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Abstract Minimization of the nuclear norm, NNM, is often used as a surrogate (convex
relaxation) for finding the minimum rank completion (recovery) of a partial matrix. The
minimum nuclear norm problem can be solved as a trace minimization semidefinite pro-
gramming problem, SDP. Interior point algorithms are the current methods of choice for
this class of problems. This means that it is difficult to: solve large scale problems; exploit
sparsity; and get high accuracy solutions. The SDP and its dual are regular in the sense that
they both satisfy strict feasibility. In this paper we take advantage of the structure of low
rank solutions in the SDP embedding. We show that even though strict feasibility holds,
the facial reduction framework used for problems where strict feasibility fails can be suc-
cessfully applied to generically obtain a proper face that contains all minimum low rank
solutions for the original completion problem. This can dramatically reduce the size of the
final NNM problem, while simultaneously guaranteeing a low-rank solution. This can be
compared to identifying part of the active set in general nonlinear programming problems.
In the case that the graph of the sampled matrix has sufficient bicliques, we get a low rank
solution independent of any nuclear norm minimization. We include numerical tests for both
exact and noisy cases. We illustrate that our approach yields lower ranks and higher accuracy
than obtained from just the NNM approach.
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1 Introduction

We consider the intractable low-rank matrix completion problem, LRMC, i.e., the problem
of finding the missing elements of a given partial matrix so that the completion has low-
rank. This problem can be relaxed using the nuclear norm that can then be solved using a
semidefinite programming, SDP, model. Though the resulting SDP and its dual satisfy strict
feasibility, we show that it is implicitly highly degenerate and amenable to facial reduction,
FR. This is done by taking advantage of the special structure atminimum low rank solutions of
the completion problemwithin the SDP formulation. This often results in improved low rank
solutions compared to just using the nuclear norm relaxation. In addition, we get improved
accuracy and efficiency in the algorithm. A key in the success is the use of the exposing
vector approach, see [5], that is particularly amenable to the noisy case. Moreover, from
FR we get a significant reduction in the size of the variables of the nuclear norm relaxation
and a corresponding decrease in the possible rank of the solution of the LRMC. If the data
is exact, then FR results in redundant constraints that we remove before solving for the low-
rank solution. While if the data is contaminated with noise, FR yields an overdetermined
semidefinite least squares problem. We flip this problem to minimize the nuclear norm using
a Pareto frontier approach. Instead of removing constraints from the overdetermined problem,
we exploit the notion of sketch matrix to reduce the size of the overdetermined problem. The
sketch matrix approach is studied in e.g., [19].

The problem of LRMC has many applications to real applications in data science, model
reduction, collaborative filtering (the well known Netflix problem) sensor network localiza-
tion, pattern recognition and various other machine learning scenarios, e.g., [22,23]. See
also the recent work in [2,20,24] and the references therein. Of particular interest is the case
where the data is contaminated with noise. This falls into the area of compressed sensing
or compressive sampling. An extensive collection of papers, books, codes is available at the
Compressed Sensing 2.0 Community, sites.google.com/site/compressedsensing/.

The convex relaxation of minimizing the rank using the nuclear norm, the sum of the
singular values, is studied in e.g., [10,11,20]. The solutions can be found directly by sub-
gradient methods or by using SDP with interior point methods or low-rank methods, again
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see [20]. Many other methods have been developed, e.g., [17]. The two main approaches for
rank minimization, convex relaxations and spectral methods, are discussed in [4,15] along
with a new algebraic combinatorial approach. A related analysis from a different viewpoint
using rigidity in graphs is provided in [21].

1.1 Outline

We continue in Sect. 2 with the basic notions for LRMC using the nuclear norm and with
the graph framework that we employ. Then in Sect. 3 we include preliminaries on cone facial
structure and the details on how to exploit FR, for the SDP model to minimize the rank. The
main result for the reduction is in Lemma 3.4.

The results for the noiseless case are given in Sect. 4.1. This includes an outline of the
basic approach in Algorithm 3.1 and empirical results from randomly generated problems.
The noisy case follows in Sect. 4.2 with empirical results. We include a comparison against
using CVX [13] and minimizing the nuclear norm directly in Sect. 4.3. Concluding remarks
are given in Sect. 5.

2 Background on LRMC, NNM, SDP

We now consider our problem within the known framework on relaxing the low-rank matrix
completion problem using the nuclear norm minimization and then using SDP to solve the
relaxation. For the standard results we follow and include much of the known development
in the literature e.g., [10,11,20]. In this section we also include several useful tools and a
graph theoretic framework that allows us to exploit FR at the optimum.

2.1 Models

Suppose that we are given a (random) low rank m × n real matrix Z ∈ R
m×n where a subset

of entries are sampled. The LRMC can be modeled as follows:

(LRMC)
min rank(M)

s.t. PÊ (M) = z,
(2.1)

where Ê is the set of indices containing the known (sampled) entries of Z , PÊ (·) : Rm×n →
R

|Ê | is the projection onto the corresponding entries in Ê , and z = PÊ (Z) is the vector of
known entries formed from Z . However, the rank function is not a convex function and the
LRMC is computationally intractable, e.g., [14].

To set up the problem as a convex optimization problem, we can relax the rank minimiza-
tion using nuclear norm minimization, NNM:

(NNM)
min ‖M‖∗
s.t. PÊ (M) = z,

(2.2)

where the nuclear norm ‖ · ‖∗ is the sum of the singular values, i.e., ‖M‖∗ = ∑
i σi (M). The

general primal–dual pair of problems for the NNM problem is

minM ‖M‖∗
s.t. A(M) = z,

maxy 〈z, y〉
s.t. ‖A∗(y)‖ ≤ 1,

(2.3)

where A : Rm×n → R
t is a linear mapping, z ∈ R

t , A∗ is the adjoint of A, and ‖ · ‖ is the
operator norm of a matrix, i.e., the largest singular value. The matrix norms ‖ · ‖∗ and ‖ · ‖
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are a dual pair of matrix norms akin to the vector �1, �∞ norms on the vector of singular
values. Without loss of generality, we further assume that A is surjective. In general, the
linear equality constraint is an underdetermined linear system. In our case, we restrict to the
case that A = PÊ .

1

Proposition 2.1 Suppose that, in the primal–dual pair (2.3), there exists M̂ withA(M̂) = z.
Then the pair of programs in (2.3) are a convex primal–dual pair and they satisfy both primal
and dual strong duality, i.e., the optimal values are equal and both values are attained.

Proof This is shown in [20, Prop. 2.1]. That primal and dual strong duality holds can be seen
from the fact that the generalized Slater condition trivially holds for both programs using
M = M̂, y = 0, respectively. 
�
Corollary 2.2 The optimal sets for the primal–dual pair in (2.3) are nonempty, convex,
compact sets.

