
ar
X

iv
:2

20
3.

02
79

5v
3

 [
m

at
h.

O
C

]
 9

 J
an

 2
02

3

Revisiting Degeneracy, Strict Feasibility, Stability,

in

Linear Programming

Haesol Im∗ Henry Wolkowicz†

January 10, 2023

Abstract

Currently, the simplex method and the interior point method are indisputably the most
popular algorithms for solving linear programs, LPs. Unlike general conic programs, LPs with
a finite optimal value do not require strict feasibility in order to establish strong duality. Hence
strict feasibility is seldom a concern, even though strict feasibility is equivalent to stability and
a compact dual optimal set. This lack of concern is also true for other types of degeneracy of
basic feasible solutions in LP. In this paper we discuss that the specific degeneracy that arises
from lack of strict feasibility necessarily causes difficulties in both simplex and interior point
methods. In particular, we show that the lack of strict feasibility implies that every basic feasible
solution, BFS, is degenerate; thus conversely, the existence of a nondegenerate BFS implies
that strict feasibility (regularity) holds. We prove the results using facial reduction and simple
linear algebra. In particular, the facially reduced system reveals the implicit non-surjectivity of
the linear map of the equality constraint system. As a consequence, we emphasize that facial
reduction involves two steps where, the first guarantees strict feasibility, and the second recovers
full row rank of the constraint matrix. This illustrates the implicit singularity of problems where
strict feasibility fails, and also helps in obtaining new efficient techniques for preproccessing. We
include an efficient preprocessing method that can be performed as an extension of phase-I of
the two-phase simplex method. We show that this can be used to avoid the loss of precision for
many well known problem sets in the literature, e.g., the NETLIB problem set.

Keywords: linear programming, facial reduction, preprocessing, degeneracy, implicit problem
singularity

AMS Classification: 90C05, 90C49.

Contents

1 Introduction 3

∗Department of Combinatorics and Optimization Faculty of Mathematics, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1;

†Department of Combinatorics and Optimization Faculty of Mathematics, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1; Research supported by The Natural Sciences and Engineering Research Council of
Canada; www.math.uwaterloo.ca/~hwolkowi.

1

http://arxiv.org/abs/2203.02795v3
http://www.math.uwaterloo.ca/~hwolkowi/
www.math.uwaterloo.ca/~hwolkowi

2 Preliminaries 4

2.1 Background and Notation . 4

2.1.1 Degeneracy in LP . 5

2.2 Facial Reduction . 5

2.2.1 Preprocessing in LP . 8

3 Main Result and Consequences 8

3.1 Lack of Strict Feasibility and Relations to Degeneracy 9

3.1.1 An Algebraic Proof of Theorem 3.1 via the Definition of BFS 9

3.1.2 A Geometric Proof Using Extreme Points . 9

3.1.3 Immediate Consequences of Main Result . 10

3.2 Efficient Preprocessing for Facial Reduction and Strict Feasibility 12

3.2.1 Towards a Strictly Feasible Point from a Nondegenerate BFS 12

3.2.2 Exposing Vector; Phase I Part B; Strict Feasibility Testing 14

3.3 Discussions . 18

3.3.1 Distance to Infeasibility . 18

3.3.2 Applications to Known Characterizations for Strict Feasibility 20

3.3.3 Applications to Obtain a Strictly Complementary Primal-Dual Solution . . . 20

3.3.4 Lack of Strict Feasibility and Interior Point Methods 21

3.3.5 Lack of Strict Feasibility in the Dual . 22

4 Numerical Investigation 23

4.1 Empirics with Interior Point Methods . 23

4.1.1 Generating LPs without Strict Feasibility . 23

4.1.2 Condition Numbers . 24

4.1.3 Stopping Criteria . 25

4.1.4 Distance to Infeasibility . 26

4.1.5 Empirics on Singular Values and IPS . 27

4.2 Empirics with Simplex Method . 27

4.2.1 Empirics on the Number of Degenerate Iterations 27

4.2.2 NETLIB Problems; Perturbations; Stability 28

5 Conclusion 29

A Technical Proofs, Supplementary Materials 31

A.1 proof of Corollary 3.2 . 31

A.2 A Condition Measure using Degeneracy . 31

A.3 Dual Degeneracy in the Absence of Strict Feasibility 32

A.3.1 Implicit Redundancies in the Dual . 32

A.3.2 Construction of Dual LPs without Strict Feasibility 33

2

Index 34

References 37

List of Tables

4.1 Average of KKT conditions, iterations and time of (non)-facially reduced problems . 25

4.2 # (rel.) small singular values of AD∗AT near optimum; average over 20 instances . 27

4.3 Average of the ratio of degenerate iterations . 28

4.4 Number of successful results out of 100 perturbed instances using simplex method
on the instance brandy and transportation problem 29

List of Figures

2.1 A graphical illustration of the two-step facial reduction 7

4.1 Performance profile on κ
(
AD∗AT

)
with(out) strict feasibility near optimum; various

solvers . 24

4.2 Changes in the first-order optimality condition as the perturbation of b increases . . 26

List of Algorithms

3.1 Compute a Slater Point . 14
3.2 Preprocessing Phase I Part B; Towards Strict Feasibility 16

1 Introduction

The Slater condition (strict feasibility) is a useful property for optimization models to have. Unlike
general conic programs, linear programs (LPs) do not require strict feasibility as a constraint qual-
ification to guarantee strong duality, and therefore, it is often not discussed. In fact, degeneracy
in general is not considered to be a serious concern in linear programming. The Goldman-Tucker
Theorem [29] is related in that it guarantees a primal-dual optimal solution satisfying strict com-
plementarity x∗ + z∗ > 0 for the standard form LP. However, it does not guarantee the existence
of a strictly feasible primal solution x̂ > 0. The lack of strict feasibility for an LPdoes not seem to
cause problems at first glance, especially when the simplex method is used. In this manuscript, we
show that the failure of strict feasibility results in degeneracy problems when simplex-type methods
are used. More specifically, the lack of strict feasibility inevitably renders LPs degenerate, i.e., ev-
ery basic feasible solution is degenerate.1 Note that strict feasibility along with full row rank of
the linear constraint is the Mangasarian-Fromovitz constraint qualification [37]. This is equivalent
to a compact dual optimal set and is equivalent to stability with respect to perturbations of the
right-hand side.

The simplex method [16] is one of the most popular and successful algorithms for solving linear
programs. Degeneracy, a zero basic variable, could result in cycling and noncovergence. There are

1Conversely, if we can find one nondegenerate basic feasible solution, then strict feasibility holds.

3

many anti-cycling rules, see e.g., [7, 17, 26, 34, 50] and the references therein. However, techniques
for the resolution of degeneracy often result in stalling [6, 12, 38, 45], i.e., result in taking a large
number of iterations before leaving a degenerate point and can even fail to leave with current
techniques [34]. Degeneracies are known to cause numerical issues when interior point methods are
used, e.g., [33]. For example, degeneracy can result in singularity of the Jacobian of the optimality
conditions, and thus also in ill-posedness and loss of accuracy [31]. We note that the method most
often used in the literature when converting a problem that has a free variable into standard form,
is to replace the free variable by the difference of two nonnegative variables. This results in an
unbounded primal optimal set and strict feasibility failing for the dual problem, i.e., from our work
we see that this standard approach changes a well-posed problem into an ill-posed one.

Our main results on the degeneracy arising from loss of strict feasibility are shown using the
effective preprocessing tool called facial reduction, FR. For a problem lacking strict feasibility, facial
reduction strives to formulate an equivalent problem that has a Slater point. By examining the
facially reduced system, we obtain two results. First, we show that every basic feasible solution is
degenerate when strict feasibility fails. This leads to an efficient approach for eliminating variables
that are fixed at 0. Second, we investigate implicit redundancies as a source of instability arising in
problems where strict feasibility fails. We see that the linear map of the facially reduced system is
non-surjective, i.e., the original constraints are implicitly redundant. Finally, we use these results to
develop an efficient preprocessing technique to obtain strict feasibility. This technique is illustrated
on instances from the NETLIB data set.

The contribution of this manuscript is threefold; (i) We provide the complete description of the
facially reduced system of a linear program and introduce related notions of singularity; (ii) We show
that every basic feasible solution of a standard linear program is degenerate when strict feasibility
fails; (iii) We propose and illustrate an efficient preprocessing scheme that can be performed as
an extension of phase-I of the two-phase simplex method. This technique allows for eliminating
variables fixed at 0, and thus regularizing and simplifying the LP.

The manuscript is organized as follows. In Section 2 we present the background and notations.
Included are the notions of degeneracy, facial reduction and three types of singularity degree. We
then describe what facial reduction tries to achieve. In Section 3 we present our main result and
immediate corollaries, as well as the efficient preprocessing method that can be used as an extension
of phase-I of the two-phase simplex method. In addition, we relate our main result to known results
in the literature, such as distance to infeasibility. In Section 4 we illustrate algorithmic performance
of interior point methods and the simplex method under the lack of strict feasibility. We present
our conclusions in Section 5.

2 Preliminaries

2.1 Background and Notation

We let Rn,Rm×n be the standard real vector spaces of n-coordinates and m-by-n matrices, respec-
tively. We use Rn

+ (Rn
++, resp.) to denote the n-tuple with nonnegative (positive) entries. We use

〈·, ·〉 to denote the usual inner product. Given a vector x ∈ Rn, we let supp(x) to denote the index
set {i : xi 6= 0}. Given a matrix A ∈ Rm×n, we adopt the MATLAB notation to denote a submatrix
of A. Given a subset I of column indices, AI ∈ Rm×|I| is the submatrix of A that contains the
columns of A in I. We also use the notation AI to denote AI when the meaning is clear. Given a
convex set C, relint(C) denotes the relative interior of the set C.

Throughout this manuscript, we work with feasible LPs in standard form with finite optimal

4

https://www.netlib.org/lp/

value:
(P) p∗ = min

x

{
cTx : Ax = b, x ≥ 0

}
,

where p∗ ∈ R, A ∈ Rm×n, b ∈ Rm and c ∈ Rn. We assume that rank(A) = m, i.e., there is no
redundant constraint. We use F to denote the feasible region of (P)

F = {x ∈ Rn : Ax = b, x ≥ 0}. (2.1)

2.1.1 Degeneracy in LP

Given an index set B ⊂ {1, . . . , n}, |B| = m, a point x ∈ F is called a basic feasible solution, BFS ,
if AB is nonsingular and xi = 0, ∀i ∈ {1, . . . , n} \ B. It is well-known that the simplex method
iterates from BFS to BFS. A basic feasible solution x ∈ F is nondegenerate if xi > 0, ∀i ∈ B; it
is degenerate if xi = 0, for some i ∈ B. It is clear that every basic feasible solution has at most m
positive entries.2

We partition the index set {1, . . . , n} as

{1, . . . , n} = I+ ∪ I0, where I0 := {i : xi = 0,∀x ∈ F} and I+ = {1, . . . , n}\I0,

i.e., I0 denotes the variables fixed at 0. Note that fixed variables are identified during preprocessing
in the literature if the upper and lower bounds are equal, e.g., [2,35,39]. However, the set I0 is not
as easily identified.

There are in fact several types of degeneracy. Let x̄ be a given BFSwith basis B. (Wlog
B = {1, . . . ,m}.) We can write the equivalent canonical form representation of the feasible set
using the basis at x̄:

F =

{

x =

(
xB
xN

)

: xB = b−A−1
B ANxN ≥ 0, xN ≥ 0

}

. (2.2)

In this form xN ∈ Rn−m
+ , we have n inequality constraints, and we see that degeneracy is equivalent

to having an active set with cardinality greater than n−m. This divides into two types correspond-
ing to the sets I0,I+, respectively: (i) inequalities that are active in every BFS and correspond
to variables in I0 above; (ii) those that are not active in at least one BFS. The geometry of (i) is
clear as there is no Slater point and F is a subset of a face of the nonnegative orthant. For (ii)
the geometry is that some of the constraints are redundant in one of two ways, i.e., that discarding
them does not change the feasible set nor the optimality conditions if x̄ is optimal.

Remark 2.1. We note that adding redundant constraints is done in e.g., [18,19] to show that the
central path for interior point methods can follow the boundary closely, i.e., behave very poorly.
These redundant constraints correspond to a positive variable in each BFS, i.e., to an inequality
in (2.2) that is never active. Complementary slackness implies that they correspond to variables
fixed at 0 in the dual problem, thus emphasizing that FR on the dual could avoid some of these
difficulties.

2.2 Facial Reduction

In this section we describe the concept of facial reduction and present the properties that are used
to establish the main result. We emphasize in this paper that facial reduction for (P) involves two

2We mainly consider primal degeneracy here, though everything follows through for dual degeneracy. In fact,
there are clear connections from complementary slackness between variables positive in every BFS and dual variables
fixed at 0.

5

steps: first, obtain an equivalent problem with strict feasibility; second, recover full row rank of the
constraint matrix. Note that full row rank is always lost during the first step.

Let K ⊂ Rn be a convex set. A convex set F ⊆ K is called a face of K, denoted F ✂K, if for
all y, z ∈ K with x = 1

2 (y+ z) ∈ F , we have y, z ∈ F . Given a convex set C ⊆ K, the minimal face
for C is the intersection of all faces containing the set C.

