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Abstract

We consider the fundamental problem of computing an optimal portfolio based on a
quadratic mean-variance model of the objective function and a given polyhedral represen-
tation of the constraints. The main departure from the classical quadratic programming
formulation is the inclusion in the objective function of piecewise linear, separable func-
tions representing the transaction costs. We handle the nonsmoothness in the objective
function by using spline approximations. The problem is then solved using a primal-dual
interior-point method with a crossover to an active set method. Our numerical tests show
that we can solve large scale problems efficiently and accurately.
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1 Introduction

We consider the problem of selecting a portfolio for an investor in an optimal way. Assume
that n assets are available. We denote by x = (x1, x2, . . . , xn)T the vector of proportions of the
money invested in each asset. Under the mean-variance model, the investor acts to minimize
the quadratic function F (x) = 1

2
xT Qx − tdT x, under linear inequality constraints, i.e. we solve

a quadratic program, QP . Here −d is the vector of the expected returns of the assets, Q is a
covariance matrix and t is a fixed positive scalar parameter. In this paper we consider minimiz-
ing f(x) = F (x)+

∑n

i=1 fi(xi), where the functions fi are piecewise linear convex functions that
represent the transaction costs. We introduce an algorithm that approximates the nondifferen-
tiable functions with splines and then solves the resulting smooth problem using a primal-dual
interior-point method. We apply a crossover technique to an active set method once we are close
enough to the set of optimal solutions. We are able to solve large scale problems efficiently and
accurately.

Transaction costs arise when an investor buys or sells some of his/her holdings. Two major
sources of transaction costs are brokerage fees and market impact costs. The broker’s commission
rates are often decreasing in the amount of trade, and therefore the transaction costs resulting
from these fees are modeled by concave functions. However, this is the case only when the
amounts of transactions are not very large and should be taken into account only by smaller
investors. If the trade volume is large enough, the commissions can be modeled by a linear
function.

The market impact costs are the changes in the price of the assets that result from large
amounts of these assets being bought or sold. The price is going up if someone is buying large
quantities of an asset, and the price is going down if a lot of shares of this asset are for sale. The
market impact costs are normally modeled by convex functions. The piecewise linear convex
function is the most common example.

Therefore, from the point of view of a large institutional investor, transaction costs can be
adequately modeled by a piecewise linear convex function.

We assume that the vector x̂ = (x̂1, x̂2, . . . , x̂n)T represents the current holdings of assets.
The cost associated with changing the holdings in asset i from x̂i to xi will be denoted by fi(xi).
For most practical purposes, it is safe to assume that transaction costs on each asset depend
only on the amount of the holdings in this asset purchased or sold and do not depend on the
amount of transactions in other assets. Therefore, we model the transaction costs by a separable
function of the amount sold or bought, i.e. the cost associated with changing the portfolio from
x̂ to x is

∑n

i=1 fi(xi). We discuss the transaction cost model in more detail in Appendix A, page
37.

See [17, 14, 15, 8, 10, 19] for work related to portfolio optimization under nonsmooth transac-
tion costs. And also [1, 3, 4, 6, 11, 12, 20, 21] for approaches to partially separable optimization
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problems. For an approach that replaces a nondifferentiable problem by a smooth problem, see
[13].

1.1 Outline

In Section 2 we present the details of the problem as well as the associated duality and optimality
conditions. The smoothing by splines is done in Section 3. We include sensitivity analysis in
Section 3.3. In particular, this section proves that more accurate spline approximations yield
more accurate solutions of the original problem, i.e. continuity of the spline approximations.
An alternative approach that replaces the nondifferentiability with additional variables and
constraints is given in Section 4. For this approach, we use the software package MOSEK to
solve the resulting QP .

In Section 5 we study the expected number of variables xi that have values at points of
nondifferentiability. These theoretical observations agree with our empirical results.

Computational results are reported in Section 6 and concluding remarks are given in Section
7.

2 Problem Formulation and Optimality Conditions

2.1 Formulation

We consider the problem of minimization of the function f(x) subject to linear inequality con-
straints.

(P )
min f(x)
s.t. Ax ≤ b,

(2.1)

where A is an m × n-matrix and b ∈ R
m. The objective function f(x) is defined as follows:

f(x) := F (x) +
n

∑

i=1

fi(xi), (2.2)

where

F (x) :=
1

2
xT Gx + cT x (2.3)

is a strictly convex quadratic function on R
n, G is symmetric positive definite, and fi(xi) is a

piecewise linear function on R, with break-points at dik, i.e.

fi(xi) :=







fi0 := pi0xi + hi0, if xi ≤ di1,
fil := pilxi + hil, if dil ≤ xi ≤ dil+1, l = 1, . . . , Mi,
fiMi

:= piMi
xi + hiMi

, if xi ≥ diMi
.

(2.4)
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Let the feasible region of the problem (2.1) be denoted by S; and, for each x ∈ R
n, let the

set of active breakpoints, and its complement, be denoted by

E(x) := {i : xi = dil for some l ∈ {1, .., Mi}}, N(x) = {1, . . . , n}\E(x). (2.5)

2.2 Duality and Optimality

The Lagrangian dual of (P) is

max
u≥0

min
x

L(x, u) := f(x) + uT (Ax − b).

The inner-minimization is an unconstrained convex minimization problem. Therefore, we can
write down the Wolfe dual program

(D)
max L(x, u)
s.t. 0 ∈ ∂xL(x, u),

u ≥ 0,
(2.6)

where ∂xL(x, u) denotes the subgradient of L, i.e.

∂xL(x, u) = {φ ∈ R
n : φT (y − x) ≤ L(y, u) − L(x, u), ∀y ∈ R

n}.

We can now state the well-known optimality conditions.

Theorem 2.1 A point x ∈ R
n minimizes f over S if and only if the following system holds

u ≥ 0, 0 ∈ ∂xL(x, u) dual feasibility
Ax ≤ b primal feasibility

uT (Ax − b) = 0 complementary slackness.

To further simplify the optimality conditions, we use the following property of subgradients:

Proposition 2.1 ([2]) Let θ =
∑m

i=1 θi, where θi : R
n → R are convex functions, i = 1, . . . , m.

Then ∂θ(x) is equal to the Minkowski sum

∂θ(x) =

m
∑

i=1

∂θi(x).
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Recall that

L(x, u) := F (x) +
n

∑

i=1

fi(xi) + uT (Ax − b).

Since the first and the last terms of this sum are differentiable, we get

∂L(x, u) = ∇F (x) + ∂(
n

∑

i=1

fi(xi)) + AT u.

It follows from the definition of fi(xi) that

∂fi(xi) =



















dfi0

dxi

(xi), if xi < di1,
dfil

dxi

(xi), if dil < xi < dil+1, l = 1, ..., Mi,

[
dfil−1

dxi(xi)
, dfil

dxi

(xi)] if xi = dil, l = 1, ..., Mi,
dfiMi

dxi

(xi), if xi > diMI
.

We can think of fi as a function from R
n to R, defined as fi(x) = fi(xi). Then ∂fi(x) = ∂fi(xi)ei

and
∑n

i=1 fi(xi) =
∑n

i=1 fi(x). By Proposition 2.1, ∂(
∑n

i=1 fi(xi)) is equal to the Minkowski sum
∑n

i=1 ∂fi(xi)ei. From the definition of the Minkowski sum, the latter sum is equal to a direct
product of ∂fi(xi). Therefore,

0 ∈ ∂L(x, u)

if and only if, for every i = 1, . . . , n,

0 ∈ (∇F (x))i + ∂fi(xi) + (AT u)i.

This allows us to reformulate the optimality conditions for (2.1).

