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a b s t r a c t 

Currently, the simplex method and the interior point method are indisputably the most popular algo- 

rithms for solving linear programs, LP s. Unlike general conic programs, LP s with a finite optimal value 

do not require strict feasibility in order to establish strong duality. Hence strict feasibility is seldom a 

concern, even though strict feasibility is equivalent to stability and a compact dual optimal set. This lack 

of concern is also true for other types of degeneracy of basic feasible solutions in LP . In this paper we 

discuss that the specific degeneracy that arises from lack of strict feasibility necessarily causes difficul- 

ties in both simplex and interior point methods. In particular, we show that the lack of strict feasibility 

implies that every basic feasible solution, BFS , is degenerate; thus conversely, the existence of a nonde- 

generate BFS implies that strict feasibility (regularity) holds. We prove the results using facial reduction 

and simple linear algebra. In particular, the facially reduced system reveals the implicit non-surjectivity 

of the linear map of the equality constraint system. As a consequence, we emphasize that facial reduction 

involves two steps where, the first guarantees strict feasibility, and the second recovers full row rank of 

the constraint matrix. This illustrates the implicit singularity of problems where strict feasibility fails, and 

also helps in obtaining new efficient techniques for preproccessing. We include an efficient preprocessing 

method that can be performed as an extension of phase-I of the two-phase simplex method. We show 

that this can be used to avoid the loss of precision for many well known problem sets in the literature, 

e.g., the NETLIB problem set. 

© 2023 Elsevier B.V. All rights reserved. 

1

o

e

q

n

b

T

t

i  

a

l

a

m

d

s

g

s

t

F

a

r

a

a

T

e

1

o

1

a

c

2

h

0

. Introduction 

The Slater condition (strict feasibility) is a useful property for 

ptimization models to have. Unlike general conic programs, lin- 

ar programs ( LP s) do not require strict feasibility as a constraint 

ualification to guarantee strong duality, and therefore, it is often 

ot discussed. In fact, degeneracy in general is not considered to 

e a serious concern in linear programming. The Goldman-Tucker 

heorem ( Goldman & Tucker, 1956 ) is related in that it guaran- 

ees a primal-dual optimal solution satisfying strict complementar- 

ty x ∗ + z ∗ > 0 for the standard form LP . However, it does not guar-

ntee the existence of a strictly feasible primal solution ˆ x > 0 . The 

ack of strict feasibility for an LP does not seem to cause problems 

t first glance, especially when the simplex method is used. In this 

anuscript, we show that the failure of strict feasibility results in 

egeneracy problems when simplex-type methods are used. More 

pecifically, the lack of strict feasibility inevitably renders LP s de- 
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enerate, i.e., every basic feasible solution is degenerate . 1 Note that 

trict feasibility along with full row rank of the linear constraint is 

he Mangasarian-Fromovitz constraint qualification ( Mangasarian & 

romovitz, 1967 ). This is equivalent to a compact dual optimal set 

nd is equivalent to stability with respect to perturbations of the 

ight-hand side. 

The simplex method ( Dantzig, 1963 ) is one of the most popular 

nd successful algorithms for solving linear programs. Degeneracy, 

 zero basic variable, could result in cycling and noncovergence. 

here are many anti-cycling rules, see e.g., ( Bland, 1977; Dantzig 

t al., 1955; Gal, 1993; Hall & McKinnon, 2004; Terlaky & Zhang, 

993 ) and the references therein. However, techniques for the res- 

lution of degeneracy often result in stalling ( Bixby, 2002; Charnes, 

952; Megiddo, 1986; Ryan & Osborne, 1988 ), i.e., result in taking 

 large number of iterations before leaving a degenerate point and 

an even fail to leave with current techniques ( Hall & McKinnon, 

004 ). Degeneracies are known to cause numerical issues when 

nterior point methods are used, e.g., GüLer et al. (1993) . For ex- 

mple, degeneracy can result in singularity of the Jacobian of the 
1 Conversely, if we can find one nondegenerate basic feasible solution, then strict 

easibility holds. 

racy, strict feasibility, stability, in linear programming, European 
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2 We mainly consider primal degeneracy here, though everything follows through 

for dual degeneracy. In fact, there are clear connections from complementary slack- 

ness between variables positive in every BFS and dual variables fixed at 0. 
ptimality conditions, and thus also in ill-posedness and loss of 

ccuracy ( Gonzalez-Lima et al., 2009 ). We note that the method 

ost often used in the literature when converting a problem that 

as a free variable into standard form, is to replace the free vari- 

ble by the difference of two nonnegative variables. This results in 

n unbounded primal optimal set and strict feasibility failing for 

he dual problem, i.e., from our work we see that this standard ap- 

roach changes a well-posed problem into an ill-posed one. 

Our main results on the degeneracy arising from loss of strict 

easibility are shown using the effective preprocessing tool called 

acial reduction, FR . For a problem lacking strict feasibility, facial 

eduction strives to formulate an equivalent problem that has a 

later point. By examining the facially reduced system, we obtain 

wo results. First, we show that every basic feasible solution is de- 

enerate when strict feasibility fails. This leads to an efficient ap- 

roach for eliminating variables that are fixed at 0. Second, we in- 

estigate implicit redundancies as a source of instability arising in 

roblems where strict feasibility fails. We see that the linear map 

f the facially reduced system is non-surjective, i.e., the original 

onstraints are implicitly redundant. Finally, we use these results 

o develop an efficient preprocessing technique to obtain strict fea- 

ibility. This technique is illustrated on instances from the NETLIB 

ata set. 

The contribution of this manuscript is threefold; (i) We provide 

he complete description of the facially reduced system of a linear 

rogram and introduce related notions of singularity; (ii) We show 

hat every basic feasible solution of a standard linear program is 

egenerate when strict feasibility fails; (iii) We propose and illus- 

rate an efficient preprocessing scheme that can be performed as 

n extension of phase-I of the two-phase simplex method. This 

echnique allows for eliminating variables fixed at 0, and thus reg- 

larizing and simplifying the LP . 

The manuscript is organized as follows. In Section 2 we present 

he background and notations. Included are the notions of degener- 

cy, facial reduction and three types of singularity degree. We then 

escribe what facial reduction tries to achieve. In Section 3 we 

resent our main result and immediate corollaries, as well as the 

fficient preprocessing method that can be used as an extension of 

hase-I of the two-phase simplex method. In addition, we relate 

ur main result to known results in the literature, such as distance 

o infeasibility. In Section 4 we illustrate algorithmic performance 

f interior point methods and the simplex method under the lack 

f strict feasibility. We present our conclusions in Section 5 . 

. Preliminaries 

.1. Background and notation 

We let R 

n , R 

m ×n be the standard real vector spaces of n -

oordinates and m -by- n matrices, respectively. We use R 

n + ( R 

n ++ , 
esp.) to denote the n -tuple with nonnegative (positive) entries. We 

se 〈·, ·〉 to denote the usual inner product. Given a vector x ∈ R 

n ,

e let supp(x ) to denote the index set { i : x i � = 0 } . Given a ma-

rix A ∈ R 

m ×n , we adopt the MATLAB notation to denote a subma- 

rix of A . Given a subset I of column indices, we use A I ∈ R 

m ×|I| 
o denote the submatrix of A that contains the columns of A in 

, i.e., A I = A (: , I) . Given a convex set C, relint (C) denotes the rel-

tive interior of the set C. 

Throughout this manuscript, we work with feasible LP s in stan- 

ard form with finite optimal value: 

P) p ∗ = min 

x 

{
c T x : Ax = b, x ≥ 0 

}
, 

here p ∗ ∈ R , A ∈ R 

m ×n , b ∈ R 

m and c ∈ R 

n . We assume that

ank (A ) = m , i.e., there is no redundant constraint. We use F to

enote the feasible region of ( P) 

 = { x ∈ R 

n : Ax = b, x ≥ 0 } . (2.1)
2 
.1.1. Degeneracy in LP 

Given an index set B ⊂ { 1 , . . . , n } , |B| = m , a point x ∈ F is

alled a basic feasible solution, BFS , if A B is nonsingular and x i =
 , ∀ i ∈ { 1 , . . . , n } \ B. It is well-known that the simplex method it-

rates from BFS to BFS . A basic feasible solution x ∈ F is nonde- 

enerate if x i > 0 , ∀ i ∈ B; it is degenerate if x i = 0 , for some i ∈ B.

t is clear that every basic feasible solution has at most m positive 

ntries. 2 

We partition the index set { 1 , . . . , n } as 

 1 , . . . , n } = I + ∪ I 0 , where I 0 := { i : x i = 0 , ∀ x ∈ F} and I + = { 1 , . . . , n }\I 0 , 
.e., I 0 denotes the variables fixed at 0 . Note that fixed variables are 

dentified during preprocessing in the literature if the upper and 

ower bounds are equal, e.g., Andersen & Andersen (1995) ; Huang 

2004) ; Mészáros & Suhl (2003) . However, the set I 0 is not as eas-

ly identified. 

There are in fact several types of degeneracy. Let x̄ be a given 

FS with basis B. (Wlog B = { 1 , . . . , m } .) We can write the equiv-

lent canonical form representation of the feasible set using the 

asis at x̄ : 

 = 

{
x = 

(
x B 
x N 

)
: x B = b − A 

−1 
B A N x N ≥ 0 , x N ≥ 0 

}
. (2.2) 

n this form x N ∈ R 

n −m 

+ , we have n inequality constraints, and we 

ee that degeneracy is equivalent to having an active set with 

ardinality greater than n − m . This divides into two types corre- 

ponding to the sets I 0 , I + , respectively: (i) inequalities that are 

ctive in every BFS and correspond to variables in I 0 above; (ii) 

hose that are not active in at least one BFS . The geometry of (i)

s clear as there is no Slater point and F is a subset of a face of

he nonnegative orthant. For (ii) the geometry is that some of the 

onstraints are redundant in one of two ways, i.e., that discarding 

hem does not change the feasible set nor the optimality condi- 

ions if x̄ is optimal. 

emark 2.1. We note that adding redundant constraints is done in 

.g., Deza et al. (20 06, 20 08) to show that the central path for in-

erior point methods can follow the boundary closely, i.e., behave 

ery poorly. These redundant constraints correspond to a positive 

ariable in each BFS , i.e., to an inequality in Eq. (2.2) that is never

ctive. Complementary slackness implies that they correspond to 

ariables fixed at 0 in the dual problem, thus emphasizing that 

R on the dual could avoid some of these difficulties. 

.2. Facial reduction 

In this section we describe the concept of facial reduction and 

resent the properties that are used to establish the main result. 

e emphasize in this paper that facial reduction for ( P) involves 

wo steps: first, obtain an equivalent problem with strict feasibility; 

econd, recover full row rank of the constraint matrix. Note that 

ull row rank is always lost during the first step. 

Let K ⊂ R 

n be a convex set. A convex set F ⊆ K is called a face of

 , denoted F � K , if for all y, z ∈ K with x = 

1 
2 (y + z) ∈ F , we have

, z ∈ F . Given a convex set C ⊆ K, the minimal face for C is the in-

ersection of all faces containing the set C. 

roposition 2.2 ( Drusvyatskiy & Wolkowicz (2017 , Theorem 3.1.3) 

theorem of the alternative)) . For the feasible system of Eq. (2.1) , ex- 

ctly one of the following statements holds: 

1. There exists x ∈ R 

n ++ with Ax = b, i.e., strict feasibility holds; 

https://www.netlib.org/lp/


H. Im and H. Wolkowicz European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; April 19, 2023;13:4 ] 

 

f  

i  

B

i

T

s

F

i

(

r

P

i

〈  

H

z  

l  

0

i

i  

o

V

T

F  

W  

r  

t

fi

0

o

(

S

l

L

F
T

P

s  

T

0  

S  

d

c

F

d

w

c

s

g

(

i

(

F

D  

S
i

 

S

P

t

a

l

D

r  

f  

R

s

o

l

 

v

i

r

N  

S

e

I

2

p

H

O

T

o

a(
 

t

c

a

b

t

fi

a

a

o

2. There exists y ∈ R 

m such that 

0 � = z := A 

T y ∈ R 

n 
+ , and 〈 b, y 〉 = 0 . (2.3)

Proposition 2.2 gives rise to a process called facial reduction . The 

acial reduction, FR , for an LP is a process of identifying the min-

mal face of R 

n + containing the feasible set F = { x ∈ R 

n + : Ax = b} .
y finding the minimal face, we can work with a problem that lies 

n a smaller dimensional space and that statisfies strict feasibility. 

he FR process, i.e., finding the minimal face, is usually done by 

olving a sequence of auxiliary systems Eq. (2.3) . More details on 

R on general conic problems can be found in Borwein & Wolkow- 

cz (1980/81 , 1981 ); Drusvyatskiy & Wolkowicz (2017) ; Permenter 

2017) ; Sremac (2019) . 

