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Abstract6

The simplified Wasserstein barycenter problem consists in selecting one point from k given7

sets, each set consisting of n points, with the aim of minimizing the sum of distances to the8

barycenter of the k points chosen. This problem is known to be NP-hard. We compute the9

Wasserstein barycenter by exploiting the Euclidean distance matrix structure to obtain a facially10

reduced doubly nonnegative, DNN, relaxation. The facial reduction provides a natural splitting11

for applying the symmetric alternating directions method of multipliers (sADMM ) to the12

DNN relaxation. The sADMMmethod exploits structure in the subproblems to find stong13

upper and lower bound.14

The purpose of this paper is twofold. First we want to illustrate the strength of this15

DNN relaxation with a splitting approach. Our numerical tests then illustrate the surpris-16

ing success on random problems, as we generally, efficiently, find the provable exact solution of17

this NP-hard problem. Comparisons with current commercial software illustrate this surprising18

efficiency. However, we demonstrate and prove that there is a duality gap for problems with19

enough multiple optimal solutions, and that this arises from problems with highly symmetrized20

structure.21
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1 Introduction61

We consider the simplified Wasserstein barycenter problem of finding the optimal barycenter of k62

points, where exactly one point is chosen from k sets of points, each set consisting of n points. This63

is related to the problem of optimal mass transportation. Though it is a polynomial time problem64

in any fixed dimension, it suffers from the curse of dimensionality ; it has exponential running time65

with respect to the dimension. For additional details on the theory and applications see e.g., [1,8].66

The purpose of this paper is twofold. First, we provide a successful framework for handling67

quadratic hard discrete optimization problems; and second, we illustrate the surprising success for68

our specific problem.69

We model our problem as a quadratic objective, quadratic constrained {0, 1} discrete optimiza-70

tion problem, i.e., we obtain a binary quadratic model. We then lift, relax, this hard problem71

to the doubly nonnegative, DNN, cone, the cone of nonnegative, positive semidefinite symmetric72

matrices and obtain a convex relaxation. Strict feasibility fails for the relaxation, so we apply facial73

reduction, FR. This results in many constraints becoming redundant and also gives rise to a nat-74

ural splitting that can be exploited by the symmetric alternating directions method of multipliers75

(sADMM ). We exploit the structure, and include redundant constraints on the subproblems of76

the splitting and on the dual variables. Efficient upper and lower bounding techniques are used to77

help the algorithm stop early.78

Extensive tests on random problems are surprisingly efficient and successful, i.e., the relaxation79

with the upper and lower bounding techniques provide a provable optimal solution to the original80

hard problem for surprisingly many instances. The time for our algorithm for a random problem81

with k = n = 25 in dimension d = 25 was of the order of 10 seconds. In contrast, cvx Matlab82

with solver being the well known commercial package Gurobi took approximately 2, 348, 1800083

seconds for n = k = 5, 7, 8, respectively.84

The DNN relaxation can fail to find the exact solution for problems with special structure.85

We include a proof that a sufficient number of linearly independent optimal solutions results in a86

duality gap between the original hard problem and the DNN relaxation.87

The paper is organized as follows. Following some notation preliminaries, we present the main88

problem and a reformulation using Euclidean distance matrices in Section 2. The DNN relaxation89

and optimality conditions are given in Section 3. The details for the sADMM algorithm are then90

presented in Section 4. This includes the bounding techinques, scaling, and numerical tests. The91

theory for finding problems with duality gaps appears in Section 5, see e.g., Corollary 5.3. Our92

concluding remarks are in Section 6.93

1.1 Notation94

We let S ∈ Sn denote a matrix in the space of n × n symmetric matrices equipped with the trace95

inner product ⟨S, T ⟩ = trST ; we use diag(S) ∈ Rn to denote the linear mapping to the diagonal of96

S; the adjoint mapping is diag∗(v) = Diag(v) ∈ Sn. We let [k] = 1, 2, . . . , k.97

The convex cone of positive semidefinite matrices is denoted Sn+ ⊂ Sn, and we use X ⪰ 0 for98

X ∈ Sn+. Similarly, for positive definite matrices we use Sn++, X ≻ 0. We let N n denote n × n99

nonnegative symmetric matrices. The cone of doubly nonnegative matrices is DNN = Sn+ ∩N n.100
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For a set of points pi ∈ Rd, we let P =


pT1
pT2
. . .
pTt

 ∈ Rt×d. Here d is the embedding dimension.101

Without loss of generality, we can assume the points span Rd, and we can translate the points and102

assume they are centered, i.e.,103

P T e = 0, e vector of ones.1

we denote the corresponding Gram matrix, G = PP T . Then the classical result of Schoenberg [11]104

relates a Euclidean distance matrix, EDM , with a Gram matrix by applying the Lindenstrauss105

operator, K(G)106

D = K(G) = diag(G)eT + ediag(G)T − 2G.

Moreover, this mapping is one-one and onto between the centered subspace, SnC and hollow subspace,107

SnH108

SnC = {X ∈ Sn : Xe = 0}, SnH = {X ∈ Sn : diagX = 0}.

We ignore the dimension n when the meaning clear. Note that the centered assumption P T e =109

0 =⇒ G = PP T ∈ SnC .110

Remark 1.1 (spherical EDM). For centered points that are on a sphere, without loss of generality111

with radius 1, we then know that diag(G) = e, the vector of all ones of appropriate dimension.112

Therefore, we know that trG = n. In the case of points on a sphere that are also centered the113

EDM is called regular, i.e., if114

Ge = 0, diag(G) = e.

2 Simplified Wasserstein Barycenters115

We now present the main problem and the connections to Euclidean distance matrices, EDM.116

2.1 Main problem and EDMconnection117

Our main optimization problem is to find k points for an optimal barycenter.118

Problem 2.1 (Wasserstein Barycenter). Suppose that we are given a finite number of sets S1, ..., Sk,119

each consisting of n points in Rd. Find the optimal barycenter point y after choosing exactly one120

point from each set:121

p∗W := min
y∈Rd
pi∈Si

∑
i∈[k]

∥pi − y∥2 = min
pi∈Si

min
y∈Rd

∑
i∈[k]

∥pi − y∥2 =: min
pji∈Si

F (pj1 , pj2 , . . . , pjk), (2.1)

with122

P T =
[
p1 . . . pn pn+1 . . . pnk

]
∈ Rd×nk, D,G, (2.2)

denoting the corresponding matrix of points, EDM and Gram matrices, respectively.123

1The translation is given by
PT 7→ PT − veT ,

where v := 1
n
PT e is the barycenter of the points.
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By Lemma 2.2 below, the optimal Wasserstein barycenter is the standard barycenter of the k124

optimal points. It is known [2, Sect. 1.2] that the problem can be phrased using inter-point squared125

distances. We include a proof to emphasize the connection between Gram and Euclidean distance126

matrices.2 We start by recording the following minimal property of the standard barycenter with127

respect to sum of squared distances.128

Lemma 2.2. Suppose that we are given k points qi ∈ Rd, i = 1, . . . k. Let ȳ = 1
k

∑k
i=1 qi denote the129

barycenter. Then130

ȳ = argminy

k∑
i=1

1

2
∥qi − y∥2.