Proposition 2.2. [22, Theorem 3.1.3](theorem of the alternative) For the feasible system of (2.1),
exactly one of the following statements holds:

1. There exists x ∈ Rn
++ with Ax = b, i.e., strict feasibility holds;

2. There exists y ∈ Rm such that

0 6= z := AT y ∈ Rn
+, and 〈b, y〉 = 0. (2.3)

Proposition 2.2 gives rise to a process called facial reduction. The facial reduction, FR, for
an LP is a process of identifying the minimal face of Rn

+ containing the feasible set F = {x ∈
Rn
+ : Ax = b}. By finding the minimal face, we can work with a problem that lies in a smaller

dimensional space and that statisfies strict feasibility. The FR process, i.e., finding the minimal
face, is usually done by solving a sequence of auxiliary systems (2.3). More details on FR on general
conic problems can be found in [8, 9, 22,42,47].

We now describe how the set F (see (2.1)) is represented after FR. Suppose that strict feasibility
fails. Then Proposition 2.2 implies that there must exist a nonzero y ∈ Rm satisfying

〈x,AT y〉 = 〈Ax, y〉 = 〈b, y〉 = 0, ∀x ∈ F . (2.4)

Hence, every x ∈ F is perpendicular to the nonnegative vector z = AT y. We call this vector
z = AT y an exposing vector for F , and let the cardinality of its support be sz = |{i : zi > 0}|.
Then z =

sz∑

j=1
ztjetj , where tj is in increasing order. We now have

0 = 〈z, x〉 and x, z ∈ Rn
+ =⇒ xizi = 0, ∀i,

i.e., the positive elements in z identify the corresponding elements in x that are fixed at 0. Then

x =
n−sz∑

j=1
xsjesj , where sj is in increasing order. We define the matrix with unit vectors for columns

V =
[
es1 es2 . . . esn−sz

]
∈ Rn×(n−sz).

Then we have

F = {x ∈ Rn
+ : Ax = b} = {x = V v ∈ Rn : AV v = b, v ∈ Rn−sz

+ }. (2.5)

We call this matrix V ∈ Rn×(n−sz) a facial range vector. The facial range vector restricts the support
of all feasible x. We use the identification (2.5) throughout this manuscript. This concludes the
first step of FR, i.e., identifying all the variables that are fixed at 0.3

It is known that every facial reduction step results in at least one constraint being redundant,
see e.g., [9], [36, Lemma 2.7], and [47, Section 3.5]. For completeness we now include a short proof
tailored to LP, see Lemma 2.3.

3Note that this can be done in one step for linear programs, i.e., the singularity degree for LP is one. We discuss
this in Section 2.2.

6

Lemma 2.3. Consider the facially reduced feasible set

Fr =
{
v : AV v = b, v ∈ Rn−sz

+

}
.

Then at least one linear constraint of the LP is redundant.

Proof. Let z = AT y be the exposing vector satisfying the auxiliary system (2.3). And let V be a
facial range vector induced by z. Then

0 = V T z = V TAT y = (AV)T y =
m∑

i=1

yi((AV)T)i. (2.6)

Since y ∈ Rm is a nonzero vector, the rows of AV are linearly dependent.

We now see the result of the full two-step facial reduction process, i.e., we get a constraint
matrix of full row rank:

F = {x ∈ Rn
+ : Ax = b} = {x = V v ∈ Rn : Pm̄AV v = Pm̄b, v ∈ Rn−sz

+ }, (2.7)

where Pm̄ : Rm → Rm̄, m̄ = rank(AV), is the simple projection that chooses the linearly inde-
pendent rows of AV . This concludes the second step of FR, i.e., guaranteeing the full rank. We
include a graphical illustration of the two-step FRprocess; see Figure 2.1.

Figure 2.1: A graphical illustration of the two-step facial reduction

For a general conic problem, such as semidefinite programs (SDP), the facial reduction itera-
tions do not necessarily end in one iteration; see [14, 47, 48]. And there is a special name for the
minimum length of FR iterations.

Definition 2.4 ([49, Sect. 4]). Given a spectrahehedron S in a closed convex cone K, the singularity
degree, SD(S) of S is the smallest number of facial reduction iterations for finding face(S,K), the
minimal face of K containing S.

It is known that FR for LPs can be done in one iteration, i.e., SD(F) ≤ 1; see [22, Theorem
4.4.1]. Proposition 2.2 and Lemma 2.3 imply that any solution to the system (2.3) gives rise to a
strict reduction in the number of variables and the number of equality constraints. This gives rise
to the following two novel notions of singularity.

Definition 2.5. Let K ⊆ Rn be a closed convex cone with corresponding feasible set S = {x ∈ K :
Ax = b} and facially reduced feasible set {v ∈ PK : (PAV)(v) = Pb, v ∈ Rr}, where PAV is onto
Rmr and PK is the cone defined over the smaller dimensional space. Then the implicit problem
singularity, IPS(S) = m−mr.
Moreover, the max-singularity degree of S, denoted maxSD(S), is the largest number of nontrivial
facial reduction iterations for finding face(S,K).

7

The singularity degree is used in [49, Sect. 4] for providing a Hölder regularity constant for
semidefinite programs. This is then used in [21] to derive a convergence rate for alternating pro-
jection methods for semidefinite programs. Note that maxSD(S) can be a larger lower bound of
IPS(S) than SD(S), since at least one linear constraint becomes redundant at each FR iteration.
The effect on ill-conditioning of larger values of IPS is seen empirically in Section 4.1.5.4

2.2.1 Preprocessing in LP

An essential step for simplex and interior point methods is preprocessing, see e.g., [2,30,35,39] and
the references therein. One specific preprocessing step refers to detecting a fixed variable. These
are generally detected when the upper and lower bounds on a variable are equal. Fixed variables

can also be detected when an invertible block A11 can be isolated A =

[
A11 A12 = 0
A21 A22

]

, b =

(
b1
b2

)

.

With x =

(
x1
x2

)

, we can eliminate x1 = A−1
11 b1 and discard the first block of now redundant rows,

along with the first block of columns. If b1 = 0 then we have trivially identified variables fixed at
zero and removed redundant rows and columns. The remaining block A22 remains full row rank as
happens in Gaussian elimination.

In general, FR for linear programs refers to identifying variables fixed at 0, and removing them
along with corresponding columns and redundant rows. In general, this is not as simple as above,
and the theorem of the alternative is needed. As a consequence of our main result, we see below
that a single step of the simplex method, a phase-I part B approach, yields many of these variables
that are identically zero on the feasible set.

One of the standard assumptions in linear programming is full row rank of A. As we observed
in Lemma 2.3, each FR step results in linear dependence of the constraints. We now summarize
two available methods for extracting a maximal linearly independent subset of rows of AV . The
first method uses a rank-revealing QR decomposition5. Let M = (AV)T . Let MI(:, π) = QR be
a QR factorization where π is a permutation vector, Q is a orthogonal matrix and R is an upper
triangular matrix with a non-increasing diagonal in absolute value. The matrix I(:, π) permutes
the columns of M . If M has linearly dependent columns, then the matrix R contains zeros on its
diagonal. Let r be the number of the nonzero diagonal entries of R. Then, π(1 : r) returns the
subset of columns indices of M that are linearly independent. Another available method makes use
of artificial variables [15, Box 8.2]. It constructs

[
I AV

]
and sets the initial basis matrix to be the

firstm columns. Then it performs a variant of the phase-I of the two-phase simplex method to drive
the basic variables out of the basis one by one. When such an operation is not applicable, a linearly
dependent row of AV is detected. Computational improvements of this method are made in [1,40].
A more recent method is the rank revealing Gaussian elimination by the maximum volume concept
given in [46].

3 Main Result and Consequences

In this section we present our main result, see Theorem 3.1. We provide two proofs: one takes
an algebraic approach by using the definition of the basic feasible solution; and the other takes a
geometric approach by using extreme points. Both proofs rely heavily on Lemma 2.3. In Section 3.2
we present an efficient preprocessing scheme that can be used as an extension of the phase-I of the

4Definition 2.5 can be used to strengthen the upper bound on the rank of SDP solutions in [36], i.e., we get
t(r) ≤ m− IPS(S) ≤ m−maxSD(S) ≤ m− SD(S) ≤ m, where t(r) is the triangular number of the rank r.

5https://www.mathworks.com/matlabcentral/fileexchange/77437

8

https://www.mathworks.com/matlabcentral/fileexchange/77437

two-phase simplex method. In Section 3.3 we include immediate corollaries of the main result and
interesting discussions.

3.1 Lack of Strict Feasibility and Relations to Degeneracy

Theorem 3.1. Suppose that strict feasibility fails for F . Then every basic feasible solution to F
is degenerate.

3.1.1 An Algebraic Proof of Theorem 3.1 via the Definition of BFS

Proof. Since there is no strictly feasible point in F , there exists a facial range vector V , and as
in (2.5) we have

F = { x = V v ∈ Rn : AV v = b, v ∈ Rn−sz
+ }.

By Lemma 2.3, AV has at least one redundant row. By permuting the columns of A, we may
assume that the matrix V is of the form

V =

[
Ir
0

]

and r = n− sz.

We partition the index set {1, . . . , n} as

{1, . . . , n} = I+ ∪ I0, where I+ = {1, . . . , r} and I0 = {r + 1, . . . , n}.

Then we have A =
[
AI+ AI0

]
. Let x̄ ∈ F be a basic feasible solution with basic indices

B ⊂ {1, . . . , n}, |B| = m, det(AB) 6= 0, and ABx̄(B) = b.

Suppose B ⊆ I+. We note, by Lemma 2.3 again, that AI+ = AV has linearly dependent rows, i.e.,
rank(AI+) < m. Hence x̄ must include a basic variable in I0 and this concludes that every basic
feasible solution is degenerate.

3.1.2 A Geometric Proof Using Extreme Points

We now give the second proof of our main result. Suppose that X ∈ F with rank(X) = r, where F
is a face of the set {X ∈ Sn+ : trace(AiX) = bi,∀i = 1, . . . ,m}. Here, Sn+ denotes the set of n-by-n

positive semidefinite matrices. It is known that r(r+1)
2 ≤ m + dimF , see [41, Theorem 2.1]. We

rewrite [41, Theorem 2.1] in the language of polyhederon in Corollary 3.2. We include the proof
for completeness in Appendix A.1.

Corollary 3.2. ([41, Theorem 2.1]) Suppose that x ∈ F , where F is a face of the set F . Let r be
the number of nonzeros in x and d = dimF . Then the number of nonzero entries of x ∈ F is at
most m+ d.

A point x in a convex set C is called an extreme point if, for all y, z ∈ C, x = 1
2 (y + z) implies

x = y = z. An extreme point is itself a face and the dimension of this face is 0. Hence, we obtain
Corollary 3.3 by writing Corollary 3.2 through the lens of extreme points.

Corollary 3.3. Every extreme point x ∈ F has at most m positive entries.

We now restate the main result of this paper Theorem 3.1 in the language of extreme points
and number of rows of A.

9

Theorem 3.4. Suppose that strict feasibility of F fails. Then every extreme point x ∈ F has at
most m− 1 positive entries.

Proof. Since strict feasibility fails for F , we have F = {x = V v ∈ Rn : AV v = b, v ∈ Rn−sz
+ };

see (2.5). From Lemma 2.3, we note that at least one equality in AV v = b is redundant. Let
Pm̄AV v = Pm̄b be the system obtained after removing redundant rows of AV ; see (2.7). Then,
by Corollary 3.3, every extreme point of the set {v ∈ Rn−sz

+ : Pm̄AV v = Pm̄b} has at most m− 1
nonzero entries. Hence, the statement follows.

3.1.3 Immediate Consequences of Main Result

We first note that Theorem 3.1 and Theorem 3.4 are equivalent owing to the well-known charac-
terization:

x ∈ F is a basic feasible solution ⇐⇒ x ∈ F is an extreme point.

We now highlight that Theorem 3.1 and Theorem 3.4 do not merely imply the existence of a
single degenerate basic feasible solution; but rather that every basic feasible solution is degenerate.
Developing a pivot rule that prevents the simplex method from visiting degenerate points is not
possible as it can never avoid degeneracies when strict feasibility fails, as we now illustrate in the
following.

Example 3.5. Consider F with the data

A =

[
1 1 3 5 2
0 1 2 −2 2

]

and b =

(
1
1

)

.

Consider the vector y =

(
1
−1

)

. Then

AT y =
(
1 0 1 7 0

)T
and bT y = 0.

Hence, Proposition 2.2 certifies that F does not contain a strictly feasible point. There are exactly

six feasible bases in F . The BFS associated with B ∈ {{1, 2}, {2, 3}, {2, 4}} is x =
(
0 1 0 0 0

)T
;

and the BFS associated with B ∈ {{1, 5}, {3, 5}, {4, 5}} is x =
(
0 0 0 0 1

2

)T
. Clearly, all BFSs

are degenerate.

Recall that strict feasibility is equivalent to the Mangasarian-Fromovitz constraint qualifica-
tion, [43]. The latter is equivalent to stability with respect to perturbations of b, and to a compact
dual optimal set. Therefore, the following Corollary 3.6, obtained by writing the contrapositive of
Theorem 3.1, is extremely interesting and important. We provide Example 3.7 below to illustrate
Corollary 3.6.