Proof This follows since both problems are regular, i.e., since A is surjective, we conclude
that the primal satisfies the Mangasarian–Fromovitz constraint qualification; while y = 0
shows that the dual satisfies strict feasibility. It is well known that these two constraint
qualifications are equivalent to their respective dual problems having nonempty, convex,
compact optimal sets, e.g., [12]. 
�

The following proposition shows that the nuclear norm minimization problem is
SDP representable, i.e., we can embed the problem into an SDP and solve it efficiently.
Here Y � 0 denotes the Löwner partial order that Y is symmetric and positive semidefinite,
denoted Y ∈ Sm+n+ . We let  0,Sn++ denote positive definite.

Proposition 2.3 The optimal primal–dual solution set in (2.3) is the same as that in the
SDP primal–dual pair:

min 1
2 (trace(W1) + trace(W2))

s.t. Y =
[
W1 M
MT W2

]

� 0

A(M) = z

maxy 〈z, y〉
s.t.

[
Im A∗(y)

A∗(y)T In

]

� 0.
(2.4)


�
This means that after ignoring the 1

2 in the objective function, we can further transform
the NNM problem as:

min ‖Y‖∗ = trace(Y )

s.t. PĒ (Y ) = z
Y � 0,

(2.5)

where Ē is the set of indices in Y that correspond to Ê , the known entries of the upper

right block of

[
0 Z
ZT 0

]

∈ Sm+n . We emphasize that there is no constraint on the diagonal

blocks of Y in (2.4) or in (2.5). Therefore, we can always obtain a positive definite feasible
solution in this exact case by setting the diagonal elements of Y to be large enough. Therefore
strict feasibility, the Slater constraint qualification, always holds. Further, we recall that the

1 Note that the linear mapping A = PÊ : Rm×n → R
|Ê | corresponding to sampling is surjective as we can

consider A(M)i j∈Ê = trace(Ei j M), where Ei j is the i j-unit matrix.
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original (nonconvex) objective function is the rank and that the nuclear norm provides the
convex relaxation. Our aim is to minimize the rank of Y over the feasible set and resort to
the relaxation using the trace only if needed at the end.

When the data is contaminated with noise, we reformulate the equality constraint by
allowing the observed entries in the output matrix to be perturbed within a tolerance δ for
the norm, where δ is normally a known noise level of the data, i.e.,

min ‖Y‖∗ = trace(Y )

s.t. ‖PĒ (Y ) − z‖ ≤ δ

Y � 0.
(2.6)

2.2 Graph representation of the problem

Our sampling yields elements z = PÊ (Z). With the matrix Z and the sampled elements we

can associate a bipartite graph GZ = (Um, Vn, Ê), where

Um = {1, . . . ,m}, Vn = {1, . . . , n}.

Our algorithm exploits finding complete bipartite subgraphs, bicliques, inGZ . We now relate
this approach to finding cliques by using the larger symmetric matrix Y in (2.4). This allows
us to exploit FR and apply the clique algorithms from [5,16]. However, we keep the biclique
notation as much as possible.

Therefore, for our needs we associate Z with the undirected graph, G = (V, E), with
node set V = {1, . . . ,m,m + 1, . . . ,m + n} and edge set E that satisfies

{{ij ∈ V × V : i < j ≤ m} ∪ {ij ∈ V × V : m + 1 ≤ i < j ≤ m + n}} ⊆ E

⊆ {ij ∈ V × V : i < j}.

Note that as above, Ē is the set of edges excluding the trivial ones, that is,

Ē = E\{{ij ∈ V × V : i ≤ j ≤ m} ∪ {ij ∈ V × V : m + 1 ≤ i ≤ j ≤ m + n}}.

Recall that a biclique α in the graph GZ is a complete bipartite subgraph in GZ with
corresponding complete submatrix z[α]. This corresponds to a nontrivial2 clique in the graph
G, a complete subgraph in G. The cliques of interest are C = {i1, . . . , ik} with cardinalities

|C ∩ {1, . . . ,m}| = p �= 0, |C ∩ {m + 1, . . . ,m + n}| = q �= 0. (2.7)

The submatrix z[α] of Z for the corresponding biclique from the clique C is

z[α] ≡ X ≡ {Zi( j−m) : i j ∈ C}, sampled p × q rectangular submatrix. (2.8)

These non-trivial cliques in G that correspond to bicliques of GZ are at the center of our
algorithm.

2 ForGwehave the additional trivial cliques of size k,C = {i1, . . . , ik } ⊂ {1, . . . ,m} andC = { j1, . . . , jk } ⊂
{m + 1, . . . ,m + n}, that are not of interest to our algorithm.

123

Author's personal copy



J Glob Optim

Example 2.4 (Biclique for X ) Let them × n data matrix of rank r with m = 7, n = 6, r = 2
be

Z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 5 15 10 − 20 − 21 − 6
4 0 4 4 6 6

− 3 − 35 − 38 32 27 − 8
5 − 5 0 10 12 7
0 − 30 − 30 30 27 − 3
3 − 5 − 2 8 9 4
5 5 10 0 3 8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

After sampling we have unknown entries denoted by NA and known entries in
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 5 NA 10 − 20 NA − 6
4 0 4 4 6 6

− 3 NA NA 32 27 NA
5 NA 0 10 12 NA
NA − 30 NA NA 27 NA
3 − 5 − 2 8 NA 4
5 5 NA 0 3 NA

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then z = PÊ (Z) denotes a vector representation of the known entries. Ē denotes the corre-

sponding indices for Ê when Z is considered in the big matrix Y and E is formed from Ē
by adding on the indices corresponding to the diagonal blocks.

Suppose that our algorithm found a biclique α with indices

Ūm = {6, 1, 2}, V̄n = {1, 4, 3, 6}.
The corresponding submatrix is

z[α] ≡ X =
⎡

⎣
3 8 − 2 4

− 5 − 20 10 − 6
4 4 4 6

⎤

⎦ .

The sampled large matrix Y containing the sampled Z is filled in with the word free on
the diagonal blocks to emphasize that these blocks are free during the algorithm. Then the
clique CX corresponding to the biclique and the corresponding principal submatrix of Y
corresponding to X are, respectively,3

CX = {6, 1, 2|, |1 + 7, 4 + 7, 3 + 7, 6 + 7} = {6, 1, 2|, |8, 11, 10, 13},
and

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

FREE
3 8 − 2 4

− 5 − 20 10 − 6
4 4 4 6

3 − 5 4
8 − 20 4

− 2 10 4
4 − 6 6

FREE

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3 We have a bar | to emphasize the end/start of the row/column indices.
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3 Facial reduction, bicliques, exposing vectors

In this section we look at the details of FR and how to solve the facially reduced
SDP formulation forLRMC. In particular we show how to exploit bicliques in the graphGZ

and the special structure at low rank solutions. We note again that though strict feasibility
holds for the SDP formulation, we can take advantage of facial reduction and efficiently
obtain low-rank solutions.