Proof. The result follows from the stationary point equation
∑k

i=1(qi − ȳ) = 0.131

We now have the following useful lemma.132

Lemma 2.3. Let QT = [q1 . . . qk] ∈ Rd×k and let GQ and DQ be, respectively, the Gram and the133

EDM matrices corresponding to the columns in QT . Further, let y = 1
kQ

T e be the barycenter. Then134

eTDQe = 2k tr(GQ)− 2eTGQe, (2.3)

and135

k∑
i=1

||qi − y||2 = 1

2k
eTDQe. (2.4)

Proof. Let J = I − eeT /k be the orthogonal projection onto e⊥. Hence, J2 = JT = J . Moreover,136

the i-th row (JQ)i = (Q− 1
kee

TQ)i = (qi − y)T . Now137

k∑
i=1

||qi − y||2 = tr(JQQTJ) = tr(JGQ) = tr(GQ)−
1

k
eTGQe.

But DQ = K(GQ) = ediag(GQ)
T + diag(GQ)e

T − 2GQ. Therefore, e
TDQe = 2k tr(GQ)− 2eTGQe.138

139

Corollary 2.4. Consider the main problem (2.1) with optimal Wasserstein barycenter y. This140

problem is equivalent to finding exactly one point in each set that minimizes the sum of squared141

distances:142

(WIQP ) 2kp∗W = p∗ := min
p1∈S1,...,pk∈Sk

∑
i,j∈[k]

∥pi − pj∥2. (2.5)

Proof. Suppose that Q = {pi | i ∈ [k]} is a set of optimal solutions to (2.1) and let y be the barycen-143

ter. Without loss of generality, since distances do not change after a translation, we translation all144

the points pj by y and obtain y = 0. This implies that GQe = PQP
T
Qe = 0. This combined with145

(2.1) and (2.3) yield146 ∑
i,j∈[k] ∥pi − pj∥2 = eTDQe

= 2k trGQ

= 2k
∑

i∈[k] ∥pi∥2

= 2kp∗W ,

(2.6)

where the last equality follows from Lemma 2.2.147

2This is called the cheapest-hub problem in [2, Sect. 1.2].
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2.2 A reformulation using a Euclidean distance matrix148

In this section, we reformulate (2.1) using our Euclidean distance matrix (EDM ) D. Define149

x := [vT1 , ..., v
T
k ]

T ∈ Rnk, A := blkdiag[eT , ..., eT ] = I ⊗ eT ∈ Rk×nk,

where ⊗ denotes the Kronecker product. Note that we get AT e = e. Then, the constraints of150

picking exactly one point from each set can be recast as151

Ax = e, x binary. (2.7)

Recalling Corollary 2.4 and (2.6) in the proof, we see that (2.1) can be formulated as a binary-152

constrained quadratic program (BCQP ) using our Euclidean distance matrix:153

(BCQP )
p∗ = min xTDx = ⟨D,xxT ⟩

s.t. Ax = e
x ∈ {0, 1}kn.

(2.8)

Remark 2.5 (difficulty of the Wasserstein barycenter problem). We first note that A is totally154

unimodular, i.e., every square submatrix has det(AI) ∈ {0,±1}. Therefore, the basic feasible solu-155

tions (vertices of the feasible set) of Ax = e, x ≥ 0, are {0, 1} variables. Therefore, these discrete156

optimization problems with a linear objective yield vertices as optimal solutions and can be solved157

with simplex type methods. This is what happens for the quadratic assignment problem where the158

unknown variables are permutation matrices and the problem is relaxed to doubly stochastic matri-159

ces (using the Birkhoff-Von Neumann Theorem). Thus, if the objective function is linear we get160

0, 1 solutions as the extreme points (basic feasible solutions) are 0, 1.161

However, our quadratic objective function is concave on the span of the feasible set by the162

properties of distance matrices. Therefore, if we have uniqueness in the solutions we expect 0, 1163

solutions if we solve the hard concave minimization problem, i.e., the 0, 1 constraints are redundant.164

However, in our relaxations we linearize the objective as it is not possible to minimize a constrained165

concave function efficiently in general.166

In summary, the problem appears to be NP-hard due to the minimization of a quadratic function,167

[9], and the binary 0, 1 constraints. However, the unimodularity of the linear constraint matrix168

suggests that these two constraints both promote binary valued points.169

3 Relaxation of the problem170

We now introduce a convex relaxation to the binary quadratic constrained problem in (2.8).171

3.1 Semidefinite programming (SDP ) relaxation172

We start with a SDP relaxation of our formulation in (2.8). The idea is to append an extra 1 in

front of a feasible vector x, i.e.,

(
x0
x

)
=

(
1
x

)
; and then lift it into a rank-1 matrix Yx :=

(
1
x

)(
1
x

)T

.

We then relax the nonconvex rank-1 constraint. After the lifting, we impose the constraints that
we have from x onto Y , e.g., the 0, 1 constraints become the arrow(Yx) = e0 constraint

arrow : Sn+1 → Rn+1 :

[
s0 sT

s S̄

]
7→
(

s0
diag(S̄)− s

)
.
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Here we denote e0, 0-th unit vector . This implies that the binary constraint on vector x is equivalent173

to the arrow constraint on the lifted matrix Yx as long as the rank-one condition holds. The linear174

constraints AX = e is handled next using FR.175

3.1.1 SDP reformulation via facial reduction176

Recalling (2.2), with matrix variable Yx, define177

D̂ :=

[
0 0
0 D

]
∈ Skn+1, (3.1)

and denote the positive semidefinite matrix178

K :=

[
−eT
AT

] [
−eT
AT

]T
∈ Skn+1

+ . (3.2)

The objective function of (2.8) now becomes ⟨D,xxT ⟩ = ⟨D̂, Yx⟩. For the “only-one-element-from-179

each-set” linear equality constraint (see (2.7)), we observe that180

Ax = e ⇐⇒
(
1
x

)T [−eT
AT

]
= 0

⇐⇒ YxK :=

(
1
x

)(
1
x

)T [−eT
AT

] [
−eT
AT

]T
= 0

⇐⇒ ⟨Yx,K⟩ = 0
⇐⇒ KYx = 0, i.e., range(Yx) ⊆ null(K) = null

([
−e A

])
.