Corollary 3.6. Suppose that there exists a nondegenerate basic feasible solution. Then there exists
a strictly feasible point x̂ ∈ F .
Example 3.7. Consider F with the data

A =

[
1 0 −2 3 −4
0 −1 −2 3 1

]

and b =

(
1
1

)

.

The system F has exactly four feasible bases; the BFS associated with B ∈ {{1, 4}, {2, 4}, {4, 5}}
is x =

(
0 0 0 1/3 0

)T
and the BFS associated with B = {1, 5} is x =

(
5 0 0 0 1

)T
. We

10

note that the BFS associated with B = {1, 5} is nondegenerate. As Corollary 3.6 states, the system

F has a strictly feasible point, and it is verified by the point 1
10

(
4 1 1 4 1

)T
.

Corollary 3.6 provides a useful check for strict feasibility when the simplex method is used, i.e., if
there is any simplex iteration that yields a nondegenerate BFS, then it is useful to record that
occurrence. We emphasize that recording the occurrence of a nondegenerate iteration is inexpensive
and the occurrence gives a certificate of the stability of the LP instance. We revisit Corollary 3.6
in Section 3.2.1 below and present an efficient algorithm for obtaining a Slater point from a non-
generate BFS. But, Example 3.8 below shows that the converse of Theorem 3.1 and Theorem 3.4
is not true. In other words, strict feasibility holds and every BFS is degenerate.

Example 3.8. 1. Consider F with the data

A =

[
1 0 2 0 −2
1 −3 2 1 −2

]

and b =

(
1
1

)

.

F has exactly four feasible bases and all of them are degenerate; the BFS associated with B ∈
{{1, 2}, {1, 4}} is x =

(
1 0 0 0 0

)T
and the BFS associated with B ∈ {{2, 3}, {3, 4}} is

x =
(
0 0 1/2 0 0

)T
. However, F contains a strictly feasible point 1

10

(
1 1 5.5 3 1

)T
.

2. Note that the linear assignment problem (marriage problem) has a strictly feasible point but
all the BFS are highly degenerate6. Therefore, I0 = ∅; the set of variables fixed at 0 is empty.
Moreover, as an LP, the problem is stable with respect to perturbations in the data.

From Examples 3.5 and 3.8, we observe that there are two different types of degeneracies. One
involves variables that are 0 in one BFSbut positive in another; the second involves variables fixed
at 0, i.e., that result in strict feasibility failing. Note that strict feasibility (along with A full row
rank) is the Mangasarian-Fromovitz constraint qualification which is equivalent to stability with
respect to right-hand side perturbations [28], which is in turn equivalent to a bounded dual optimal
set.

Given a BFS x̄ ∈ F , we let the degree of degeneracy of x̄ denote the number of 0’s among its
basic variables. By exploiting the facially reduced model we can check how degenerate the BFSs
of F are.

Corollary 3.9. Suppose that strict feasibility fails for F , and let F have the facial range vector
representation in (2.5). Recall that the set of indices I0 = {i ∈ {1, . . . , n} : xi = 0, ∀x ∈ F}. Let
x̄ ∈ F be a basic feasible solution with basis B. Then, the following holds.

1. The basis B has an nonempty intersection with I0, i.e., B ∩ I0 6= ∅.

2. If the degree of degeneracy of x̄ is exactly one, with x̄k = 0, k ∈ B, then xk, A:,k can be
discarded from the problem.

3. The degree of degeneracy of x̄ is at least m− rank(AV).

4. At least m− rank(AV) number of basic indices of x̄ are contained in I0.
6Note that this is true for the transportation and the assignment problems. Both are highly degenerate at each

BFSbut satisfy strict feasibility. For example, for the assignment problem order n, the feasible set can be considered
to be the doubly stochastic matrices X. The extreme points are the permutation matrices by the Birkoff-Von
Neumann theorem. Therefore, each extreme point has exactly n positive elements while there are m = 2n−1 linearly
independent constraints.

11

Proof. 1. Let x̄ ∈ F be a basic feasible solution and let B be a basis for x̄. Item 1 follows from
the proof and the definition of the set I0 of elements xi that are identically zero on the feasible
set.

2. The proof follows from the algebraic proof of Theorem 3.1 given in Section 3.1.1. Since every
BFS is degenerate and the basis has a nonempty intersection with I0, the index k must be
in I0.

3. For Item 3, we note that AB contains linearly independent columns. Then AB can contain at
most rank(AV) number of columns from AV . Thus, x̄(B) must contain at least m−rank(AV)
number of zeros.

4. Item 4 is a direct consequence of Item 1 and Item 3.

Items 3 and 4 of Corollary 3.9 are closely related to the implicit problem singularity, IPS, and
the max-singularity degree, maxSD; see Definition 2.5. In particular, IPS(F) is a lower bound
of the degree of degeneracy of every BFS of F ; the more implicit redundancies F contains, the
more degenerate every BFSbecomes. We include an alternative way to view Corollary 3.9 in
Section 3.1.2.

We conclude the discussions with the following interesting observation. This again illustrates
the implicit singularity of the constraints when the Slater condition fails.

Corollary 3.10. Suppose that strict feasibility fails for F and that m = 1. Then the trivial x∗ = 0
is an optimal solution.

3.2 Efficient Preprocessing for Facial Reduction and Strict Feasibility

In this section we present an efficient preprocessing method for obtaining a facially reduced system.
In Section 3.2.1 we discuss obtaining a strictly feasible point using a nondegeneate BFS and its
variant. In Section 3.2.2 we consider the general case of finding an exposing vector to obtain the
facially reduced strictly feasible LP.

3.2.1 Towards a Strictly Feasible Point from a Nondegenerate BFS

By Corollary 3.6, the existence7 of a nondegenerate BFS guarantees the existence of a strictly
feasible point. We now propose a process for acquiring a Slater point from a nondegenerate BFS,
and include a generalization. The arguments in this section also provide a constructive proof of
Corollary 3.6.

Let x̄ ∈ F be a nondegenerate BFS. Without loss of generality, we assume that the (all positive)
basic variables x̄B of x̄ are located at the last m entries of x̄. We fix a scalar γ̂ ∈ (0, 1) and an index
j ∈ {1, . . . , n−m}. For some α ≥ 0, we consider the simplex method ratio test type inequality

γ̂x̄B − α(AB)
−1Aj ≥ 0. (3.1)

Since x̄B > 0, γ̂ > 0, there exists a positive α that maintains the inequality (3.1). Let

α∗ = min
{
1, max{α ∈ R+ : γ̂x̄B − α(AB)

−1Aj ≥ 0}
}
, (3.2)

7Determining the existence of a degenerate basic feasible solution is an NP-complete problem; see [11].

12

and decompose
γ̂x̄B =

(
γ̂x̄B − α∗(AB)

−1Aj

)
+ α∗(AB)

−1Aj .

We observe that

b = ABx̄B
= (1− γ̂)ABx̄B + γ̂ABx̄B
= (1− γ̂)ABx̄B +AB

(
γ̂x̄B − α∗(AB)

−1Aj + α∗(AB)
−1Aj

)

= AB(x̄B − α∗(AB)
−1Aj) + α∗Aj .

If we set xj = α∗ > 0 and replace x̄B by x̄B−α∗(AB)
−1Aj , then we have increased the cardinality of

the positive entries of a solution. We note that x̄B − α∗(AB)
−1Aj only has strictly positive entries

since it it a sum of a positive vector and a nonnegative vector;

x̄B − α∗(AB)
−1Aj = (1− γ̂)x̄B

︸ ︷︷ ︸

positive

+ γ̂x̄B − α∗(AB)
−1Aj

︸ ︷︷ ︸

nonnegative

.

We can continue to increase the number of positive entries of a solution one by one for each
j ∈ {1, . . . , n −m}. Moreover, we can achieve this by a compact vectorized operation. The main
idea is that we can choose γ̂ in (3.1) independently for each j ∈ {1, . . . , n−m}. Let γj be a positive
real number such that 0 < γ :=

∑n−m
j=1 γj < 1. Then, we have

x̄B = (1− γ)x̄B + γx̄B = (1− γ)x̄B +

n−m∑

j=1

γj x̄B.

We set an auxiliary matrix

Θ =
[
γ1x̄B · · · γn−mx̄B

]
− (AB)

−1A1:n−m ∈ Rm×(n−m)

and perform (3.2) on each column j of Θ to obtain the vector θ∗:

θ∗j :=

{

max(Θ(:, j)) if max(Θ(:, j)) ≤ 1,

1 otherwise.

Then the point
[

θ∗

x̄B − (AB)
−1A1:n−mθ∗

]

is a strictly feasible point to F . Hence, this operation provides a constructive proof of Corollary 3.6.

We now extend the aforementioned procedure for obtaining a strictly feasible point using any
feasible solution x̄ ∈ F such that Asupp(x̄) is full row rank. We partition x̄ ∈ F as follows

x̄ =

x̄B1

x̄B2

x̄N

 , where supp(x̄) = B1 ∪ B2, rank(AB1) = m, and N = {1, . . . , n} \ supp(x̄). (3.3)

We partition A using the same partition B1 ∪ B2 ∪ N :

[
AB1

AB2
AN

]
x̄ = b ⇐⇒

[
AB1

AN

]
(
x̄B1

x̄N

)

= b̄ := b−AB2
xB2

.

13

Then we can apply the aforementioned procedure to the system

[
AB1

AN

]
(
x̄B1

x̄N

)

= b̄

and distribute positive weights to x̄N using x̄B1
. Finally, we find a strictly feasible point to F . This

process is summarized in Algorithm 3.1. Furthermore, Algorithm 3.1 provides a constructive proof
for Proposition 3.11 below.

Proposition 3.11. Let x ∈ F be a solution such that rank
(
Asupp(x))

)
= m. Then, F has a strictly

feasible point.

Algorithm 3.1 Compute a Slater Point

Require: Given: A, x̄ ∈ F partitioned as in (3.3).

1: Choose any γ ∈ R
|N |
++ such that

∑|N |
j=1 γj < 1.

2: Compute
Θ =

[
x̄B1

· · · x̄B1

]
Diag(γ)−A−1

B1
AN .

3: Compute θ∗ ∈ R
|N |
++, where for each j ∈ {1, . . . , |N |},

θ∗j :=

{

max(Θ(:, j)) if max(Θ(:, j)) ≤ 1,

1 otherwise.

4: Set x◦ =

x̄B1
− (AB1

)−1AN θ∗

x̄B2

θ∗

.

3.2.2 Exposing Vector; Phase I Part B; Strict Feasibility Testing

We now present an efficient preprocessing procedure for detecting identically 0 variables and ob-
taining exposing vectors in order to get the facially reduced LP. We do this for a given BFS x̄ by
solving special subproblems using the simplex method. By the end of the process, we determine
one of:

1. a certificate y that produces an exposing vector AT y (Slater condition fails);

2. a strictly feasible point (Slater condition holds).

This process in fact has two applications. First, since the only requirement of this process is
the BFS, the procedure can be considered as an extension of phase-I of the two-phase simplex
method that obtains the equivalent facially reduced problem. Second, the procedure can be used
as a postprocessing step. We could perform FR on the optimal face and find, and delete, variables
fixed at zero in order to improve stability of the optimal solution.

We now describe the proposed preprocessing method. Let B be a degenerate initial basis of
F with associated BFS x̄. Without loss of generality, we assume that basic variables are located
at the first m entries of x̄. Let d be the degree of degeneracy of x̄. We further assume that the
degenerate basic variables are located at the first d entries of x̄. We let B0 := {1, . . . , d}. We now

14

test and record whether or not each i ∈ B0 is a variable fixed at 0. Let i ∈ B0, and consider the
following problem:

p∗i = max{xi : Ax = b, x ≥ 0}. (3.4)

We may assume that i = 1. We solve (3.4) using the simplex method from the initial BFS x̄. That
is, we do not need to perform the typical phase-I of the two-phase simplex method in order to find
a feasible BFS. The optimal value p∗1 of (3.4) is clearly lower bounded by 0. We consider two cases
below:

1. Suppose that x1 > 0 after k iterations. Then, the variable x1 is not an identically 0 variable,
i.e., we record that 1 ∈ I+.

2. Suppose that p∗1 = 0. Then, the variable x1 is an identically 0 variable, i.e., we record that
1 ∈ I0. Let B∗ be an optimal basis for (3.4). Then we have

y∗ = A−T
B∗ e1, 〈b, y∗〉 = 0 and AT y∗ ≥ e1, (3.5)

where e1 is the first unit vector of appropriate dimension. We note that the dual optimal
solution y∗ in (3.5) produces a solution to the auxiliary system (2.3). Therefore, we obtain a
nontrivial exposing vector since 0 6= AT y∗ ≥ 0.

Let {yj} be a collection of the certificates that are obtained from solving (3.4) with the index 1
replaced by i ∈ B0. Then y◦ =

∑

j y
j is also a certificate, i.e.,

AT y◦ =
∑

j

AT yj ≥ 0, AT y◦ 6= 0, and 〈b, y◦〉 =
∑

j

〈b, yj〉 = 0,

and we obtain a nontrivial exposing vector AT y◦ for the system F . By summarizing the two cases
above, we obtain an efficient preprocessing method Algorithm 3.2.

The following allows for simplifications in Algorithm 3.2.

Lemma 3.12. Let B be an initial basis containing the index i for problem (3.4). Then the index i
always remains in the basis throughout the iterations.