3.1 Preliminaries on faces

We now present some of the geometric facts we need. More details can be found in e.g., [5,
16,18].

Suppose that K ⊆ Rn . Then K is a cone if λK ⊆ K ,∀λ ≥ 0. It is a proper closed convex
cone, if it is a closed set and

K + K ⊆ K , λK ⊆ K ,∀λ ≥ 0, int (K ) �= ∅, K ∩ (−K ) = {0}.
The dual cone, K ∗, is defined by

K ∗ = {φ ∈ Rn : 〈φ, k〉 ≥ 0,∀k ∈ K }.
A subcone F ⊆ K is a face, F � K , of the convex cone K if

x, y ∈ K , x + y ∈ F �⇒ x, y ∈ F.

The conjugate face, F∗, is defined by F∗ = F⊥ ∩ K ∗, where F⊥ denotes the orthogonal
complement of F . A face F � K is an exposed face if there exists φ ∈ K ∗ such that
F = φ⊥ ∩ K ; and φ is an exposing vector. Let S be a subset of the convex cone K , then
face(S) is the smallest face of K containing S. It is known that: a face of a face is a face; an
intersection of faces is a face; and essential for our algorithm is the following for finding an
exposing vector for the intersection of exposed faces Fi � K , i = 1, . . . , k, see [5],

{
Fi = K ∩ φ⊥

i ,∀i
}

�⇒
⎧
⎨

⎩
∩k
i=1Fi =

(
k∑

i=1

φi

)⊥
∩ K

⎫
⎬

⎭
.

For K = Sn+ the facial structure is well understood. Faces are characterized by the ranges
or nullspaces of the matrices in the face. Let X ∈ Sn+ be rank r and

X = [
P Q

]
[
D 0
0 0

]
[
P Q

]T

be the (orthogonal) spectral decomposition with D ∈ Sr++. Then the smallest face containing
X is

face(X) = PSr+PT = Sn+ ∩ (QQT )⊥.

The matrix QQT is an exposing vector for face(X). Moreover, the relative interior satisfies

relint(face(X)) = PSr++PT = relint(face(X̂)), ∀X̂ ∈ relint(face(X)),

i.e. the face and the exposing vectors are characterized by the eigenspace of any X̂ in the
relative interior of the face.

For our application we use the following view of facial reduction and exposed faces.
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Theorem 3.1 ([6, Theorem 4.1]) Consider a linear transformation M : Sn → R
m and a

nonempty feasible set

F := {
X ∈ Sn+ : M(X) = b

}
,

for some point b ∈ R
m . Then a vector v exposes a proper face of M(Sn+ ) containing b if,

and only if, v satisfies the auxiliary system

0 �= M∗v ∈ Sn+ and 〈v, b〉 = 0.

Let N denote the smallest face of M(Sn+ ) containing b. Then the following are true.

1. We always have Sn+ ∩ M−1N = face(F), the smallest face containing F .
2. For any vector v ∈ R

m the following equivalence holds:

v exposes N ⇐⇒ M∗v exposes face(F). (3.1)


�
The result in (3.1) details the facial reduction process for the matrix completion problem
using exposing vectors. More precisely, if B � 0 is a principal submatrix of the data and
trace V B = 0, V � 0, then V provides an exposing vector for the image of the coordinate
map. We can then complete V with zeros to get Y ∈ Sn+ an exposing vector forF . Define the
triangular number, t (n) = n(n + 1)/2, and the projection vec : Sn → R

t (n) that vectorizes
the upper-triangular part of a symmetric matrix columnwise. We let Mat : R

t (n) → Sn

denote the inverse mapping.

Corollary 3.2 Suppose that 1 < k < n and M in Theorem 3.1 is the coordinate projection
onto the leading principal submatrix of order k,m = t (k). Let B ∈ Sk+, b = vec(B) ∈ R

t (k),
i.e., for X ∈ Sn, we have

M(X)i j = bi j , ∀1 ≤ i ≤ j ≤ k.

Let

V ∈ Sk+, trace(V B) = 0, v = vec V .

Then Y = M∗v is an exposing vector for the feasible set F , i.e.,

trace(Y (F)) = 0.

Proof The proof follows immediately from Theorem 3.1 as v exposes N and Y = M∗v is
an exposing vector for face(F). 
�
3.2 Structure at low rank solutions

The results in Sect. 2 can now be used to prove the following special structure at low rank
feasible solutions. This structure is essential in our FR scheme.

Corollary 3.3 Let M∗ be optimal for the primal in (2.3) with rank(M∗) = rM . Let M∗ =
UDV T be the compact SVD, D ∈ SrY++. Define

W1 = UDUT , W2 = VDVT , (3.2)

and

Y =
[

W1 M∗
(M∗)T W2

]

=
[
U
V

]

D

[
U
V

]T

. (3.3)
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Then we have Y � 0 and optimal in (2.4) with rank(Y ) =: rY = rM and

‖M∗‖∗ = 1

2
trace(Y ) = trace(D).

Proof The matrices U, V have orthonormal columns. Therefore trace(Y ) = 2 trace(D) =
2‖M‖∗. 
�

Now suppose that there is a biclique α of GZ and a corresponding sampled submatrix,
z[α] ≡ X ∈ R

p×q , of Z ∈ R
m×n , with rank(X) = rX . Without loss of generality, after row

and column permutations if needed, we can assume that

Z =
[
Z1 Z2

X Z3

]

. (3.4)

Let the SVD be

X = [
U1 UX

]
[
� 0
0 0

]
[
V1 VX

]T
, � ∈ Sr++; (3.5)

and we have a full rank factorization X = P̄ Q̄T obtained using the compact SVD

X = P̄ Q̄T = U1�V T
1 , P̄ = U1�

1/2, Q̄ = V1�
1/2.

We see below that such a desirable X (after a permutation if needed), that corresponds to a
biclique α ∈ GZ , z[α] ≡ X , and at least one nontrivial exposing vector, is characterized by

CX = {m − p + 1, . . . ,m,m + 1, . . . ,m + q}, r ≤ min{p, q} < max{p, q}. (3.6)

Here we use the target rank, r . We can exploit the information using these bicliques to obtain
exposing vectors of the optimal face, F∗, i.e., the smallest face of Sm+n+ that contains the set
of low rank solutions, see Lemma 3.4, below.