We now describe how the set F (see Eq. (2.1) ) is rep- 

esented after FR . Suppose that strict feasibility fails. Then 

roposition 2.2 implies that there must exist a nonzero y ∈ R 

m sat- 

sfying 

 x, A 

T y 〉 = 〈 Ax, y 〉 = 〈 b, y 〉 = 0 , ∀ x ∈ F . (2.4)

ence, every x ∈ F is perpendicular to the nonnegative vector 

 = A 

T y . We call this vector z = A 

T y an exposing vector for F , and

et the cardinality of its support be s z = |{ i : z i > 0 }| . Then z =
s z ∑ 

j=1 

z t j e t j , where t j is in increasing order. We now have 

 = 〈 z, x 〉 and x, z ∈ R 

n 
+ ⇒ x i z i = 0 , ∀ i, 

.e., the positive elements in z identify the corresponding elements 

n x that are fixed at 0 . Then x = 

n −s z ∑ 

j=1 

x s j e s j , where s j is in increasing

rder. We define the matrix with unit vectors for columns 

 = 

[
e s 1 e s 2 . . . e s n −s z 

]
∈ R 

n ×(n −s z ) . 

hen we have 

 = { x ∈ R 

n 
+ : Ax = b} = { x = V v ∈ R 

n : AV v = b, v ∈ R 

n −s z + } . (2.5)

e call this matrix V ∈ R 

n ×(n −s z ) a facial range vector . The facial

ange vector restricts the support of all feasible x . We use the iden-

ification Eq. (2.5) throughout this manuscript. This concludes the 

rst step of FR , i.e., identifying all the variables that are fixed at 

. 3 

It is known that every facial reduction step results in at least 

ne constraint being redundant, see e.g., Borwein & Wolkowicz 

1981) , Im & Wolkowicz (2021 , Lemma 2.7), and Sremac (2019 , 

ection 3.5). For completeness we now include a short proof tai- 

ored to LP , see Lemma 2.3 . 

emma 2.3. Consider the facially reduced feasible set 

 r = 

{
v : AV v = b, v ∈ R 

n −s z + 
}
. 

hen at least one linear constraint of the LP is redundant. 

roof. Let z = A 

T y be the exposing vector satisfying the auxiliary 

ystem Eq. (2.3) . And let V be a facial range vector induced by z.

hen 

 = V 

T z = V 

T A 

T y = (AV ) T y = 

m ∑ 

i =1 

y i ((AV ) T ) i . (2.6)

ince y ∈ R 

m is a nonzero vector, the rows of AV are linearly

ependent. �

We now see the result of the full two-step facial reduction pro- 

ess, i.e., we get a constraint matrix of full row rank: 

 = { x ∈ R 

n 
+ : Ax = b} = { x = V v ∈ R 

n : P m̄ 

AV v = P m̄ 

b, v ∈ R 

n −s z + } , 

3 Note that this can be done in one step for linear programs, i.e., the singularity 

egree for LP is at most one; see Drusvyatskiy & Wolkowicz (2017 , Section 4.4). 

S

m

3 
(2.7) 

here P m̄ 

: R 

m → R ̄

m , m̄ = rank (AV ) , is the simple projection that 

hooses the linearly independent rows of AV . This concludes the 

econd step of FR , i.e., guaranteeing the full rank. We include a 

raphical illustration of the two-step FR process; see Fig. 2.1 . 

For a general conic problem, such as semidefinite programs 

 SDP ), the facial reduction iterations do not necessarily end in one 

teration; see Cheung et al. (2013) ; Sremac (2019) ; Sremac et al. 

2021) . And there is a special name for the minimum length of 

R iterations. 

efinition 2.4 ( Sturm (20 0 0 , Sect. 4)) . Given a spectrahehedron

in a closed convex cone K, the singularity degree, SD (S) of S
s the smallest number of facial reduction iterations for finding 

face (S, K) , the minimal face of K containing S . 

It is known that FR for LP s can be done in one iteration, i.e.,

D (F ) ≤ 1 ; see Drusvyatskiy & Wolkowicz (2017 , Theorem 4.4.1). 

roposition 2.2 and Lemma 2.3 imply that any solution to the sys- 

em (2.3) gives rise to a strict reduction in the number of variables 

nd the number of equality constraints. This gives rise to the fol- 

owing two novel notions of singularity. 

efinition 2.5. Let K ⊆ R 

n be a closed convex cone with cor- 

esponding feasible set S = { x ∈ K : Ax = b} and facially reduced

easible set { v ∈ P K : (PA V)(v ) = P b, v ∈ R 

r } , where PA V is onto

 

m r and P K is the cone defined over the smaller dimensional 

pace. Then the implicit problem singularity, IP S(S) = m − m r . More- 

ver, the max-singularity degree of S , denoted maxSD (S) , is the 

argest number of nontrivial facial reduction iterations for finding 

face (S, K) . 

The singularity degree is used in Sturm (20 0 0 , Sect. 4) for pro-

iding a Hölder regularity constant for semidefinite programs. This 

s then used in Drusvyatskiy et al. (2017) to derive a convergence 

ate for alternating projection methods for semidefinite programs. 

ote that maxSD (S) can be a larger lower bound of IP S(S) than

D (S) , since at least one linear constraint becomes redundant at 

ach FR iteration. The effect on ill-conditioning of larger values of 

P S is seen empirically in Section 4.1.5 . 4 

.2.1. Preprocessing in LP 

An essential step for simplex and interior point methods is pre- 

rocessing, see e.g., Andersen & Andersen (1995) ; Gondzio (1997) ; 

uang (2004) ; Mészáros & Suhl (2003) and the references therein. 

ne specific preprocessing step refers to detecting a fixed variable . 

hese are generally detected when the upper and lower bounds 

n a variable are equal. Fixed variables can also be detected when 

n invertible block A 11 can be isolated A = 

[
A 11 A 12 = 0 

A 21 A 22 

]
, b = 

b 1 
b 2 

)
. With x = 

(
x 1 
x 2 

)
, we can eliminate x 1 = A 

−1 
11 

b 1 and discard

he first block of now redundant rows, along with the first block of 

olumns. If b 1 = 0 then we have trivially identified variables fixed 

t zero and removed redundant rows and columns. The remaining 

lock A 22 remains full row rank as happens in Gaussian elimina- 

ion. 

In general, FR for linear programs refers to identifying variables 

xed at 0, and removing them along with corresponding columns 

nd redundant rows. In general, this is not as simple as above, 

nd the theorem of the alternative is needed. As a consequence 

f our main result, we see below that a single step of the simplex 
4 Definition 2.5 can be used to strengthen the upper bound on the rank of 

DP solutions in Im & Wolkowicz (2021) , i.e., we get t(r) ≤ m − IPS(S) ≤ m −
axSD (S) ≤ m − SD (S) ≤ m , where t(r) is the triangular number of the rank r. 
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Fig. 2.1. A graphical illustration of the two-step facial reduction. 
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E

ethod, a phase-I part B approach, yields many of these variables 

hat are identically zero on the feasible set. 

One of the standard assumptions in linear programming is full 

ow rank of A . As we observed in Lemma 2.3 , each FR step results

n linear dependence of the constraints. We now summarize two 

vailable methods for extracting a maximal linearly independent 

ubset of rows of AV . The first method uses a rank-revealing QR de-

omposition 

5 . Let M = (AV ) T . Let MI(: , π) = QR be a QR factoriza-

ion where π is a permutation vector, Q is a orthogonal matrix and 

 is an upper triangular matrix with a non-increasing diagonal in 

bsolute value. The matrix I(: , π) permutes the columns of M. If M

as linearly dependent columns, then the matrix R contains zeros 

n its diagonal. Let r be the number of the nonzero diagonal en- 

ries of R . Then, π(1 : r) returns the subset of columns indices of M

hat are linearly independent. Another available method makes use 

f artificial variables Chvátal (1983 , Box 8.2). It constructs 
[
I AV 

]
nd sets the initial basis matrix to be the first m columns. Then it

erforms a variant of the phase-I of the two-phase simplex method 

o drive the basic variables out of the basis one by one. When 

uch an operation is not applicable, a linearly dependent row of 

V is detected. Computational improvements of this method are 

ade in Andersen (1995) ; Mészáros & Suhl (2003) . A more recent 

ethod is the rank revealing Gaussian elimination by the maxi- 

um volume concept given in Schork & Gondzio (2020) . 

. Main result and consequences 

In this section we present our main result, see Theorem 3.1 . We 

rovide two proofs: one takes an algebraic approach by using the 

efinition of the basic feasible solution; and the other takes a geo- 

etric approach by using extreme points. Both proofs rely heavily 

n Lemma 2.3 . In Section 3.2 we present an efficient preprocess- 

ng scheme that can be used as an extension of the phase-I of the 

wo-phase simplex method. In Section 3.3 we include immediate 

orollaries of the main result and interesting discussions. 

.1. Lack of strict feasibility and relations to degeneracy 

heorem 3.1. Suppose that strict feasibility fails for F . Then every 

asic feasible solution to F is degenerate. 

.1.1. An algebraic proof of Theorem 3.1 via the definition of BFS 

roof. Since there is no strictly feasible point in F , there exists a 

acial range vector V , and as in Eq. (2.5) we have 

 = { x = V v ∈ R 

n : AV v = b, v ∈ R 

n −s z + } . 
y Lemma 2.3 , AV has at least one redundant row. By permuting 

he columns of A , we may assume that the matrix V is of the form

 = 

[
I r 
0 

]
and r = n − s z . 

e partition the index set { 1 , . . . , n } as 

 1 , . . . , n } = I + ∪ I 0 , where I + = { 1 , . . . , r} and I 0 = { r + 1 , . . . , n } . 
5 https://www.mathworks.com/matlabcentral/fileexchange/77437 
A

4 
hen we have A = 

[
A I + A I 0 

]
. Let x̄ ∈ F be a basic feasible solu- 

ion with basic indices 

 ⊂ { 1 , . . . , n } , |B| = m, det (A B ) � = 0 , and A B ̄x (B) = b. 

uppose B ⊆ I + . We note, by Lemma 2.3 again, that A I + = AV has

inearly dependent rows, i.e., rank (A I + ) < m . Hence x̄ must include 

 basic variable in I 0 and this concludes that every basic feasible 

olution is degenerate. �

.1.2. A geometric proof using extreme points 

We now give the second proof of our main result. Suppose 

hat X ∈ F with rank (X ) = r, where F is a face of the set { X ∈ S n + :
race (A i X ) = b i , ∀ i = 1 , . . . , m } . Here, S n + denotes the set of n -by- n

ositive semidefinite matrices. It is known that r (r +1) 
2 ≤ m + dim F , 

ee Pataki (1998 , Theorem 2.1). We rewrite Pataki (1998 , Theorem 

.1) in the language of polyhederon in Corollary 3.2 . We include 

he proof for completeness in Section A.1 . 

orollary 3.2 ( Pataki (1998 , Theorem 2.1)) . Suppose that x ∈ F ,

here F is a face of the set F . Let d = dim F . Then the number of

onzero entries of x ∈ F is at most m + d. 

A point x in a convex set C is called an extreme point if, for 

ll y, z ∈ C, x = 

1 
2 (y + z) implies x = y = z. An extreme point is it-

elf a face and the dimension of this face is 0. Hence, we obtain 

orollary 3.3 by writing Corollary 3.2 through the lens of extreme 

oints. 

orollary 3.3. Every extreme point x ∈ F has at most m positive en- 

ries. 

We now restate the main result of this paper Theorem 3.1 in 

he language of extreme points and number of rows of A . 

heorem 3.4. Suppose that strict feasibility of F fails. Then every ex- 

reme point x ∈ F has at most m − 1 positive entries. 

roof. Since strict feasibility fails for F , we have F = { x = V v ∈
 

n : AV v = b, v ∈ R 

n −s z + } ; see Eq. (2.5) . From Lemma 2.3 , we note

hat at least one equality in AV v = b is redundant. Let P m̄ 

AV v = P m̄ 

b

e the system obtained after removing redundant rows of AV ; 

ee Eq. (2.7) . Then, by Corollary 3.3 , every extreme point of the 

et { v ∈ R 

n −s z + : P m̄ 

AV v = P m̄ 

b} has at most m − 1 nonzero entries.

ence, the statement follows. �

.1.3. Immediate consequences of main result 

We first note that Theorems 3.1 and 3.4 are equivalent owing 

o the well-known characterization: 

 ∈ F is a basic feasible solution ⇐⇒ x ∈ F is an extreme poi

e now highlight that Theorems 3.1 and 3.4 do not merely im- 

ly the existence of a single degenerate basic feasible solution; but 

ather that every basic feasible solution is degenerate. Developing a 

ivot rule that prevents the simplex method from visiting degener- 

te points is not possible as it can never avoid degeneracies when 

trict feasibility fails, as we now illustrate in the following. 

xample 3.5. Consider F with the data 

 = 

[
1 1 3 5 2 

0 1 2 −2 2 

]
and b = 

(
1 

1 

)
. 

https://www.mathworks.com/matlabcentral/fileexchange/77437
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a

s

S

v

onsider the vector y = 

(
1 

−1 

)
. Then 

 

T y = 

(
1 0 1 7 0 

)T 
and b T y = 0 . 

ence, Proposition 2.2 certifies that F does not contain a 

trictly feasible point. There are exactly six feasible bases 

n F . The BFS associated with B ∈ {{ 1 , 2 } , { 2 , 3 } , { 2 , 4 }} is

 = 

(
0 1 0 0 0 

)T 
; and the BFS associated with B ∈ 

 

{ 1 , 5 } , { 3 , 5 } , { 4 , 5 } } is x = 

(
0 0 0 0 1 

2 

)T 
. Clearly, all BFS s 

re degenerate. 