Proof. Without loss of generality, we let i = 1. We argue that 1 is not chosen to leave the basis.
Let y∗ = (AT

B)
−1cB and Ā = A−1

B A. Suppose that the reduced cost at the index j is positive. Then

0 < c̄j = cj −AT
j y

∗ = −AT
j y

∗ = −AT
j (A

T
B)

−1e1 = −Ā1j .

Since Ā1j < 0, the index 1 is not chosen to leave the basis B.

The following special case is of interest. Namely, no simplex pivoting steps are required to
determine strict feasibility.

Theorem 3.13. (preprocessing for degree of degeneracy 1) Given a basis B, let x̄ be a BFSwith
the degree of degeneracy exactly one and with x̄i = 0, i ∈ B. Let N = {1, . . . , n} \ B and let
ȳ = (AT

B)
−1cB, cB = ei. Then strict feasibility fails if, and only if, ȳ satisfies AT

N ȳ ≥ 0.

Proof. Suppose that x̄ is a degenerate BFSwith basis B. Without loss of generality, we assume
1 ∈ B and 1 is the degenerate index. We consider the problem

p∗1 = max{x1 : Ax = b, x ≥ 0}.

15

Algorithm 3.2 Preprocessing Phase I Part B; Towards Strict Feasibility

Require: A BFS x̄ with corresponding basis B; set B0 = {i ∈ B : x̄i = 0}
1: Initialize: x◦ = x̄, y◦ = 0 ∈ Rm, J0 = ∅, B∗ ← B0
2: while B0 6= ∅ and B∗ 6= ∅ do
3: Pick i ∈ B0; starting from the initial BFS x̄, solve for primal-dual optima x∗, y∗

x∗ = argmaxx{xi : Ax = b, x ≥ 0}, p∗ = x∗i = bT y∗

But, if during the solve, xi > 0, then stop the iterations; set x∗ as the current point.
4: S ← supp(x∗)
5: B∗ ← degenerate basic indices for x∗

6: if B0 6= ∅ and B∗ 6= ∅ then

7: if p∗ = 0 (strict feasibility fails) then
8: Use dual certificate y∗ to satisfy (2.3)
9: y◦ ← y◦ + y∗

10: J0 ← J0 ∪ (supp(AT y∗) ∩ B)
11: B0 ← B0 \ {S ∪ J0}
12: else

13: B0 ← B0 \ S
14: end if

15: Choose γ ∈ (0, 1) and set x◦ ← γx◦ + (1− γ)x∗

16: end if

17: end while

18: if J0 6= ∅ then
19: z◦ = AT y◦ (exposing vector)
20: R ← redundant row indices of A (:, supp(z◦)c)
21: A← A(Rc, supp(z◦)c), b← b(Rc)
22: else

23: Run Algorithm 3.1 with x◦ and det(AB) 6= 0 (use x∗ and B∗, if B∗ = ∅)
24: end if

16

We note that 〈b, ȳ〉 = 0 since 〈b, ȳ〉 is identical to the current objective value ‘0’. The backward
direction is clear by Proposition 2.2. Now suppose that strict feasibility fails. Suppose to the
contrary that AT

N ȳ ≥ 0 fails. Then there exists j such that AT
j ȳ < 0, j ∈ N . Note that, by

Lemma 3.12, that 1 is not chosen to leave the basis. Thus, there is an index k 6= 1, k ∈ B that
leaves the basis. Since all other basic variables are positive, we obtain a positive step length and
we improve the objective value, which yields a contradiction to p∗1 = 0.

Upon the termination of Algorithm 3.2, we can always determine whether the system F has a
strictly feasible point or not. Algorithm 3.2 terminates in a finite number of iterations since we
remove at least one element from the set B0 in each iteration. We emphasize that we do not need to
solve the auxiliary LPs for all i ∈ {1, . . . , n}. We solve (3.4) only for the degenerate basic indices of
the predetermined basis B. However, upon termination of Algorithm 3.2, it is possible that we have
not obtained face(F ,Rn

+), the minimal face containing F . Although the complete FR for LP can
be completed in one iteration, one step termination is possible only when we find a solution y of
(2.3) so that AT y is in the relative interior of the conjugate face of face(F ,Rn

+). In this case, we
can rerun Algorithm 3.2 with the current facially reduced system. For finding an initial basis for
the second trial, we may use the efficient basis recovery scheme [52, Chapter 7].

One of the nice features of Algorithm 3.2 is that we do not need to search for a new initial basis
B for each iteration; the initial basis remains the same. Therefore, our approach can be directly
employed after the standard phase-I of the two phase simplex method.

We do not need a lot of pivoting steps to determine if p∗i is zero or positive. If p∗i = 0, the
initial B is indeed a basis that gives the optimal value. However the dual feasibility may not be
obtained immediately8. Thus, there may be additional pivots required to obtain the dual feasibility.
However, since the optimal value is obtained at B, we do not expect that the optimal basis search
to be time-consuming. For the case p∗i ∈ (0,∞), the optimal value p∗i does not need to be found.
Hence once a basis that gives a positive support on i is found, we can terminate the maximization
problem in Algorithm 3.2 immediately. We recall from Lemma 3.12 that the index i in (3.4) never
leaves the basis. In the case of p∗i =∞, we can perform the following operation. Let Bc be a basis
that indicates p∗i = ∞ and let j be an entering variable that indicates the unboundedness. Then
by setting

x◦(j)← 1, x◦(Bc)← xBc −A−1
Bc

Aj and x◦(({j} ∪ Bc)c) = 0,

we obtain a feasible solution x◦ that yields a positive objective value.

We often get an exposing vector that reveals more than one element in the set I0 by solving (3.4).
Let p∗1 = 0 in (3.4) and let y∗ be a dual feasible solution. Suppose that AT y∗ = e1, i.e., only one
exposed variable is revealed. Then y∗ ∈ null(A(:, 2 : n)T). Since the data matrix A has more
columns than rows, y∗ ∈ null(A(:, 2 : n)T) generally implies y∗ = 0; this makes AT y∗ = e1
impossible.

When an instance is large and have a BFSwith a very large degree of degeneracy, one may
adopt parallel computing for Algorithm 3.2 in order to reduce the total computation time. We
note again that the initial basis remains the same throughout the iterations. Hence, solving (3.4)
for individual i ∈ B0 can be performed independently. In fact, parallel computing can be used
to obtain a strictly feasible solution in Algorithm 3.1 as well; the weight vector γ can be chosen
independently for each j ∈ N .

8If we have a nondegenerate initial basis, then the dual feasibility is immediately obtained. However, our initial
basis is degenerate.

17

3.3 Discussions

In this section we discuss the main result in Sections 3.1 and 3.2 and make connections to new
results and known results in the literature.

3.3.1 Distance to Infeasibility

The distance to infeasibility is a measure of the smallest perturbations of the data (A, b) of a
problem that renders the problem infeasible. In our setting, we can use the following simplification
of the distance to infeasibility from [44] by restricting the perturbation to b, i.e., we can force
infeasibility using only perturbation in b;

dist(b,F = ∅) := inf
{

‖b− b̃‖ : {x ∈ Rn : Ax = b̃, x ≥ 0} = ∅
}

.

Many interesting bounds, condition numbers, are shown in [44] under the assumption that the
distance to infeasibility is positive and known. It is known that a positive distance to infeasibility
of F implies that strict feasibility holds for F ; see e.g., [24,25]. The contrapositive of this statement
is that, if strict feasibility fails for F , then the distance to infeasibility is 0. We revisit this statement
with the facially reduced system (2.5). We provide an elementary proof that there is an arbitrarily
small perturbation for the data vector b of F that yields the set F infeasible, i.e., dist(b,F = ∅) = 0.
Furthermore, we provide explicit perturbations that render the set F empty.

Suppose that F fails strict feasibility. Recall the representation (2.5) for F . Let AV = QR be
a QR decomposition of AV , where Q ∈ Rm×m orthogonal, R ∈ Rm×(n−sz) upper triangular. We
write Q =

[
Q1 Q2

]
so that range(Q1) = range(AV). Then, by the orthogonality of Q, we have

Ax = AV v = b ⇐⇒ QTAx = Rv = QT b.

Since AV is a rank deficient matrix (see Lemma 2.3), the upper triangular matrix R is of the form

R =

[
R̄
0

]

∈ Rm×(n−sz) and R̄ ∈ Rrank(AV)×(n−sz) with nonzero diagonal. (3.6)

Since b ∈ range(AV), the last m− rank(AV) entries of QT b are equal to 0, i.e.,

QT b =

(
QT

1 b
QT

2 b

)

=

(
QT

1 b
0

)

.

Consequently, the unrealized implicit non-surjuectivity produces the system

[
R̄
0

]

v =

(
QT

1 b
0

)

, v ∈ Rn−sz
+ . (3.7)

Any perturbation on the last m−rank(AV) equations in (3.7) that causes the system inconsistency
renders the system (3.7) infeasible while maintaining the dimension of relint(F). For instance,

replacing the right-hand side vector in (3.7) by

(
QT

1 b
ξ

)

with any nonzero vector ξ ∈ Rm−rank(AV)

renders (3.7) infeasible. Replacing the data matrix in (3.7) by

[
R̄
Φ

]

for which Φ contains a positive

row vector also renders (3.7) infeasible.

We now present a class of perturbations of b that maintains the feasibility of the set F as well
as a special perturbation of b that forces F to be infeasible. Such perturbations can be found using

18

linear combinations of the columns of Q1 or Q2, respectively. We relate this observation to the
solution of the auxiliary system (2.3) in the proof of Proposition 3.14 below.

Proposition 3.14. Suppose that strict feasibility fails for F , and let F have the representa-
tion (2.5). Then the following hold.

1. For all ∆b ∈ range(AV) with sufficiently small norm, the set {x ∈ Rn
+ : Ax = b + ∆b} is

feasible.

2. Let ȳ ∈ Rm be a solution to the auxiliary system (2.3). Then perturbing the right-hand side
vector b of F in the direction ȳ makes the system F infeasible.

Proof. Let ∆b be any perturbation in range(AV). Let QR = AV be a QR decomposition of AV .
In particular, let R have the form (3.6) and Q =

[
Q1 Q2

]
so that range(Q1) = range(AV). Let ǫ

be a sufficiently small scalar. Then

Ax = AV v = b+ ǫ∆b ⇐⇒ Rv = QT b+ ǫQT∆b ⇐⇒ R̄v = QT
1 b+ ǫQT

1 ∆b. (3.8)

The last equivalence holds since Ax = b and ∆b ∈ range(AV) = range(Q1). Since the system
R̄v = QT

1 b satisfies the Mangasarian-Fromovitz constraint qualification, the distance to infeasibility
of this system is positive. Thus, the perturbed system {v : R̄v = QT

1 b + ǫQT
1 ∆b, v ≥ 0} remains

feasible. Therefore, by (3.8), perturbing F along the direction ∆b ∈ range(AV) maintains the
feasibility and this concludes the proof for Item 1.

For Item 2 we show that perturbing b with ∆b = ȳ renders F infeasible, where ȳ is a solution
to the system (2.3). By Proposition 2.2 and (2.6), the nonzero vector ȳ ∈ Rm is in null((AV)T).
Then we have

ȳ ∈ range(AV)⊥ = range(Q2) =⇒ ȳ = Q2ū for some nonzero ū.

We recall Farkas’ lemma:

{y ∈ Rm : AT y ≥ 0, 〈b, y〉 < 0} 6= ∅ =⇒ F = ∅.

Now, for any ǫ > 0, setting ∆bǫ = −ǫȳ yields

AT ȳ ≥ 0, 〈b, ȳ〉 = 0 =⇒ AT ȳ ≥ 0, 〈b+∆bǫ, ȳ〉 < 0. (3.9)

Hence, by letting ǫ→ 0+, we see that the distance to infeasibility, dist(b,F = ∅), is equal to 0.

We emphasize that the result

F fails strictly feasibility =⇒ dist((A, b),F = ∅) = 0

gives rise to the second step (2.7) of FRdiscussed in Section 2.2. We note that the instability
discussed in this section essentially originates from the observation made in Lemma 2.3, i.e., redun-
dant equalities arise in the facially reduced system. Facially reduced system allows us to exploit the
root of potential instability when the problem data A or b is perturbed. Although the distance to
infeasibility is 0 in the absence of strict feasibility, Proposition 3.14 suggests that a carefully chosen
perturbation of b does not have an impact on the feasibility of F . We provide a related numerical
experiment in Section 4.1.4 below.

19

3.3.2 Applications to Known Characterizations for Strict Feasibility

There are some known characterizations for strict feasibility of F . Using these characterizations
we can obtain extensions of Theorem 3.1, Theorem 3.4, and Corollary 3.6.

The dual (D) of (P) is

(D) max
y,s

{
bT y : AT y + s = c, s ≥ 0

}
. (3.10)

It is known that strict feasibility fails for F if, and only if, the set of optimal solutions for the dual
(D) is unbounded; see e.g., [52, Theorem 2.3] and [27]. Then Corollary 3.15 follows.

Corollary 3.15. 1. Suppose that the set of optimal solutions for the dual (D) is unbounded.
Then every basic feasible solution to F is degenerate.

2. Suppose that there exists a nondegenerate basic feasible solution to F . Then the set of optimal
solutions for the dual (D) is bounded.