By abuse of notation, we can express any feasible Y , and so any optimal Y , that has the
correct rank, as in (3.3), to get

0 � Y =

⎡

⎢
⎢
⎣

U
P
Q
V

⎤

⎥
⎥
⎦ D

⎡

⎢
⎢
⎣

U
P
Q
V

⎤

⎥
⎥
⎦

T

=

⎡

⎢
⎢
⎣

UDUT UDPT UDQT UDVT

PDUT PDPT PDQT PDVT

QDUT QDPT QDQT QDVT

VDUT VDPT VDQT VDVT

⎤

⎥
⎥
⎦ , D  0. (3.7)

We see that X = PDQT = P̄ Q̄T . Since we assume that X satisfies (3.6) and so is big enough,
we conclude that generically rX = rY = r , see Lemma 3.6 below, and that the ranges satisfy

Range(X) = Range(P) = Range(P̄) = Range(U1),

Range(XT ) = Range(Q) = Range(Q̄) = Range(V1).
(3.8)

This is the key for facial reduction as we can use an exposing vector formed as UXUT
X as

well as VXV T
X , and then add them together to get a third exposing vector.

Lemma 3.4 (Basic FR) Let X ∈ R
p×q be a sampled submatrix of Z, and let Z , X be as in

(3.4) (after a permutation if needed) with

rX := rank(X) ≤ min{p, q} < max{p, q}.
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Let X have a SVD as in (3.5). We now add appropriate blocks of zeros to the block exposing
vectors UXUT

X , VXV T
X and get

WX =

⎡

⎢
⎢
⎣

0 0 0 0
0 UXUT

X 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 VXV T

X 0
0 0 0 0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 0 0 0
0 UXUT

X 0 0
0 0 VXV T

X 0
0 0 0 0

⎤

⎥
⎥
⎦ . (3.9)

Let Y be any feasible solution of the primal problem in (2.4)with correct rank, rank(Y ) = rX .
Then all three matrices in (3.9) are exposing vectors for the minimal face containing Y . In
particular, for WX we have 0 �= WX � 0,WXY = 0. Moreover, if T is a full column rank
matrix with the columns forming a basis for Null(WX ), the nullspace of WX , then a facial
reduction step for the minimal face containing all feasible Y with the correct rank, yields

face(Y ) � TS(n+m)−(p+q−2r)
+ T T .

Proof Sincewehave assumed thatY has the correct rank,we canuse, for example the compact
spectral decomposition, and get (3.7), D ∈ SrX++, with both P, Q having rX columns. Since
the rank of a product of matrices is at most the maximum of the ranks of the matrices, we
see that rank(P) = rank(Q) = rX and the range equations in (3.8) hold by construction of
the SVD. Therefore,

UT
X P = 0, V T

X Q = 0 �⇒ UXU
T
X PDPT = 0, VXV

T
X QDQT = 0,

i.e., UXUT
X , VXV T

X provide exposing vectors as desired. We can now fill in with zeros and
add to get the conclusion about the three exposing vectors in (3.9). Moreover, the block
diagonal structure of the exposing vectors guarantees that the ranks add up to get the size of
the smaller face. 
�
Example 3.5 (Pair of exposing vectors)We now present a matrix Y ∈ S11+ with rank(Y ) = 2.
Here (m, n) = (6, 5).

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0059877 0.10551 − 0.011994 − 0.036276 − 0.073807 − 0.049863 − 0.049795 − 0.02602 0.01314 0.022035 − 0.012187
0.10551 2.1638 0.035252 − 0.6439 − 1.5417 − 0.77074 − 1.9215 − 0.13496 − 0.23004 0.13318 0.239

− 0.011994 0.035252 0.22366 0.068878 − 0.04733 0.18725 − 0.74543 0.31405 − 0.39999 − 0.25065 0.39174
− 0.036276 − 0.6439 0.068878 0.21984 0.45085 0.30043 0.31772 0.15267 − 0.072518 − 0.12958 0.066865
− 0.073807 − 1.5417 − 0.04733 0.45085 1.1006 0.52923 1.4401 0.064661 0.20335 − 0.069711 − 0.2089
− 0.049863 − 0.77074 0.18725 0.30043 0.52923 0.45348 0.044817 0.33131 − 0.27295 − 0.27387 0.26224
− 0.049795 − 1.9215 − 0.74543 0.31772 1.4401 0.044817 3.9923 − 0.89251 1.4727 0.69104 − 1.4538
− 0.02602 − 0.13496 0.31405 0.15267 0.064661 0.33131 − 0.89251 0.45673 − 0.54736 − 0.3667 0.53491

0.01314 − 0.23004 − 0.39999 − 0.072518 0.20335 − 0.27295 1.4727 − 0.54736 0.72824 0.43489 − 0.71429
0.022035 0.13318 − 0.25065 − 0.12958 − 0.069711 − 0.27387 0.69104 − 0.3667 0.43489 0.29471 − 0.42483

− 0.012187 0.239 0.39174 0.066865 − 0.2089 0.26224 − 1.4538 0.53491 − 0.71429 − 0.42483 0.7007

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Wesample the elements in rows4, 5, 6 and columns 7, 8, 9, 10 to obtain the (p = 3)×(q = 4)
matrix X .We letUX , VX , denote orthonormal bases for the nullspaces of X, XT , respectively,
i.e.,

XUX = 0, XT VX = 0.

Then the two exposing vectors areUXUT
X and VXV T

X , filled in with zeros. After adding them
together, we get

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.81985 − 0.17015 − 0.34459 0 0 0 0 0
0 0 0 − 0.17015 0.035313 0.071516 0 0 0 0 0
0 0 0 − 0.34459 0.071516 0.14483 0 0 0 0 0
0 0 0 0 0 0 0.023237 − 0.058066 − 0.12587 0.059006 0
0 0 0 0 0 0 − 0.058066 0.57988 0.34589 0.34729 0
0 0 0 0 0 0 − 0.12587 0.34589 0.68409 − 0.28395 0
0 0 0 0 0 0 0.059006 0.34729 − 0.28395 0.71279 0
0 0 0 0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.
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We see that

‖WY‖ = 7.67638e−16,

thus verifying to 15 decimals that the sum of the two exposing vectors is indeed an exposing
vector for face(Y ).

We emphasize that here we knew the two principal diagonal blocks of Y that corresponded
to the clique C = {4, 5, 6, 7, 8, 9, 10}. But in general we do not and only know the sampled
X . However, generically (Lemma 3.6, below), we get the exposing vectors correctly as done
here. Moreover, here we only had a single sampled X and could permute it to an easy position
to illustrate the exposing vector. In general, we will have many of these that are identified by
the indices determining the corresponding clique.We then add them up to get a final exposing
vector which is used for the FR step.