Corollary 2.1 Let the function f be given by (2.2). A point x ∈ R
n minimizes f over S, if

and only if there exists u ∈ R
m, v ∈ R

E(x) such that

Ax ≤ b,

(∇F (x))i + dfil

dxi

(xi) + (AT u)i = 0, for all i ∈ N(x),

with xi ∈ (dil, dil+1),

(∇F (x))i +
dfil−1

dxi

(dil) + (AT u)i + vi = 0, for all i ∈ E(x),

with xi = dil,

0 ≤ vi ≤
dfil

dxi

(dil) −
dfil−1

dxi

(dil), for all i ∈ E(x),

with xi = dil,
u ≥ 0,
uT (Ax − b) = 0.



























































(2.7)
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We would like to see if an interior-point method (IPM ) can be applied to solve this problem
efficiently. Applying the IPM directly to the nondifferentiable problem would force us to follow
a nondifferentiable “central path”.

A point x ∈ R
n is a point on the central path, if and only if, for µ > 0,

Ax + s = b, s ≥ 0

(∇F (x))i + dfil

dxi

(xi) + (AT u)i = 0, for all i ∈ N(x),

with xi ∈ (dil, dil+1),

(∇F (x))i + dfil−1

dxi

(dil) + (AT u)i + vi = 0, for all i ∈ E(x),

with xi = dil,

0 ≤ vi ≤
dfil

dxi

(dil) −
dfil−1

dxi

(dil), for all i ∈ E(x),

with xi = dil,
u ≥ 0,
uisi = µ, i = 1, . . . , m,



























































(2.8)

or

Ax + s = b, s ≥ 0
(Gx)i + ci + pil + (AT u)i = 0, for all i ∈ N(x),

with xi ∈ (dil, dil+1),
(Gx)i + ci + pil−1 + (AT u)i + vi = 0, for all i ∈ E(x),

with xi = dil,
0 ≤ vi ≤ pil − pil−1, for all i ∈ E(x),

with xi = dil,
u ≥ 0,
uisi = µ, i = 1, . . . , m.























































(2.9)

3 Smoothing via Splines

Approximating the nondifferentiable functions fi(xi) by smooth functions allows us to fully use
the theory of differentiable optimization, and in particular, interior-point methods.

There are two approaches that could be taken here. In many cases the nondifferentiable
function fi(xi) is just an approximation of some smooth function based on a given data set.
Then, using a convex cubic spline on this data set would give a better approximation of the
original function, and the objective of the optimization problem (2.1) would become smooth.
For more details on this approach, see for example [18]; and for a general reference on splines,
see [7].
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However, in real life, the original data set is often not available and it is best to find a solution
to the given data. Transaction cost functions, for example, are always non-smooth. Therefore,
in this paper, we focus on the second approach. We use smooth convex splines that approximate
the given piecewise linear convex functions fi(xi) that represent the transaction costs.

3.1 Interior Point Method for Smooth Approximations

Suppose the functions fi(xi) are approximated by smooth functions f̄i(xi). We denote the first
and second derivatives by f̄ ′

i(xi) and f̄ ′′
i (xi), respectively.

Let (x, u, s) be a current iterate, with (u, s) > 0. The following system of perturbed opti-
mality conditions will be considered at each iteration of the IPM

Ax + s = b, s > 0
(Gx)i + ci + f̄ ′

i(xi) + (AT u)i = 0, for all i = 1, . . . , n,
u > 0,
uisi = µ, i = 1, . . . , m.















(3.1)

Given x, s, and u, we define the barrier parameter µ := uT s
m

, the vector of first derivatives
g = (f̄ ′

1(x1), . . . , f̄
′
n(xn))T , and the diagonal matrices

U := Diag(u1, . . . , um), S := Diag(s1, . . . , sm), H := Diag(f̄ ′′
1 (x1), . . . , f̄

′′
n(xn)).

Then the search direction for (3.1) is found from the linearized system (Newton’s equation)





G + H AT 0
A 0 I
0 S U









∆x
∆u
∆s



 =





−rc

−rb

−Us + σµe



 , (3.2)

where the residuals
rc := Gx + c + g + AT u, rb := Ax + s − b,

e is the vector of ones, and σ ∈ [0, 1] is the centering parameter.
We can use block eliminations to simplify the linearized system. We first solve

∆s = −U−1S∆u − s + σµU−1e.

Then we can eliminate ∆s and rewrite (3.2) as the symmetric, indefinite, linear system (n + m
sized, augmented or quasidefinite system)

[

G + H AT

A −U−1S

](

∆x
∆u

)

=

[

−rc

−rb + s − σµU−1e

]

. (3.3)
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Further, since

∆u = S−1U [A∆x + rb − s + σµU−1e] = −u + S−1[U(A∆x + rb) + σµe],

we can eliminate ∆u and obtain the (n sized, normal equation system)

[G + H + AT (S−1U)A]∆x = −rc + AT (S−1U)[−rb + s − σµU−1e]
= −rc + AT [u − S−1(Urb + σµe)]
= −(Gx + c + g) − AT S−1[Urb + σµe].

(3.4)

We can add upper and lower bounds bl ≤ x ≤ bu to the problem. Let 0 < (x, u, ul, uu, s, sl, su)
be a current iterate of the IPM , where ul, uu and sl, su are the dual variables and slack variables
corresponding to the upper and lower bounds, respectively. In addition, we redefine the barrier

parameter µ :=
uT s+uT

l
sl+uT

u su

m+2n
, and define the diagonal matrices

Ul = Diag(ul), Uu = Diag(uu), Sl = Diag(sl), Su = Diag(su).

Then the search direction is now found from the Newton equation








G + H AT I −I
A −U−1S 0
I 0 −U−1

u Su 0
−I 0 0 −U−1

l Sl

















∆x
∆u
∆uu

∆ul









=









−rc

−rb + s − σµU−1e
−rbu + su − σµU−1

u e
−rbl + sl − σµU−1

l e









, (3.5)

with residuals rc := Gx + c + g + AT u, rb := Ax + s − b, rbu := x − bu, rbl = −x + bl. We can
repeat the block eliminations and find

∆s = −U−1S∆u − s + σµU−1e,
∆su = −U−1

u Su∆uu − su + σµU−1
u e,

∆sl = −U−1
l Sl∆ul − sl + σµU−1

l e,
∆uu = S−1

u Uu[∆x + rbu − su + σµU−1
u e] = −uu + S−1

u [Uu(∆x + rbu) + σµe],
∆ul = S−1

l Ul[−∆x + rbl − sl + σµU−1
l e] = −ul + S−1

l [Ul(−∆x + rbl) + σµe],
∆u = S−1U [A∆x + rb − s + σµU−1e] = −u + S−1[U(A∆x + rb) + σµe].

The linearized systems become:
[

G + H + U−1
u Su + U−1

l Sl AT

A −U−1S

](

∆x
∆u

)

=

[

r0

−rb + s − σµU−1e

]

, (3.6)

where
r0 = −rc + uu − S−1

u [Uurbu + σµe] + ul − S−1
l [Ulrbl + σµe],

and

[G + H + U−1
u Su + U−1

l Sl + AT (S−1U)A]∆x = −r0 + AT (S−1U)[−rb + s − σµU−1e]
= −r0 + AT [u − S−1(Urb + σµe)].