It is known that strict feasibility holds for F if, and only if, b ∈ relint(A(Rn
+)), where relint

denotes the relative interior; see e.g., [22, Proposition 4.4.1]. Then if one finds a set of indices
I ⊂ {1, . . . , n} such that AI is nonsingular and AIz = b has a solution z with positive entries, then
b ∈ relint(A(Rn

+)).

3.3.3 Applications to Obtain a Strictly Complementary Primal-Dual Solution

In this section we present an application of Algorithm 3.1 for obtaining a strictly complementary
primal-dual optimal solution.

Let (x∗, y∗, s∗) be an optimal triple for the standard primal-dual LP pair. Let B∗ ∪ N ∗ =
{1, . . . , n} be the strict complementary partition of the primal-dual optimal pair. The existence
of such a partition is guaranteed by the Goldman-Tucker theorem [29] and the partition B∗ ∪ N ∗

is unique. For the first application of Algorithm 3.1, we provide a method for obtaining a strict
complementary primal-dual solution when the primal optimal solution x∗ is nondegenerate or the
submatrix A(:, supp(x∗)) of A has rank m. To elaborate, we list the two cases where Algorithm 3.1
can be used to obtain maximal complementary solutions.

1. Let x∗ be a nondegenerate (optimal) basic feasible solution. Then, supp(s∗) = N ∗ and
supp(x∗) can be extended to complete B∗;

2. Let x∗ be an optimal solution such that A(:, supp(x∗)) is full row rank. Then, supp(s∗) = N ∗

and supp(x∗) can be extended to complete B∗.

Suppose that we are given a primal-dual optimal solution (x∗, y∗, s∗) of the form

[
AB AJ AN

]

xB
xJ
xN

 = b, where rank(AB) = m,

xB
xJ
xN

>
=
=

0
0
0

 and

sB
sJ
sN

=
=
>

0
0
0

 .

(3.11)
We claim that N ∗ = supp(s∗). That is, the support of the current dual optimal solution s∗ is
maximal and hence we obtain the strict complementary partition for free. We rewrite the system
Ax = b of (3.11) as

[
AB1

AB2
AJ

]

xB1

xB2

xJ

 = b, where AB =
[
AB1

AB2

]
, xB =

(
xB1

xB2

)

and rank(AB1
) = m.

20

Then, by replacing the data in Algorithm 3.1 by

N ← J , A← A(:,B1 ∪ B2 ∪ N), x̃← x∗,

we can endow positive weights to xJ while maintaining the primal feasibility. Since we maintain
the feasibility of the primal-dual solution without violating the complementarity, we maintain the
optimality.

3.3.4 Lack of Strict Feasibility and Interior Point Methods

In this section we provide a new perspective on the ill-conditioning that typically arises in interior
point methods. Many interior point algorithms are derived from block Gaussian-elimination of the
linearized primal (P) and dual (D) optimality conditions (KKT conditions). Let (xc, yc, sc) be the
current primal-dual pair iterate. The search direction is computed by solving the Newton equation

AT I
A

Diag(sc) Diag(xc)

∆x
∆y
∆s

 = −

rd
rp
rc

 , (3.12)

where rd, rp, rc are the residuals of dual feasibility, primal feasibility and complementarity, respec-
tively. After the block elimination, we first find the change ∆y by solving the so-called normal
equation, a square system,

ADcA
T∆y = r̄, where Dc = Diag(xc)Diag(sc)

−1, (3.13)

r̄ ∈ Rm is some residual; see e.g., [52, Chapter 11]. It is known that (3.13) often becomes ill-
conditioned near an optimum. The ill-conditioning of the matrix ADcA

T under degeneracy is
discussed in [33] in terms of the lack of nice positive diagonal elements of Dc. This relates to our
results in the sense that all vertices that form the optimal face of (P) are also degenerate in the
absence of strict feasibility. Moreover, we show that the ill-conditioning of the matrix ADcA

T not
only originates from the columns of A chosen by Dc but also from the rows of A in the absence of
strict feasibility. In particular, a large IPS is a good indicator for ill-conditioning.

We partition the matrix A =

[
Pm̄AV AI0

RAV RI0

]

, where [AI0 ;RI0] corresponds to the submatrix

of A associated with the index set I0. The submatrix RAV refers to the rows of A that are
implicitly redundant due the lack of strict feasibility. Let (x∗, y∗, s∗) an optimal triple and let
D∗ = Diag(x∗)Diag(s∗)−1. As xc → x∗, i.e., as the iterates get closer to the feasible set F , we
observe the limiting behaviour ADcA

T → AD∗AT below:

ADcA
T → AD∗AT =

[
Pm̄AV AI0

RAV RI0

] [
D∗

AV 0
0 0

] [
Pm̄AV AI0

RAV RI0

]T

=

[
(Pm̄AV)D∗

AV (Pm̄AV)T (Pm̄AV)D∗
AV R

T
AV

RAV D
∗
AV (Pm̄AV)T RAVD

∗
AV R

T
AV

]

where D∗
AV is the submatrix of D∗ with the diagonal associated with I+. We recall from Lemma 2.3

that the rows of RAV are linear combinations of the rows of Pm̄AV . Therefore, the more implicit
redundant constraints F has, the more ‘0’ singular values AD∗AT has, i.e., ill-conditioned.

The self-dual embedding [53] is a popular formulation of the primal-dual LPpair used for an
interior point method. An attractive feature of the self-dual embedding is that a feasible initial
iterate in the interior is analytically given. The success of the self-dual embedding technique is
supported by strong performances of some solvers. However, the absence of strict feasibility results

21

in the same type of ill-conditioning even when this reformulation is used. For instance, [53, equation
(17)] displays the equation as a part of computing the search direction (dx; dy):

[
XkSk −XkAT

AXk 0

](
(Xk)−1dx

dy

)

=

(
γµke−Xksk

0

)

−
[
Xkc −Xkc̄
−b b̄

](
dτ
dθ

)

.

Here, Xk = Diag(xk) and Sk = Diag(sk), where xk, sk are the current primal-dual iterate. It
then uses the back-solve steps to complete the remaining components of the search direction. For

simplicity, we set the right-hand side of the system to be

(
r1
r2

)

. By expanding the first block

equation, we obtain

(XkSk)(Xk)−1dx −XkATdy = r1 ⇐⇒ (Xk)−1dx = (XkSk)−1r1 + (XkSk)−1XkATdy.

We then substitute the equality above into the second block equation, i.e.,

AXk(Xk)−1dx = r2 ⇐⇒ AXk(Sk)−1AT dy = r2 −AXk(XkSk)−1r1.

Finally, we obtain the normal matrix AXk(Sk)−1AT that appear in (3.13).

3.3.5 Lack of Strict Feasibility in the Dual

Recall Remark 2.1 that redundant constraints can result in poor behaviour for interior point meth-
ods. Moreover, complementary slackness means we get dual variables fixed at 0. This is one
motivation for considering FR on the dual (D); see (3.10). We denote the feasible set of the dual
(D) by

G := {(y, s) ∈ Rm ⊕ Rn
+ : AT y + s = c} =

{

(y, s) ∈ Rm ⊕ Rn
+ :

[
AT I

]
(
y
s

)

= c

}

. (3.14)

The facial reduction arguments applied to the dual are parallel to the ones given in Section 2.2. We
provide the theorem of the alternative for the dual and a short derivation for the facially reduced
system for G in Appendix A.3.1. We also conclude that the absence of strict feasibility for G implies
dual degeneracy at all BFSs.

A popular method for rewriting an instance with a free variable xi into the primal standard form
is to write xi into the difference of two nonnegative variables, i.e., xi = x+i − x−i with x+i , x

−
i ≥ 0.

This equivalent transformation does not seem to cause any difficulties at first glance; at least the
primal simplex method does not consider both x+i and x−i as a basic variables simultaneously in
order to form a nonsingular basis matrix. However, this equivalent transformation has a significant
consequence to the dual program. For any K ≥ max{x+i , x−i }, we can maintain the equality

xi = x+i − x−i = (x+i +K)− (x−i +K).

Thus, the primal optimal set is unbounded. This implies that the dual feasible region of the refor-
mulated primal does not have a strictly feasible point. Consequently, the results that we established
for the primal applies to the dual; (i) this implies that all BFSs of the dual are degenerate; (ii) the
equality system for the dual feasibility contains implicit redundancies and thus the Newton equa-
tion that appear in the interior point method (3.12) becomes very ill-conditioned near an optimum.
More details for loss of strict feasibility in the dual is given in Appendix A.3.

22

4 Numerical Investigation

We now provide empirical evidence that FR is indeed a useful preprocessing tool for reducing the
size of problems as well as for improving the conditioning. We do this first for interior point
methods and then for simplex methods. In particular, this provides empirical evidence that lack
of strict feasibility is equivalent to implicit singularity. All the numerical tests are performed using
MATLAB version 2021a on Dell XPS 8940 with 11th Gen Intel(R) Core(TM) i5-11400 @ 2.60GHz
2.60 GHz with 32 Gigabyte memory. We use three different solvers in our tests: (i) linprog from
MATLAB9; (ii) SDPT3 10; and (iii) MOSEK 11. MATLAB version 2021a is used to access all the
solvers for the tests, and we use their default settings for stopping criteria. Note that MOSEK has
a preprocessing option.12

4.1 Empirics with Interior Point Methods

In this section we compare the behaviour for finding near-optimal points with instances that do
and do not satisfy strict feasibility. More specifically, given a near optimal primal-dual point
(x∗, s∗) ∈ Rn

++ ⊕ Rn
++ obtained from an interior point solver, we observe the condition number,

i.e., the ratio of largest to smallest eigenvalues of the normal matrix at (x∗, s∗):

κ
(
AD∗AT

)
, where D∗ = Diag(x∗)Diag(s∗)−1. (4.1)

We show that instances that do not have strictly feasible points tend to have significantly larger con-
dition numbers of the normal equation near the optimum. We also present a numerical experiment
on perturbations of the right-hand side vector b.

4.1.1 Generating LPs without Strict Feasibility

Given m,n, r ∈ N, we construct the data A ∈ Rm×n and b ∈ Rm to satisfy (2.3) with r as the
dimension of the relative interior of F , relint(F).

1. Pick any 0 6= y ∈ Rm. Let

{y}⊥ = span{ai}m−1
i=1 (= null(yT)).

We let R ∈ R(m−1)×r be a random matrix, and get

A1 :=
[
a1 . . . am−1

]
R ∈ Rm×r, AT

1 y = 0 ∈ Rr.

2. Pick any v̂ ∈ Rr
++ and set b = A1v̂. We note that yTA1 = 0 and 〈b, y〉 = 0.

3. Pick any matrix A2 ∈ Rm×(n−r) satisfying (yTA2)i 6= 0, ∀i. If there exists i such that
(yTA2)i < 0, then change the sign of the i-th column of A2 so that we conclude

(AT
2 y) ∈ Rn−r

++ .

9https://www.mathworks.com/. Version 9.10.0.1669831 (R2021a) Update 2.
10https://www.math.cmu.edu/~reha/sdpt3.html, version SDPT3 4.0.
11https://www.mosek.com/. Version 8.0.0.60.
12MOSEK has a presolve with five steps that includes eliminating fixed variables. However, itis clear from the

empirical evidencethat the variables fixed at 0 are not found.

23

https://www.mathworks.com/
https://www.math.cmu.edu/~reha/sdpt3.html
https://www.mosek.com/
https://docs.mosek.com/latest/toolbox/presolver.html

4. We define the matrix A =
[
A1 A2

]
∈ Rm×n. Then {x ∈ Rn

+ : Ax = b} is a polyhedron with
a feasible point x̂ = [v̂; 0] having r number of positives. The vector y is a solution for the
system (2.3):

0 � z = AT y =

(
AT

1 y = 0
AT

2 y > 0

)

, bT y = 0.

We then randomly permute the columns of A to avoid the zeros always being at the bottom
of the feasible variables x.

For the empirics, we construct the objective function cTx of (P) as follows. We choose any
s̄ ∈ Rn

++, ȳ ∈ Rm and set c = AT ȳ+ s̄. Then we have the data for the primal-dual pair of LPs and
the primal fails strict feasibility:

(P(A,b,c)) min{ cTx : Ax = b, x ≥ 0 } and (D(A,b,c)) max{ bT y : AT y + s = c, s ≥ 0 }.

We note that by choosing s̄ ∈ Rn
++, the dual problem (D(A,b,c)) has a strictly feasible point. In

order to generate instances with strictly feasible points, we maintain the same data A, c used for
the pair (P(A,b,c)) and (D(A,b,c)). We only redefine the right-hand side vector by b̄ = Ax◦, where
x◦ ∈ Rn

++:

(P̄(A,b̄,c)) min{ cTx : Ax = b̄, x ≥ 0 } and (D̄(A,b̄,c)) max{ b̄T y : AT y + s = c, s ≥ 0 }.

The facially reduced instances of (P(A,b,c)) are denoted by (P(AFR,bFR,cFR)). They are obtained by
discarding the variables that are identically 0 in the feasible set F and the redundant constraints.
In other words, the affine constraints of (P(AFR,bFR,cFR)) are of the form (2.7).

4.1.2 Condition Numbers

In order to illustrate the differences in condition numbers of the normal matrices, we solve the three
families of instances:
(i) (P(A,b,c)), strictly feasible fails; (ii) (P̄(A,b̄,c)), strictly feasible holds; (iii) (P(AFR,bFR,cFR)), facially
reduced instances of (P(A,b,c)).