Recall that strict feasibility is equivalent to the Mangasarian–

romovitz constraint qualification, Peterson (1973) . The latter is 

quivalent to stability with respect to perturbations of b, and to 

 compact dual optimal set. Therefore, the following Corollary 3.6 , 

btained by writing the contrapositive of Theorem 3.1 , is extremely 

nteresting and important. We provide Example 3.7 below to illus- 

rate Corollary 3.6 . 

orollary 3.6. Suppose that there exists a nondegenerate basic feasi- 

le solution. Then there exists a strictly feasible point ˆ x ∈ F . 

xample 3.7. Consider F with the data 

 = 

[
1 0 −2 3 −4 

0 −1 −2 3 1 

]
and b = 

(
1 

1 

)
. 

he system F has exactly four feasible bases; the BFS associated 

ith B ∈ {{ 1 , 4 } , { 2 , 4 } , { 4 , 5 }} is x = 

(
0 0 0 1 / 3 0 

)T 
and

he BFS associated with B = { 1 , 5 } is x = 

(
5 0 0 0 1 

)T 
.

e note that the BFS associated with B = { 1 , 5 } is nondegenerate.

s Corollary 3.6 states, the system F has a strictly feasible point, 

nd it is verified by the point 1 
10 

(
4 1 1 4 1 

)T 
. 

Corollary 3.6 provides a useful check for strict feasibility when 

he simplex method is used, i.e., if there is any simplex iteration 

hat yields a nondegenerate BFS , then it is useful to record that oc- 

urrence. We emphasize that recording the occurrence of a nonde- 

enerate iteration is inexpensive and the occurrence gives a certifi- 

ate of the stability of the LP instance. We revisit Corollary 3.6 in 

ection 3.2.1 below and present an efficient algorithm for obtain- 

ng a Slater point from a nongenerate BFS . But, Example 3.8 below 

hows that the converse of Theorems 3.1 and 3.4 is not true. In 

ther words, strict feasibility holds and every BFS is degenerate. 

xample 3.8. 

1. Consider F with the data 

A = 

[
1 0 2 0 −2 

1 −3 2 1 −2 

]
and b = 

(
1 

1 

)
. 

F has exactly four feasible bases and all of them are 

degenerate; the BFS associated with B ∈ {{ 1 , 2 } , { 1 , 4 }} is

x = 

(
1 0 0 0 0 

)T 
and the BFS associated with B ∈ 

{{ 2 , 3 } , { 3 , 4 }} is x = 

(
0 0 1 / 2 0 0 

)T 
. However, F con-

tains a strictly feasible point 1 
10 

(
1 1 5 . 5 3 1 

)T 
. 

2. Note that the linear assignment problem (marriage problem) 

has a strictly feasible point but all the BFS are highly degener- 

ate. 6 Therefore, I = ∅ ; the set of variables fixed at 0 is empty.
0 

6 Note that this is true for the transportation and the assignment problems. Both 

re highly degenerate at each BFS but satisfy strict feasibility. For example, for the 

ssignment problem order n , the feasible set can be considered to be the dou- 

ly stochastic matrices X . The extreme points are the permutation matrices by the 

irkoff-Von Neumann theorem. Therefore, each extreme point has exactly n positive 

lements while there are m = 2 n − 1 linearly independent constraints. 

3

a

c

5 
Moreover, as an LP , the problem is stable with respect to per- 

turbations in the data. 

From Examples 3.5 to 3.8 , we observe that there are two differ- 

nt types of degeneracies. One involves variables that are 0 in one 

FS but positive in another; the second involves variables fixed at 

, i.e., that result in strict feasibility failing. Note that strict fea- 

ibility (along with A full row rank) is the Mangasarian–Fromovitz 

onstraint qualification which is equivalent to stability with respect 

o right-hand side perturbations ( Gauvin, 1995 ), which is in turn 

quivalent to a bounded dual optimal set. 

Given a BFS x̄ ∈ F , we let the degree of degeneracy of x̄ denote 

he number of 0’s among its basic variables. By exploiting the fa- 

ially reduced model we can check how degenerate the BFS s of F
re. 

orollary 3.9. Suppose that strict feasibility fails for F , and let F
ave the facial range vector representation in Eq. (2.5) . Recall that the 

et of indices I 0 = { i ∈ { 1 , . . . , n } : x i = 0 , ∀ x ∈ F} . Let x̄ ∈ F be a ba-

ic feasible solution with basis B. Then, the following holds. 

1. The basis B has an nonempty intersection with I 0 , i.e., B ∩ I 0 � = ∅ .
2. If the degree of degeneracy of x̄ is exactly one, with x̄ k = 0 , k ∈ B,

then x k , A : ,k can be discarded from the problem. 

3. The degree of degeneracy of x̄ is at least m − rank (AV ) . 

4. At least m − rank (AV ) number of basic indices of x̄ are contained 

in I 0 . 

roof. 

1. Let x̄ ∈ F be a basic feasible solution and let B be a basis for x̄ .

Item 1 follows from the proof and the definition of the set I 0 
of elements x i that are identically zero on the feasible set. 

2. The proof follows from the algebraic proof of Theorem 3.1 given 

in Section 3.1.1 . Since every BFS is degenerate and the basis has 

a nonempty intersection with I 0 , the index k must be in I 0 . 
3. For Item 3, we note that A B contains linearly independent 

columns. Then A B can contain at most rank (AV ) number 

of columns from AV . Thus, x̄ (B) must contain at least m −
rank (AV ) number of zeros. 

4. Item 4 is a direct consequence of Item 1 and Item 3. �

Items 3 and 4 of Corollary 3.9 are closely related to the implicit 

roblem singularity, IP S, and the max-singularity degree, maxSD ; 

ee Definition 2.5 . In particular, IP S(F ) is a lower bound of the 

egree of degeneracy of every BFS of F; the more implicit redun- 

ancies F contains, the more degenerate every BFS becomes. We 

nclude an alternative way to view Corollary 3.9 in Section 3.1.2 . 

We conclude the discussions with the following interesting ob- 

ervation. This again illustrates the implicit singularity of the con- 

traints when the Slater condition fails. 

orollary 3.10. Suppose that strict feasibility fails for F and that m = 

 . Then the trivial x ∗ = 0 is an optimal solution. 

.2. Preprocessing for facial reduction and strict feasibility 

In this section we present a preprocessing method for obtaining 

 facially reduced system. In Section 3.2.1 we discuss obtaining a 

trictly feasible point using a nondegeneate BFS and its variant. In 

ection 3.2.2 we consider the general case of finding an exposing 

ector to obtain the facially reduced strictly feasible LP . 

.2.1. Towards a strictly feasible point from a nondegenerate BFS 

By Corollary 3.6 , the existence 7 of a nondegenerate BFS guar- 

ntees the existence of a strictly feasible point. We now propose a 
7 Determining the existence of a degenerate basic feasible solution is an NP- 

omplete problem; see Chandrasekaran et al. (1981/82 ). 
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rocess for acquiring a Slater point from a nondegenerate BFS , and 

nclude a generalization. The arguments in this section also provide 

 constructive proof of Corollary 3.6 . 

Let x̄ ∈ F be a nondegenerate BFS . Without loss of generality, 

e assume that the (all positive) basic variables x̄ B of x̄ are lo- 

ated at the last m entries of x̄ . We fix a scalar ˆ γ ∈ (0 , 1) and an

ndex j ∈ { 1 , . . . , n − m } . For some α ≥ 0 , we consider the simplex

ethod ratio test type inequality 

ˆ x̄ B − α(A B ) 
−1 A j ≥ 0 . (3.1) 

ince x̄ B > 0 , ˆ γ > 0 , there exists a positive α that maintains the in-

quality Eq. (3.1) . Let 

∗ = min 

{
1 , max { α ∈ R + : ˆ γ x̄ B − α(A B ) 

−1 A j ≥ 0 } }, (3.2) 

nd decompose 

ˆ x̄ B = 

(
ˆ γ x̄ B − α∗(A B ) 

−1 A j 

)
+ α∗(A B ) 

−1 A j . 

e observe that 

 = A B ̄x B 

= (1 − ˆ γ ) A B ̄x B + ˆ γ A B ̄x B 

= (1 − ˆ γ ) A B ̄x B + A B 
(

ˆ γ x̄ B − α∗(A B ) 
−1 A j + α∗(A B ) 

−1 A j 

)
= A B ( ̄x B − α∗(A B ) 

−1 A j ) + α∗A j . 

f we set x j = α∗ > 0 and replace x̄ B by x̄ B − α∗(A B ) −1 A j , then we

ave increased the cardinality of the positive entries of a solu- 

ion. We note that x̄ B − α∗(A B ) −1 A j only has strictly positive en- 

ries since it it a sum of a positive vector and a nonnegative vector; 

¯
 B − α∗(A B ) 

−1 A j = (1 − ˆ γ ) ̄x B ︸ ︷︷ ︸ 
positive 

+ ˆ γ x̄ B − α∗(A B ) 
−1 A j ︸ ︷︷ ︸ 

nonnegative 

. 

We can continue to increase the number of positive entries 

f a solution one by one for each j ∈ { 1 , . . . , n − m } . Moreover,

e can achieve this by a compact vectorized operation. The main 

dea is that we can choose ˆ γ in Eq. (3.1) independently for each 

j ∈ { 1 , . . . , n − m } . Let γ j be a positive real number such that 0 <

:= 

∑ n −m 

j=1 γ j < 1 . Then, we have 

¯
 B = (1 − γ ) ̄x B + γ x̄ B = (1 − γ ) ̄x B + 

n −m ∑ 

j=1 

γ j ̄x B . 

e set an auxiliary matrix 

= 

[
γ1 ̄x B . . . γn −m ̄

x B 
]

− (A B ) 
−1 A 1: n −m 

∈ R 

m ×(n −m ) 

nd perform Eq. (3.2) on each column j of � to obtain the vector 
∗: 

∗
j := 

{
max (�(: , j)) if max (�(: , j)) ≤ 1 , 

1 otherwise . 

hen the point 

θ ∗

x̄ B − (A B ) −1 A 1: n −m 

θ ∗

]
s a strictly feasible point to F . Hence, this operation provides a 

onstructive proof of Corollary 3.6 . 

We now extend the aforementioned procedure for obtaining a 

trictly feasible point using any feasible solution x̄ ∈ F such that 

 supp( ̄x ) is full row rank. We partition x̄ ∈ F as follows 

¯ = 

( 

x̄ B 1 
x̄ B 2 
x̄ N 

) 

, where supp( ̄x ) = B 1 ∪ B 2 , rank (A B 1 ) = m, and 

 = { 1 , . . . , n } \ supp( ̄x ) . (3.3) 
l

6 
e partition A using the same partition B 1 ∪ B 2 ∪ N : 

A B 1 A B 2 A N 
]
x̄ = b ⇐⇒ 

[
A B 1 A N 

](x̄ B 1 
x̄ N 

)
= b̄ := b − A B 2 x B 2 .

hen we can apply the aforementioned procedure to the system 

A B 1 A N 
](x̄ B 1 

x̄ N 

)
= b̄ 

nd distribute positive weights to x̄ N using x̄ B 1 . Finally, we find 

 strictly feasible point to F . This process is summarized in 

lgorithm 3.1 . Furthermore, Algorithm 3.1 provides a constructive 

roof for Proposition 3.11 below. 

lgorithm 3.1 Compute a slater point. 

equire: Given: A, x̄ ∈ F partitioned as in (3.3). 

1: Choose any γ ∈ R 

|N | 
++ such that 

∑ |N | 
j=1 

γ j < 1 . 

2: Compute 

� = 

[
x̄ B 1 . . . x̄ B 1 

]
Diag (γ ) − A 

−1 
B 1 A N . 