(3.7)
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3.2 Quadratic and Cubic Splines

Recall that fi(xi) is a piecewise linear convex function. We can approximate it by a spline
f̄i(xi, ǫ) in the following way. We let

f̄i(xi, ǫ) := fi(xi) + si(xi, ǫ). (3.8)

Let us denote ∆pil := pil − pil−1.
For the quadratic spline,

si(xi, ǫ) :=

{

∆pil

4ǫ
(xi − dil + ǫ)2, if xi ∈ [dil − ǫ, dil + ǫ] for some l ∈ {1, . . . , Mi},

0 otherwise,
(3.9)

the first partial derivative of si(xi, ǫ) with respect to xi is

∂si(xi, ǫ)

∂xi

=

{

∆pil

2ǫ
(xi − dil + ǫ), if xi ∈ [dil − ǫ, dil + ǫ] for some l ∈ {1, . . . , Mi},

0 otherwise,
(3.10)

and the second partial derivative of si(xi, ǫ) with respect to xi is

∂2si(xi, ǫ)

∂x2
i

=

{

∆pil

2ǫ
, if xi ∈ [dil − ǫ, dil + ǫ] for some l ∈ {1, . . . , Mi},

0 otherwise.
(3.11)

For the cubic spline,

si(xi, ǫ) :=







∆pil

6ǫ2
(xi − dil + ǫ)3, if xi ∈ [dil − ǫ, dil] for some l ∈ {1, . . . , Mi},

−∆pil

6ǫ2
(xi − dil − ǫ)3 + (∆pil)xi, if xi ∈ [dil, dil + ǫ] for some l ∈ {1, . . . , Mi},

0 otherwise,
(3.12)

the first partial derivative of si(xi, ǫ) with respect to xi is

∂si(xi, ǫ)

∂xi

=







∆pil

2ǫ2
(xi − dil + ǫ)2, if xi ∈ [dil − ǫ, dil] for some l ∈ {1, . . . , Mi},

−∆pil

2ǫ2
(xi − dil − ǫ)2 + ∆pil, if xi ∈ [dil, dil + ǫ] for some l ∈ {1, . . . , Mi},

0 otherwise,
(3.13)

and the second partial derivative of si(xi, ǫ) with respect to xi is

∂2si(xi, ǫ)

∂x2
i

=







∆pil

ǫ2
(xi − dil + ǫ), if xi ∈ [dil − ǫ, dil] for some l ∈ {1, . . . , Mi},

−∆pil

ǫ2
(xi − dil − ǫ), if xi ∈ [dil, dil + ǫ] for some l ∈ {1, . . . , Mi},

0 otherwise.

(3.14)
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It is trivial to check that the functions f̄i(xi, ǫ) defined above are continuously differentiable. In
case of the cubic spline, they are twice continuously differentiable. Note that the largest value
of ǫ that we want to use should satisfy

ǫ <
1

2
min

i,l
(dil − dil−1).

Let us define

ǭ :=
1

3
min

i,l
(dil − dil−1). (3.15)

3.3 Sensitivity Analysis

First, we recall some basic sensitivity results, see [9].

Definition 3.1 Let Γ be a point-to-set mapping from T ⊂ R
n to subsets of R

m, and let tn ∈ T
be such that tn → t0. Then Γ is closed at t0 ∈ T , if xn ∈ Γ(tn), for each n, and xn → x0 together
imply that x0 ∈ Γ(t0).

Theorem 3.1 (2.2.2 from [9]) If f is a continuous real-valued function defined on the space
R

m × T and R is a continuous mapping of T into R
m such that R(ǫ) 6= ∅ for each ǫ ∈ T , then

the (real-valued) function f ∗ defined by

f ∗(ǫ) = inf{f(x, ǫ) | x ∈ R(ǫ)} (3.16)

is continuous on T .

If g is an affine function from R
n to R

m, i.e., if g(x) = Ax + b, where A is an m× n constant
matrix and b ∈ R

m is a constant vector, and if

RM(g) = {x ∈ M | g(x) ≥ 0},

where M ⊂ R
n, the function g is said to be non-degenerate with respect to the set M if RM(g)

has a non-empty interior and no component of g is identically zero on M . The continuity of the
map defined by

SM(g) = {x ∈ RM(g) | f(x) = inf
z
{f(z) | z ∈ RM(g)}} (3.17)

is given by the following theorem. This result has been proven in [5].
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Theorem 3.2 (2.2.4 from [9]) If f is continuous, g is affine, and M is closed and convex, then
SM is closed at every non-degenerate g.

We next apply these sensitivity results to our problem. Let us introduce a function fi(xi, ǫ)
defined on R × [0, ǭ], for every i = 1, . . . , n, as follows

fi(xi, ǫ) :=

{

f̄i(xi, ǫ) if ǫ > 0,
fi(xi) if ǫ = 0,

(3.18)

where the functions f̄i(xi, ǫ) are defined by (3.8) and the functions si(x, ǫ) are defined by (3.9)
or (3.12). Finally, let

f(x, ǫ) = F (x) +
n

∑

i=1

fi(xi, ǫ), (3.19)

and consider the problem

min f(x)
s.t. Ax ≤ b.

(3.20)

Proposition 3.1 Let f(x, ǫ) be a function defined on R
n × [0, ǭ] by (3.19), and let ǭ > 0 be

given by (3.15). Then the optimal value function f ∗(ǫ), defined by

f ∗(ǫ) = min{f(x, ǫ) | Ax ≤ b}, (3.21)

is continuous on [0, ǭ]. Furthermore, the mapping S, defined by

S(ǫ) = {x | Ax ≤ b, f(x, ǫ) = f ∗(ǫ)}, (3.22)

is a closed mapping of [0, ǭ] into R
n.

Proof. We first show that fi(xi, ǫ) is continuous on R × [0, ǭ] for every i = 1, . . . , n. This is
true for ǫ 6= 0 because f̄i(xi, ǫ) is a continuous function.

Let us show the continuity of fi(xi, ǫ) at ǫ = 0. Consider a sequence (xk, ǫk) → (x̄, 0).
Suppose, first that x̄i 6= dil for any l = 1, . . . , Mi. Then, for a sufficiently small value of ǫk,
xk

i 6∈ [dil − ǫk, dil + ǫk] for any l = 1, . . . , Mi. By definition of fi(xi, ǫ), fi(x
k
i , ǫ

k) = fi(x
k
i ) and

fi(x̄i) = fi(x̄i, 0). Since fi(xi) is continuous, fi(x
k
i ) → fi(x̄i). Combining these, we obtain that

fi(x
k
i , ǫ

k) = fi(x
k
i ) → fi(x̄i) = fi(x̄i, 0), or fi(x

k
i , ǫ

k) → fi(x̄i, 0).
Suppose, next that x̄i = dil for some l = 1, . . . , Mi. Then, for a sufficiently small value

of ǫk, xk
i ∈ (dil−1 + ǫk, dil+1 − ǫk). We now subdivide (xk, ǫk) into two subsequences. If xk

i 6∈
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[dil − ǫk, dil + ǫk], then fi(x
k
i , ǫ

k) = fi(x
k
i ) → fi(x̄i) = fi(x̄i, 0) since fi(xi) is continuous. If

xk
i ∈ [dil − ǫk, dil + ǫk], then, in the case of a quadratic spline,

si(x
k
i ) =

∆pil

4ǫk
(xk

i − dil + ǫk)2 ≤
∆pil

4ǫk
(2ǫk)2 → 0, (3.23)

when ǫk → 0. In the case of a cubic spline,

si(x
k
i ) =

∆pil

6(ǫk)2
(xk

i − dil + ǫk)3 ≤
∆pil

6(ǫk)2
(2ǫk)3 → 0, (3.24)

when ǫk → 0. Therefore, fi(x
k
i , ǫ

k) = fi(x
k
i ) + si(x

k
i ) → fi(x̄i) = fi(x̄i, 0).

This completes the proof of the fact that fi(xi, ǫ) is continuous for every i = 1, . . . , n. Hence
fi(x, ǫ) is continuous as a sum of continuous functions.

Applying Theorem 3.1, we obtain (3.21).
We next reformulate the problem

min{f(x, ǫ) | Ax ≤ b}

as
min{f(x, xn+1) | Ax ≤ b, xn+1 = ǫ}.

This allows us to apply Theorem 3.2, and proves (3.22).

By Proposition 3.1, approximating the piecewise linear functions fi(xi) by smooth splines in
the ǫ-neighborhood of the break-points for small values of ǫ implies small changes in the optimal
solution and the optimal value of the problem.