3.3 Bicliques, weights and final exposing vector

Given a partial matrix Z ∈ R
m×n , we need to find nontrivial bicliques α and corresponding

sampled submatrices z[α] = X according to the properties in (2.7) and (2.8). Intuitively, we
maywant to find bicliques with size as large as possible so that we can expose Y immediately.
However, we do not want to spend a great deal of time finding large bicliques. Instead
we find it is more efficient to find many medium-size bicliques, satisfying the size-rank
condition r ≤ min{p, q} < max{p, q}. This rank condition guarantees that at least one of
the two exposing vectors found from the biclique is not zero. We can then add the exposing
vectors obtained from the equivalent cliques for these bicliques to finally expose a small face
containing the optimal Y . This is equivalent to dealing with a small number of large bicliques.
This consideration also comes from the expense of the singular value decomposition for the
sampled submatrix z[α] = X for UX , VX in (3.5) when the biclique is large.

The following lemma shows that, generically, we can restrict the search to bicliques
corresponding to a sampled submatrix X ∈ R

p×q that satisfies the rank condition r ≤
min{p, q} < max{p, q} without losing rank magnitude.

Lemma 3.6 (Generic rank property) Let r be a positive integer and Z1 ∈ R
m×r and Z2 ∈

R
n×r be continuous random variables with i.i.d. elements. Set Z = Z1ZT

2 and let X ∈ R
p×q

be any submatrix of Z with min{p, q} ≥ r . Then rank(X) = r with probability 1.

Proof Without loss of generality, we can assume that X is the top left corner of Z . Therefore,
X = Z̄1 Z̄2 for appropriate (top part) submatrices Z̄i of Zi , i = 1, 2. By the rank condition,
we have that X = Z̄1 Z̄ T

2 is a full rank factorization of X generically. 
�
Remark 3.7 In our numerical tests we generate our matrices Z = Z1ZT

2 as done in the above
Lemma 3.6. Therefore, it clear that submatrices X with the specified size restriction have
rank(X) = rank(Z) generically. It is not clear if the converse is true, i.e., whether a given
random matrix Z with rank(Z) = r and full rank factorization Z = Z1ZT

2 implies that
Z1, Z2 have random elements.4

With the existence of noise (e.g., Gaussian), we know that generically the X found can
only have a higher rank but not a lower rank than r. In this case, since we assume that we
know the target rank of X , we can adjust the exposing vector so that it will not over-expose

4 The authors thank Dmitriy Drusvyatskiy for the simplification of our original proof of Lemma 3.6. Further
discussions are given in [7].
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the completion matrix. If the target rank is not known, then it can be estimated during the
algorithm up to a given tolerance, i.e., for a give sampled p×q submatrix X we estimate the
rank. If the estimated rank r < min{p, q}, then by our (generic) Lemma 3.6, we can assume
that we have found our target rank for Z . If this is not the case, then we need to look for
bicliques of larger size. As soon as we find r = rank(X) < min{p, q} then we have found
our estimated target rank r .

After finding a biclique α corresponding to a sampled submatrix X and its full rank
factorization X = P̄ Q̄T , we then construct biclique weights uP

X and uQ
X to measure how

noisy the corresponding exposing vectors are. We essentially use the Eckart–Young distance
[8] to the nearest matrix of rank r and include the size of the submatrix. If the problem is
noiseless and we know the target rank for Z , then these distances for the submatrices are 0.

Definition 3.8 (Biclique noise) Suppose that X ∈ R
p×q , with singular values σ1 ≥ . . . ≥

σmin{p,q}, is a given sampled submatrix corresponding to a biclique of the graph of the partial
matrix Z . Let r be the target rank. Define the biclique noise

uP
X :=

∑min{p,q}
i=r+1 σ 2

i

0.5p(p − 1)
, uQ

X :=
∑min{p,q}

i=r+1 σ 2
i

0.5q(q − 1)
.

Definition 3.9 (Biclique weights) Let 	 be the set of all bicliques. For each biclique X ∈ 	

of the partial matrix Z , let p, q, uP
X , uQ

X be defined as in Definition 3.8. Let

S =
∑

X∈	

(
uP
X + uQ

X

)
.

Define the biclique weight

wP
X = 1 − uP

X

S
, w

Q
X = 1 − uQ

X

S
.

Using Lemma 3.4, we now present Algorithm 3.1, page 13, to find an exposing vector
Yexpo for the optimal face, i.e., we get the block diagonal

0 �=
[∑

X∈	 wP
XUXUT

X 0

0
∑

X∈	 w
Q
X VXV T

X

]

= Yexpo � 0, YexpoY
∗ = 0, ∀ optimal Y ∗.

Note that if

Yexpo = [
U V

]
[

 0
0 0

]
[
U V

]T
,

is the (orthogonal) spectral decomposition of Yexpo, with 
 ∈ Sre++, then the optimal face
satisfies

F∗ � VSm+n−re+ V T , V =
[
VP 0
0 VQ

]

.

Thus this FR process reduces the size of the problem.

Remark 3.10 We do not need to look for large bicliques in Algorithm 3.1 since we can take
advantage of the fact that adding exposing vectors results in an exposing vector. Moreover,
finding a biclique is equivalent to finding a clique in G. Therefore, we use the algorithms for
finding cliques given in [16] and [5, Algorithm 2].
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Algorithm 3.1 finding the final exposing vector

1: INPUT: partial matrix Z ∈ Mm×n , target rank r ;
2: OUTPUT: final blocked exposing vector Yexpo that exposes the optimal face for (2.5)
3: PREPROCESSING:

find a set of bicliques 	 of size within the given range {minsize, maxsize} with r < minsize;
4: for each biclique α ∈ 	 and corresponding z[α] = X do
5: [UX , VX ] ← from SVD of X in 3.5
6: WP

X ← UXU
T
X ;

calculate biclique noise uPX ;

7: WQ
X ← VX V

T
X ;

calculate biclique noise uQX ;
8: end for
9: calculate all the biclique weights wi

X , i = P, Q, α ∈ 	, from biclique noise;
10: sum over bicliques the weighted blocked matrices filled in with appropriate zeros.

0 �= Yexpo ←
[ ∑

X∈	 wP
XW

P
X 0

0
∑

X∈	 w
Q
X WQ

X

]

.

11: return Yexpo

4 Numerics

4.1 Noiseless case

In the noiseless case, the biclique noise is 0 and the weights are all 1 and so ignored. The
FR step finds the blocked exposing vector Yexpo and the blocked basis for Null(Yexpo)5 given
by the columns of

V =
[
VP 0
0 VQ

]

, V T
P VP = Irp , V T

Q VQ = Irq ,

thus defining the dimensions rp +rq = rv . Therefore an original feasible Y can be expressed
as

Y = V RV T =
[
VP RpV T

P VP RpqV T
Q

VQ RT
pqV

T
P VQ RqV T

Q

]

(4.1)

where the blocked

R =
[
Rp Rpq

RT
pq Rq

]

∈ Srv , rv < m + n.