(3.3)

The last step follows since both K,Yx ⪰ 0.181

If we choose V full column rnak so that range(V ) = null(K), then we can facially reduce the182

problem using the substitution183

Y ← V RV T ∈ V Snk+1−k
+ V T � Skn+1

+ , (3.4)

where � denotes face of. This makes the constraint KY = 0 redundant.184

Remark 3.1. Note that we need V to satisfy V TV = I for our application. We can rewrite the185

matrix
[
−e A

]
by permuting columns as follows186 [

−e A
]
P =

[
Ik Ik ⊗ eTn−1 −e

]
=
[
Ik Ē

]
,

thus defining Ē. Therefore, we get a basis of the nullspace up to a permutation of rows of187 [
−Ē

Ikn−k+1

]
=

[[
−Ik ⊗ eTn−1 e

]
Ikn−k+1

]
We now immediately get k orthogonal columns. For a typical matrix V see Figure 3.1. We now188

explicitly find the V in Lemma 3.2.189
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0 100 200 300 400 500 600

nz = 8726

0

100

200

300

400

500

600

Figure 3.1: V matrix for k=20, n=20

Lemma 3.2. Let k, n be given positive integers and from above let190

A =
[
Ik ⊗ eTn

]
, B =

[
−ek A

]
.

Let O ∈ Rn−1×n−1 be the strictly upper triangular matrix of ones of order n− 1. Set191

v =
(

1
j+j2

)
j
∈ Rn−1, β = −1/

√
n2 + nk, α = nβ.

Let Ō = −ODiag(v) with diagonal changed to 1 : j. ∗ v. Then we have192

V =

[
0 α

Ik ⊗ Ō βe

]
∈ Rnk+1×(n−1)k+1, V TV = I, BV = 0.

Proof. The first k(n − 1) columns are clearly orthonormal and sum to zero by construction. they193

are constructed in exactly that way with the off diagonal elements above the diagonal all equal.194

Therefore they are also orthogonal to the last column. The α, β are found satisfying orthogonality195

as well as being in the nullspace of B.196

We leave open the question on how to exploit the structure of V to obtain efficient matrix-matrix197

multiplications of the form V RV T needed in our algorithm.198

Lemma 3.3. Let k, n be given positive integers and from above let199

A =
[
Ik ⊗ eTn

]
, B =

[
−ek A

]
.

Let O ∈ Rn−1×n−1 be the strictly upper triangular matrix of ones of order n− 1. Set200

v =
(

1√
j+j2

)
j
∈ Rn−1, v̄ =

(
j√
j+j2

)
j
∈ Rn−1, β = −1/

√
n2 + nk, and α = nβ.
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Let Õ = −ODiag(v) + Diag(v̄) and set201

Ō =

[
−vT
Õ

]
=



−v1 −v2 −v3 · · · −vn−1

v̄1 −v2 −v3 · · · −vn−1

0 v̄2 −v3 · · · −vn−1

0 0 v̄3 · · · −vn−1
...

...
...

. . .
...

0 0 0 · · · v̄n−1


.

Then we have202

V =

[
0 α

Ik ⊗ Ō βe

]
∈ Rnk+1×(n−1)k+1, V TV = I, BV = 0.

Proof. Denote the j-th column of V by Vj and define Js := {js1, js2, . . . , jsn−1}, where jsr = (n −203

1)(s− 1) + r. Notice that Js is the index set of columns of V in s-th block. j ∈ Jk+1 means Vj is204

the last column of V .205

We first prove that V TV = I, i.e., column vectors of V is orthonormal. Let i, j ∈ {1, . . . , (n−206

1)k + 1}. We consider the following cases:207

If j ≤ (n− 1)k, then208

V T
j Vj = jv2j + v̄2j =

j

j + j2
+

j2

j + j2
= 1.

If j = (n− 1)k + 1, then209

V T
j Vj = α2 + nkβ2 = (n2 + nk)β2 = 1.

Now let i < j. If i, j ∈ Js for some s ≤ k. Then,

V T
i Vj = ivivj − v̄ivj

= i · 1√
i+ i2

1√
j + j2

− i√
i+ i2

1√
j + j2

= 0.

If j = (n− 1)k + 1. Then,

V T
i Vj = −iviβ + v̄iβ = (−ivi + ivi)β = 0.

If i ∈ Js, j ∈ Jt with s < t ≤ k. For each row, at least one of the vectors has 0 entry, so trivially210

V T
i Vj = 0. This proves that V TV = I.211

Secondly, we observe BV = 0, i.e., V ∈ null(B). To this end, we will see that BVj = 0 for each212

j = 1, . . . , (n− 1)k + 1. Fix s ∈ {1, . . . , k}. If j = (n− 1)k + 1,213 (
BVj

)
s
= −α+ nβ = −nβ + nβ = 0,

Now assume that j ≤ (n− 1)k. If j ∈ Js, then214 (
BVj

)
s
= −jvj + v̄j = −jvj + jvj = 0, for each i = 1, . . . , k.

Otherwise, trivially
(
BVj

)
s
= 0. This justifies BV = 0.215

We continue and clarify the specific role of the arrow constraint.216
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Proposition 3.4. The following holds:217 {
Y ∈ Snk+1

+ : rank(Y ) = 1, arrow(Y ) = e0

}
=

{
Y =

(
1
x

)(
1
x

)T

: x ∈ {0, 1}nk
}
.

Proof. (⊇): This is clear from the definitions.218

(⊆): Since Y is symmetric, positive semidefinite and has rank 1, there exists x0 ∈ R and x ∈ Rnk
219

such that Y =

(
x0
x

)(
x0
x

)T

. Since arrow(Y ) = e0, x
2
0 = 1 and x ◦ x = x0x. If x0 = 1, x ∈ {0, 1}nk;220

otherwise x0 = −1 and x ∈ {0,−1}n and it is easy to verify that221 {(
1
x

)(
1
x

)T

: x ∈ {0, 1}nk
}

=

{(
−1
x

)(
−1
x

)T

: x ∈ {0,−1}n
}
.