Suppose (x∗, s∗, u∗, v∗) satisfy optimality conditions (2.7), i.e. x∗ ∈ S∗(0). From the opti-
mality conditions (2.7),

(∇F (x∗))i + pil + (AT u∗)i = 0, for all i ∈ N(x∗),
with x∗

i ∈ (dil, dil+1),
(∇F (x∗))i + pil−1 + (AT u∗)i + v∗

i = 0, for all i ∈ E(x∗),
with x∗

i = dil,
Ax∗ + s∗ = b, s∗ ≥ 0
0 ≤ v∗

i ≤ pil − pil−1, for all i ∈ E(x∗),
with ∗xi = dil,

u∗ ≥ 0,
u∗

i s
∗
i = 0, i = 1, . . . , m.























































(3.25)

14



Suppose next that (x∗ + ∆x, s∗ + ∆s, u∗ + ∆u) are optimal for the problem (3.20) for a given
ǫ > 0, i.e. x∗ ∈ S∗(ǫ). Let us denote fǫ(x) = f(x, ǫ). The optimality conditions for this problem
imply

∇fǫ(x
∗ + ∆x) + AT (u∗ + ∆u) = 0,

A(x∗ + ∆x) + (s∗ + ∆s) = b, s∗ + ∆s ≥ 0,
(u∗ + ∆u) ≥ 0,
(u∗

i + ∆ui)(s
∗
i + ∆si) = 0, i = 1, . . . , m.















(3.26)

Approximating the gradient of fǫ(x) by it’s Taylor series, we obtain

∇fǫ(x
∗) + ∇f 2

ǫ (x∗)∆x + AT (u∗ + ∆u) = 0,
A(x∗ + ∆x) + (s∗ + ∆s) = b, s∗ + ∆s ≥ 0,
(u∗ + ∆u) ≥ 0,
(u∗

i + ∆ui)(s
∗
i + ∆si) = 0, i = 1, . . . , m,















(3.27)

or

(∇F (x∗))i + pil−1 + (∇sǫ(x
∗))i + (∇F 2(x∗)∆x)i for all i ∈ E(x∗),

+(∇s2
ǫ (x

∗)∆x)i + (AT (u∗ + ∆u))i = 0, with x∗
i = dil,

(∇F (x∗))i + pil−1 + (∇F 2(x∗)∆x)i + (AT (u∗ + ∆u))i = 0, for all i ∈ N(x∗),
with x∗

i ∈ [dil−1, dil],
A(x∗ + ∆x) + (s∗ + ∆s) = b, s∗ + ∆s ≥ 0,
(u∗ + ∆u) ≥ 0,
(u∗

i + ∆ui)(s
∗
i + ∆si) = 0, i = 1, . . . , m.







































(3.28)

Using systems (3.25) and (3.28), we get

(∇sǫ(x
∗))i + (∇F 2(x∗)∆x)i + (∇s2

ǫ (x
∗)∆x)i − vi for all i ∈ E(x∗),

+(AT (∆u))i = 0, with x∗
i = dil,

(∇F 2(x∗)∆x)i + (AT (∆u))i = 0, for all i ∈ N(x∗),
with x∗

i ∈ [dil−1, dil],
A∆x + ∆s = 0,
u∗

i ∆si + s∗i ∆ui + ∆si∆ui = 0, i = 1, . . . , m.































(3.29)

If we disregard the last term of the last equation ∆si∆ui, we can obtain (∆x, ∆s, ∆u) by solving
a linear system





∇F 2(x∗) + H AT 0
A 0 I
0 S U









∆x
∆u
∆s



 =





r
0
0



 , (3.30)
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where

ri =

{

vi −∇sǫ(x
∗)i if x∗

i = dil,
0, otherwise,

(3.31)

and H is a diagonal matrix

Hii =

{

∇s2
ǫ(x

∗)i if x∗
i = dil,

0, otherwise.
(3.32)

This proves the following:

Theorem 3.3 Let ǫ > 0 and x(ǫ) be an optimal solution for problem(3.20) and let s(ǫ) and u(ǫ)
be the slack variables and dual variables associated with this optimal solution. Then there exists
an optimal solution x∗ for problem(2.1) such that the first-order approximation (x(ǫ), s(ǫ), u(ǫ))
in a neighborhood of ǫ = 0 is given by

(x(ǫ), s(ǫ), u(ǫ)) = (x∗, s∗, u∗) + (∆x, ∆s, ∆u) + o(ǫ),

where s∗ and u∗ are the slack variables and dual variables associated with x∗, and (∆x, ∆s, ∆u)
can be found from (3.30).

Note that the LHS of the system (3.30) is similar to (3.2).
If we assume strict complementarity at x∗, the last line of (3.30) implies that the active set

will not change for small values of ǫ. Let us denote by Ā the matrix of the constraints active at
x∗. Then the system (3.30) can be rewritten as follows:

[

∇F 2(x∗) + H ĀT

Ā 0

] [

∆x
∆u

]

=

[

r
0

]

. (3.33)

We further note that the norm of H is equal to a constant multiple of maxi,l
∆pil

ǫ
for both

quadratic and cubic splines. For small values of ǫ, it can be used as an estimate of the norm of
the LHS matrix of (3.33). Also, 0 ≤ ri ≤ maxl ∆pil. Hence, we expect that the norm of ∆x will
be order ǫ. This is consistent with our computational experiments.

4 Smooth Formulations via Lifting

4.1 Global Lifting

Because of the special structure of the nondifferentiable part of the objective function, problem
(2.1) can be converted to a smooth one by introducing new variables and constraints into the
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problem. For example, for each i = 1, . . . , n, we can introduce a new set of variables x+
il where

l = 0, . . . , M+
i and x−

il where l = 0, . . . , M−
i . Then problem (2.1) can be rewritten in the form

min F (x) +
∑n

i=1

∑M+

i

l=0 f+
il (x

+
il ) +

∑n

i=1

∑M−

i

l=0 f−
il (x

−
il )

s.t. Ax ≤ b,

xi −
∑M+

i

l=0 x+
il +

∑M−

i

l=0 x−
il = x̂i, for i = 0, ..., n,

0 ≤ x+
il ≤ d+

il+1, for i = 1, ..., n, l = 0, ..., M+
i ,

0 ≤ x−
il ≤ d−

il+1, for i = 1, ..., n, l = 0, ..., M−
i ,

(4.1)

where f+
il , f

−
il are defined in the Appendix. The problem (4.1) is a linearly constrained, convex

and twice differentiable problem and standard techniques can be used to solve it. However, this
higher dimensional problem is computationally expensive to solve.

We can design an interior-point algorithm for this problem in a way analogous to our deriva-
tion in Subsection 3.1. First, we express the primal-dual central path. The central path is
continuously differentiable; however, it is expressed in a very high dimensional space compared
to our formulations in Section 3. To compare the underlying interior-point algorithms, we can
eliminate the “new variables” (those not present in the formulations of Section 3) from the non-
linear system defining the central path. Let v ∈ R

n denote the dual variables corresponding to
the linear equations expressing x in terms of x̂, x+, and x−.

After eliminating all of these new variables except v, the nonlinear system of equations and
inequalities are equivalently written as

Gx + c + AT u + v(x) = 0, u > 0;

Ax + s = b, s > 0;

Su = µe.

In the above v(x) : R
n → R

n is continuously differentiable at all interior points and is completely
separable, that is, [v(x)]i only depends on xi. Therefore, if we derive the search directions based
on this latest system, we end up with the normal equations determining ∆x whose coefficient
matrix is:

G + Diag [v′(x)] + AT (S−1U)A.

Compared to the search directions from Section 3, the search direction derived here has only a
diagonal perturbation to the left-hand-side matrix and this perturbation Diag [v′(x)] is indepen-
dent of A, b, c, G and only depends on the nondifferentiable part of the data.

