L+ LMat(ε2))Tw‖2

−
(
lvec

(
wwT (L+ LMat (ε2))

)) (
∇w‖(L+ LMat(ε2))Tw‖2

)T)
(B.9)
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Index

F (X), cumulative distribution function, 4, 9
Gβ,F (w, λ), 5
Wi, accumulative wealth, 42
[t]+ := max(t, 0), 5
CVaR, conditional value-at-risk, 5
∆1, 25
∆2, 26
G, risks, 3
M+, set of all probability measures, 11
Ω, states of nature, 3
Σ, covariance matrix, 1
Sn, n× n symmetric matrices, 1
Sn+, cone of positive semidefinite matrices, 1
Sn++, cone of positive definite matrices, 1
U , uncertainty set, 7
VaR, value-at-risk, 4
chol(·), Cholesky decomposition, 15
κ, 11
lvec(·), lower vectorization, 52
ŵ(ε), 15
LMat(·), lower triangular matrix transfor-

mation, 16
ρ, risk measure, 3
� 0, positive definite, 1
� 0, positive semidefinite, 1
ROR, return on revenue, 40
WCVaR, worst case CVaR, 9
WR, worst case expected return, 13
vec(·), vectorization, 52
f , magnification factor, 29

k, absolute curvature, 26
l(X,w) = −XTw, loss function, 4
n× n symmetric matrices, Sn, 1
t(n) = n(n+ 1)/2, triangular number, 15
1n, n-dimensional vector of ones, 2
X = (X1, X2, . . . , Xn)T , random return vec-

tor, 2
ε, perturbation, 13, 15
µTw, portfolio expected return, 2
wTΣw, variance, 1
L∗w(u), 53
X , the feasible set of w, 5
w∗(ε), 14

absolute curvature, k, 26
absolute robust optimization, 7
accumulative wealth, Wi, 42
actual ROR of the portfolio, RORP,i+1, 42
adjoint, 51

budget constraint, 1Tnw = 1, 1

Cholesky decomposition, chol(·), 15
coherent, 4
conditional value-at-risk, CVaR, 5
cone of positive definite matrices, Sn++, 1
cone of positive semidefinite matrices, Sn+, 1
covariance matrix, Σ, 1
cumulative distribution function, F (X), 4, 9

distribution ambiguity, 10
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elbow point, 26
expected return constraint, µTw = µ0, 1

fat-tailed distribution, 3

global maximum expected return problem,
13

global minimum risk problem, 13

investment window, 40

L-curve, 1, 26
loss function, l(X,w) = −XTw, 4
lower triangular matrix transformation, LMat(·),

16
lower vectorization, lvec(·), 52

magnification factor, f , 29
Markowitz model, 2
monotonicity, 4
moving window, 40

n-dimensional vector of ones, 1n, 2

out-of-sample performance, 40

perturbation, ε, 13, 15
portfolio, 2
portfolio expected return, µTw, 2
positive definite, � 0, 1
positive homogeneity, 4
positive semidefinite, � 0, 1

random return vector, X = (X1, X2, . . . , Xn)T ,
2

relative robust CVaR model, RCVaRβ, 10
relative robust optimization, 7
return on revenue, ROR, 40
risk measure, ρ, 4
risks, G, 3
robustness measure, 26

sample-based mean-CVaR problem, 9
size parameters, 12
Soyster’s approach, 10
states of nature, Ω, 3
subadditivity, 4

translation invariance, 4
triangular number, t(n) = n(n+ 1)/2, 15

uncertainty set, U , 7

value-at-risk, VaR, 4
variance, wTΣw, 1
vectorization, vec(·), 52

weighted moving averages, 8
worst case CVaR, WCVaR, 9
worst case expected return, WR, 13
worst case risk measures, 9
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