222

Therefore, the SDP reformulation is223

(SDP )

p∗ = minY ∈Snk+1 ⟨D̂, Y ⟩
arrow(Y ) = e0
rank(Y ) = 1
KY = 0
Y ⪰ 0.

And if we substitute using the facial vector Y ← V RV T , then we can discard the KY = 0224

constraint.225

3.1.2 Relaxing the rank-1 constraint226

Since the NP -hardness of the SDP formulation comes from the rank-1 constraint, we now relax227

the problem by deleting this constraint. The SDP relaxation of the above model is228

(SDP relax)

p∗ = minY ∈Snk+1 ⟨D̂, Y ⟩
arrow(Y ) = e0
KY = 0
Y ⪰ 0.

(3.5)

However, the improved processing efficiency of the relaxation model trades off with the accuracy229

of solving the original model. The rank of an optimal Y now can be greater than 1. The idea now230

is to impose a “right” amount of redundant constraints in the SDPmodel that reduces the rank231

of an optimal solution as much as possible, without hurting the processing efficiency of the model232

too much.233

3.1.3 The gangster constraint234

The gangster constraint fixes at 0 (shoots holes at) certain entries in the matrix. The entries are235

given in the gangster index, J . By abuse of notation, we allow one entry to be fixed at 1. The236

gangster constraint in our case comes from the linear constraint Ax = e combined with the binary237

constraint on x. We let S ◦ T denote the Hadamard (elementwise) product.238
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Proposition 3.5. Let x be feasible for BCQP. Then239

[ATA− I] ◦ xxT = 0,

and ATA− I ≥ 0, xxT ≥ 0. Define the gangster indices240

J :=
{
ij :

(
ATA− I

)
ij
> 0
}
.

The gangster constraint on Y in (3.5) is Y00 = 1 and241

J (Y ) = YJ = 0 ∈ R|J |.

Proof. Recall that x ∈ Rkn
+ . We now use basic properties of the Kronecker product, e.g., [10], and242

see that243

A = Ik ⊗ eT , e ∈ Rn, AT = Ik ⊗ e, e ∈ Rnk, ATA = Ik ⊗ eeT ,

i.e., ATA has the following block diagonal structure, where ⋆ = 1:244 

1 ⋆ ⋆

⋆
. . . ⋆

⋆ ⋆ 1

 1 ⋆ ⋆

⋆
. . . ⋆

⋆ ⋆ 1


. . . 1 ⋆ ⋆

⋆
. . . ⋆

⋆ ⋆ 1





.

Therefore the columns of A are unit vectors and Diag(diag(ATA)) = Ikn. The nonnegativity results245

follow from the definition, as does Y00 = 1.246

Then247

Ax = e ⇐⇒ ATAx = AT e = diag(ATA)
⇐⇒ ATAx− Ix = AT e− Ix = diag(ATA)−Diag[diag(ATA)]x
⇐⇒ (ATA− I)x = diag(ATA) ◦ (e− x) = e− x
⇐⇒ (ATA− I)xxT = (e− x)xT = exT − xxT

⇐⇒ tr[(ATA− I)xxT ] = tr[exT − xxT ] =
∑nk

i=1 xi − x2i = 0
⇐⇒ (ATA− I) ◦ xxT = 0.

The final conclusion now follows from the nonnegativities in the Hadamard product.248

From Proposition 3.5, we see that the gangster indices J are the nonzeros of the matrix ATA−I,249

i.e., the set of off-diagonal indices of the n-by-n diagonal blocks of the bottom right of Yx. Our250

complete gangster index is Ĵ := {(0, 0)} ∪ J .251

Now, the SDP relaxation model becomes252

p∗ = minY ∈Snk+1 ⟨D̂, Y ⟩
arrow(Y ) = e0
GĴ(Y ) = e0
KY = 0
Y ⪰ 0.

(3.6)
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3.2 Doubly nonnegative (DNN) relaxation253

We now split the primal variable Y into two variables {Y,R} and apply a doubly nonnegative254

relaxation to (3.6). This natural splitting uses the facial reduction obtained in (3.4) but with255

orthonormal columns chosen for the facial vector V .256

Recall that the lifting for Yx has the form

(
1
x

)(
1
x

)T

, where x ∈ {0, 1}nk. Hence, we can257

impose the redundant element-wise [0, 1]-bound constraint on Y , i.e: 0 ≤ Y ≤ 1.258

Recall that the constraint KY = 0 is redundant once we apply the facial reduction technique.259

The facial reduction naturally brings in a second primal variable R ∈ Snk+1−k
+ , i.e., we use260

Y ⪰ 0,KY = 0 ⇐⇒ Y = V RV T , R ∈ Snk+1−k
+ .

Next, we derive a redundant trace constraint on Y and transform it onto R.261

Proposition 3.6. We have262

{Y ∈ Snk+1 : KY = 0, arrow(Y ) = e0} ⊆ {Y ∈ Snk+1 : tr(Y ) = k + 1}.

Proof. Recall that K :=

[
−eT
AT

] [
−eT
AT

]T
. Since null(K) = null

([
−eT
AT

]T )
, we have263

0 = KY ⇐⇒ 0 =

−1 eT ... 0T

... ... ... ...
−1 0T ... eT

 Y0,0 ... Y0,nk
... ... ...

Ynk,0 ... Ynk,nk

 .

By expanding the first column of the product, we get
∑n

i=1 Yjn+i,0 = 1,∀j ∈ {0, ..., k−1}. Since264

arrow(Y ) = e0, this implies that tr(Y ) = Y0,0 +
∑k

j=1

∑n
i=1 Yjn+i,0 = 1 + k.265

Now, the facial constraint says that 1 + k = tr(Y ) = tr(V RV T ) = tr(RV TV ) = tr(R), since we266

choose the facial vector V to have orthonormal columns.267

Next, we incorporate all these constraints into the SDP relaxation model to form theDNN relaxation268

model. Define the two sets269

Y := {Y ∈ Snk+1 : GĴ(Y ) = YĴ = e0, arrow(Y ) = e0, 0 ≤ Y ≤ 1}, R := {R ∈ Snk+1−k
+ : tr(R) = k+1}.