100 102 104 106 108 1010
0

0.2

0.4

0.6

0.8

1

Figure 4.1: Performance profile on κ
(
AD∗AT

)
with(out) strict feasibility near optimum; various

solvers

In Figure 4.1 we use a performance profile [20,32] to observe the overall behaviour on different
families of instances using the three solvers. The performance profile provides a useful graphical

24

comparison for solver performances. Figure 4.1 displays the performance profile on the condition
numbers of the normal matrix AD∗AT near optimal points from different solvers. We generate 100
instances for each family that have dim(relint(F)) ∈ [300, 1350]. The instance sizes are fixed with
(m,n) = (500, 1500). The vertical axis in Figure 4.1 represents the statistics of the performance
ratio on κ

(
AD∗AT

)
, the condition number of normal matrix near optimum (x∗, s∗); see (4.1).

Roughly speaking, the vertical axis represents the probability of achieving a performance ratio
within a factor of f among all methods used. We used the lower the better statistics. The details
of the performance ratio are discussed in [20, 32]. The solid lines in Figure 4.1 represent the
performance of the instances (P(A,b,c)) that fail strict feasibility. They show that the condition
numbers of the normal matrices near optima are significantly higher when strict feasibility fails.
That is, when strict feasibility fails for F , the matrix AD∗AT is more ill-conditioned and it is difficult
to obtain search directions of high accuracy. We also observe that facially reduced instances yield
smaller condition numbers near optima. We note that the instances (P(A,b,c)) and (P(AFR,bFR,cFR))
are equivalent.

4.1.3 Stopping Criteria

We now use the three solvers to observe the accuracy of the first-order optimality conditions (KKT
conditions) and the running times, for the instances (P(A,b,c)) and (P(AFR,bFR,cFR)), see Table 4.1.
We test the average performance of 10 instances of the size (n,m, r) = (3000, 500, 2000). The
headers used in Table 4.1 provide the following. Given solver outputs (x∗, y∗, s∗), the header
‘KKT’ exhibits the average of the triple consisting of the primal feasibility, dual feasibility and
complementarity;

KKT =

(‖Ax∗ − b‖
1 + ‖b‖ ,

‖AT y∗ + s∗ − c‖
1 + ‖c‖ ,

〈x∗, s∗〉
n

)

.

The headers ‘iter’ and ‘time’ in Table 4.1 refer to the average of the number of iterations and the
running time in seconds, respectively.

Non-Facially Reduced System Facially Reduced System

linprog
KKT (2.44e-15, 2.05e-12, 3.18e-09) (5.85e-16, 4.74e-16, 9.22e-09)
iter 22.30 17.90
time 2.34 0.81

SDPT3
KKT (8.11e-10, 7.55e-12, 5.65e-02) (1.43e-11, 3.67e-16, 4.38e-06)
iter 25.50 19.30
time 1.73 0.70

mosek
KKT (7.52e-09, 1.80e-15, 3.27e-06) (3.85e-09, 3.69e-16, 1.19e-06)
iter 40.30 10.20
time 1.40 0.35

Table 4.1: Average of KKT conditions, iterations and time of (non)-facially reduced problems

From Table 4.1 we observe that facially reduced instances provide significant improvement in
first-order optimality conditions, the number of iterations and the running times for all solvers
in general. We note that the instances (P(A,b,c)) and (P(AFR,bFR,cFR)) are equivalent. Hence, our
empirics show that performing facial reduction as a preprocessing step not only improves the solver
running time but also the quality of solutions.

25

4.1.4 Distance to Infeasibility

In this section we present empirics that illustrate the effect of perturbations of the right-hand side
b when strict feasibility fails. We recall, from Proposition 3.14, that there exists an arbitrarily
small perturbation of the right-hand side vector b of F that renders the set F infeasible, i.e.,
dist(b,F = ∅) = 0. Moreover, the vector ∆b = y that satisfies the auxiliary system (2.3) is a
perturbation that makes the set F empty; see (3.9).

We follow the steps in Section 4.1.1 to generate instances of the order (n,m) = (1000, 200) and
r = relint(F) = 900. The objective function cTx is chosen as presented in Section 4.1.1. For the
fixed (n,m, r), we generate 10 instances and observe the average performance of these instances as
we gradually increase the magnitude of the perturbation. We recall the matrix AV from (2.5). We
use two types of perturbations for b;

∆b, where ∆b ∈ range(AV)⊥, ∆b̄, where ∆b̄ ∈ range(AV).

We choose ∆b to be the vector y that satisfies (2.3). For ∆b̄, we choose AV d, where d ∈ Rr is a
randomly chosen vector. As we increase ǫ > 0, we observe the performance of the two families of
the systems

Ax = bǫ := b− ǫ∆b and Ax = b̄ǫ := b− ǫ∆b̄.

We use the interior point method from MATLAB’s linprog for the test. Figure 4.2 contains the
average of the first-order optimality conditions evaluated at the solver outputs (x∗, y∗, s∗) of these
instances; primal feasibility, dual feasibility and the complementarity.

10-14 10-13 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4
10-16

10-14

10-12

10-10

10-8

10-6

Figure 4.2: Changes in the first-order optimality condition as the perturbation of b increases

The horizontal axis of Figure 4.2 indicates the degree of the perturbation imposed on the right-
hand side vector b, ǫ‖∆b‖ and ǫ‖∆b̄‖. The vertical axis indicates the individual component of the
first-order optimality. From Figure 4.2, we observe that the KKT conditions with the perturbation
∆b̄ display a steady performance regardless of the perturbation degree; see the markers ◦,�,△

with the dotted lines. In contrast, the markers •,�,N in Figure 4.2 exhibit the performance of the
instances that are perturbed with ∆b and they display a different performance. In particular, we
see that the relative primal feasibility ‖Ax∗ − bǫ‖/(1 + ‖bǫ‖), marked with •, consistently increases
as the perturbation magnitude ǫ‖∆b‖ increases when strict feasibility fails for F .

26

4.1.5 Empirics on Singular Values and IPS

In this section we present our numerical experiment on the ill-conditioning discussed in Sec-
tion 3.3.4 in terms of maxSD (see Definition 2.5). We generated instances with different settings for
maxSD = 1, 5 and 10. We recall the generation for the vector y and A2 in Section 4.1.1. For gen-
erating and instance with maxSD > 1, we generated Yc = blkdiag(y1, . . . , yIPS) ∈ Rm×maxSD and
A2 = blkdiag(A1

2, . . . , A
maxSD
2) of appropriate dimension in order to produce the exposing vector

AT
2

∑maxSD
j=1 Yc(:, j) ≥ 0. Each column of Yc serves as a vector satisfying (2.3).

Let σmax(AD
∗AT) be the maximum singular value of AD∗AT . We count the number of singular

values of AD∗AT that are smaller than 10−8 · σmax(AD
∗AT). In Table 4.2 below, we report the

cardinality of
Σ0 := {i : σi(AD∗AT) < σmax(AD

∗AT)}.
We test the average performance on the 20 instances of the fixed size (n,m, r) = (3000, 500, 2000).
We display the average number of |Σ0|. We see from Table 4.2 a larger maxSD and IPS values

maxSD = 1 maxSD = 5 maxSD = 10
linprog |Σ0| 4.10 8.65 13.10
SDPT3 |Σ0| 4.75 8.00 34.65
MOSEK |Σ0| 6.45 12.35 14.50

Table 4.2: # (rel.) small singular values of AD∗AT near optimum; average over 20 instances

produce a greater number of small singular values. When there is a significant number of redundant
constraints, it is more difficult to obtain a good search direction due to a large number of relatively
small singular values.

4.2 Empirics with Simplex Method

In this section we compare the behaviour of the dual simplex method with instances that have
strictly feasible points and instances that do not. We also observe the degeneracy issues that arise
in the instances from NETLIB.

4.2.1 Empirics on the Number of Degenerate Iterations

In this section we test how the lack of strict feasibility affects the performance of the dual simplex
method. We provide the construction of instances that fail strict feasibility in Appendix A.3.2. We
choose MOSEK for our tests since MOSEK reports the percentage of degenerate iterations as a
part of the solver report. MOSEK reports the quantity ‘DEGITER(%)’, the ratio of degenerate
iterations.

Given a set G and a point (y, s) ∈ relint(G) ⊆ Rm ⊕Rn
+, let r be the number of positive entries

of s, i.e., r = | supp(s)|. In our tests, we gradually increase r for fixed n,m and generate instances
for G as described in Appendix A.3.2. We then observe the behaviour of the dual simplex method.
Table 4.3 contains the results. In Table 4.3, a smaller value for the header (r/n)% means that
there are more entries of s that are identically 0 in the set G; and the value 0% means that strict
feasibility holds. For each triple (n,m, r), we generated 10 instances and we report the average of
‘DEGITER(%)’ of these instances.

We recall Theorem 3.1: lack of strict feasibility implies that all basic feasible solutions are
degenerate. However, we observe more, i.e., from Table 4.3, the frequency of degenerate iterations

27

https://www.netlib.org/lp/

100% − (r/n)%
40 30 20 10 0

(n,m)

(1000, 250) 36.62 10.18 0.01 0.02 0.00
(2000, 500) 39.72 18.28 0.07 0.15 0.01
(3000, 750) 25.99 10.66 0.32 0.75 0.02
(4000, 1000) 29.78 18.25 0.25 0.53 0.02

Table 4.3: Average of the ratio of degenerate iterations

increases as r decreases. In other words, higher degeneracy of the set G yields more degenerate
iterations when the dual simplex method is used.

4.2.2 NETLIB Problems; Perturbations; Stability

We now illustrate the lack of strict feasibility on instances from the NETLIB data set. We used
the following first 67 instances that are in standard form at this link:

25fv47 adlittle∗ afiro agg∗ agg2∗ agg3∗ bandm∗ beaconfd∗ blend bnl1∗

bnl2∗ brandy∗ cre a∗ cre b∗ cre c∗ cre d∗ d2q06c∗ degen2∗ degen3∗ e226∗

fffff800∗ israel lotfi maros r7 nug05 nug06 nug07 nug08 nug12 nug15
nug20 osa 07∗ osa 14∗ qap12 qap15 qap8 sc105∗ sc205∗ sc50a∗ sc50b∗

scagr25 scagr7 scfxm1∗ scfxm2∗ scfxm3∗ scorpion∗ scrs8∗ scsd1 scsd6 scsd8
sctap1 sctap2 sctap3 share1b share2b ship04l∗ ship04s∗ ship08l∗ ship08s∗ ship12l∗

ship12s∗ stocfor1 stocfor2 stocfor3 truss wood1p∗ woodw∗

We removed redundant rows to guarantee full row rank of A.

Surprisingly, the Slater condition fails for 37 out of these 67 instances.13 This has interesting
implications for both interior point and simplex methods. The standard interior point method stop-
ping criteria is complicated by the unbounded dual optimal set. For the primal simplex method,
every iteration is at a degenerate BFS and stalling generally occurs. Therefore preprocessing to
eliminate the variables fixed at 0 is important. In addition, in order to motivate robust opti-
mization, it is shown in e.g., [3, 4] that optimal solutions of many of the NETLIB instances are
extremely sensitive to perturbations in the data. We now see this to be the case, and we show that
FR regularizes the problem and avoids this instability.

We first use the instance degen3 in order to illustrate the consequence of lack of strict feasibility.
The data matrix A after removing two redundant rows is 1501-by-2604. After FR, we obtain the
constraint matrix Pm̄AV of size 1226-by-1648. This implies that 2604 − 1648 = 956 number of
variables are identically 0 on the feasible set. Furthermore, IPS(F) = 275 equality constraints are
implicitly redundant. By Item 3 of Corollary 3.9, without FR, the degree of degeneracy of every
BFS is at least 275. Namely, the length of the basis is 1501 and every basis contains at least 275
degenerate indices.

We now illustrate that FR gives a more robust model with respect to data perturbations using
the instance brandy. Let (A, b) be the data after removing the redundant equality constraints.
Let (Pm̄AV,Pm̄b) be the data for the facially reduced system. The data matrices A and Pm̄AV
have sizes 193-by-303 and 155-by-260, respectively14. Set the perturbation scalars ǫA = ǫb =
10−9. We construct a random perturbation matrix Φ, ‖Φ‖F = ‖A‖F +1, and random perturbation

13The instances that fail strict feasibility are marked with an asterisk ∗ in the list above.
14This also means that, without FR, every BFS has at least 38 degenerate basic variables. At least 19.69 percent

of basic variables are always degenerate.

28

https://www.netlib.org/lp/
http://users.clas.ufl.edu/hager/coap/format.html

vector φ, ‖φ‖2 = ‖b‖2 + 1. We then solve the problem

p̃∗ = max{〈c, x〉 : (A+ ǫAΦ)x = b+ ǫbφ, x ≥ 0}.

For the facially reduced system, we used the identical perturbation data Φ, φ and discard the
rows and columns of (A, b) found from FR. That is, we use the perturbations Pm̄ΦV and Pm̄φ to
the facially reduced system after the scaling ‖Pm̄ΦV ‖F = ‖Pm̄AV ‖F +1 and ‖Pm̄φ‖2 = ‖Pm̄b‖2+1.
We then solve

max{〈V T c, v〉 : (Pm̄AV + ǫAPm̄ΦV)v = Pm̄b+ ǫbPm̄φ, v ≥ 0}.