Another approach to comparing different interior-point algorithms in our setting would be
to derive the search directions for each formulation in their own space and then consider the
∆x components of each of these search directions, i.e., compare the projections of the search
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directions in the x-space. This way of comparing the search directions could lead to different
conclusions than the above. As it will become clear, our way of comparing these different
formulations exposes the similarities in an extremely easy and elegant way. One drawback of
the compact central path system that we derived is, the compact system is “more nonlinear”
than the high dimensional, original formulation. The latter is the usual approach to quadratic
programming and yields a bilinear system of equations and strict linear inequalities. In our
compact system above, in addition to the usual bilinear equations (such as Su = µe), we also
have the nonlinear system involving v′(x).

4.2 Local Lifting

We can introduce a pair of new variables x+
i , x−

i for each i ∈ E(x) with xi = dil. This converts
the problem into a differentiable one in the neighborhood of the current iterate. The problem
becomes

min F (x) +
∑

i∈N(x) fi(xi) +
∑

i∈E(x)(f
+
il (x

+
i ) + f−

il (x
−
i ))

s.t. Ax ≤ b,
xi = dil + x+

i − x−
i , i ∈ E(x),

x+
i , x−

i ≥ 0, i ∈ E(x).

(4.2)

A point x ∈ R
n is a point on a central path corresponding to (4.2), if and only if

Ax + s = b, s ≥ 0

(∇F (x))i + dfil

dxi

(xi) + (AT u)i = 0, for all i ∈ N(x),

with xi ∈ (dil, dil+1),

(∇F (x))i +
dfil−1

dxi

(dil) + (AT u)i + vi = 0, for all i ∈ E(x),

with xi = dil,

(∇F (x))i + dfil

dxi

(dil) + (AT u)i − wi = 0, for all i ∈ E(x),

with xi = dil,
u ≥ 0,
xi = dil + x+

i − x−
i , i ∈ E(x),

x+
i , x−

i ≥ 0, i ∈ E(x),
vi, wi ≥ 0, i ∈ E(x),
uisi = µ, i = 1, . . . , m,
vix

−
i = µ, i ∈ E(x),

wix
+
i = µ, i ∈ E(x).



































































































(4.3)
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Note that vi + wi = ∆pil. For the quadratic function, the above system becomes

Ax + s = b, s ≥ 0
(Gx)i + ci + pil + (AT u)i = 0, for all i ∈ N(x),

with xi ∈ (dil, dil+1),
(Gx)i + ci + pil−1 + (AT u)i + vi = 0, for all i ∈ E(x),

with xi = dil,
u ≥ 0,
uisi = µ, i = 1, . . . , m,
x+

i ,≥ 0, x− ≥ 0, i ∈ E(x),
wi ≥ 0, vi ≥ 0, i ∈ E(x),
vi + wi = ∆pil, i ∈ E(x),
xi = dil + x+

i − x−
i , i ∈ E(x),

vix
−
i = µ, i ∈ E(x),

wix
+
i = µ, i ∈ E(x).























































































(4.4)

The last four groups of equations form the system:

vi + wi = ∆pil,
xi = dil + x+

i − x−
i ,

vix
−
i = µ,

wix
+
i = µ.















(4.5)

This allows us to express the dual variable vi as a function of xi

vi(xi) =
2µ∆pil

2µ − ∆pil(xi − dil) + (4µ2 + ∆p2
il(xi − dil)2)

1

2

. (4.6)

Note that vi(dil) = ∆pil

2
> 0. In a neighborhood of dil the variables wi, x+

i and x−
i are

positive and solving a system (4.4) is equivalent to solving

Ax + s = b, s ≥ 0
(Gx)i + ci + pil + (AT u)i = 0, for all i ∈ N(x),

with xi ∈ (dil, dil+1),
(Gx)i + ci + pil−1 + (AT u)i + vi(xi) = 0, for all i ∈ E(x),

with xi = dil,
u ≥ 0,
uisi = µ, i = 1, . . . , m.







































(4.7)

This approach appears to be similar to the “spline approximation” approach. We are just
modeling the jumps in the gradient of fi(xi) by a function si(xi), such that

s′i(xi) = vi(xi).
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Proposition 4.1 Suppose an interior-point method is applied to the problem (4.2) and a search
direction (∆x, ∆u, ∆s) is obtained at a point (x, u, s). Then the same direction can also be
obtained by applying the interior-point method to the problem (3.1), with f̄i(xi) := fi(xi)+si(xi),
where s′i(xi) := vi(xi) is given by (4.6).

Therefore, the search direction computed in this local lifting approach can also be treated in the
class of search directions ∆x obtained from solving the system

[G + D + AT (S−1U)A]∆x = −(Gx + c + d) − AT S−1[Urb + σµe], (4.8)

where D and d are the diagonal matrix and a vector determined by a particular approach (e.g.,
smoothing via quadratic spline, smoothing via cubic spline, global lifting, local lifting).

Note that the above unification of these various approaches goes even further. In subsec-
tion 3.3, the sensitivity analysis leads to the linear system of equations (3.30) which is also in
the above form.

The main reason for this is the fact that we derived our algorithm from the necessary and
sufficient conditions for optimality. And, these conditions change slightly going from one of our
formulations to another.

5 Probability Analysis for Number of Breakpoints

Recall that f : R
n → R

n is a convex function which is the sum of a strictly convex quadratic
function and n, convex, separable, piecewise linear functions. So, f is differentiable everywhere
except at the breakpoints of the piecewise linear components.

The problem we have been considering is

min f(x)

s.t. x ∈ P,

where P ⊆ R
n is a polyhedron.

For every z ∈ R, define the level set of f :

C(z) := {x ∈ R
n : f(x) ≤ z} ,

which is convex (since f is) and closed (since f is continuous). Suppose that our optimization
problem has an optimal value z∗ and it is attained. Then we ask the question: “How likely is it
that there exist

x̄ ∈ C(z∗) ∩ P and i ∈ {1, 2, . . . , n} such that

x̄i is a breakpoint of fi?”
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Proposition 5.1 Let f , C(z), P , and z∗ be as defined above. Then, C(z) is a compact, convex
set for every z ∈ R

n. Moreover, if P 6= ∅, then z∗ exists and is attained by a unique x∗ ∈ P .

Proof. We already established that C(z) is closed and convex for every z ∈ R
n. Since f is

the sum of a strictly convex quadratic function and n, convex, piecewise linear functions, f is
coercive. Thus, C(z) is bounded for every z ∈ R

n. Therefore, C(z) is compact for every z ∈ R
n.

We deduce that if P 6= ∅, then z∗ is finite and is attained. f is strictly convex (since it is the sum
of a strictly convex function and some other convex functions); hence, there must be a unique
minimizer of f on the compact, convex set C(z∗) ∩ P .

In our analysis, restricted to the domain of our applications, we may assume 0 ∈ P . Recall
that x̂ denotes the current investment holdings and we would expect it to be feasible. (By a
simple translation of the coordinate system, we can place x̂ at the origin.) Now, for each j,
xj > 0 represents buying and xj < 0 represents selling. Since neither of these two activities is
free, we conclude that each piecewise linear function has a breakpoint at zero. Therefore, the
objective function f is nondifferentiable on the hyperplanes,

{x ∈ R
n : xj = 0}

for every j.
From a practical viewpoint, we immediately have an answer to our question. Since the

investor cannot be expected to trade every single stock/commodity in every planning horizon,
breakpoints at optimality are unavoidable!

From the theoretical viewpoint the answers depend on the probabilistic model used and
calculating the probabilities exactly would be complicated.