Thismeans the problems (2.4) and (2.5) are in general reduced to themuch smaller dimension
R
rp×rq . And if we find enough bicliques we expect a reduction to rp = rq = r, rv = 2r ,

twice the target rank. If this is the case then we have exact recovery that can be obtained by
a simple least squares solution. Otherwise, we have to rely on the NNM heuristic.

5 TheMATLAB command nullwas used to find an orthonormal basis for the nullspace. However, this requires
an SVD decomposition and fails for huge problems. In that case, we used the Lanczos approach with eigs.
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The reduced model for Y after FR with NNM is

min trace(R) (= trace(V RV T ))

s.t. PĒ (VP RpqV T
Q ) = z (= PÊ (Z))

R =
[
Rp Rpq

RT
pq Rq

]

� 0.
(4.2)

The FR typically results in low values for rp, rq and in the exact data casemany of the linear
equality constraints become redundant, i.e., we generally end up with an overdetermined
linear system. We use the compact QR decomposition6 to identify which constraints to
choose that result in a linearly independent set with a relatively low condition number. Thus
we have eliminated a portion of the sampling and we get the linear system

M(Rpq) := PẼ

(
VP RpqV

T
Q

)
= z̃, for some Ẽ ⊆ Ê, (4.3)

and z̃ is the vector of corresponding elements in z.

1. We first solve the simple semidefinite constrained least squares problem

min
R∈Srv+

∥
∥
∥PẼ

(
VP RpqV

T
Q

)
− z̃)

∥
∥
∥ .

If the optimal R has attained the target rank, then the exactness of the data implies that
necessarily the optimal value is zero; and we are done. (In fact, the SDP constraint is
redundant here as R can always be completed using an SVD decomposition of Rpq .)

2. If R does not have the target rank in Item 1 above, then we solve (4.2) for our minimum
nuclear norm solution. We note that the linear transformationM in (4.3) is not one–one.
Therefore, we often need to add a small regularizing term to the objective, i.e., we use
min trace(R) + γ ‖R‖F with small γ > 0.

4.1.1 Numerics noiseless case

We now present experiments with the algorithm on random noiseless instances. Averages
(computer times, rank, residuals) on twenty random instances are included in the tables7.

The tests were run with MATLAB version R2016a, and Windows 8, on a Dell Optiplex
9030, Intel(R) Core(TM) i7-4790 CPU@3.60GHz and 16GBRAM. 8 The times we present
are the wall-clock times in seconds. For the semidefinite constrained least squares problems
we used the MATLAB addon CVX [13] for simplicity. This means our computer times could
be improved if we replaced CVX with a recent SDP solver.

We generate the instances as done in the recent work [9]. The target matrices are obtained
from Z = ZL ZT

R , where ZL ∈ R
m×r and ZR ∈ R

r×n . Each entry of the two matrices ZL

and ZR is generated independently from a standard normal distribution N (0, 1). We then
generate a sparse m × r matrix to obtain the random indices that are sampled. We evaluate
our results using the same measurement as in [9], which we call “Residual” in our tables. It

6 The MATLAB economical version function [∼, R, E] = qr(�, 0) finds the list of constraints for a well
conditioned representation, where � denotes the matrix of constraints.
7 The density p in the tables are reported as “mean(p)” because the real density obtained is usually not the
same as the one set for generating the problem.We report the mean of the real densities over the five instances.
8 The Tables 4 with rank 6 and 5 with rank 8 were done using a MacBookPro12,1, Intel Core i5, 2.7 GHz
with two cores and 8 GB RAM. The version of MATLAB was the same R2016a.
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is calculated as:

Residual = ‖Ẑ − Z‖F
‖Z‖F ,

where Z is the target matrix, Ẑ is the output matrix that we find, and ‖·‖F is the Frobenius
norm.

We observe that we far outperform the results in [9] both in accuracy and in time; and we
solve much larger problems. We are not as competitive for the low density problems as our
method requires a sufficient number of cliques in G (bicliques in GZ ). We could combine
our preprocessing approach using the bicliques before the method in [9] is applied.

In Tables 1, 2, 3, 4, 5, 6, 7 we present the results with noiseless data with target ranks
ranging from r = 2 to r = 6. We see that we get efficient high accuracy recovery in every
instance. The accuracy is significantly higher than what one can expect from an SDP interior
point solver. The computer time is almost entirely spent on finding the matrix representation
and on its QR factorization that is used as a heuristic for finding a correct subset of well-
conditioned linear constraints. However, we do not use any refinement steps for these tests.
For higher rank and sparse problems we end up with a larger FR problem and a a large matrix
representation. This can be handled using the sketch matrix and refinement described in the
noisy case. For the lower density problems, we remove the rows and columns of the original
data matrix corresponding to zero diagonal elements of the final exposing matrix. These rows
and columns have no sampled entries in them and so it does not make sense to include them
in the algorithm. We include the percentage of the number of elements of the original data
matrix that are recovered and the corresponding percentage residual. Since the accuracy is
high for this recovered submatrix, it can then be used with further sampling to recover the
complete original matrix.

These problems involved relatively low target ranks r = 2 to r = 8. Larger ranks mean
that we need to find larger bicliques/cliques, e.g., r = 20 means that the cliques need to be
of size bigger than 40. This means that the values for rp, rq can be large and we need to
solve a large SDP least squares problem. We include a purify step to do this in the noisy case
discussed below.

Note that the largest problems in the last of the noiseless Tables 6 and 7, have, respectively,
48,000,000 and 50,000,000 data entries in Z with approximately 35,000,000 unknown values
thatwere recovered successfullywith extremelyhigh accuracy. The target rankwas recovered
in every instance. We used the MATLAB command null in Table 6 to find the nullspaces to
derive V in (4.1). This is based on an SVD decomposition of a full matrix and is expensive.
We used MATLAB eigs rather than null in Table 7 which resulted in lower computer times
but lower accuracy. We could not use null in the noisy case as this results in essentially full
rank each time due to the noise. We changed to a sparse QR decomposition which estimates
the rank, has the lowest computer times while still maintaining high accuracy.

Though we have not made a comprehensive comparison with results in the literature, our
results compare well with e.g., those in [24]. We obtain a significant increase in accuracy and
speed of solution.