Thus, the DNN relaxation model is:270

(DNN )

minR,Y ⟨D̂, Y ⟩
s.t. Y = V RV T

Y ∈ Y
R ∈ R

(3.7)

Observe that every feasible Y is nonnegative element-wise and every feasible R is PSD . Hence,271

this is a DNN relaxation. The splitting allows for the two cones to be handled separately. Com-272

bining them into one and applying e.g., an interior point approach is very costly.273

12



3.2.1 Optimality conditions274

Note that the linear mappingM(Y,R) := Y −V RV T is surjective, the interior of the closed convex275

feasible set int (Y ×R) ̸= ∅, and the normal cone at a feasible pair (Y,R) :?” satisfies276

NY×R(Y,R) = NY(Y )×NR(R).

The corresponding Lagrangian with dual variable Z is277

L(Y,R,Z) = ⟨D̂, Y ⟩+ ⟨Z, Y − V RV T ⟩+ ιY(Y ) + ιR(R),

where ιS(·) is the indicator function for the set S. Therefore the first-order optimality conditions
to the problem in (3.7) yields that a primal-dual pair (Y,R,Z) is optimal if, and only if,

Y = V RV T , R ∈ R, Y ∈ Y (primal feasibility) (3.8a)

0 ∈ −V TZV +NR(R) (dual R feasibility) (3.8b)

0 ∈ D̂ + Z +NY(Y ) (dual Y feasibility) (3.8c)

By the definition of the normal cone, we can easily obtain the following Proposition 3.7.278

Proposition 3.7 (characterization of optimality for DNN in (3.7)). The primal-dual pair (R, Y, Z)
is optimal for (3.7) if, and only if, (3.8) holds if, and only if,

R = PR(R+ V TZV ) (3.9a)

Y = PY(Y − D̂ − Z) (3.9b)

Y = V RV T (3.9c)

4 sADMMalgorithm279

The augmented Lagrangian corresponding to (3.7) with parameter β > 0 is280

Lβ(Y,R,Z) := ⟨D̂, Y ⟩+ ⟨Z, Y − V RV T ⟩+ β

2
∥Y − V RV T ∥2F + ιY(Y ) + ιR(R). (4.1)

To solve the problem in (3.7), we will use the symmetric alternating directions method of multipliers281

sADMM that has intermediate updates of multipliers. It updates the dual variable twice: once282

after the R-update and then again after the Y -update. Hence, both the R-update and the Y -update283

take into account newly updated dual variable information. Let Y0 ∈ Snk+1 and let Z0 ∈ Snk+1.284

Update (∀k ∈ N):285

Rk+1 = argminR∈Snk+1−k Lβ(R, Yk, Zk)
Zk+ 1

2
= Zk + β(Yk − V Rk+1V

T )

Yk+1 = argminY ∈Snk+1 Lβ(Rk+1, Y, Zk+ 1
2
)

Zk+1 = Zk+ 1
2
+ β(Yk+1 − V Rk+1V

T ).

(4.2)

In our DNNmodel (3.7), the objective function is continuous and the feasible set is compact.286

By the extreme value theorem, an optimal primal pair (Y ∗, R∗) always exists. As seen above,287

the constraint is linear and surjective and strong duality holds. (See the optimality conditions288

in Section 3.2.1). In fact, in our application we modify the dual multiplier update using a projection,289

see Lemma 4.1 and Algorithm 4.1.290
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Explicit Primal updates for R, Y291

We start with using a spectral decomposition of M below to get the:292

R− update = argminR∈Snk+1−k Lβ(R, Y k, Zk)
= argminR∈R ∥Yk − V RV T + 1

βZk∥2F by completing the square

= argminR∈R ∥V TYkV −R+ 1
βV

TZkV ∥2F since V TV = I

= argminR∈R ∥R− V T (Yk +
1
βZk)V ∥2F

= PR[V T (Yk +
1
βZk)V ] =: PR(M); M = U Diag(d)UT

= U Diag[P∆k+1
(d)]UT

where P∆k+1
denotes the projection onto the simplex ∆k+1 := {x ∈ Rn

+ : ⟨e, x⟩ = 1 + k}, see293

e.g., [5].294

Next for the295

Y−update = argminY ∈Snk+1 Lβ(Rk+1, Y, Zk+ 1
2
)

= argminY ∈Y ∥Y − [V Rk+1V
T − 1

β (D̂ + Zk+ 1
2
)]∥2F by completing the square

= PY
(
V Rk+1V

T − 1
β (D̂ + Zk+ 1

2
)
)

= Parrowbox

(
GĴ [V Rk+1V

T − 1
β (D̂ + Zk+ 1

2
)]
)

where GĴ is the gangster constraint and Parrowbox projects onto the polyhedral set {Y ∈ Snk+1 :296

Yij ∈ [0, 1], arrow(Y ) = e0}.297

Dual updates298

The correct choice of the Lagrange dual multiplier Z is important in the progress of the algorithm299

and in obtaining strong lower bounds. In addition, if the set of dual multipliers for all iterations is300

compact, then it indicates the stability of the primal problem. If an optimal Z∗ for (3.7) is known301

in advance, then there is no need to impose the primal feasibility constraint Y = V RV T . Hence,302

following the idea of exploiting redundant constraints, we aim to identify certain properties of an303

optimal dual multiplier and impose that property at each iteration of our algorithm.304

Lemma 4.1. Let305

ZA :=
{
Z ∈ Snk+1 : (Z + D̂)i,i = 0, (Z + D̂)0,i = 0, (Z + D̂)i,0 = 0, i = 1, ..., nk

}
.

Let (Y ∗, R∗, Z∗) be an optimal primal-dual pair for the DNN in (3.7). Then, Z∗ ∈ ZA.306

Proof. The proof of this fact uses the dual Y feasibility condition (3.8c) and a reformulation of the307

Y -feasible set. The details are in [6, Thm 2.14] and [4].308

In view of Lemma 4.1 we propose the following modification of the symmetricADMM algorithm,309

e.g., [7]. Our modification is in the way we update the multiplier. At every intial or intermediate310

update of the multiplier we project the dual variable onto ZA, i.e:311

• Zj+ 1
2
:= Zj + βPZA

(Yj − V Rj+1V
T );312

• Zj+1 := Zj+ 1
2
+ βPZA

(Yj+1 − V Rj+1V
T ).313

14



Algorithm 4.1 sADMM , modified symmetric ADMM

Initialization: j = 0, Yj = 0 ∈ Snk+1, Zj = PZA
(0), β = max(⌊nk+1

k ⌋, 1), γ = 0.9
while termination criteria are not met do
Rj+1 = U Diag[P∆j+1(d)]U