In order to get a rough estimate of the number of the coordinates of the optimal solution
that are at breakpoints, we looked at a simpler problem of unconstrained minimization of f(x).
In addition, we assumed the the matrix G is diagonal, functions fi(xi) are the same for each
coordinate, the breakpoints dil and the gradients pil are equally spaced. We denote by ∆d =
dil+1 − dil and by ∆p = pil+1 − pil. From the optimality conditions (2.7), x̄ minimizes f(x) if
and only if 0 ∈ ∂f(x) or

0 ∈ Gixi + ci + ∂fi(xi), i = 1, . . . , n.

We can think of a subdifferential as a mapping from R
n → R

n. If none of the coordinates of
x are at breakpoints, this point is mapped to a single point. If a coordinate xi = dil is at a
breakpoint, then the i-th component of the subdifferential is an interval and the probability of
having xi = dil is equal to the probability of zero being in this interval.

If the coordinate xi = dil is at a breakpoint,

0 ∈ [Gidil + ci + pil−1, Gidil + ci + pil].
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Note that the length of this interval is equal to ∆p.
If the coordinate xi ∈ (dil, dil+1) is not at a breakpoint,

0 = Gixi + ci + pil.

The interval (dil, dil+1) is mapped to an interval

[Gidil + ci + pil, Gidil+1 + ci + pil]

of length Gi∆d.
This suggest a hypothesis that ratio of the probability of the i-th coordinate being at a

breakpoint to the probability of the opposite event is

∆p : Gi∆d.

We ran some tests for the constrained minimization of such functions. In some examples this
estimate was pretty close, in other cases the number of the breakpoints was less than predicted,
see Table 6.3 in the next section.

6 Computational Experiments

The algorithm is implemented in MATLAB and tested on randomly generated data.
In Section 6.2 we show how the parameters of the problem affect the performance of the

algorithm. In Section 6.3 we look at the connection between these parameters and the number
of the coordinates of the optimal solution xi that have values at points of nondifferentiability.
A crossover to an active set algorithm is tested in Section 6.4.

For all the above experiments medium-scale dense data is used.
We also tested the algorithm on large-scale sparse data. These results are reported in Sec-

tion 6.6 and some implementation details are discussed in Section 6.5.
In order to compare the performance of our implementation with that of a commercial

package, we convert our problem into a differentiable one (4.1) by introducing nM new variables
x1+, x2+, . . . , xM+, x1−, x2−, . . . , xM−. This problem is then solved using MOSEK 3, using an
interior-point method.

We run all the experiments on a SUNW, UltraSparc-IIIi, (1002 MHz, 2048 Megabytes of
RAM). All execution times are given in CPU seconds. We repeat each experiment 10 times
for the smaller dense problems and 5 times for the large sparse ones. The average execution
times are reported in each table. The requested accuracy for our MATLAB code is ǫ/100, where
ǫ is the parameter of the spline approximation. In Section 6.6, we request the same accuracy
from MOSEK. In Section 6.4, where the crossover method is tested, the relative gap termination
tolerance for MOSEK was increased to 10e-14.
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6.1 Data Generation

The data was generated in the following way. Vector c corresponds to the vector of the expected
returns, randomly generated in the range (1, 1.3). The target vector x̂ is set to zero. The number
of the points of nondifferentiability Mi = M is the same for each coordinate. The transaction
costs are chosen as follows.

fi(xi) :=



















pminxi + hi0, if xi ≤ dmin,

(pmin + (pmax−pmin)l
M−1

)xi + hil, if

{

dmin + (dmax−dmin)(l−1)
M−1

≤ xi ≤

dmin + (dmax−dmin)l
M−1

,

pmaxxi + hiM , if xi ≥ dmax.

(6.1)

We will say that the transaction costs varied from pmin to pmax in this case.

1. Dense Data. In order to guarantee that the matrix G is positive semidefinite, we first
construct an n × n matrix C with random entries in the range (–0.5, 0.5) and then form
G = αCT C. Note that the the constant α corresponds to the inverse of the risk aversion
parameter t. We discuss the effect of changing this constant on the problem in Section
6.2.

The matrix of the inequality constraints, A, and the vector of the right hand side, b, are
also generated randomly. In the first series of experiments we generate A and b with
random entries in the range (–0.5, 0.5). We refer to this kind of data as Type 1. In
the second series of experiments, we generate A with random integer entries from the set
{0, 1, 2, 3}. We refer to this kind of data as Type 2. Each dense problem has one equality
constraint x1 + x2 + . . . + xn = 1. The transaction costs varied from –0.5 to 0.5.

2. Sparse Data. First, we use the sprandsym command in MATLAB to generate the ma-
trices G with a given sparsity and multiply by a constant α. Another type of data arising
in large-scale applications is block-diagonal matrices or matrices with overlapping blocks
on the diagonal. We use sprandsym command in MATLAB to generate each of the blocks.
The transaction costs varied from –0.05 to 0.05. The matrix of the inequality constraints,
A, is also sparse. In all the experiments, we ensure that A has no zero column or zero
row. If the randomly generated matrix A has one or more zero columns, then we add a
random number to one element in each of these columns, but in a different row. Then we
check the resulting matrix for zero rows and eliminate them in a similar way.
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6.2 Varying Parameters Related to Smoothness

6.2.1 Varying Number of Breakpoints M and Spline Neighbourhood ǫ

Table 6.1 presents the CPU time and the number of iterations for the IPM MATLAB program.
We varied the number of breakpoints M from 3 to 101 and the size of the spline intervals ǫ from
0.001 to 0.00001. The dimension and number of constraints n = 1000, m = 500. Figure 6.1
illustrates the CPU time for just the cubic spline case.

We can see that increasing ǫ consistently decreases the number of iterations and CPU time.
(Though our theoretical sensitivity results show that the accuracy relative to the true optimum
decreases, see Section 3.3). Also, increasing the number of intervals (breakpoints) decreases the
number of iterations and CPU time. In both cases, the problem becomes more like a smooth
problem.

6.2.2 Scaling the Quadratic Term

We then ran our IPM code on the same set of problems, as used in Section 6.2.1 above, but we
changed the value of the constant α in the definition of the matrix G. We used only the cubic
spline and all the remaining parameters were fixed: M = 51, ǫ = 0.0001, n = 1000, m = 500.
We noticed that decreasing α increases the CPU time for the problems with transaction costs,
see Table 6.2. We also report the expected return for the optimal solutions of the problems with
transaction costs. Note that smaller values of α correspond to larger values of the risk aversion
parameter. For example α = 0.05 gives an extremely risky portfolio with expected return of
321%. In all the remaining experiments, we used values of α that correspond to realistic risks.

6.3 Expected Number of Breakpoints

In support of the probability analysis in Section 5, we would like to test how the parameters
of the problem influence the number of the coordinates of the optimal solution coinciding with
a breakpoint. For this set of experiments, the Hessian matrix G is always diagonal. We first
take G = αI, i.e., G is a multiple of the identity matrix. The matrix of the linear system A has
random entries in the range (-0.5, 0.5), the vector of the right hand sides b has random entries
in the range (0, 1). Note that zero is always feasible for these problems. The rest of the data is
generated as described above in Section 6.1. The results are presented in Table 6.3.

In Table 6.4 matrix G has 4, 3, 2 or 1 on the diagonal, 25% of each. This subdivides the set
of all coordinates into 4 groups. The rest of the data is as above. This table shows the number
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H
H

H
H

H
H

M
ǫ

0.001 0.0005 0.0001 0.00005 0.00001

Quadratic Spline
3 44 (20) 55 (23) 109 (38) 148 (46) 407(98)

25 36 (17) 38 (17) 52 (21) 61 (23) 107 (31)
51 36 (17) 37 (17) 43 (19) 52 (20) 87 (28)
75 36 (16) 37 (17) 41 (18) 46 (19) 77 (26)

101 35 (16) 38 (17) 43 (19) 45 (19) 71 (25)
Cubic Spline

3 43 (20) 53 (24) 97 (39) 133 (48) 348 (104)
25 35 (16) 37 (17) 49 (21) 59 (24) 98 (33)
51 34 (16) 36 (17) 44 (20) 49 (21) 84 (30)
75 33 (16) 35 (16) 42 (19) 47 (20) 70 (26)

101 33 (15) 35 (16) 42 (19) 45 (20) 71 (26)

Table 6.1: CPU (iter) for MATLAB IP M ; n = 1000,m = 500.