4.2 Noisy case

This case is similar to the noiseless case but with the addition of a refinement step. (The
refinement step can also be used for the noiseless case when the FR problem dimension rv
is too large.) We include the rank and residual outputs for both before refinement and the
total of both after refinement. We see that in most cases when the graph is sufficiently dense,
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Table 1 Noiseless: r = 2; m × n size; density p; mean 20 instances

Specifications rv Rcvrd (%Z ) Time (s) Rank Residual (%Z )

m n Mean (p)

2100 4000 0.33 4.00 100.00 46.35 2.0 1.4298e−13

2100 4000 0.26 4.00 100.00 44.69 2.0 4.3546e−14

2100 4000 0.22 4.00 100.00 43.43 2.0 9.8758e−14

2100 4000 0.18 4.00 100.00 42.66 2.0 1.4409e−13

2100 4000 0.14 4.00 99.78 42.16 2.0 8.9667e−14

Table 2 Noiseless: r = 3; m × n size; density p; mean 20 instances

Specifications rv Rcvrd (%Z ) Time (s) Rank Residual (%Z )

m n Mean (p)

2100 4000 0.33 6.00 100.00 50.46 3.0 8.6855e−13

2100 4000 0.26 6.00 100.00 49.88 3.0 1.0738e−12

2100 4000 0.22 6.00 100.00 48.56 3.0 1.1436e−12

2100 4000 0.18 6.00 99.81 47.90 3.0 2.5695e−12

2100 4000 0.14 6.20 95.15 46.69 3.0 8.5525e−12

Table 3 Noiseless: r = 5; m × n size; density p; mean 20 instances

Specifications rv Rcvrd (%Z ) Time (s) Rank Residual (%Z )

m n Mean (p)

2100 4000 0.45 10.00 100.00 52.48 5.0 2.2232e−10

2100 4000 0.42 10.00 100.00 53.16 5.0 2.3748e−11

2100 4000 0.39 10.00 100.00 52.45 5.0 1.5950e−10

2100 4000 0.36 10.00 99.99 49.78 5.0 4.5280e−11

2100 4000 0.33 10.00 99.79 47.60 5.0 2.5057e−10

Table 4 Noiseless: r = 6; m × n size; density p; mean 20 instances

Specifications rv Rcvrd (%Z ) Time (s) Rank Residual (%Z )

m n Mean (p)

2100 4000 0.48 12.00 100.00 84.83 6.0 4.4311e−10

2100 4000 0.45 12.00 99.98 78.81 6.0 7.2856e−10

2100 4000 0.42 12.00 99.78 76.11 6.0 1.3813e−11

2100 4000 0.39 12.00 98.46 73.48 6.0 2.8688e−10

2100 4000 0.36 13.65 92.08 74.52 6.0 5.6545e−08
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Table 5 Noiseless: r = 8; m × n size; density p; mean 20 instances

Specifications rv Rcvrd (%Z ) Time (s) Rank Residual (%Z )

m n Mean (p)

1000 3000 0.53 16.10 96.39 37.29 8.0 1.1072e−10

1000 3000 0.50 17.65 88.99 36.50 8.0 4.6569e−10

1000 3000 0.48 32.15 71.66 72.14 8.5 2.0413e−07

Table 6 Noiseless: r = 3; m × n size; density p; mean 20 instances

Specifications rv Rcvrd (%Z ) Time (s) Rank Residual (%Z )

m n Mean (p)

700 2000 0.33 6.00 100.00 5.58 3.0 2.6857e−13

1000 5000 0.33 6.00 100.00 58.31 3.0 3.0256e−12

1400 9000 0.33 6.00 100.00 296.91 3.0 1.4185e−12

1900 14000 0.33 6.00 100.00 1043.46 3.0 1.9995e−12

3000 16000 0.33 6.00 100.00 1758.76 3.0 2.5250e−12

Table 7 Noiseless: r = 4; 100%
recovered; nullspace with eigs;
mean 5 instances

Specifications Time (s) Rank Residual (%Z )

m n Mean (p)

700 2000 0.36 12.80 4.0 1.5217e−12

1000 5000 0.36 49.66 4.0 1.0910e−12

1400 9000 0.36 131.53 4.0 6.0304e−13

1900 14000 0.36 291.22 4.0 3.4847e−11

2500 20000 0.36 798.70 4.0 7.2256e−08

refinement is not needed, and near perfect completion (recovery) is obtained relative to the
noise. In particular, the low target rank was attained most times.

We generate the data as in the noiseless case and then perturb the known entries by additive
noise, i.e.,

Zi j ← Zi j + σξt‖Z‖∞, ∀i j ∈ Ē,

where ξt ∼ N (0, 1) and σ is a noise factor that can be changed. The computer and software
were similar as in the noiseless case. The tests were run on MATLAB version R2016a as
above, but on a Dell Optiplex 9030, with Windows 8, Intel(R) Core(TM) i7-4790 CPU @
3.60 GHz and 16 GB RAM.

As above we proceed to first complete FR in order to reduce the dimension of Y , i.e., the
dimension of R, rv , is dramatically smaller. In the low density and/or high rank cases it is
difficult to find enough cliques and in this case the final exposing vector Yexpo contains many
zero rows. This essentially means that we have not sampled rows and/or columns of Z . In
these cases we have ignored the rows and columns that used no sampled entries.
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After FR we first solve the simple semidefinite constrained least squares problem

δ0 = min
R∈Srv+

∥
∥
∥PÊ

(
VP RpqV

T
Q

)
− z

∥
∥
∥ , z = PÊ (Z).

However, unlike in the noiseless case, we cannot remove redundant constraints, even though
there may be many. This problem is now highly overdetermined and may also be ill-posed
in that the constraint transformation may not be one-one. We use the notion of sketch matrix
to reduce the size of the system, e.g., [19]. The matrix A is a random matrix of appropriate
size with a relatively small number of rows in order to dramatically decrease the size of the
constrained least squares problem

δ0 = min
R∈Srv+

∥
∥
∥A

(
PÊ

(
VP RpqV

T
Q

)
− z

)∥
∥
∥ .

As noted in [19], this leads to surprisingly good results. If s is the dimension of R, then we
use a random sketch matrix of size 2t (s) × |Ê |, where t (·) is the number of variables on and
above the diagonal of a symmetric matrix, i.e., the triangular number

t (s) = s(s + 1)

2
.

If the optimal R has the correct target rank, then we are done.

4.2.1 Refinement step with dual multiplier

If the result from the constrained least squares problem does not have the target rank, we now
use this δ0 as a best target value for our parametric approach as done in [5]. OurNNM problem
can be stated as:

min trace(R)

s.t.
∥
∥
∥A

(
PÊ

(
VP RpqV T

Q

)
− z

)∥
∥
∥ ≤ δ0

R � 0.

(4.4)

To attempt to find a lower rank solution, we use the approach in [5] and flip this problem:

ϕ(τ) := min
∥
∥
∥A

(
PÊ

(
VP RpqV T

Q

)
− z

)∥
∥
∥ + γ ‖R‖F

s.t. trace(R) ≤ τ

R � 0.

(4.5)

As in the noiseless case, the least squares problem may be underdetermined. We add a
regularizing term +γ ‖R‖F to the objective with γ > 0 small. The starting value of τ is
obtained from the unconstrained least squares problem, and from which we can reduce the
value of the trace of R to reduce the nuclear norm and so heuristically reduce the rank. We
refer to this process as the refinement step.