T where U Diag(d)UT = eig(V T (Yj +
1
βZj)V )

Zj+ 1
2
= Zj + γβPZA

(Yj − V Rj+1V
T )

Yj+1 = Pbox[GĴ(V Rj+1V
T − 1

β (D̂ + Zj+ 1
2
))]

Zj+1 = Zj+ 1
2
+ γβPZA

(Yj+1 − V Rj+1V
T )

j = j + 1
end while

Note that a convergence proof using the modified updates is given in [6, Thm 3.2]. Therefore, in314

view of theADMM updates (4.2) we propose the following Algorithm 4.1 with modified Z updates.315

316

Remark 4.2. In passing, we point out that we could choose any γ ∈ (0, 1) and β > 0. Theoretically317

this is all what we need. In our numerical experiments for Algorithm 4.1 we used an adaptive β318

based on the discussion in Section 4.3.1.319

4.1 Bounding and duality gaps320

Strong upper and lower bounds allow for early stopping conditions as well as proving optimality.321

4.1.1 Lower bounds322

The Lagrangian dual function to the DNNmodel g : Snk+1 → R is323

g(Z) = minR∈R,Y ∈Y⟨D̂, Y ⟩+ ⟨Z, Y − V RV T ⟩
= minY ∈Y,R∈R⟨D̂ + Z, Y ⟩ − ⟨Z, V RV T ⟩
= minY ∈Y⟨D̂ + Z, Y ⟩+minR∈R(−⟨V TZV,R⟩)
= minY ∈Y⟨D̂ + Z, Y ⟩ −maxR∈R⟨V TZV,R⟩
= minY ∈Y⟨D̂ + Z, Y ⟩ −max∥v∥2=(k+1) v

TV TZV v

= minY ∈Y⟨D̂ + Z, Y ⟩ − (k + 1)λmax(V
TZV ).

Hence, at iteration k, a lower bound to the optimal value of the DNNmodel is324

g(Zk) = min
Y ∈Y
⟨D̂ + Zk, Y ⟩ − (k + 1)λmax(V

TZkV ).

4.1.2 Upper bounds325

As for the upper bound, we consider two strategies for finding feasible solutions to the BCQP.326

The 0-column approach is to take the first column Y (1 : end, 0) and compute its nearest feasible327

solution to BCQP. It is equivalent to signal only the maximum weight index for each consecutive328

block of length n. The proof is in [4, section 3.2.2].329

Alternatively, we use the dominant eigenvector of Y . and compute its nearest feasible solution330

to BCQP. It is again equivalent to signal only the maximum weight index for each consecutive331

block of length n.332
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Then, we compare the objective values for both approaches and select the upper bound with333

smaller magnitude. The relative duality gap at the current iterate k is defined to be UBk−LBk
|UBk|+|LBk|+1334

where UBk denotes upper bound at the current iterate and LBk denotes lower bound at the current335

iterate.336

4.2 Stopping criterion337

By Proposition 3.7, we can define the primal and dual residuals of the sADMM algorithm at338

iterate k as follows:339

• Primal residual rk := Yk − V RkV
T ;340

• Dual-R residual sRk := Rk − PR
(
Rk + V TZkV

)
;341

• Dual-Y residual sYk := Yk − PY
(
Yk − D̂ − Zk+ 1

2

)
.342

We terminate the algorithm once one of the following conditions is satisfied:343

• The maximum number of iterations (maxiter) := 104 + k(nk + 1) is reached;344

• The relative duality gap is less or equal to ϵ := 10−5;345

• KKTres := max{rk, sRk , sYk } < η := 10−5;346

• Both the least upper bound and the greatest lower bound have not changed for boundCoun-347

terMax:=200 times.348

4.3 Speed-up349

4.3.1 Adaptive step size350

We apply the heuristic idea presented in [3], namely we bound the gap between the primal and351

dual residual norms within a factor of µ := 2 as they converge to 0. This guarantees that they352

converge to 0 at about the same rate and one residual will not overshoot the other residual by too353

much. Since a large penalty β prioritizes primal feasibility over dual feasibility and a small penalty354

β prioritizes dual feasibility over primal feasibility, we scale β by a factor of τinc := 2 if the primal355

residual overshoots the dual residual by a factor of µ and scale β down by a factor of τdec := 2 if356

the dual residual overshoots the primal residual by a factor of µ. Otherwise, we keep β unchanged.357

Specifically,358

βj+1 :=


τ incrβj , ∥rj∥2 > µ∥sj∥2;
βj

τdecr
, ∥sj∥2 > µ∥rj∥2;

βj , otherwise.

4.3.2 Transformation and scaling359

In this section, we consider translating and scaling the objective function i.e., D̂. Define the360

orthogonal projection map PV := V V T . Then,361

⟨D̂, Y ⟩ := ⟨D̂ + αI, Y ⟩ − (n+ 1)α

= ⟨D̂ + αI, PV Y PV ⟩ − (n+ 1)α

= ⟨(PV D̂PV + αI), Y ⟩ − (n+ 1)α.

(4.3)
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Hence,362

⟨D̂, Y ⟩ is minimized ⇐⇒ δ⟨D̂, Y ⟩ = ⟨δ(PV D̂PV + αI), Y ⟩ − (n+ 1)δα is minimized

⇐⇒ ⟨δ(PV D̂PV + αI), Y ⟩ is minimized.

This lets us transform D̂ into δ(PV D̂PV + αI) without changing the optimum solutions.363

Numerical experiments show that once we scale D̂ by some δ < 0, the convergence becomes faster364

for the aforementioned input data distributions. There seems to be an optimal δ that minimizes365

the number of iterations for convergence.366

4.4 Numerical Tests367

We now illustrate the efficiency of our algorithm on medium and large scale randomly generated368

problems. We used Matlab version 2022a on a greyling22 Dell R840 4 Intel Xeon Gold 6254, with369