3: Compute θ ∗ ∈ R 

|N | 
++ , where for each j ∈ { 1 , . . . , |N |} , 

θ ∗
j := 

{
max (�(: , j)) if max (�(: , j)) ≤ 1 , 

1 otherwise . 

4: Set x ◦ = 

( 

x̄ B 1 − (A B 1 ) 
−1 A N θ ∗

x̄ B 2 
θ ∗

) 

. 

roposition 3.11. Let x ∈ F be a solution such that rank 
(
A supp(x ) ) 

)
= 

 . Then, F has a strictly feasible point. 

.2.2. Exposing vector; phase I part B; strict feasibility testing 

We now present an efficient preprocessing procedure for de- 

ecting identically 0 variables and obtaining exposing vectors in or- 

er to get the facially reduced LP . We do this for a given BFS x̄ by

olving special subproblems using the simplex method. By the end 

f the process, we determine one of: 

1. a certificate y that produces an exposing vector A 

T y (Slater con- 

dition fails); 

2. a strictly feasible point (Slater condition holds). 

This process in fact has two applications. First, since the only re- 

uirement of this process is the BFS , the procedure can be consid- 

red as an extension of phase-I of the two-phase simplex method 

hat obtains the equivalent facially reduced problem. Second, the 

rocedure can be used as a postprocessing step. We could perform 

R on the optimal face and find, and delete, variables fixed at zero 

n order to improve stability of the optimal solution. 

We now describe the proposed preprocessing method. Let B be 

 degenerate initial basis of F with associated BFS x̄ . Without loss 

f generality, we assume that basic variables are located at the first 

 entries of x̄ . Let d be the degree of degeneracy of x̄ . We fur-

her assume that the degenerate basic variables are located at the 

rst d entries of x̄ . We let B 0 := { 1 , . . . , d} . We now test and record

hether or not each i ∈ B 0 is a variable fixed at 0. Let i ∈ B 0 , and

onsider the following problem: 

p ∗i = max { x i : Ax = b, x ≥ 0 } . (3.4) 

e may assume that i = 1 . We solve Eq. (3.4) using the simplex

ethod from the initial BFS x̄ . That is, we do not need to per-

orm the typical phase-I of the two-phase simplex method in order 

o find a feasible BFS . The optimal value p ∗1 of Eq. (3.4) is clearly

ower bounded by 0. We consider two cases below: 
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8 If we have a nondegenerate initial basis, then the dual feasibility is immediately 

obtained. However, our initial basis is degenerate. 
1. Suppose that x 1 > 0 after k iterations. Then, the variable x 1 is 

not an identically 0 variable, i.e., we record that 1 ∈ I + . 
2. Suppose that p ∗

1 
= 0 . Then, the variable x 1 is an identically 0

variable, i.e., we record that 1 ∈ I 0 . Let B 

∗ be an optimal basis

for Eq. (3.4) . Then we have 

y ∗ = A 

−T 
B ∗ e 1 , 〈 b, y ∗〉 = 0 and A 

T y ∗ ≥ e 1 , (3.5)

where e 1 is the first unit vector of appropriate dimension. We 

note that the dual optimal solution y ∗ in Eq. (3.5) produces a 

solution to the auxiliary system Eq. (2.3) . Therefore, we obtain 

a nontrivial exposing vector since 0 � = A 

T y ∗ ≥ 0 . 

Let { y j } be a collection of the certificates that are obtained from 

olving Eq. (3.4) with the index 1 replaced by i ∈ B 0 . Then y ◦ =
 

j y 
j is also a certificate, i.e., 

 

T y ◦ = 

∑ 

j 

A 

T y j ≥ 0 , A 

T y ◦ � = 0 , and 〈 b, y ◦〉 = 

∑ 

j 

〈 b, y j 〉 = 0 , 

nd we obtain a nontrivial exposing vector A 

T y ◦ for the system F . 

y summarizing the two cases above, we obtain an efficient pre- 

rocessing method Algorithm 3.2 . 

lgorithm 3.2 Preprocessing phase I part B; towards strict feasi- 

ility. 

equire: A BFS x̄ with corresponding basis B; set B 0 = { i ∈ B : x̄ i =
0 } 

1: Initialize: x ◦ = x̄ , y ◦ = 0 ∈ R 

m , J 0 = ∅ , B ∗ ← B 0 

2: while B 0 � = ∅ and B ∗ � = ∅ do 

3: Pick i ∈ B 0 ; starting from the initial BFS x̄ , solve for primal-

dual optima x ∗, y ∗

x ∗ = argmax x { x i : Ax = b, x ≥ 0 } , p ∗ = x ∗i = b T y 
∗

But, if during the solve, x i > 0 , then stop the iterations; set

x ∗ as the current point. 

4: S ← supp (x ∗) 
5: B ∗ ← degenerate basic indices for x ∗

6: if B 0 � = ∅ and B ∗ � = ∅ then 

7: if p ∗ = 0 (strict feasibility fails) then 

8: Use dual certificate y ∗ to satisfy (2.3) 

9: y ◦ ← y ◦ + y ∗

0: J 0 ← J 0 ∪ ( supp (A 

T y ∗) ∩ B) 

11: B 0 ← B 0 \ {S ∪ J 0 } 
2: else 

3: B 0 ← B 0 \ S 
14: end if 

5: Choose γ ∈ (0 , 1) and set x ◦ ← γ x ◦ + (1 − γ ) x ∗

6: end if 

17: end while 

18: if J 0 � = ∅ then 

9: z ◦ = A 

T y ◦ (exposing vector) 

0: R ← redundant row indices of A ( : , supp (z ◦) c ) 
1: A ← A (R 

c , supp (z ◦) c ) , b ← b(R 

c ) 

2: else 

3: Run Algorithm 3.1 with x ◦ and det (A B ) � = 0 (use x ∗ and B ∗, if

B ∗ = ∅ ) 
4: end if 

The following allows for simplifications in Algorithm 3.2 . 

emma 3.12. Let B be an initial basis containing the index i for prob- 

em (3.4) . Then the index i always remains in the basis throughout the 

terations. 

roof. Without loss of generality, we let i = 1 . We argue that 1

s not chosen to leave the basis. Let y ∗ = (A 

T 
B ) 

−1 c B and Ā = A 

−1 
B A .

uppose that the reduced cost at the index j is positive. Then 

0 < c̄ j = c j − A 

T 
j 
y ∗ = −A 

T 
j 
y ∗ = −A 

T 
j 
(A 

T 
B ) 

−1 e 1 = −Ā 1 j . 
7 
ince Ā 1 j < 0 , the index 1 is not chosen to leave the basis B. �

The following special case is of interest. Namely, no simplex 

ivoting steps are required to determine strict feasibility. 

heorem 3.13 (preprocessing for degree of degeneracy 1) . Given a 

asis B, let x̄ be a BFS with the degree of degeneracy exactly one and 

ith x̄ i = 0 , i ∈ B. Let N = { 1 , . . . , n } \ B and let ȳ = (A 

T 
B ) 

−1 c B , c B =
 i . Then strict feasibility fails if, and only if, ȳ satisfies A 

T 
N ̄y ≥ 0 . 

roof. Suppose that x̄ is a degenerate BFS with basis B. Without 

oss of generality, we assume 1 ∈ B and 1 is the degenerate index. 

e consider the problem 

p ∗1 = max { x 1 : Ax = b, x ≥ 0 } . 
e note that 〈 b, ̄y 〉 = 0 since 〈 b, ̄y 〉 is identical to the current ob-

ective value ‘0’. The backward direction is clear by Proposition 2.2 . 

ow suppose that strict feasibility fails. Suppose to the contrary 

hat A 

T 
N ̄y ≥ 0 fails. Then there exists j such that A 

T 
j 
ȳ < 0 , j ∈ N .

ote that, by Lemma 3.12 , that 1 is not chosen to leave the basis.

hus, there is an index k � = 1 , k ∈ B that leaves the basis. Since all

ther basic variables are positive, we obtain a positive step length 

nd we improve the objective value, which yields a contradiction 

o p ∗
1 

= 0 . �

Upon the termination of Algorithm 3.2 , we can always deter- 

ine whether the system F has a strictly feasible point or not. 

lgorithm 3.2 terminates in a finite number of iterations since 

e remove at least one element from the set B 0 in each itera- 

ion. We emphasize that we do not need to solve the auxiliary 

P s for all i ∈ { 1 , . . . , n } . We solve Eq. (3.4) only for the degen-

rate basic indices of the predetermined basis B. However, upon 

ermination of Algorithm 3.2 , it is possible that we have not ob- 

ained face (F , R 

n + ) , the minimal face containing F . Although the 

omplete FR for LP can be completed in one iteration, one step 

ermination is possible only when we find a solution y of Eq. 

2.3) so that A 

T y is in the relative interior of the conjugate face of

f ace (F , R 

n + ) . In this case, we can rerun Algorithm 3.2 with the cur-

ent facially reduced system. For finding an initial basis for the sec- 

nd trial, we may use the efficient basis recovery scheme Wright 

1996 , Chapter 7). 

One of the nice features of Algorithm 3.2 is that we do not 

eed to search for a new initial basis B for each iteration; the 

nitial basis remains the same. Therefore, our approach can be di- 

ectly employed after the standard phase-I of the two phase sim- 

lex method. 

We do not need a lot of pivoting steps to determine if p ∗
i 

is

ero or positive. If p ∗
i 

= 0 , the initial B is indeed a basis that gives

he optimal value. However the dual feasibility may not be ob- 

ained immediately. 8 Thus, there may be additional pivots required 

o obtain the dual feasibility. However, since the optimal value is 

btained at B, we do not expect that the optimal basis search to 

e time-consuming. For the case p ∗
i 

∈ (0 , ∞ ) , the optimal value p ∗
i 

oes not need to be found. Hence once a basis that gives a positive 

upport on i is found, we can terminate the maximization problem 

n Algorithm 3.2 immediately. We recall from Lemma 3.12 that the 

ndex i in Eq. (3.4) never leaves the basis. In the case of p ∗
i 

= ∞ ,

e can perform the following operation. Let B c be a basis that in- 

icates p ∗
i 

= ∞ and let j be an entering variable that indicates the 

nboundedness. Then by setting 

 

◦( j) ← 1 , x ◦(B c ) ← x B c − A 

−1 
B c A j and x ◦(({ j} ∪ B c ) 

c ) = 0 , 

e obtain a feasible solution x ◦ that yields a positive objective 
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We often get an exposing vector that reveals more than one el- 

ment in the set I 0 by solving Eq. (3.4) . Let p ∗1 = 0 in Eq. (3.4) and

et y ∗ be a dual feasible solution. Suppose that A 

T y ∗ = e 1 , i.e., only

ne exposed variable is revealed. Then y ∗ ∈ nul l (A (: , 2 : n ) T ) . Since

he data matrix A has more columns than rows, y ∗ ∈ nul l (A (: , 2 :

 ) T ) generally implies y ∗ = 0 ; this makes A 

T y ∗ = e 1 impossible. 

When an instance is large and have a BFS with a very large 

egree of degeneracy, one may adopt parallel computing for 

lgorithm 3.2 in order to reduce the total computation time. We 

ote again that the initial basis remains the same throughout the 

terations. Hence, solving Eq. (3.4) for individual i ∈ B 0 can be per- 

ormed independently. In fact, parallel computing can be used to 

btain a strictly feasible solution in Algorithm 3.1 as well; the 

eight vector γ can be chosen independently for each j ∈ N . 

.3. Discussions 

In this section we discuss the main result in Sections 3.1 and 

.2 and make connections to new results and known results in the 

iterature. 

.3.1. Distance to infeasibility 

The distance to infeasibility is a measure of the smallest pertur- 

ations of the data (A, b) of a problem that renders the problem 

nfeasible. In our setting, we can use the following simplification 

f the distance to infeasibility from Renegar (1994) by restricting 

he perturbation to b, i.e., we can force infeasibility using only per- 

urbation in b; 

ist (b, F = ∅ ) := inf 
{ ‖ b − ˜ b ‖ : { x ∈ R 

n : Ax = 

˜ b , x ≥ 0 } = ∅ 
}
. 

any interesting bounds, condition numbers, are shown in 

enegar (1994) under the assumption that the distance to infea- 

ibility is positive and known. It is known that a positive distance 

o infeasibility of F implies that strict feasibility holds for F; see 

.g., Freund & Ordonez (2005) ; Freund & Vera (1997) . The contra- 

ositive of this statement is that, if strict feasibility fails for F , then 

he distance to infeasibility is 0. We revisit this statement with the 

acially reduced system Eq. (2.5) . We provide an elementary proof 

hat there is an arbitrarily small perturbation for the data vector 

of F that yields the set F infeasible, i.e., dist (b, F = ∅ ) = 0 . Fur-

hermore, we provide explicit perturbations that render the set F
mpty. 