In this way, we maintain the identical perturbation structure for the original system and the facially
reduced system. We also generate a transportation problem and use the aforementioned pertur-
bations. We note that the transportation problems have Slater points but are known to be highly
degenerate. The size of the data generated is 49-by-600.

In the experiment, we tested the instances using 100 different perturbation settings. We ran-
domly generated perturbations Φ, φ with density set at 0.1. We used MOSEK simplex with the set-
ting ‘MSK OPTIMIZER FREE SIMPLEX’. In Table 4.4, the headers ǫA and ǫb refer to the scalars
used for perturbations as described above. The headers (A, b), (Pm̄AV,Pm̄b) and (Atrans, btrans)
refer to the non-facially reduced system, the facially reduced system and the transportation prob-
lems, with the perturbations. The integral values in the table indicate the number of times that
the solver outputs PRIMAL AND DUAL FEASIBLE. Let p∗ be the optimal value for the unper-
turbed instance brandy, and let p̃∗ be the optimal value of a perturbed instance of brandy. The
non-integral values in the table indicate the average relative difference in the optimal values be-
tween p∗ and p̃∗. The relative difference is computed using the formula |p∗−p̃∗|

2|p∗+p̃∗| . For example, the
first entry 11 in Table 4.4 means that 100−11 out of 100 perturbed instances yield infeasibility
or unknown status, i.e., only 11 solved successfully. The entry 4.938e-02 next to 11 indicates the
average of |p∗−p̃∗|

2|p∗+p̃∗| on those 11 instances. The columns (A, b) and (Pm̄AV,Pm̄b) in Table 4.4 demon-

ǫA ǫb (A, b) (Pm̄AV,Pm̄b) (Atrans, btrans)

1.0e-09 0 (11 , 4.938e-02) (97 , 6.705e-03) 100
0 1.0e-09 (27 , 2.470e-10) (100 , 2.208e-10) 100

1.0e-09 1.0e-09 (11 , 1.339e-01) (96 , 8.719e-03) 100

Table 4.4: Number of successful results out of 100 perturbed instances using simplex method on
the instance brandy and transportation problem

strate that the facially reduced problems are more immune to data perturbations; the number of
successfully solved perturbed instances are significantly larger and the optimal values under the
perturbations are less influenced. The last column indicates that although the instance may have
many degenerate BFSs, having a strictly feasible point is important in terms of perturbations in
data, i.e., this emphasizes the difference between the two types of degeneracy.

5 Conclusion

We have addressed the impact, for both theoretical and computational reasons, of loss of strict
feasibility in LP, distinguishing one type of degeneracy at a BFS. For our numerics we illustrated
this using the accuracy of optimality conditions as well as the effect of perturbations, for the
two most popular classes of algorithms, i.e., simplex and interior point methods. For the theory,

29

we proved, using the two-step facial reduction, that if strict feasibility fails for a linear program,
then every BFS is degenerate. In addition, we showed that facial reduction can be implemented
efficiently to obtain a smaller simpler problem with strict feasibility, and that this improves stability.
This was illustrated on random problems, as well as instances from the NETLIB data set.

An essential step for almost all algorithms for linear programming is preprocessing. One part
of preprocessing is identifying fixed variables. However, identifying variables fixed at 0, facial
reduction, has not been done due to expense and accuracy problems. In this paper we have
shown that not eliminating these variables, i.e., lack of strict feasibility, is equivalent to implicit
singularity and this helps explain the numerical difficulties that arise. We have further provided an
efficient preprocessing step for facial reduction, i.e., we continue on phase I of the simplex method
that eliminates all the artificial variables, and eliminate the variables fixed at 0. We observed
that a variable that is basic (positive) in every BFS corresponds to a redundant constraint and,
by complementary slackness, corresponds to a variable fixed at 0 in the dual. And redundant
constraints have been shown in the literature to poorly affect algorithms [18]. Moreover, identifying
redundant constraints is a nontrivial operation e.g., [10]. This motivates doing FR on both the
primal and the dual problems. (It is still unclear whether or not we have to repeat FR on the
primal again.)

In the literature, in particular in textbooks on LP, the method most often used to handle a free
variable xi is to replace it by two nonnegative variables xi ← x+i −x−i . The means that the optimal
solution is unbounded as one can add an arbitrary positive constant to both new variables. But
then strict feasibility fails for the dual, i.e., stable problems are transformed into ill-conditioned
problems. One can speculate that this may account for the large number of instances in the NETLIB
set where strict feasibility fails and numerical accuracy is difficult to maintain.

We have presented various numerical experiments that convey the importance of preprocessing
for strict feasibility for linear programs, Section 4. For interior point methods, we illustrated
the importance of strict feasibility using condition numbers and relationships with nearness to
infeasibility. We also shed light on the main difficulties that arose with the implicit redundant
constraints and used the QR decomposition to show how these difficulties come into play. This
also relates to the implicit problem singularity, IPS. A larger IPS means that there is a higher
chance of inducing an infeasible problem under perturbations. A large number of degenerate BFSs
is believed to cause difficulties for the simplex method. We have shown that the settings for having
many identically 0 variables in the dual program yield many degenerate iterations in the simplex
method. We also have shown that many NETLIB instances fail strict feasibility and used selected
instances to show the effect of this degeneracy. Moreover, the facially reduced problems are seen
to be more robust with respect to data perturbations. In addition, an essential element of solving
an LP is postoptimal analysis, this becomes difficult when strict feasibility fails and perturbations
of b can lead to infeasibility. These facts further emphasize that ensuring strict feasibility should
be part of preprocessing for linear programming.

Our results can easily extend to other forms of LPs and to more general problems where
degeneracies arise, such as the active set method for quadratic programs [23,51]. We are currently
extending the efficient FR technique to semidefinite programs.

Acknowledgements

This research is supported by the National Sciences and Engineering Research Council (NSERC)
of Canada, Grant # No. 50503-10827.

30

https://link.springer.com/chapter/10.1007/978-1-4615-6103-3_13

A Technical Proofs, Supplementary Materials

A.1 proof of Corollary 3.2

Proof. Let x ∈ F and let r be the number of positive entries in x. Let x̄ ∈ Rr be the vector obtained
by discarding the 0 entries in x. This is readily given by the following matrix-vector multiplication
x̄ = I(supp(x), :)x, where supp(x) is the support of x, the set of indices {i : xi > 0}. Let Ā ∈ Rm×r

be the matrix after removing the columns of A that are not in the support of x, i.e., Ā = Asupp(x).
We note that x̄ is a particular solution to the system Āz = b and x̄ > 0.

Suppose to the contrary that r > m + d. Since r −m > d, there exists at least d + 1 linearly
independent vectors, say v1, . . . , vd+1 ∈ Rr, satisfying Āvi = 0, ∀i = 1, . . . , d + 1. For each
i ∈ {1, . . . , d+ 1} and for ǫ ∈ R, we define

vi,+ := x̄+ ǫvi, vi,− := x̄− ǫvi,
xi,+ := I(:, supp(x)) (x̄+ ǫvi) , xi,− := I(:, supp(x)) (x̄− ǫvi) .

For a sufficiently small ǫ, we have xi,+, xi,− ∈ F . We note that x = 1
2 (xi,+ + xi,−), ∀i. Hence, by

the definition of face, xi,+ ∈ F, ∀i. Therefore, F contains vectors {xi,+}i=1,...,d+1 ∪ {x} that are
affinely independent and hence dim(F) ≥ d+ 1.

A.2 A Condition Measure using Degeneracy

Although degeneracy is a well-known subject, to the best of our knowledge, the relationships be-
tween degeneracy and stability are rarely discussed. We now show that the degree of degeneracy at
a BFS provides useful information on the robustness of the LP; the least degenerate BFSprovides
an upper bound on the number of implicitly redundant equalities of the set F . We note that
an F that contains a large number of implicit redundancies is a more ill-conditioned set. (This is
comparable to a linear system Ax = b with more redundant rows having the error in the solution
being more susceptible to perturbations of b.)

The arguments used in the proof of Corollary 3.9 are rather algebraic. The geometric argument
used in the proof of Theorem 3.4 provides two useful estimates. For any extreme point x ∈ F , the
number of nonzero elements of x, | supp(x)|, satisfies

| supp(x)| ≤ m− IPS(F) =⇒ IPS(F) ≤ m− | supp(x)|.

Since this holds for all extreme points of F , we get the following:

SD(F) ≤ maxSD(F) ≤ IPS(F) ≤ d̂ := min
BFSx ∈ F

{degree of degeneracy of x}. (A.1)

The shortest FR steps for F , SD(F), is at most 1, thus the inequality SD(F) ≤ d̂ does not provide
useful information. However, the relation (A.1) provides two meaningful corollaries related to
maxSD(F) and IPS(F):

1. The inequality maxSD(F) ≤ d̂ implies that the number of nontrivial FR steps cannot exceed
the degree of degeneracy of a least degenerate BFS of F ;

2. The inequality IPS(F) ≤ d̂ shows that it is useful to record the minimum degree of degen-
eracy observed throughout the simplex iterations. This gives an estimate for the number of
implicitly redundant equalities of F .

31

If F contains a nondegenerate BFS, we get d̂ = 0. Hence SD(F) = maxSD(F) = IPS(F) = 0 and
it provides an alternative way to view Corollary 3.6. We comment that evaluating and recording
the degree of degeneracy of a BFS are not expensive operations.

A.3 Dual Degeneracy in the Absence of Strict Feasibility

A.3.1 Implicit Redundancies in the Dual

The following Lemma A.1 provides the corresponding dual form of the theorem of the alternative
for set G in (3.14).

Lemma A.1 (theorem of the alternative in dual form, [13, Theorem 3.3.10]). Let G 6= ∅ in (3.14).
Then, exactly one of the following statements holds:

1. There exists (y, s) ∈ Rm ⊕ Rn
++ with AT y + s = c, i.e., strict feasibility holds for G;

2. There exists w ∈ Rn such that

0 6= w ∈ Rn
+, Aw = 0 and 〈c, w〉 = 0. (A.2)

We recall that the vector AT y in (2.4) provides an exposing vector to the set F . Similarly, a
solution w to the auxiliary system (A.2) provides an exposing vector for G:

(y, s) ∈ G =⇒
{
〈w, s〉 = 〈w, c −AT y〉 = 〈c, w〉 − 〈Aw, y〉 = 0− 〈0, y〉 = 0

}
.

We let
Iw = {1, . . . , n} \ supp(w), U = I(:,Iw) and sw = | supp(w)|.

Then, the facially reduced system of G is given by

{

(y, u) ∈ Rm ⊕ Rn−sw
+ :

[
AT U

]
(
y
u

)

= c

}

. (A.3)

The notion of degeneracy in Section 2.1 naturally extends to an arbitrary polyhedron, e.g.,
see [5, Section 2]. For a general polyhedron P ⊆ Rn, a point p in P is called a basic solution
if there are n linearly independent active constraints at p. In addition, if there are more than n
active constraints at the point p ∈ P , then the point p is called degenerate. Using this definition of
degeneracy, we now show that the absence of strict feasibility for G implies that every basic feasible
solution of G is degenerate.

First, note that the facially reduced system in (A.3) contains a redundant constraint, i.e., let w
be an exposing vector for G from the system (A.2). Then we have

[
A
UT

]

w =

[
Aw
UTw

]

=

[
0m

0n−sw

]

.

In other words, there is a nontrivial row combination of
[
AT U

]
that yields the 0 vector implying

the existence of a redundant row and a redundant constraint in the facially reduced system. The
redundancy immediately implies the dual degeneracy; for any basic solution of G, there always

exists an redundant equality in
[
AT I

]
(
y
s

)

= c.

32

A.3.2 Construction of Dual LPs without Strict Feasibility

We first show how to generate an instance for the dual feasible set G that fails strict feasibility. The
construction is similar to the one in Section 4.1.1. We generate a degenerate problem by finding a
feasible auxiliary system (A.2). Given m,n, r ∈ N, we construct A ∈ Rm×n and c ∈ Rn that satisfy
(A.2) with dim(relint(G)) = m+ r.

1. Pick any 0 6= w ∈ Rn
+ with | supp(w)| = n− r. Let

{w}⊥ = span{di}n−1
i=1 ⊂ Rn

(
= null(wT)

)
.

We let D ∈ R(n−1)×n be the matrix where its rows consist of {dTi }n−1
i=1 . We let R ∈ Rm×(n−1)

be a random matrix and we set A = RD. We note that Aw = 0.

2. Pick s ∈ Rn
+ so that

si =

{
0 if i ∈ supp(w)
positive if i /∈ supp(w).

We note that 〈w, s〉 = 0 holds.

3. Pick y ∈ Rm and set c = AT y + s. We note that 〈c, w〉 = 0 holds.

For the empirics, we construct the objective function bT y of (D) by choosing a vector x̂ ∈ Rn
++ and

setting b = Ax̂.