α=1 α=0.5 α=0.1 α=0.05

Problem with Trans. Costs 43 (20) 51 (22) 129 (46) 216 (74)
Expected return 1.35 1.56 2.46 3.21

Table 6.2: CPU (iter) for MATLAB IP M ; n = 1000,m = 500,M = 101, ǫ = 0.0001.

of coordinates of the optimal solution at a breakpoint in each of these subgroups. The Tables
6.3,6.4 both show that the predicted values and empirical values are reasonably close.

6.4 Crossover for Obtaining Higher Accuracy

If a more accurate optimal solution is needed, we can do a crossover to an active set algorithm.
The active set method was implemented in C for the problem in a standard equality form.

At each iteration of the active set method, the variables are subdivided into basic and nonbasic.
A coordinate can be nonbasic only if it is equal to one of the breakpoints (if upper or lower
bounds are present, they are treated as breakpoints too). A Newton search direction is taken in
the basic subspace. This requires solving a symmetric linear system at each iteration. The step
size is taken so that all the variables stay in the corresponding intervals between the breakpoints.
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Figure 6.1: CPU for MATLAB IP M ; n = 1000,m = 500, cubic spline.

At the end of each iteration, either one variable is added to the basis or it is dropped from the
basis. We store the inverse of the coefficient matrix of the system. The next linear system differs
form the previous one by one row and column. We use this fact to update the inverse.1 These
routines were converted to C by an automatic translator. To further improve efficiency we used
CBLAS routines to perform basic matrix and vector operations.

Two versions of a crossover method between the IPM and active set method were tested. In
the first type of crossover, we used the last iterate of the interior-point method as an initial point
for the active set method. However, because of the nature of the active set method, starting it
with an interior point makes all the slack variables basic. The number of iterations needed for
the active set method to finish the problem is at least the number of the constraints active at
the optimum. Since our active set algorithm takes a Newton step at each iteration, this method
is time consuming. It could perform well if only few constraints were active at the optimum and
few coordinates were at breakpoints.

Another approach is to take a purification step first. We also use the last iterate of the interior

1The FORTRAN routines for these updates were kindly provided by Professor M.J. Best, University of
Waterloo.
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α = 1 α = 2 α = 4 α = 8
∆p = ∆d
Experiment 167 (42%) 110 (28%) 68 (17%) 48 (12%)
Predicted 50% 33% 20% 11%
∆p = 2∆d
Experiment 232 (58%) 179 (45%) 122 (31%) 78 (20%)
Predicted 66% 50% 33% 20%
2∆p = ∆d
Experiment 109 (27%) 72 (18%) 33 (8%) 21 (5%)
Predicted 33% 20% 11% 6%

Table 6.3: # (%) of coordinates of optimum at breakpoint; n = 400,m = 800.

Gii=4 Gii=3 Gii=2 Gii=1
Experiment 18(18%) 23(23%) 30(30%) 39(39%)
Predicted 20% 25% 33% 50%

Table 6.4: # (%) of coordinates of optimum at breakpoint in each subgroup; n=400, m=800,
∆p = ∆d.

point method as an initial point and we perform several iterations of the gradient projection
method, e.g. [16]. We stop if the optimal solution is found or if a constraint should be dropped.
In the latter case the last iterate of the purification step is used to start an active set algorithm.

The purification step was implemented in MATLAB. At each iteration, we keep track of the
set of active constraints and the projection matrix corresponding to these constraints. We find
the orthogonal projection of the negative gradient of the objective function at the current iterate
onto the subspace parallel to the affine space of the currently active constraints. We find the
maximal feasible step size in this direction and also perform a line search to minimize the true
objective function, along this direction. We either add one more constraint to the active set
and update the projection matrix, or stop, depending on the outcome of the line search. This
method has the guarantee that the true objective function value of the final solution from the
purification is at least as good as that of the final IPM solution. This method performed best
in most cases.

These results are summarized in Tables 6.5 and 6.6. From Table 6.5, we see that doing the
purification step before the crossover is always faster. We only present the faster option in the
remaining table; the number of iterations is given in brackets.
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For problems where the number of breakpoints is large, our program performs faster than
MOSEK. We found that terminating the approximated problem when the relative gap is equal
to ǫ gives slightly better timings. Also note that our IPM was implemented in MATLAB and
is generally slower than MOSEK on differentiable problems. (We ran MOSEK and our code
on the same differentiable problems, and MOSEK was approximately 2.5 times faster than our
MATLAB code.)

MOSEK 102 (25)

MATLAB Purification ASet ASet Crossover
IPM Step(MATLAB) after Pur. after IPM total

tol=10e-3
With Pur.Step 24 (10) 18 (250) 85 (65) 127
No Pur.Step 24 (10) - 430 (333)
tol=10e-4

With Pur.Step 32 (14) 18 (250) 50 (32) 100
No Pur.Step 32 (14) - 390 (281)
tol=10e-5

With Pur.Step 35 (16) 18 (246) 48 (30) 101
No Pur.Step 35 (16) - 389 (278)

Table 6.5: CPU (iter), Crossover, n = 1000,m = 500,M = 101, ǫ = .0001, Data Type 1.

6.5 Comparing Linear System Solvers

We compared MATLAB CPU times for the following three different ways of solving the linear
system for the search direction in the interior-point algorithm:

1. Chol. Form a sparse matrix AT (S−1U)A, and perform a Cholesky decomposition on the
matrix

[

G + H + AT (S−1U)A
]

(6.2)

converted into dense format.

2. Aug. Directly solve the augmented system whose coefficient matrix is
[

G + H AT

A −U−1S

]
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MOSEK 217 (31)

MATLAB MATLAB Purification ASet Crossover
Term. Tol. IPM Step(MATLAB) after Pur. total

10e-3 25 (11) 18 (247) 76 (56) 119

10e-4 34 (15) 18 (248) 52 (33) 104

10e-5 36 (16) 18 (248) 57 (37) 111

Table 6.6: CPU (iter), Crossover with purif. step, n = 1000,m = 500,M = 101, ǫ = 0.0001, Data
Type 2.

using the MATLAB ’backslash’ command.

3. Bcksl. Solve the sparse system whose coefficient matrix is
[

G + H + AT (S−1U)A
]

using
the MATLAB ’backslash’ command.

4. Block LU Solve the augmented system using a block LU approach. We first compute
the LU factorization of the upper left block G + H = L11U11. We then solve triangular
systems L11U12 = AT and L21U11 = A for U12 and L21, respectively. Finally we form a
matrix Z = −U−1S−L21U12 (a Schur complement of G+H) and find the LU factorization
L22U22 = Z.

Then
[

G + H AT

A −U−1S

]

=

[

L11 0
L21 L22

] [

U11 U12

0 U22

]

is the LU factorization of the augmented system. Since the system is symmetric and the
matrix G + H is positive definite, it would make more sense to perform the Cholesky
decomposition of G + H . But the sparse LU decomposition proved to be much faster in
MATLAB.

This approach is beneficial when the matrix G+H has some special structure, for example
banded or block-diagonal with n >> m.