Suppose that F fails strict feasibility. Recall the representa- 

ion Eq. (2.5) for F . Let AV = QR be a QR decomposition of AV ,

here Q ∈ R 

m ×m orthogonal, R ∈ R 

m ×(n −s z ) upper triangular. We 

rite Q = 

[
Q 1 Q 2 

]
so that range (Q 1 ) = range (AV ) . Then, by the

rthogonality of Q , we have 

x = AV v = b ⇐⇒ Q 

T Ax = R v = Q 

T b. 

ince AV is a rank deficient matrix (see Lemma 2.3 ), the upper tri-

ngular matrix R is of the form 

 = 

[
R̄ 

0 

]
∈ R 

m ×(n −s z ) and R̄ ∈ R 

rank (AV ) ×(n −s z ) with nonzero diagonal. 

(3.6) 

ince b ∈ range (AV ) , the last m − rank (AV ) entries of Q 

T b are equal

o 0, i.e., 

 

T b = 

(
Q 

T 
1 b 

Q 

T 
2 b 

)
= 

(
Q 

T 
1 b 
0 

)
. 

onsequently, the unrealized implicit non-surjuectivity produces 

he system 

R̄ 

0 

]
v = 

(
Q 

T 
1 b 
0 

)
, v ∈ R 

n −s z + . (3.7) 
8 
ny perturbation on the last m − rank (AV ) equations in Eq. 

3.7) that causes the system inconsistency renders the system F
nfeasible while maintaining the dimension of relint (F ) . For in- 

tance, replacing the right-hand side vector in Eq. (3.7) by 

(
Q 

T 
1 b 

Q 

T 
2 
ξ

)
, 

here Q 

T 
2 
ξ � = 0 , renders Eq. (3.7) and F infeasible. 

We now present a class of perturbations of b that maintains the 

easibility of the set F as well as a special perturbation of b that 

orces F to be infeasible. Such perturbations can be found using 

inear combinations of the columns of Q 1 or Q 2 , respectively. We 

elate this observation to the solution of the auxiliary system Eq. 

2.3) in the proof of Proposition 3.14 below. 

roposition 3.14. Suppose that strict feasibility fails for F , and let F
ave the representation Eq. (2.5) . Then the following hold. 

1. For all �b ∈ range (AV ) with sufficiently small norm, the set { x ∈
R 

n + : Ax = b + �b} is feasible. 

2. Let ȳ ∈ R 

m be a solution to the auxiliary system Eq. (2.3) . Then

perturbing the right-hand side vector b of F in the direction ȳ 

makes the system F infeasible. 

roof. Let �b be any perturbation in range (AV ) . Let QR = AV be

 QR decomposition of AV . In particular, let R have the form Eq. 

3.6) and Q = 

[
Q 1 Q 2 

]
so that range (Q 1 ) = range (AV ) . Let ε be a

ufficiently small scalar. Then 

x = AV v = b + ε�b ⇐⇒ R v = Q 

T b + εQ 

T �b 

⇐⇒ R̄ v = Q 

T 
1 b + εQ 

T 
1 �b. (3.8) 

he last equivalence holds since Ax = b and �b ∈ range (AV ) = 

ange (Q 1 ) . Since the system R̄ v = Q 

T 
1 b satisfies the Mangasarian- 

romovitz constraint qualification, the distance to infeasibility of 

his system is positive. Thus, the perturbed system { v : R̄ v = Q 

T 
1 

b +
Q 

T 
1 �b, v ≥ 0 } remains feasible. Therefore, by Eq. (3.8) , perturbing 

along the direction �b ∈ range (AV ) maintains the feasibility and 

his concludes the proof for Item 1. 

For Item 2 we show that perturbing b with �b = ȳ renders 

infeasible, where ȳ is a solution to the system Eq. (2.3) . By 

roposition 2.2 and Eq. (2.6) , the nonzero vector ȳ ∈ R 

m is in 

ul l ((AV ) T ) . Then we have 

¯
 ∈ range (AV ) ⊥ = range (Q 2 ) ⇒ ȳ = Q 2 ̄u for some nonzero ū . 

e recall Farkas’ lemma: 

 y ∈ R 

m : A 

T y ≥ 0 , 〈 b, y 〉 < 0 } � = ∅ ⇒ F = ∅ . 
ow, for any ε > 0 , setting �b ε = −εȳ yields 

 

T ȳ ≥ 0 , 〈 b, ȳ 〉 = 0 ⇒ A 

T ȳ ≥ 0 , 〈 b + �b ε , ȳ 〉 < 0 . (3.9)

ence, by letting ε → 0 + , we see that the distance to infeasibility, 

ist (b, F = ∅ ) , is equal to 0. �

We emphasize that the result 

 fails strictly feasibility ⇒ dist ((A, b) , F = ∅ ) = 0 

ives rise to the second step Eq. (2.7) of FR discussed in 

ection 2.2 . We note that the instability discussed in this 

ection essentially originates from the observation made in 

emma 2.3 , i.e., redundant equalities arise in the facially reduced 

ystem. Facially reduced system allows us to exploit the root of 

otential instability when the problem data A or b is perturbed. 

lthough the distance to infeasibility is 0 in the absence of strict 

easibility, Proposition 3.14 suggests that a carefully chosen pertur- 

ation of b does not have an impact on the feasibility of F . We 

rovide a related numerical experiment in Section 4.1.4 below. 
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.3.2. Applications to known characterizations for strict feasibility 

There are some known characterizations for strict feasibility 

f F . Using these characterizations we can obtain extensions of 

heorem 3.1, Theorem 3.4 and Corollary 3.6 . 

The dual ( D) of ( P) is 

D) max 
y,s 

{
b T y : A 

T y + s = c, s ≥ 0 

}
. (3.10) 

t is known that strict feasibility fails for F if, and only if, the set of

ptimal solutions for the dual (D) is unbounded; see e.g., Wright 

1996 , Theorem 2.3) and Gauvin (1977) . Then Corollary 3.15 fol- 

ows. 

orollary 3.15. 

1. Suppose that the set of optimal solutions for the dual (D) is un- 

bounded. Then every basic feasible solution to F is degenerate. 

2. Suppose that there exists a nondegenerate basic feasible solution to 

F . Then the set of optimal solutions for the dual (D) is bounded. 

It is known that strict feasibility holds for F if, and only if, 

 ∈ relint (A (R 

n + )) , where relint denotes the relative interior; see 

.g., Drusvyatskiy & Wolkowicz (2017 , Proposition 4.4.1). Then if 

ne finds a set of indices I ⊂ { 1 , . . . , n } such that A I is nonsin-

ular and A I z = b has a solution z with positive entries, then b ∈
elint (A (R 

n + )) . 

.3.3. Applications to obtain a strictly complementary primal-dual 

olution 

In this section we present an application of Algorithm 3.1 for 

btaining a strictly complementary primal-dual optimal solution. 

Let (x ∗, y ∗, s ∗) be an optimal triple for the standard primal-

ual LP pair. Let B 

∗ ∪ N 

∗ = { 1 , . . . , n } be the strict complemen-

ary partition of the primal-dual optimal pair. The existence of 

uch a partition is guaranteed by the Goldman–Tucker theorem 

 Goldman & Tucker, 1956 ) and the partition B 

∗ ∪ N 

∗ is unique.

or the first application of Algorithm 3.1 , we provide a method 

or obtaining a strict complementary primal-dual solution when 

he primal optimal solution x ∗ is nondegenerate or the submatrix 

 (: , supp(x ∗)) of A has rank m . To elaborate, we list the two cases

here Algorithm 3.1 can be used to obtain maximal complemen- 

ary solutions. 

1. Let x ∗ be a nondegenerate (optimal) basic feasible solution. 

Then, supp(s ∗) = N 

∗ and supp(x ∗) can be extended to complete 

B 

∗; 

2. Let x ∗ be an optimal solution such that A (: , supp(x ∗)) is full

row rank. Then, supp(s ∗) = N 

∗ and supp(x ∗) can be extended 

to complete B 

∗. 

Suppose that we are given a primal-dual optimal solution 

x ∗, y ∗, s ∗) of the form 

A B A J A N 
]( 

x B 
x J 
x N 

) 

= b, 

where rank (A B ) = m, 

( 

x B 
x J 
x N 

) 

> 
= 

= 

( 

0 

0 

0 

) 

and 

( 

s B 
s J 
s N 

) = 

= 

> 

( 

0 

0 

0 

) 

. 

(3.11) 

e claim that N 

∗ = supp(s ∗) . That is, the support of the current

ual optimal solution s ∗ is maximal and hence we obtain the strict 

omplementary partition for free. We rewrite the system Ax = b of 

q. (3.11) as 

A B 1 A B 2 A J 
]( 

x B 1 
x B 2 
x J 

) 

= b, where A B = 

[
A B 1 A B 2 

]
, 
9 
x B = 

(
x B 1 
x B 2 

)
and rank (A B 1 ) = m. 

hen, by replacing the data in Algorithm 3.1 by 

 ← J , A ← A (: , B 1 ∪ B 2 ∪ N ) , ˜ x ← x ∗, 

e can endow positive weights to x J while maintaining the pri- 

al feasibility. Since we maintain the feasibility of the primal-dual 

olution without violating the complementarity, we maintain the 

ptimality. 

.3.4. Lack of strict feasibility and interior point methods 

In this section we provide a new perspective on the ill- 

onditioning that typically arises in interior point methods. 

any interior point algorithms are derived from block Gaussian- 

limination of the linearized primal (P) and dual (D) optimality 

onditions (KKT conditions). Let (x c , y c , s c ) be the current primal-

ual pair iterate. The search direction is computed by solving the 

ewton equation 

 

0 n ×n A 

T I 
A 0 m ×m 

0 m ×n 

Diag (s c ) 0 n ×m 

Diag (x c ) 

] ( 

�x 
�y 
�s 

) 

= −
( 

r d 
r p 
r c 

) 

, (3.12) 

here r d , r p , r c are the residuals of dual feasibility, primal feasibil-

ty and complementarity, respectively. After the block elimination, 

e first find the change �y by solving the so-called normal equa- 

ion, a square system, 

D c A 

T �y = r̄ , where D c = Diag (x c ) Diag (s c ) 
−1 , (3.13) 

¯ ∈ R 

m is some residual; see e.g., Wright (1996 , Chapter 11). It is 

nown that (3.13) often becomes ill-conditioned near an optimum. 

he ill-conditioning of the matrix AD c A 

T under degeneracy is dis- 

ussed in GüLer et al. (1993) in terms of the lack of nice positive

iagonal elements of D c . This relates to our results in the sense 

hat all vertices that form the optimal face of (P) are also degen- 

rate in the absence of strict feasibility. Moreover, we show that 

he ill-conditioning of the matrix AD c A 

T not only originates from 

he columns of A chosen by D c but also from the rows of A in the

bsence of strict feasibility. In particular, a large IP S is a good indi- 

ator for ill-conditioning. 

We partition the matrix A = 

[
P m̄ 

AV A I 0 
R AV R I 0 

]
, where [ A I 0 ; R I 0 ] 

orresponds to the submatrix of A associated with the index set 

 0 . The submatrix R AV refers to the rows of A that are implicitly

edundant due the lack of strict feasibility. Let (x ∗, y ∗, s ∗) an opti-

al triple and let D 

∗ = Diag (x ∗) Diag (s ∗) −1 . As x c → x ∗, i.e., as the

terates get closer to the feasible set F , we observe the limiting 

ehaviour AD c A 

T → AD 

∗A 

T below: 

D c A 

T → AD 

∗A 

T = 

[
P m̄ 

AV A I 0 
R AV R I 0 

][
D 

∗
AV 0 

0 0 

][
P m̄ 

AV A I 0 
R AV R I 0 

]T 

= 

[
(P m̄ 

AV ) D 

∗
AV (P m̄ 

AV ) T (P m̄ 

AV ) D 

∗
AV R 

T 
AV 

R AV D 

∗
AV (P m̄ 

AV ) T R AV D 

∗
AV R 

T 
AV 

]
here D 

∗
AV 

is the submatrix of D 

∗ with the diagonal associated 

ith I + . We recall from Lemma 2.3 that the rows of R AV are linear

ombinations of the rows of P m̄ 

AV . Therefore, the more implicit re- 

undant constraints F has, the more ‘0’ singular values AD 

∗A 

T has, 

.e., ill-conditioned. 

The self-dual embedding ( Ye et al., 1994 ) is a popular formula- 

ion of the primal-dual LP pair used for an interior point method. 

n attractive feature of the self-dual embedding is that a feasi- 

le initial iterate in the interior is analytically given. The success 

f the self-dual embedding technique is supported by strong per- 

ormances of some solvers. However, the absence of strict feasi- 

ility results in the same type of ill-conditioning even when this 
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9 https://www.mathworks.com/ . Version 9.10.0.1669831 (R2021a) Update 2. 
10 https://www.math.cmu.edu/ ∼reha/sdpt3.html , version SDPT3 4.0. 
11 https://www.mosek.com/ . Version 8.0.0.60. 
12 MOSEK has a presolve with five steps that includes eliminating fixed variables. 