33

Index

(P), 4
AI , submatrix of A with columns in I, 4
I, the identity matrix, 7
Pm̄ : Rm → Rm̄, 7
Pm̄AV , 7, 10, 28, 29
Pm̄b, 7, 10, 29
Σ0 := {i : σi(AD∗AT) < σmax(AD

∗AT)}, 27
m̄ = rank(AV), 7
dist(b,F = ∅), distance to infeasibility, 18
IPS, 12
IPS(S) = m−mr, implicit problem singularity,

8
〈·, ·〉, inner product, 4
Rm×n, real vector space of m-by-n matrices, 4
Rn
+, nonnegative orthant, 4

Rn
++, positive orthant, 4

maxSD, 12
maxSD(S), largest number nontrivial facial re-

duction steps, 8
relint, relative interior, 4, 20
supp, 4
supp, support, 31
{1, . . . , n}, 5
p∗, 5
sw, support of exposing vector for G, 32
sz, support of exposing vector for F , 6
B0, 14
F , feasible region, 4
G, dual feasible set, 32
I+ = {1, . . . , n}\I0, 5
I0 := {i : xi = 0,∀x ∈ F}, 5
I0, 11, 14
(D), dual of (P), 20, 32
BFS , basic feasible solution, 5
FR, facial reduction, 4
LP, linear program, 3

basic feasible solution, BFS , 5
basic solution, 32

degenerate, 32
degenerate BFS , 5
degree of degeneracy, 11, 17, 28
distance to infeasibility, 7, 18
distance to infeasibility, dist(b,F = ∅), 18
dual feasible set, G, 32
dual of (P), (D), 20, 32

exposing vector, 6
extreme point, 9

face, 6, 9
facial range vector, 6
facial reduction, FR, 4, 6
feasible region, F , 4
fixed at 0, 5, 6

implicit problem singularity, IPS(S) = m−mr,
7

largest number nontrivial facial reduction steps,
maxSD(S), 8

linear program, LP, 3
linprog, 23

Mangasarian-Fromovitz, 3
max-singularity degree, 7
minimal face, 6
MOSEK, 23

nondegenerate BFS , 5
nonnegative orthant, Rn

+, 4

performance profile, 24
positive orthant, Rn

++, 4
postoptimal analysis, 30

real vector space of m-by-n matrices, Rm×n, 4
relative interior, relint, 4, 20

SDPT3, 23
singularity degree, SD(S), 7
Slater condition, 3
stalling, 4, 28
support of exposing vector for F , sz, 6
support of exposing vector for G, sw, 32
support, supp, 31

34

References

[1] E.D. Andersen. Finding all linearly dependent rows in large-scale linear programming. Opti-
mization methods & software, 6(3):219–227, 1995. 8

[2] E.D. Andersen and K.D. Andersen. Presolving in linear programming. mprog, 71(2):221–245,
1995. 5, 8

[3] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton Series in Applied
Mathematics. Princeton University Press, Princeton, NJ, 2009. 28

[4] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Oper. Res.
Lett., 25(1):1–13, 1999. 28

[5] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, Bel-
mont, MA, 1997. 32

[6] R.E. Bixby. Solving real-world linear programs: a decade and more of progress. Oper. Res.,
50(1):3–15, 2002. 50th anniversary issue of Operations Research. 4

[7] Robert G. Bland. New finite pivoting rules for the simplex method. Math. Oper. Res., 2(2):103–
107, 1977. 4

[8] J.M. Borwein and H. Wolkowicz. Facial reduction for a cone-convex programming problem.
J. Austral. Math. Soc. Ser. A, 30(3):369–380, 1980/81. 6

[9] J.M. Borwein and H. Wolkowicz. Regularizing the abstract convex program. J. Math. Anal.
Appl., 83(2):495–530, 1981. 6

[10] R.J. Caron, A. Boneh, and S. Boneh. Redundancy. In Advances in sensitivity analysis and
parametric programming, volume 6 of Internat. Ser. Oper. Res. Management Sci., pages 13.1–
13.41. Kluwer Acad. Publ., Boston, MA, 1997. 30

[11] R. Chandrasekaran, Santosh N. Kabadi, and Katta G. Murty. Some NP-complete problems in
linear programming. Oper. Res. Lett., 1(3):101–104, 1981/82. 12

[12] A. Charnes. Optimality and degeneracy in linear programming. Econometrica, 20:160–170,
1952. 4

[13] Y.-L. Cheung. Preprocessing and Reduction for Semidefinite Programming via Facial Reduc-
tion: Theory and Practice. PhD thesis, University of Waterloo, 2013. 32

[14] Y-L. Cheung, S. Schurr, and H. Wolkowicz. Preprocessing and regularization for degenerate
semidefinite programs. In D.H. Bailey, H.H. Bauschke, P. Borwein, F. Garvan, M. Thera,
J. Vanderwerff, and H. Wolkowicz, editors, Computational and Analytical Mathematics, In
Honor of Jonathan Borwein’s 60th Birthday, volume 50 of Springer Proceedings in Mathematics
& Statistics, pages 225–276. Springer, 2013. 7

[15] V. Chvátal. Linear programming. A Series of Books in the Mathematical Sciences. W. H.
Freeman and Company, New York, 1983. 8

[16] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton,
New Jersey, 1963. 3

[17] G.B. Dantzig, A. ORDEN, and P. WOLFE. The generalized simplex method for minimizing
a linear form under linear inequality restraints. Pacific J. Math., 5:183–195, 1955. 4

35

[18] A. Deza, E. Nematollahi, R. Peyghami, and T. Terlaky. The central path visits all the vertices
of the Klee-Minty cube. Optim. Methods Softw., 21(5):851–865, 2006. 5, 30

[19] A. Deza, E. Nematollahi, and T. Terlaky. How good are interior point methods? Klee-Minty
cubes tighten iteration-complexity bounds. Math. Program., 113(1, Ser. A):1–14, 2008. 5

[20] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91(2, Ser. A):201–213, 2002. 24, 25

[21] D. Drusvyatskiy, G. Li, and H. Wolkowicz. A note on alternating projections for ill-posed
semidefinite feasibility problems. Math. Program., 162(1-2, Ser. A):537–548, 2017. 8

[22] D. Drusvyatskiy and H. Wolkowicz. The many faces of degeneracy in conic optimization.
Foundations and Trends® in Optimization, 3(2):77–170, 2017. 6, 20

[23] A. Forsgren, P.E. Gill, and E. Wong. Primal and dual active-set methods for convex quadratic
programming. Mathematical programming, 159(1-2):469–508, 2015. 30

[24] R.M. Freund and F. Ordonez. On an extension of condition number theory to nonconic convex
optimization. Mathematics of operations research, 30(1):173–194, 2005. 18

[25] R.M. Freund and J.R. Vera. Some characterizations and properties of the “distance to ill-
posedness” and the condition measure of a conic linear system. Technical report, MIT, Cam-
bridge, MA, 1997. 18

[26] T. Gal, editor. Degeneracy in optimization problems. Baltzer Science Publishers BV, Bussum,
1993. Ann. Oper. Res. 46/47 (1993), no. 1-4. 4

[27] J. Gauvin. A necessary and sufficient regularity condition to have bounded multipliers in
nonconvex programming. Mathematical programming, 12(1):136–138, 1977. 20

[28] J. Gauvin. Degeneracy, normality, stability in mathematical programming. In Recent devel-
opments in optimization (Dijon, 1994), volume 429 of Lecture Notes in Econom. and Math.
Systems, pages 136–141. Springer, Berlin, 1995. 11

[29] A.J. Goldman and A.W. Tucker. Theory of linear programming. In Linear inequalities and
related systems, pages 53–97. Princeton University Press, Princeton, N.J., 1956. Annals of
Mathematics Studies, no. 38. 3, 20

[30] J. Gondzio. Presolve analysis of linear programs prior to applying an interior point method.
INFORMS J. Comput., 9(1):73–91, 1997. 8

[31] M. Gonzalez-Lima, H. Wei, and H. Wolkowicz. A stable primal-dual approach for linear
programming under nondegeneracy assumptions. Comput. Optim. Appl., 44(2):213–247, 2009.
4

[32] Nicholas Gould and Jennifer Scott. A note on performance profiles for benchmarking software.
ACM transactions on mathematical software, 43(2):1–5, 2016. 24, 25

[33] O. GüLer, D. Den Hertog, C. Roos, T. Terlaky, and T. Tsuchiya. Degeneracy in interior
point methods for linear programming: a survey. Ann. Oper. Res., 46/47(1-4):107–138, 1993.
Degeneracy in optimization problems. 4, 21

[34] J.A.J. Hall and K.I.M. McKinnon. The simplest examples where the simplex method cycles and
conditions where EXPAND fails to prevent cycling. Math. Program., 100(1, Ser. B):133–150,
2004. 4

36

[35] X. Huang. Preprocessing and postprocessing in linear optimization. Master’s thesis, McMaster
University, 2004. 5, 8

[36] J. Im and H. Wolkowicz. A strengthened Barvinok-Pataki bound on SDP rank. Oper. Res.
Lett., 49(6):837–841, 2021. 11 pages, accepted Aug. 2021. 6, 8

[37] O. L. Mangasarian and S. Fromovitz. The Fritz John necessary optimality conditions in the
presence of equality and inequality constraints. J. Math. Anal. Appl., 17:37–47, 1967. 3

[38] N. Megiddo. A note on degeneracy in linear programming. Math. Programming, 35(3):365–367,
1986. 4

[39] Cs. Mészáros and U.H. Suhl. Advanced preprocessing techniques for linear and quadratic
programming. OR Spectrum, 25(4):575–595, 2003. 5, 8

[40] C. Mészáros and U.H. Suhl. Advanced preprocessing techniques for linear and quadratic
programming. OR Spectrum, 25:575–595, 2003. 10.1007/s00291-003-0130-x. 8

[41] G. Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity of
optimal eigenvalues. mor, 23(2):339–358, 1998. 9

[42] F.N. Permenter. Reduction methods in semidefinite and conic optimization. PhD thesis, Mas-
sachusetts Institute of Technology, 2017. 6

[43] D.W. Peterson. A review of constraint qualifications in finite-dimensional spaces. SIAM Rev.,
15:639–654, 1973. 10

[44] J. Renegar. Some perturbation theory for linear programming. Math. Programming, 65(1, Ser.
A):73–91, 1994. 18

[45] D. M. Ryan and M. R. Osborne. On the solution of highly degenerate linear programmes.
mprog, 41:385–392, 1988. 4

[46] L. Schork and J. Gondzio. Rank revealing Gaussian elimination by the maximum volume
concept. Linear Algebra Appl., 592:1–19, 2020. 8

[47] S. Sremac. Error bounds and singularity degree in semidefinite programming. PhD thesis,
University of Waterloo, 2019. 6, 7

[48] S. Sremac, H.J. Woerdeman, and H. Wolkowicz. Error bounds and singularity degree in
semidefinite programming. SIAM J. Optim., 31(1):812–836, 2021. 7

[49] J.F. Sturm. Error bounds for linear matrix inequalities. SIAM J. Optim., 10(4):1228–1248
(electronic), 2000. 7, 8

[50] T. Terlaky and S.Z. Zhang. Pivot rules for linear programming: a survey on recent theoret-
ical developments. Ann. Oper. Res., 46/47(1-4):203–233, 1993. Degeneracy in optimization
problems. 4

[51] P. Wolfe. The simplex method for quadratic programming. Econometrica, 27(3):382–398,
1959. 30

[52] S. Wright. Primal-Dual Interior-Point Methods. Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, Pa, 1996. 17, 20, 21

[53] Y. YE, M.J. Todd, and S. MIZUNO. An O(√nL)–iteration homogeneous and self–dual linear
programming algorithm. mor, 19:53–67, 1994. 21, 22

37

	1 Introduction
	2 Preliminaries
	2.1 Background and Notation
	2.1.1 Degeneracy in LP

	2.2 Facial Reduction
	2.2.1 Preprocessing in LP

	3 Main Result and Consequences
	3.1 Lack of Strict Feasibility and Relations to Degeneracy
	3.1.1 An Algebraic Proof of thm:LPdegen via the Definition of BFS
	3.1.2 A Geometric Proof Using Extreme Points
	3.1.3 Immediate Consequences of Main Result

	3.2 Efficient Preprocessing for Facial Reduction and Strict Feasibility
	3.2.1 Towards a Strictly Feasible Point from a Nondegenerate BFS
	3.2.2 Exposing Vector; Phase I Part B; Strict Feasibility Testing

	3.3 Discussions
	3.3.1 Distance to Infeasibility
	3.3.2 Applications to Known Characterizations for Strict Feasibility
	3.3.3 Applications to Obtain a Strictly Complementary Primal-Dual Solution
	3.3.4 Lack of Strict Feasibility and Interior Point Methods
	3.3.5 Lack of Strict Feasibility in the Dual

	4 Numerical Investigation
	4.1 Empirics with Interior Point Methods
	4.1.1 Generating LPs without Strict Feasibility
	4.1.2 Condition Numbers
	4.1.3 Stopping Criteria
	4.1.4 Distance to Infeasibility
	4.1.5 Empirics on Singular Values and `39`42`"613A``45`47`"603AIPS

	4.2 Empirics with Simplex Method
	4.2.1 Empirics on the Number of Degenerate Iterations
	4.2.2 NETLIB Problems; Perturbations; Stability

	5 Conclusion
	A Technical Proofs, Supplementary Materials
	A.1 proof of coro:PatakiLPversion
	A.2 A Condition Measure using Degeneracy
	A.3 Dual Degeneracy in the Absence of Strict Feasibility
	A.3.1 Implicit Redundancies in the Dual
	A.3.2 Construction of Dual LPs without Strict Feasibility

	Index
	References