3.10 GHz, 72 core and 384 GB.370

Both Tables 4.1 and 4.2 illustrate the efficiency and surprising success of our algorithm. Ta-371

ble 4.1, page 17, provides the running time and relative gap comparisons of sADMM compared372

to the Mosek solver in cvx Matlab.373

Specifications Time (s) Relative duality gap
d n k sADMM Mosek sADMM Mosek

2 7 5 2.33e-01 3.66e-01 9.80e-08 2.41e-09

2 8 6 3.90e-01 6.94e-01 2.76e-10 5.91e-11

2 9 7 3.53e-01 1.30e+00 6.59e-07 1.55e-11

2 10 8 3.75e-01 3.92e+00 4.82e-08 4.96e-12

2 11 9 4.63e-01 1.30e+01 1.92e-09 2.21e-12

2 12 10 5.41e-01 3.09e+01 9.32e-10 8.41e-10

2 13 11 7.22e-01 7.31e+01 1.83e-08 2.94e-11

Table 4.1: running time and relative gap comparisons

Table 4.2, page 18 shows the scalability of the sADMM algorithm for data of large size.374

17



d n k Time(s) KKT residual Relative duality gap

3 3 3 2.36e-02 2.20e-07 7.52e-15

4 4 4 1.38e-01 3.10e-08 9.95e-17

5 5 5 1.80e-01 7.02e-09 3.42e-16

6 6 6 3.06e-01 1.89e-08 9.09e-15

7 7 7 4.79e-01 1.19e-06 1.65e-14

8 8 8 3.16e-01 1.51e-06 5.83e-15

9 9 9 5.11e-01 1.43e-07 1.42e-14

10 10 10 5.46e-01 1.51e-07 1.46e-14

11 11 11 2.71e-01 7.38e-09 3.01e-14

12 12 12 1.01e+00 2.34e-08 2.02e-14

13 13 13 1.48e+00 4.76e-09 1.64e-14

14 14 14 2.98e+00 1.21e-06 2.75e-14

15 15 15 1.54e+00 9.83e-08 1.10e-14

16 16 16 1.27e+00 6.76e-08 1.70e-14

17 17 17 1.80e+00 1.36e-08 2.46e-14

18 18 18 2.44e+00 2.93e-06 3.17e-15

19 19 19 3.19e+00 9.19e-10 1.15e-14

20 20 20 5.53e+00 1.56e-09 4.15e-15

21 21 21 6.25e+00 1.53e-08 3.86e-14

22 22 22 1.38e+01 2.67e-06 1.32e-14

23 23 23 1.35e+01 4.16e-09 1.42e-14

24 24 24 1.64e+01 8.28e-07 3.56e-14

25 25 25 2.72e+01 1.73e-09 8.10e-16

Table 4.2: scalability sADMM algorithm for data of large size

5 Multiple Optimal Solutions and Duality Gaps375

We now see that multiple optimal solutions for the original hard problem can lead to a duality gap376

between the original NP-hard problem and the DNN relaxation.377

5.1 Criteria for Duality Gaps378

To find duality gaps for SDP relaxations, we want to find points outside of the convex hull of the379

lifted vertices. The following Lemma 5.1 and Corollary 5.2 provides this between a general hard380

problem with multiple optimal solutions and its DNN relaxation.381

Lemma 5.1. Let {xi}ni=1 ⊂ Rn
+ be a linearly independent set with

∑
i xi > 0. Define the lifted382

vertices and barycenter, respectively,383

{
Xi = xix

T
i

}n
i=1
⊂ Sn, X̂ :=

1

n

n∑
i=1

Xi.

Then384

X̂ ∈ Sn++ ∩ Rn
++ (= intDNN ).
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Proof. We note that Xi ⪰ 0, ∀i and so X̂ ⪰ 0 as well. To obtain a contradiction, suppose that385

0 = X̂v, for some 0 ̸= v ∈ Rn. Then386

0 = vT X̂v = vT
∑
i

Xiv =⇒ 0 = vTXiv,∀i =⇒ (vTxi)
2 = 0, ∀i =⇒ v = 0,

by the linear independence assumption; thus contradicting v ̸= 0. That X̂ ∈ Rn
++ is clear from the387

hypothesis.388

Corollary 5.2. Suppose that the hypotheses of Lemma 5.1 hold. Moreover, suppose that the points389

xi, i = 1, . . . , n, are optimal for a given hard minimization problem390

(P ) p∗ = min
{
xTQx : x ∈ {0, 1}n

}
,

with p∗ = xTi Qxi, ∀i. Moreover, suppose that there exists a feasible y with y ̸= xi,∀i, and y not391

optimal, y ∈ {0, 1}n, yTQy > p∗. Then the DNN relaxation has feasible points Y = yyT , Z such392

that393

trY Q > p∗ > trZQ,

i.e., Z yields a duality gap.394

Proof. From Lemma 5.1 we have that the barycenter satisfies both X̂ ≻ 0, X̂ > 0. Note that395

trY Q = yTQy > p∗ = tr X̂Q. Therefore, tr(X̂ − Y )Q < 0, and for ϵ > 0,396

tr(X̂ + ϵ(X̂ − Y )Q = p∗ + ϵ tr(X − Y )Q < p∗.

Moreover, the line segment [Y, X̂ + ϵ(X̂ − Y )] is feasible for the SDP relaxation for small enough397

ϵ > 0 by X̂ ∈ intDNN. Therefore, we set Zϵ = X̂ + ϵ(X̂ − Y ), 0 < ϵ << 1 and obtain a duality398

gap.399

We can extend this theory to problems with general linear constraints Ax = b by using FR. We400

now specifically extend it to our BCQP in (2.8). We need nk+1− k linearly independent optimal401

points. This can be obtained when we choose k >> n. Recall the matrix K in (3.2) used for facial402

reduction and the facially reduced DNN relaxation in (3.7).403

Corollary 5.3. We consider the BCQPwith optimal value p∗, and the DNN relaxation in (3.7).404

Let405 {
yi =

(
1
xi

)}nk+1−k

i=1

⊂ Rnk+1
+

be a linearly independent set that are optimal for BCQP and with
∑

i yi > 0. Define the lifted406

vertices and barycenter, respectively,407

{
Yi = yiy

T
i

}
i
, ∀i, Ŷ :=

1

n

n∑
i=1

Yi.

Moreover, suppose that there exists a feasible x̄ for BCQP that is not optimal. Then408

Ŷ = V R̂V T ⪰ 0, Ŷ > 0, R̂ ≻ 0.