This process requires a tradeoff between low-rank and low-error. Specifically, the trace
constraint may not be tight at the starting value of τ , which means we can lower the trace
of R without sacrificing accuracy, however, if the trace is pushed lower than necessary, the
error starts to get larger. To detect the balance point between low-rank and low-error, we
exploit the role as sensitivity coefficient for the dual multiplier of the inequality constraint.
The value of the dual variable indicates the rate of increase of the objective function. When
the the dual multiplier becomes positive then we know that decreasing τ further will increase
the residual value. We have used the value of .01 to indicate that we should stop decreasing
τ .
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Table 8 Noisy: r = 2; m × n size; density p; mean 20 instances

Specifications Rcvd (%Z ) Time (s) Rank Residual (%Z )

m n % noise p Initial Refine Initial Refine Initial Refine

1100 3000 0.50 0.33 100.00 33.72 48.53 2.00 2.00 8.53e−03 8.53e−03

1100 3000 1.00 0.33 100.00 33.67 49.09 2.00 2.00 2.70e−02 2.70e−02

1100 3000 2.00 0.33 100.00 34.13 48.84 2.00 2.00 9.75e−02 9.75e−02

1100 3000 3.00 0.33 100.00 36.34 92.73 5.00 5.00 5.48e−01 1.40e−01

1100 3000 4.00 0.33 100.00 51.45 186.28 11.00 8.00 1.25e+00 1.28e−01

Table 9 Noisy: r = 3; m × n size; density p; mean 20 instances

Specifications Rcvd (%Z ) Time (s) Rank Residual (%Z )

m n % noise p Initial Refine Initial Refine Initial Refine

700 1000 1.00 0.33 99.99 2.58 16.54 3.35 3.35 1.29e+00 1.07e+00

800 2000 1.00 0.33 100.00 10.72 29.59 3.75 3.75 1.15e+00 1.07e+00

900 4000 1.00 0.33 100.00 61.92 94.40 3.25 3.20 1.47e+00 1.07e+00

1000 8000 1.00 0.33 100.00 404.26 672.60 8.70 6.45 3.94e+00 7.11e−01

1100 16000 1.00 0.33 100.00 3553.81 4230.73 9.00 6.65 4.00e+00 6.66e−01

Table 10 Noisy: r = 4; m × n size; density p; mean 20 instances

Specifications Rcvd (%Z ) Time (s) Rank Residual (%Z )

m n % noise p Initial Refine Initial Refine Initial Refine

1100 3000 0.00 0.36 100.00 30.27 42.44 4.00 4.00 9.04e−13 9.04e−13

1200 3500 1.00 0.33 100.00 52.48 198.22 8.20 6.70 6.45e+00 1.08e+00

1300 4000 2.00 0.32 100.00 81.09 388.68 11.80 7.85 1.88e+01 1.28e+00

1400 4500 3.00 0.31 100.00 117.40 573.87 12.00 7.40 2.51e+01 1.45e+00

1500 5000 4.00 0.31 100.00 142.86 699.06 12.00 6.90 2.42e+01 1.61e+00

4.2.2 Numerics noisy case

The noisy case results with increasing ranks 2, 3, 4 and various sizes and densities follow
in Tables 8, 9, 10. With the densities we use the recovery is essentially 100%. We consider
problems with relatively high density to ensure that we can find enough cliques. We have not
included tests with higher rank as those are done in the noiseless case and are similar here.

4.3 Comparison with direct NNM

We conclude with Table 11 that compares our approach with FR against using CVX and
minimizing the nuclear norm directly.9 We clearly see that FR consistently yields significant
improvements with obtaining lower rank, higher accuracy in the residual, and efficiency in

9 We used CVX version 2.1 with the MOSEK solver, e.g., [1].
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Table 11 Noiseless: r = 2; m × n size; density p; mean 20 instances

Specifications FR result CVX result

m n mean(p) rv Rcvrd (%Z ) Time (s) Rank Residual (%Z ) Time (s) Rank Residual (%Z )

60 100 0.33 4.00 93.73 0.24 2.0 2.1061e−13 5.14 2.1 4.9836e−08

60 100 0.26 4.55 79.89 0.25 2.0 1.9728e−12 2.87 2.5 4.0214e−08

60 100 0.22 6.00 63.64 0.23 2.1 1.8306e−11 2.33 7.0 3.7404e−08

60 100 0.18 9.55 50.86 0.28 3.2 1.9193e−10 1.87 19.8 3.5576e−08

60 100 0.14 21.35 31.15 0.40 7.7 7.6125e−11 1.23 18.0 2.9111e−08

time. This emphasizes that our FR approach does more than exploit the structure of the
NNM model but actually improves on this model.

5 Conclusion

In this paper we have shown that we can apply facial reduction with an exposing vector
approach used in [5] in combination with the structure at low rank solutions of the semidef-
inite embedding to efficiently find low-rank matrix completions. This exploits the singular
structure of the optimal solution set of the minimum rank completion problem even though
the feasible set itself satisfies strict feasibility.

Specifically, whenever enough complete bipartite subgraphs are available for the graph
of the matrix of the problem, we are able to find a proper face with a significantly reduced
dimension that contains the optimal solution set of minimum rank.We then solve this smaller
minimum trace problem by flipping the problem and using a refinement with a parametric
point approach. If we cannot find enough bicliques, thematrix can still be partially completed.
Having an insufficient number of bicliques is indicative of not having enough initial data to
recover the unknown elements for our algorithm. This is particularly true for large r where
larger bicliques are needed. Throughout we see that the facial reduction both regularizes
the problem and reduces the size and often allows for a solution without any refinement,
i.e., without need for solving a nuclear norm minimization problem.

Our preliminary numerical results are promising as they efficiently and accurately recover
large scale problems. The numerical tests are ongoing with improvements in using biclique
algorithms rather than clique algorithms thus exploiting the block structure of the cliques; and
with solving the lower dimensional flipped problems. In our paper we have started our tests
with knowing the target rank r . In forthcoming tests we plan on estimating the target rank
using sampled submatrices. Our tests illustrate that the facial reduction approach significantly
improves on just relying on the nuclear norm relaxation.

In addition, theoretical results on exact recovery are discussed in many papers, e.g., [3,
4,20]. They use the so-called restricted isometry property, RIP, for vectors extended to the
matrix case. However, theRIP condition is difficult to verify. It appears from our work above
that exact recovery guarantees can be guaranteed from rigidity questions in the graph of Z ,
i.e., in the number and density of the bicliques. Moreover, there are interesting questions on
how to extend these results from the simple matrix completion to general solutions of linear
equations, A(Z) = b, where A is some linear transformation.
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