However, itis clear from the empirical evidencethat the variables fixed at 0 are not 

found. 
eformulation is used. For instance, Ye et al. (1994 , equation (17)) 

isplays the equation as a part of computing the search direc- 

ion (d x ; d y ) : 

X k S k −X k A T 

AX k 0 

](
(X k ) −1 d x 

d y 

)
= 

(
γμk e − X k s k 

0 

)
−

[
X k c −X k c̄ 

−b b̄ 

](
d τ
d θ

)
. 

ere, X k = Diag (x k ) and S k = Diag (s k ) , where x k , s k are the current

rimal-dual iterate. It then uses the back-solve steps to complete 

he remaining components of the search direction. For simplicity, 

e set the right-hand side of the system to be 

(
r 1 
r 2 

)
. By expanding 

he first block equation, we obtain 

X k S k )(X k ) −1 d x − X k A T d y = r 1 ⇐⇒ (X k ) −1 d x = (X k S k ) −1 r 1 + (X k S k ) −1 X k A T d y .

e then substitute the equality above into the second block equa- 

ion, i.e., 

AX k (X k ) −1 d x = r 2 ⇐⇒ AX k (S k ) −1 A T d y = r 2 − AX k (X k S k ) −1 r 1 . 

inally, we obtain the normal matrix AX k (S k ) −1 A 

T that appear in 

q. (3.13) . 

.3.5. Lack of strict feasibility in the dual 

Recall Remark 2.1 that redundant constraints can result in poor 

ehaviour for interior point methods. Moreover, complementary 

lackness means we get dual variables fixed at 0. This is one mo- 

ivation for considering FR on the dual (D) ; see Eq. (3.10) . We de-

ote the feasible set of the dual (D) by 

 := { (y, s ) ∈ R 

m 

� R 

n 
+ : A 

T y + s = c} 
= 

{
(y, s ) ∈ R 

m 

� R 

n 
+ : 

[
A 

T I 
](y 

s 

)
= c 

}
. (3.14) 

he facial reduction arguments applied to the dual are parallel to 

he ones given in Section 2.2 . We provide the theorem of the alter-

ative for the dual and a short derivation for the facially reduced 

ystem for G in Section A.3.1 . We also conclude that the absence 

f strict feasibility for G implies dual degeneracy at all BFS s. 

A popular method for rewriting an instance with a free variable 

 i into the primal standard form is to write x i into the difference 

f two nonnegative variables, i.e., x i = x + 
i 

− x −
i 

with x + 
i 
, x −

i 
≥ 0 . This

quivalent transformation does not seem to cause any difficulties 

t first glance; at least the primal simplex method does not con- 

ider both x + 
i 

and x −
i 

as a basic variables simultaneously in order 

o form a nonsingular basis matrix. However, this equivalent trans- 

ormation has a significant consequence to the dual program. For 

ny K ≥ max { x + 
i 
, x −

i 
} , we can maintain the equality 

 i = x + 
i 

− x −
i 

= (x + 
i 

+ K) − (x −
i 

+ K) . 

hus, the primal optimal set is unbounded. This implies that the 

ual feasible region of the reformulated primal does not have a 

trictly feasible point. Consequently, the results that we established 

or the primal applies to the dual; (i) this implies that all BFS s of

he dual are degenerate; (ii) the equality system for the dual fea- 

ibility contains implicit redundancies and thus the Newton equa- 

ion that appears in the interior point method (3.12) becomes very 

ll-conditioned near an optimum. More details for loss of strict fea- 

ibility in the dual is given in Section A.3 . 

. Numerical investigation 

We now provide empirical evidence that FR is indeed a use- 

ul preprocessing tool for reducing the size of problems as well as 

or improving the conditioning . We do this first for interior point 

ethods and then for simplex methods. In particular, this pro- 

ides empirical evidence that lack of strict feasibility is equivalent 

o implicit singularity. All the numerical tests are performed using 
10 
ATLAB version 2021a on Dell XPS 8940 with 11th Gen Intel(R) 

ore(TM) i5-11400 @ 2.60 GHz 2.60 GHz with 32 Gigabyte mem- 

ry. We use three different solvers in our tests: (i) linprog from 

ATLAB 

9 ; (ii) SDPT3 10 ; and (iii) MOSEK . 11 MATLAB version 2021a is 

sed to access all the solvers for the tests, and we use their default 

ettings for stopping criteria. Note that MOSEK has a preprocessing 

ption. 12 

.1. Empirics with interior point methods 

In this section we compare the behaviour for finding near- 

ptimal points with instances that do and do not satisfy strict fea- 

ibility. More specifically, given a near optimal primal-dual point 

x ∗, s ∗) ∈ R 

n ++ � R 

n ++ obtained from an interior point solver, we ob-

erve the condition number, i.e., the ratio of largest to smallest 

igenvalues of the normal matrix at (x ∗, s ∗) : (
AD 

∗A 

T 
)
, where D 

∗ = Diag (x ∗) Diag (s ∗) −1 . (4.1) 

e show that instances that do not have strictly feasible points 

end to have significantly larger condition numbers of the normal 

quation near the optimum. We also present a numerical experi- 

ent on perturbations of the right-hand side vector b. 

.1.1. Generating LPs without strict feasibility 

Given m, n, r ∈ N , we construct the data A ∈ R 

m ×n and b ∈ R 

m to

atisfy Eq. (2.3) with r as the dimension of the relative interior of 

 , relint (F ) . 

1. Pick any 0 � = y ∈ R 

m . Let 

{ y } ⊥ = span { a i } m −1 
i =1 

(= nul l (y T )) . 

We let R ∈ R 

(m −1) ×r be a random matrix, and get 

A 1 := 

[
a 1 . . . a m −1 

]
R ∈ R 

m ×r , A 

T 
1 y = 0 ∈ R 

r . 

2. Pick any ˆ v ∈ R 

r ++ and set b = A 1 ̂ v . We note that y T A 1 = 0 and

〈 b, y 〉 = 0 . 

3. Pick any matrix A 2 ∈ R 

m ×(n −r) satisfying (y T A 2 ) i � = 0 , ∀ i . If there

exists i such that (y T A 2 ) i < 0 , then change the sign of the i -th

column of A 2 so that we conclude 

(A 

T 
2 y ) ∈ R 

n −r 
++ . 

4. We define the matrix A = 

[
A 1 A 2 

]
∈ R 

m ×n . Then { x ∈ R 

n + :
Ax = b} is a polyhedron with a feasible point ˆ x = [ ̂ v ; 0] having

r number of positives. The vector y is a solution for the system 

Eq. (2.3) : 

0 � z = A 

T y = 

(
A 

T 
1 y = 0 

A 

T 
2 y > 0 

)
, b T y = 0 . 

We then randomly permute the columns of A to avoid the zeros 

always being at the bottom of the feasible variables x . 

For the empirics, we construct the objective function c T x of 

P) as follows. We choose any s̄ ∈ R 

n ++ , ̄y ∈ R 

m and set c = A 

T ȳ + s̄ .

hen we have the data for the primal-dual pair of LP s and the pri-

al fails strict feasibility: 

P (A,b,c) ) min { c T x : Ax = b, x ≥ 0 } and 

D (A,b,c) ) max { b T y : A 

T y + s = c, s ≥ 0 } . 

https://www.mathworks.com/
https://www.math.cmu.edu/~reha/sdpt3.html
https://www.mosek.com/
https://docs.mosek.com/latest/toolbox/presolver.html
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Fig. 4.1. Performance profile on κ
(
AD ∗A T 

)
with(out) strict feasibility near optimum; various solvers . 

W  

a

f

(

t

(

(

T

(

a

s

o

4

t

(

(

G

e

p

m

d

f

i  

fi  

r

c  

(

i

a

d

(  

t

b

t

f  

m

o

y

s

4

fi

t  

W

(  

v  

‘

s

K

T

n

v

t

g

e

t

t

4

p

W

s

d  

t  

b

o  

f

(

m

o  

t

�

W  

w  
e note that by choosing s̄ ∈ R 

n ++ , the dual problem (D (A,b,c) ) has

 strictly feasible point. In order to generate instances with strictly 

easible points, we maintain the same data A, c used for the pair 

P (A,b,c) ) and (D (A,b,c) ) . We only redefine the right-hand side vec- 

or by b̄ = Ax ◦, where x ◦ ∈ R 

n ++ : 

 ̄P 

(A, ̄b ,c) 
) min { c T x : Ax = b̄ , x ≥ 0 } and 

 D̄ 

(A, ̄b ,c) 
) max { b̄ T y : A 

T y + s = c, s ≥ 0 } . 
he facially reduced instances of (P (A,b,c) ) are denoted by 

P (A F R ,b F R ,c F R ) 
) . They are obtained by discarding the variables that 

re identically 0 in the feasible set F and the redundant con- 

traints. In other words, the affine constraints of (P (A F R ,b F R ,c F R ) 
) are 

f the form Eq. (2.7) . 

.1.2. Condition numbers 

In order to illustrate the differences in condition numbers of 

he normal matrices, we solve the three families of instances: (i) 

P (A,b,c) ) , strictly feasible fails; (ii) ( ̄P 

(A, ̄b ,c) 
) , strictly feasible holds; 

iii) (P (A F R ,b F R ,c F R ) 
) , facially reduced instances of (P (A,b,c) ) . 

In Fig. 4.1 we use a performance profile ( Dolan & Moré, 2002; 

ould & Scott, 2016 ) to observe the overall behaviour on differ- 

nt families of instances using the three solvers. The performance 

rofile provides a useful graphical comparison for solver perfor- 

ances. Figure 4.1 displays the performance profile on the con- 

ition numbers of the normal matrix AD 

∗A 

T near optimal points 

rom different solvers. We generate 100 instances for each fam- 

ly that have dim ( relint (F )) ∈ [300 , 1350] . The instance sizes are

xed with (m, n ) = (50 0 , 150 0) . The vertical axis in Fig. 4.1 rep-

esents the statistics of the performance ratio on κ
(
AD 

∗A 

T 
)
, the 

ondition number of normal matrix near optimum (x ∗, s ∗) ; see Eq.

4.1) . Roughly speaking, the vertical axis represents the probabil- 

ty of achieving a performance ratio within a factor of f among 

ll methods used. We used the lower the better statistics. The 

etails of the performance ratio are discussed in Dolan & Moré

2002) ; Gould & Scott (2016) . The solid lines in Fig. 4.1 represent

he performance of the instances (P (A,b,c) ) that fail strict feasi- 

ility. They show that the condition numbers of the normal ma- 

rices near optima are significantly higher when strict feasibility 

ails. That is, when strict feasibility fails for F , the matrix AD 

∗A 

T is

ore ill-conditioned and it is difficult to obtain search directions 

f high accuracy. We also observe that facially reduced instances 
11
ield smaller condition numbers near optima. We note that the in- 

tances (P (A,b,c) ) and (P (A F R ,b F R ,c F R ) 
) are equivalent. 

.1.3. Stopping criteria 

We now use the three solvers to observe the accuracy of the 

rst-order optimality conditions (KKT conditions) and the running 

imes, for the instances (P (A,b,c) ) and (P (A F R ,b F R ,c F R ) 
) , see Table 4.1 .

e test the average performance of 10 instances of the size 

n, m, r) = (30 0 0 , 50 0 , 20 0 0) . The headers used in Table 4.1 pro-

ide the following. Given solver outputs (x ∗, y ∗, s ∗) , the header

KKT’ exhibits the average of the triple consisting of the primal fea- 

ibility, dual feasibility and complementarity; 

KT = 

(‖ Ax ∗ − b‖ 

1 + ‖ b‖ 

, 
‖ A 

T y ∗ + s ∗ − c‖ 

1 + ‖ c‖ 

, 
〈 x ∗, s ∗〉 

n 

)
. 

he headers ‘iter’ and ‘time’ in Table 4.1 refer to the average of the 

umber of iterations and the running time in seconds, respectively. 

From Table 4.1 we observe that facially reduced instances pro- 

ide significant improvement in first-order optimality conditions, 

he number of iterations and the running times for all solvers in 

eneral. We note that the instances (P (A,b,c) ) and (P (A F R ,b F R ,c F R ) 
) are 

quivalent. Hence, our empirics show that performing facial reduc- 

ion as a preprocessing step not only improves the solver running 

ime but also the quality of solutions. 

.1.4. Distance to infeasibility 

In this section we present empirics that illustrate the effect of 

erturbations of the right-hand side b when strict feasibility fails. 

e recall, from Proposition 3.14 , that there exists an arbitrarily 

mall perturbation of the right-hand side vector b of F that ren- 

ers the set F infeasible, i.e., dist (b, F = ∅ ) = 0 . Moreover, the vec-

or �b = y that satisfies the auxiliary system Eq. (2.3) is a pertur-

ation that makes the set F empty; see Eq. (3.9) . 