And there exists Z = V RZV
T , RZ ≻ 0 with optimal value trDZ < p∗, yielding a duality gap.409
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Proof. First note that incident vectors are feasible for the linear constraints and this guarantees410

that we have enough feasible points to guarantee that the barycenter satisfies Ŷ > 0. All lifted411

feasible points of the relaxation are in the minimal face and have a corresponding matrix R for412

the facial reduction Y = V RV T . Since R ≻ 0 after the FR, we can apply the same proof as413

in Corollary 5.2. In addition, note that the linear constraints, the arrow constraint and gangster414

constraints, remain satisfied in the line formed from two feasible points.415

5.2 Examples416

We illustrate the above theory with some specific problems with special structure that have multiple417

optimal solutions for the original NP -hard problem. We see that a duality gap exists between the418

optimal solution of the original problem and the DNN relaxation.419

Example 5.4. first, we consider the simplest case where n = k = 2. Define S1 :=

{[
0
0

]
,

[
10
0

]}
420

and S2 :=

{[
0
1

]
,

[
0
−1

]}
. Clearly, the optimal solution of the simplified Wasserstein barycenter421

problem with respect to this data distribution is to pick the first point of S1 and either the first or422

the second point of S2. The former selection matches the solution vector x =


1
0
1
0

 corresponding to423

the lifted matrix


1 1 0 1 0
1 1 0 1 0
0 0 0 0 0
1 1 0 1 0
0 0 0 0 0

 of the DNN formulation. The latter selection matches424

the solution vector x =


1
0
0
1

 corresponding to the lifted matrix


1 1 0 0 1
1 1 0 0 1
0 0 0 0 0
0 0 0 0 0
1 1 0 0 1

 of the425

DNN formulation. Observe that the convex combination of these two matrices with coefficients426

{0.5, 0.5} is427

Ỹ =


1 1 0 0.5 0.5
1 1 0 0.5 0.5
0 0 0 0 0
0.5 0.5 0 0.5 0
0.5 0.5 0 0 0.5

 whose facially reduced component R̃ =

2 1 0
1 0.5 0
0 0 0.5

 has428

rank 2.429

Recall the Lagrangian dual function that we used in section 4.1.1 for computing the lower bound:430

g(Z) = min
Y ∈Y
⟨D̂ + Z, Y ⟩ −max

R∈R
⟨V TZV,R⟩.
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With Z̃ :=


−0.3619 0 0 0 0

0 0 1.3699 −1 −1
0 1.3699 0 −1.5826 −1.5826
0 −1 −1.5826 0 0.7873
0 −1 −1.5826 0.7873 0

, the sADMM algo-431

rithm terminates with a KKT residual of 8.9157e-11.432

With D̂ =


0 0 0 0 0
0 0 0 1 1
0 0 0 101 101
0 1 101 0 0
0 1 101 0 0

, we have g(Ẑ) = 1.6381 < 2 = ⟨D̂, Ỹ ⟩, admitting a433

strictly positive duality gap.434

Example 5.5 (Odd wheels). We next present another input data distribution for which the duality435

gap between the optimal value of the BCQP formulation and the Lagrangian dual value is non-436

trivial. The issue is again the non-uniqueness of the optimal solutions and the sADMM algorithm437

fails to break ties among them.438

The data distributions compose of a wheel of wheels, i.e., a wheel with an odd number of sets439

each of which is a wheel. Hence we call it an odd wheel. Given problem size parameters (k, n, d),440

define441

• θk := 2π
k .442

• a set of k centroids encoded by a matrix C ∈ Rk×2 such that443

C(i, :) =
[
cos(i− 1)θk sin(i− 1)θk

]
, i = 1, ..., k.

• the radius of each cluster rk :=

√
cos(θk−1)2+sin θ2k

4 .444

• the set of input points encoded by a matrix P := (C ⊗ e) + rk(e⊗ C) ∈ Rk2,2.445

When k is odd, there exists more than one optimal solution. A simple example with k = 3 = n446

follows in Figure 5.1.447
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Figure 5.1: k=3=n

A simple inspection of the picture shows that reflecting the selected green points along the x-axis448

gives another optimal solution. In fact, for this example, six different optimal solutions exist.449

However, when k is even, only one optimal solution exists and the duality gap becomes trivial.450

An example with k = 6 = n follows in Figure 5.2.451

6 Conclusion452

In this paper we presented a strategy for solving NP-hard binary quadratic problems. This involves453

formulating a DNN relaxation, FR that gives rise to a natural splitting for a symmetric alternating454

directions method of multipliers sADMM with intermediate update of multipliers and strong455

upper and lower bounding techniques. We applied this to the NP -hard computational problem456

called the Simplified Wasserstein Barycenter problem.457

Surprisingly, for the random problems we generated the gap between bounds was zero and we458

were able to provably solve the original NP-hard optimization problem. However, for specially459

constructed input data that had multiple optimal solutions, the algorithm had difficulty breaking460
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Figure 5.2: k=6=n

ties and the result was gaps between lower and upper bounds, i.e., the original Wasserstein problem461

was not solved to optimality. We provided theoretical proof that such problems have a duality gap.462

As for future research, we want to better understand the theoretical reasons for the positive463

duality gaps and find more classes of problems where this occurs. In addition, we want to understand464

what happens under small perturbations to problems with duality gaps, i.e., if the gaps can be closed465

with perturbations.466
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Index

0-th unit vector, e0, 7467

F (pj1 , pj2 , . . . , pjk), 4468

S ◦ T , Hadamard (elementwise) product, 10469

S ∈ Sn, 3470

[k] = 1, 2, . . . , k, 3471

K(G), Lindenstrauss operator, 4472

SnC , centered, 4473

SnH , hollow, 4474

diag(S) ∈ Rn, 3475

diag∗(v) = Diag(v) ∈ Sn, 3476

Ĵ := {(0, 0)} ∪ J , 11477

D̂ scaled, 16478

⊗, Kronecker product, 6, 11479

e0, 0-th unit vector, 7480

p∗, 6, 10, 11481

p∗ = 2kp∗W , 5482

p∗W , 4483

J , 11484

DNN, doubly nonnegative, 3485

EDM, Euclidean distance matrix, 4486

centered subspace, SnC , 4487

curse of dimensionality, 3488

doubly nonnegative, DNN, 3489

embedding dimension, 4490

Euclidean distance matrix, EDM, 4491

facial reduction, FR, 3492

facial vector, 10493

gangster constraint, 10494

gangster index, J , 10495

gangster index, J , 10496

Gram matrix, G = PP T , 4497

Hadamard (elementwise) product, S ◦ T , 10498

hollow subspace, SnH , 4499

indicator function, 13500

Kronecker product, ⊗, 6, 11501

Lindenstrauss operator, K(G), 4502

optimal mass transportation, 3503

regular, 4504

simplex, 14505

totally unimodular, 6506

trace inner product, 3507

Wasserstein Barycenter, 4508
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