We follow the steps in Section 4.1.1 to generate instances of the 

rder (n, m ) = (10 0 0 , 20 0) and r = relint (F ) = 900 . The objective

unction c T x is chosen as presented in Section 4.1.1 . For the fixed 

n, m, r) , we generate 10 instances and observe the average perfor- 

ance of these instances as we gradually increase the magnitude 

f the perturbation. We recall the matrix AV from Eq. (2.5) . We use

wo types of perturbations for b; 

b, where �b ∈ range (AV ) ⊥ , �b̄ , where �b̄ ∈ range (AV ) . 

e choose �b to be the vector y that satisfies Eq. (2.3) . For �b̄ ,

e choose AV d, where d ∈ R 

r is a randomly chosen vector. As we
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Table 4.1 

Average of KKT conditions, iterations and time of (non)-facially reduced problems. 

Non-facially reduced system Facially reduced system 

linprog KKT (2.44e −15, 2.05e −12, 3.18e −09) (5.85e −16, 4.74e −16, 9.22e −09) 

iter 22.30 17.90 

time 2.34 0.81 

SDPT3 KKT (8.11e −10, 7.55e −12, 5.65e −02) (1.43e −11, 3.67e −16, 4.38e −06) 

iter 25.50 19.30 

time 1.73 0.70 

mosek KKT (7.52e −09, 1.80e −15, 3.27e −06) (3.85e −09, 3.69e −16, 1.19e −06) 

iter 40.30 10.20 

time 1.40 0.35 

Fig. 4.2. Changes in the first-order optimality condition as the perturbation of b increases. 
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Table 4.2 

# (rel.) small singular values of AD ∗A T near optimum; average over 

20 instances. 

maxSD = 1 maxSD = 5 maxSD = 10 

linprog | 
0 | 4.10 8.65 13.10 

SDPT3 | 
0 | 4.75 8.00 34.65 

MOSEK | 
0 | 6.45 12.35 14.50 

Table 4.3 

Average of the ratio of degenerate iterations. 

100% − (r/n )% 

40 30 20 10 0 

(n, m ) (1000, 250) 36.62 10.18 0.01 0.02 0.00 

(2000, 500) 39.72 18.28 0.07 0.15 0.01 

(3000, 750) 25.99 10.66 0.32 0.75 0.02 

(4000, 1000) 29.78 18.25 0.25 0.53 0.02 

1
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ncrease ε > 0 , we observe the performance of the two families of 

he systems 

Ax = b ε := b − ε�b and Ax = b̄ ε := b − ε�b̄ . 

e use the interior point method from MATLAB’s linprog for the 

est. Figure 4.2 contains the average of the first-order optimality 

onditions evaluated at the solver outputs (x ∗, y ∗, s ∗) of these in-

tances; primal feasibility, dual feasibility and the complementar- 

ty. 

The horizontal axis of Fig. 4.2 indicates the degree of the per- 

urbation imposed on the right-hand side vector b, ε‖ �b‖ and 

‖ �b̄ ‖ . The vertical axis indicates the individual component of the 

rst-order optimality. From Fig. 4.2 , we observe that the KKT con- 

itions with the perturbation �b̄ display a steady performance re- 

ardless of the perturbation degree; see the markers ◦, �, � with 

he dotted lines. In contrast, the markers •, �, � in Fig. 4.2 ex-

ibit the performance of the instances that are perturbed with �b

nd they display a different performance. In particular, we see that 

he relative primal feasibility ‖ Ax ∗ − b ε‖ / (1 + ‖ b ε‖ ) , marked with

, consistently increases as the perturbation magnitude ε‖ �b‖ in- 

reases when strict feasibility fails for F . 

.1.5. Empirics on singular values and IP S

In this section we present our numerical experiment on the 

ll-conditioning discussed in Section 3.3.4 in terms of maxSD (see 

efinition 2.5 ). We generated instances with different settings 

or maxSD = 1 , 5 and 10. We recall the generation for the vec-

or y and A 2 in Section 4.1.1 . For generating and instance with 

axSD > 1 , we generated Y c = blkdiag (y 1 , . . . , y IPS ) ∈ R 

m ×maxSD and

 2 = blkdiag (A 

1 
2 
, . . . , A 

maxSD 
2 

) of appropriate dimension in order to 

roduce the exposing vector A 

T 
2 

∑ maxSD 
j=1 Y c (: , j) ≥ 0 . Each column of

 c serves as a vector satisfying Eq. (2.3) . 

Let σmax (AD 

∗A 

T ) be the maximum singular value of AD 

∗A 

T . We

ount the number of singular values of AD 

∗A 

T that are smaller than 
12 
0 −8 · σmax (AD 

∗A 

T ) . In Table 4.2 below, we report the cardinality of 

0 := { i : σi (AD 

∗A 

T ) < σmax (AD 

∗A 

T ) } . 
e test the average performance on the 20 instances of the fixed 

ize (n, m, r) = (30 0 0 , 50 0 , 20 0 0) . We display the average number

f | 
0 | . We see from Table 4.2 a larger maxSD and IP S values pro-

uce a greater number of small singular values. When there is a 

ignificant number of redundant constraints, it is more difficult to 

btain a good search direction due to a large number of relatively 

mall singular values. 

.2. Empirics with simplex method 

In this section we compare the behaviour of the dual simplex 

ethod with instances that have strictly feasible points and in- 
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Table 4.4 

Average of the ratio of degenerate iterations. 

εA εb (A, b) (P m̄ AV, P m̄ b) (A trans , b trans ) 

1.0e −09 0 (11, 4.938e −02) (97, 6.705e −03) 100 

0 1.0e −09 (27, 2.470e −10) (100, 2.208e −10) 100 

1.0e −09 1.0e −09 (11, 1.339e −01) (96, 8.719e −03) 100 
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tances that do not. We also observe the degeneracy issues that 

rise in the instances from NETLIB . 

.2.1. Empirics on the number of degenerate iterations 

In this section we test how the lack of strict feasibility affects 

he performance of the dual simplex method. We provide the con- 

truction of instances that fail strict feasibility in Appendix A.3.2 . 

e choose MOSEK for our tests since MOSEK reports the percent- 

ge of degenerate iterations as a part of the solver report. MOSEK 

eports the quantity ‘DEGITER( % )’, the ratio of degenerate itera- 

ions. 

Given a set G and a point (y, s ) ∈ relint (G) ⊆ R 

m 

� R 

n + , let r

e the number of positive entries of s , i.e., r = | supp(s ) | . In our

ests, we gradually increase r for fixed n, m and generate instances 

or G as described in Appendix A.3.2 . We then observe the be- 

aviour of the dual simplex method. Table 4.3 contains the re- 

ults. In Table 4.3 , a smaller value for the header (r/n )% means

hat there are more entries of s that are identically 0 in the set G;

nd the value 0% means that strict feasibility holds. For each triple 

n, m, r) , we generated 10 instances and we report the average of 

DEGITER( % )’ of these instances. 

We recall Theorem 3.1 : lack of strict feasibility implies that all 

asic feasible solutions are degenerate. However, we observe more, 

.e., from Table 4.3 , the frequency of degenerate iterations increases 

s r decreases. In other words, higher degeneracy of the set G
ields more degenerate iterations when the dual simplex method 

s used. 

.2.2. NETLIB problems; perturbations; stability 

We now illustrate the lack of strict feasibility on instances from 

he NETLIB data set. We used the following 67 instances that are 

n standard form at this link : 

25fv47 adlittle ∗ afiro agg ∗ agg2 ∗

bnl2 ∗ brandy ∗ cre _ a ∗ cre _ b ∗ cre _ c ∗

fffff800 ∗ israel lotfi maros _ r7 nug05 

nug20 osa _ 07 ∗ osa _ 14 ∗ qap12 qap15 

scagr25 scagr7 scfxm1 ∗ scfxm2 ∗ scfxm3 ∗

sctap1 sctap2 sctap3 share1b share2b 

ship12s ∗ stocfor1 stocfor2 stocfor3 truss 

We removed redundant rows to guarantee full row rank of A . 

Surprisingly, the Slater condition fails for 37 out of these 67 in- 

tances. 13 This has interesting implications for both interior point 

nd simplex methods. The standard interior point method stopping 

riteria is complicated by the unbounded dual optimal set. For the 

rimal simplex method, every iteration is at a degenerate BFS and 

talling generally occurs. Therefore preprocessing to eliminate the 

ariables fixed at 0 is important. In addition, in order to moti- 

ate robust optimization, it is shown in e.g., Ben-Tal et al. (2009) ; 

en-Tal & Nemirovski (1999) that optimal solutions of many of the 

ETLIB instances are extremely sensitive to perturbations in the 
13 The instances that fail strict feasibility are marked with an asterisk ∗ in the list 

bove. v

13 
gg3 ∗ bandm 

∗ beaconfd ∗ blend bnl1 ∗

re _ d ∗ d2q06c ∗ degen2 ∗ degen3 ∗ e226 ∗

ug06 nug07 nug08 nug12 nug15 

ap8 sc105 ∗ sc205 ∗ sc50a ∗ sc50b ∗

corpion ∗ scrs8 ∗ scsd1 scsd6 scsd8 

hip04l ∗ ship04s ∗ ship08l ∗ ship08s ∗ ship12l ∗

ood1p ∗ woodw 

∗

ata. We now see this to be the case, and we show that FR regu-

arizes the problem and avoids this instability. 

We first use the instance degen3 in order to illustrate the con- 

equence of lack of strict feasibility. The data matrix A after re- 

oving two redundant rows is 1501-by-2604. After FR , we obtain 

he constraint matrix P m̄ 

AV of size 1226-by-1648. This implies that 

604 − 1648 = 956 number of variables are identically 0 on the 

easible set. Furthermore, IP S(F ) = 275 equality constraints are im- 

licitly redundant. By Item 3 of Corollary 3.9 , without FR , the de- 

ree of degeneracy of every BFS is at least 275. Namely, the length 

f the basis is 1501 and every basis contains at least 275 degener- 

te indices. 

We now illustrate that FR gives a more robust model with re- 

pect to data perturbations using the instance brandy . Let (A, b) 

e the data after removing the redundant equality constraints. Let 

P m̄ 

AV, P m̄ 

b) be the data for the facially reduced system. The data

atrices A and P m̄ 

AV have sizes 193-by-303 and 155-by-260, re- 

pectively. 14 Set the perturbation scalars εA = εb = 10 −9 . We con- 

truct a random perturbation matrix �, ‖ �‖ F = ‖ A ‖ F + 1 , and ran-

om perturbation vector φ, ‖ φ‖ 2 = ‖ b‖ 2 + 1 . We then solve the

roblem 

˜ p ∗ = max {〈 c, x 〉 : (A + εA �) x = b + εb φ, x ≥ 0 } . 
For the facially reduced system, we used the identical perturba- 

ion data �, φ and discard the rows and columns of (A, b) found 

rom FR . That is, we use the perturbations P m̄ 

�V and P m̄ 

φ to the

acially reduced system after the scaling ‖ P m̄ 

�V ‖ F = ‖ P m̄ 

AV ‖ F + 1

nd ‖ P m̄ 

φ‖ 2 = ‖ P m̄ 

b‖ 2 + 1 . We then solve 

ax {〈 V 

T c, v 〉 : (P m̄ 

AV + εA P m̄ 

�V ) v = P m̄ 

b + εb P m̄ 

φ, v ≥ 0 } . 
n this way, we maintain the identical perturbation structure for 

he original system and the facially reduced system. We also 

enerate a transportation problem and use the aforementioned 

erturbations. We note that the transportation problems have 

later points but are known to be highly degenerate. The size of 

he data generated is 49-by-600. 

In the experiment, we tested the instances using 100 differ- 

nt perturbation settings. We randomly generated perturbations 

, φ with density set at 0.1. We used MOSEK simplex with the 

etting ‘MSK _ OPTIMIZER _ FREE _ SIMPLEX’. In Table 4.4 , the head- 

rs εA and εb refer to the scalars used for perturbations as de- 

cribed above. The headers (A, b) , (P m̄ 

AV, P m̄ 

b) and (A trans , b trans )

efer to the non-facially reduced system, the facially reduced sys- 

em and the transportation problems, with the perturbations. The 
14 This also means that, without FR , every BFS has at least 38 degenerate basic 

ariables. At least 19.69 percent of basic variables are always degenerate. 

https://www.netlib.org/lp/
https://www.netlib.org/lp/
http://users.clas.ufl.edu/hager/coap/format.html
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ntegral values in the table indicate the number of times that the 

olver outputs PRIMAL _ AND _ DUAL _ FEASIBLE. Let p ∗ be the opti- 

al value for the unperturbed instance brandy , and let ˜ p ∗ be the 

ptimal value of a perturbed instance of brandy . The non-integral 

alues in the table indicate the average relative difference in the 

ptimal values between p ∗ and ˜ p ∗. The relative difference is com- 

uted using the formula | p ∗− ˜ p ∗| 
2 | p ∗+ ̃ p ∗| . For example, the first entry 11 in 

able 4.4 means that 100 −11 out of 100 perturbed instances yield 

nfeasibility or unknown status, i.e., only 11 solved successfully. 

he entry 4.938e −02 next to 11 indicates the average of | p ∗− ˜ p ∗| 
2 | p ∗+ ̃ p ∗| 

n those 11 instances. 

The columns (A, b) and (P m̄ 

AV, P m̄ 

b) in Table 4.4 demonstrate 

hat the facially reduced problems are more immune to data per- 

urbations; the number of successfully solved perturbed instances 

re significantly larger and the optimal values under the perturba- 

ions are less influenced. The last column indicates that although 

he instance may have many degenerate BFS s, having a strictly fea- 

ible point is important in terms of perturbations in data, i.e., this 

mphasizes the difference between the two types of degeneracy. 

. Conclusion 

We have addressed the impact, for both theoretical and com- 

utational reasons, of loss of strict feasibility in LP , distinguish- 

ng one type of degeneracy at a BFS . For our numerics we illus-

rated this using the accuracy of optimality conditions as well as 

he effect of perturbations, for the two most popular classes of 

lgorithms, i.e., simplex and interior point methods. For the the- 

ry, we proved, using the two-step facial reduction, that if strict 

easibility fails for a linear program, then every BFS is degenerate. 

n addition, we showed that facial reduction can be implemented 

fficiently to obtain a smaller simpler problem with strict feasibil- 

ty, and that this improves stability. This was illustrated on random 

roblems, as well as instances from the NETLIB data set. 

An essential step for almost all algorithms for linear program- 

ing is preprocessing. One part of preprocessing is identifying 

xed variables . However, identifying variables fixed at 0, facial re- 

uction, has not been done due to expense and accuracy prob- 

ems. In this paper we have shown that not eliminating these vari- 

bles, i.e., lack of strict feasibility, is equivalent to implicit singu- 

arity and this helps explain the numerical difficulties that arise. 

e have further provided an efficient preprocessing step for fa- 

ial reduction, i.e., we continue on phase I of the simplex method 

hat eliminates all the artificial variables, and eliminate the vari- 

bles fixed at 0. We observed that a variable that is basic (posi- 

ive) in every BFS corresponds to a redundant constraint and, by 

omplementary slackness, corresponds to a variable fixed at 0 in 

he dual. And redundant constraints have been shown in the litera- 

ure to poorly affect algorithms ( Deza et al., 2006 ). Moreover, iden- 

ifying redundant constraints is a nontrivial operation e.g., Caron 

t al. (1997) . This motivates doing FR on both the primal and the 

ual problems. (It is still unclear whether or not we have to repeat 

R on the primal again.) 

In the literature, in particular in textbooks on LP , the method 

ost often used to handle a free variable x i is to replace it by

wo nonnegative variables x i ← x + 
i 

− x −
i 

. This means that the op- 

imal solution is unbounded as one can add an arbitrary positive 

onstant to both new variables. But then strict feasibility fails for 

he dual, i.e., stable problems are transformed into ill-conditioned 

roblems. One can speculate that this may account for the large 

umber of instances in the NETLIB set where strict feasibility fails 

nd numerical accuracy is difficult to maintain. 

We have presented various numerical experiments that convey 

he importance of preprocessing for strict feasibility for linear pro- 

rams, Section 4 . For interior point methods, we illustrated the im- 

ortance of strict feasibility using condition numbers and relation- 
14 
hips with nearness to infeasibility . We also shed light on the main 

ifficulties that arose with the implicit redundant constraints and 

sed the QR decomposition to show how these difficulties come 

nto play. This also relates to the implicit problem singularity, IP S. 

 larger IP S means that there is a higher chance of inducing an 

nfeasible problem under perturbations. A large number of degen- 

rate BFS s is believed to cause difficulties for the simplex method. 

e have shown that the settings for having many identically 0 

ariables in the dual program yield many degenerate iterations in 

he simplex method. We also have shown that many NETLIB in- 

tances fail strict feasibility and used selected instances to show 

he effect of this degeneracy. Moreover, the facially reduced prob- 

ems are seen to be more robust with respect to data perturba- 

ions. In addition, an essential element of solving an LP is postopti- 

al analysis , this becomes difficult when strict feasibility fails and 

erturbations of b can lead to infeasibility. These facts further em- 

hasize that ensuring strict feasibility should be part of prepro- 

essing for linear programming. 

Our results can easily extend to other forms of LP s and to more 

eneral problems where degeneracies arise, such as the active set 

ethod for quadratic programs ( Forsgren et al., 2015; Wolfe, 1959 ). 

e are currently extending the efficient FR technique to semidefi- 

ite programs. 
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ppendix A. Technical proofs, supplementary materials 

1. Proof of Corollary 3.2 

roof. Let x ∈ F and let r be the number of positive entries in x .

et x̄ ∈ R 

r be the vector obtained by discarding the 0 entries in 

 . This is readily given by the following matrix-vector multiplica- 

ion x̄ = I(supp(x ) , :) x , where supp(x ) is the support of x , the set of

ndices { i : x i > 0 } . Let Ā ∈ R 

m ×r be the matrix after removing the

olumns of A that are not in the support of x , i.e., Ā = A supp(x ) . We

ote that x̄ is a particular solution to the system Ā z = b and x̄ > 0 . 

Suppose to the contrary that r > m + d. Since r − m > d, there

xists at least d + 1 linearly independent vectors, say v 1 , . . . , v d+1 ∈
 

r , satisfying Ā v i = 0 , ∀ i = 1 , . . . , d + 1 . For each i ∈ { 1 , . . . , d + 1 }
nd for ε ∈ R , we define 

v i, + := x̄ + εv i , v i, − := x̄ − εv i , 
x i, + := I(: , supp(x )) ( ̄x + εv i ) , x i, − := I(: , supp(x )) ( ̄x − εv i ) . 

or a sufficiently small ε, we have x i, + , x i, − ∈ F . We note that

 = 

1 
2 (x i, + + x i, −) , ∀ i . Hence, by the definition of face, x i, + ∈ F , ∀ i .

herefore, F contains vectors { x i, + } i =1 , ... ,d+1 ∪ { x } that are affinely 

ndependent and hence dim (F ) ≥ d + 1 . �

2. A condition measure using degeneracy 

Although degeneracy is a well-known subject, to the best of our 

nowledge, the relationships between degeneracy and stability are 

arely discussed. We now show that the degree of degeneracy at a 

FS provides useful information on the robustness of the LP ; the 

east degenerate BFS provides an upper bound on the number of 

mplicitly redundant equalities of the set F . We note that an F
hat contains a large number of implicit redundancies is a more ill- 

onditioned set. (This is comparable to a linear system Ax = b with 

ore redundant rows having the error in the solution being more 

usceptible to perturbations of b.) 

https://link.springer.com/chapter/10.1007/978-1-4615-6103-3_13
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The arguments used in the proof of Corollary 3.9 are 

ather algebraic. The geometric argument used in the proof of 

heorem 3.4 provides two useful estimates. For any extreme 

oint x ∈ F , the number of nonzero elements of x , | supp(x ) | , satis-

es 

 supp(x ) | ≤ m − IP S(F ) ⇒ IP S(F ) ≤ m − | supp(x ) | . 
ince this holds for all extreme points of F , we get the following: 

D (F ) ≤ maxSD (F ) ≤ IP S(F ) 

≤ ˆ d := min 

BFS x ∈ F 
{ degree of degeneracy of x } . (A.1) 

he shortest FR steps for F , SD (F ) , is at most 1, thus the inequality

D (F ) ≤ ˆ d does not provide useful information. However, the rela- 

ion (A.1) provides two meaningful corollaries related to maxSD (F ) 

nd IP S(F ) : 

1. The inequality maxSD (F ) ≤ ˆ d implies that the number of non- 

trivial FR steps cannot exceed the degree of degeneracy of a 

least degenerate BFS of F; 

2. The inequality IP S(F ) ≤ ˆ d shows that it is useful to record the 

minimum degree of degeneracy observed throughout the sim- 

plex iterations. This gives an estimate for the number of implic- 

itly redundant equalities of F . 

If F contains a nondegenerate BFS , we get ˆ d = 0 . Hence 

D (F ) = maxSD (F ) = IP S(F ) = 0 and it provides an alternative

ay to view Corollary 3.6 . We comment that evaluating and 

ecording the degree of degeneracy of a BFS are not expensive op- 

rations. 

3. Dual degeneracy in the absence of strict feasibility 

3.1. Implicit redundancies in the dual 

The following Lemma A.1 provides the corresponding dual form 

f the theorem of the alternative for set G in Eq. (3.14) . 

emma A.1 (theorem of the alternative in dual form, Cheung 

2013 , Theorem 3.3.10)) . Let G � = ∅ in Eq. (3.14) . Then, exactly one

f the following statements holds: 

1. There exists (y, s ) ∈ R 

m 

� R 

n ++ with A 

T y + s = c, i.e., strict feasibil-

ity holds for G; 

2. There exists w ∈ R 

n such that 

0 � = w ∈ R 

n 
+ , Aw = 0 and 〈 c, w 〉 = 0 . (A.2)

We recall that the vector A 

T y in Eq. (2.4) provides an exposing 

ector to the set F . Similarly, a solution w to the auxiliary system 

q. (A.2) provides an exposing vector for G: 

y, s ) ∈ G ⇒ 

{〈 w, s 〉 = 〈 w, c − A T y 〉 = 〈 c, w 〉 − 〈 Aw, y 〉 = 0 − 〈 0 , y 〉 = 0 
}
. 

e let 

 w 

= { 1 , . . . , n } \ supp(w ) , U = I(: , I w 

) and s w 

= | supp(w ) | . 
hen, the facially reduced system of G is given by 

(y, u ) ∈ R 

m 

� R 

n −s w + : 
[
A 

T U 

](y 
u 

)
= c 

}
. (A.3) 

The notion of degeneracy in Section 2.1 naturally extends to 

n arbitrary polyhedron, e.g., see Bertsimas & Tsitsiklis (1997 , Sec- 

ion 2). For a general polyhedron P ⊆ R 

n , a point p in P is called a

asic solution if there are n linearly independent active constraints 

t p. In addition, if there are more than n active constraints at the

oint p ∈ P , then the point p is called degenerate . Using this defi-

ition of degeneracy, we now show that the absence of strict fea- 

ibility for G implies that every basic feasible solution of G is de- 

enerate. 
15 
First, note that the facially reduced system in Eq. (A.3) contains 

 redundant constraint, i.e., let w be an exposing vector for G from 

he system Eq. (A.2) . Then we have 

A 

U 

T 

]
w = 

[
Aw 

U 

T w 

]
= 

[
0 m 

0 n −s w 

]
. 

n other words, there is a nontrivial row combination of 
[
A 

T U 

]
hat yields the 0 vector implying the existence of a redundant 

ow and a redundant constraint in the facially reduced system. 

he redundancy immediately implies the dual degeneracy; for any 

asic solution of G, there always exists an redundant equality in 

A 

T I 
](y 

s 

)
= c. 

3.2. Construction of dual LPs without strict feasibility 

We first show how to generate an instance for the dual feasible 

et G that fails strict feasibility. The construction is similar to the 

ne in Section 4.1.1 . We generate a degenerate problem by finding 

 feasible auxiliary system Eq. (A.2) . Given m, n, r ∈ N , we construct

 ∈ R 

m ×n and c ∈ R 

n that satisfy Eq. (A.2) with dim ( relint (G)) =
 + r. 

1. Pick any 0 � = w ∈ R 

n + with | supp(w ) | = n − r. Let 

{ w } ⊥ = span { d i } n −1 
i =1 

⊂ R 

n 
(
= nul l (w 

T ) 
)
. 

We let D ∈ R 

(n −1) ×n be the matrix where its rows consist of 

{ d T 
i 
} n −1 

i =1 
. We let R ∈ R 

m ×(n −1) be a random matrix and we set

A = RD . We note that Aw = 0 . 

2. Pick s ∈ R 

n + so that 

s i = 

{
0 if i ∈ supp(w ) 
positive if i / ∈ supp(w ) . 

We note that 〈 w, s 〉 = 0 holds. 

3. Pick y ∈ R 

m and set c = A 

T y + s . We note that 〈 c, w 〉 = 0 holds. 

For the empirics, we construct the objective function b T y of (D) 

y choosing a vector ˆ x ∈ R 

n ++ and setting b = A ̂ x . 
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