Remark 6.1 Note that the above approach can be used in solving smooth convex quadratic
problems with n >> m, since the blocks L11, L21, U11 and U12 have to be calculated only once.
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H
H

H
H

H
H

G
A

dense 60% 40% 5%

Chol Aug Bcksl Chol Aug Bcksl Chol Aug Bcksl Chol Aug Bcksl
dense 1.8 3.3 2.1 6.6 3.3 6.5 4.1 3.3 4 1.8 8.7 1.7
40% 12 6.3 10.2 6.8 5.3 6.6 4.2 10.4 4.1 1.8 3.1 1.8
5% 12 6.7 11.8 6.7 6.3 6.5 4.2 7.6 4.1 1.6 4.5 1.6

Table 6.7: MATLAB CPU, different solvers; n = 1000,m = 500

At each iteration, only the m × m matrix Z has to be factorized. MATLAB is 2-3 times faster
than MOSEK on such QP examples.

In Table 6.7, we summarize the CPU times for different ways of solving the linear system per
iteration of IPM . The problem parameters are M = 101, ǫ = 0.0001. In the case when both
matrices are dense, we store them in a dense format. For the Cholesky case, we do the matrix
multiplication in (6.2) in sparse format, but then convert the matrix into dense format before
performing the Cholesky decomposition. For the remaining two methods the data is kept in a
sparse format.

For n
4
≤ m ≤ n

2
, we found that whenever G and A were both full dense, CPU times for

Chol. were half of those for Aug.. When we made A more sparse (while keeping G full dense),
the CPU times became equal around 40% density for A. When A had only 5% of its entries as
non-zeroes, Chol. beat Aug. by a factor of five.

We notice that keeping the data in a sparse format is only beneficial when both matrices are
very sparse, 5% or less. Otherwise, keeping the data in a dense format and doing the Cholesky
decomposition is the fastest choice in MATLAB. We’ll refer to this option as Dense Chol..

Table 6.8 is created in a similar way. Only very sparse data is considered and the CPU
time for the Dense Chol. option is given in a separate column. We can see that the Cholesky
factorization is always faster than the backslash command. When G and A are 1 − 5% sparse,
Cholesky dominates all other methods. We notice that increasing the sparsity and decreasing the
number of constraints improves the performance of the augmented system. When the sparsity
is around 0.5% and the number of constraints is 10% of the number of variables, the augmented
system becomes the fastest choice.

In the next series of experiments we model real-life, large-scale portfolio optimization prob-
lems with thousands of variables. In such applications with very large n, a very sparse G, banded
(or near-banded) matrix structure makes sense. For this set of experiments, we generate G with
overlapping blocks on the diagonal. We also add upper and lower bounds on all the variables.
The number of constraints is equal to the number of blocks. We also add a budget constraint
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H
H

H
H

H
H

G
A

5% 1%

Chol Aug Bcksl Chol Aug Bcksl Dense Chol
m=1000

1% 22 26 33 13 12 34 33
0.5% 26 23 33 16 7 34 33

m=300
1% 17 5 28 12 3 24 17
0.5% 16 3 28 12 1 19 17

Table 6.8: MATLAB CPU, different solvers; n = 3000.

x1 + x2 + . . . + xn ≤ 1. We noticed that addition of the bounds does not change the timings
significantly. But the budget constraint makes the matrix of a condensed system dense. For
these problems, the augmented system gives much better results. Therefore, we only present
results for the Aug. and Block LU methods in Table 6.9.

6.6 Experiments with Sparse Data

In this section, we compare the CPU time for MOSEK and our algorithm (in MATLAB) on
sparse large scale data. The spline approximation parameter ǫ = 10e − 5. Both MOSEK and
MATLAB were terminated when the relative gap was less than 10e-7. We noticed that for all the
examples solved, the objective function f(x) at the solutions given by MOSEK and MATLAB
differ in the seventh or eights digit.

For the Tables 6.10, 6.11 and 6.12 matrix G was sparse but had no special structure. In
Table 6.10 we solve the same problems changing only the number of the breakpoints. The CPU
time for our method stays virtually unchanged; while the CPU time for the lifted problem solved
in MOSEK increase. In the next series of tests we increase the dimension of the problem, G has
20 non-zeros per row, all the remaining parameters are fixed, M = 25. In this case our code
beats MOSEK by a constant, see Table 6.11. For Table 6.12, we also increase the dimension of
the problem, but keep the sparsity of G constant. In this case, MOSEK performs better with
the increase in dimension.
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A
10% 5% 1%
Aug Block LU Aug Block LU Aug Block LU

n=3000 (15 blocks) 2.1 1.7 1.6 1.5 0.6 1.2

n=6000 (30 blocks) 5.4 3.5 3.2 3.2 1.4 2.6

n=9000 (45 blocks) 10.6 5.6 5.6 5.1 2.4 4.0

n=12000 (60 blocks) 7.2 7.9 9.1 7.0 3.8 5.6

Table 6.9: MATLAB CPU, different solvers; G 200× 200 blocks, 10% den.; m = 200; up/low bnds.

Number of Breakpoints MATLAB MOSEK

M = 101 83 (15) 456 (13)

M = 51 78 (14) 230(12)

M = 25 82(15) 129 (12)

M = 11 80 (15) 70 (11)

M = 3 85 (15) 42 (10)

No Trans. Costs 74 (15) 30 (9)

Table 6.10: CPU (iter); n = 5000, G0.5% den.; m = 300, A1% den.
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Dimension MATLAB MOSEK

n=21000 902 (13) 1000 (15)

n=18000 695 (14) 788 (15)

n=15000 433 (14) 588(15)

n=12000 262 (13) 370 (13)

n=9000 146 (13) 224 (11)

n=6000 71 (14) 143 (11)

n=3000 24 (14) 64 (11)

Table 6.11: CPU (iter); G has 20 nonzeros per row; m = 300, A 1% den.; M = 25.

Dimension MATLAB MOSEK

n=12000 1980 (13) 1026(11)

n=9000 593(14) 425 (11)

n=6000 117 (13) 162 (11)

n=3000 16 (13) 63 (11)

Table 6.12: CPU (iter); G is 0.5% den.; m = 300, A 1% den.; M = 25.
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Figure 6.2: CPU (iter); n = 5000, G 0.5% den.; m = 300, A 1% dense.

In the remaining tables, the matrix G is block-diagonal with block size approximately 200×
200. The blocks are overlapping by 10 diagonal elements on average. Each block is sparse.

As before, CPU times for our method stays virtually unchanged with increase in the number
of breakpoints; while the CPU time for the lifted problem solved in MOSEK increases, Table 6.13.
For Table 6.14, we increase the dimension of the problem, but keep the block size constant. In
this case our MATLAB code beats MOSEK by a constant factor. Also note that MOSEK
is approximately 2 times faster on a smooth problem without the transaction costs than our
MATLAB code.

Some additional experiments on a very large data are reported in Table 6.15. Note that for
these problems, MOSEK spends around 50% of the time on preprocessing.
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Number of Breakpoints MATLAB MOSEK

M = 101 97 (13) 825 (13)

M = 51 95 (13) 440 (13)

M = 25 94 (13) 215 (11)

M = 11 95 (13) 117 (10)

M = 3 101 (14) 78 (10)

No Trans. Costs 93 (13) 46 (9)

Table 6.13: CPU (iter); G has 45 200 × 200 blocks, 10% den.; m = 200, A 10% den.; up/low bnds.

Number of Blocks MATLAB MOSEK
75 blocks
n=15000 164 (13) 401 (11)
60 blocks
n=12000 131 (13) 303(11)
45 blocks

n=9000 94 (13) 215 (11)
30 blocks

n=6000 53 (12) 135 (11)
15 blocks

n=3000 26 (12) 64 (11)

Table 6.14: CPU (iter) G has 200 × 200 blocks; 10% den.; m = 200, A 10% den.; up/low bnds,
M = 25.
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Figure 6.3: CPU (iter); G has 20 non-zeros per row; m = 300, A 1% den.; M = 25.

7 Conclusion

In this paper, we considered the expected utility maximization problem in the presence of
convex, non-differentiable transaction costs and linear or piece-wise linear constraints. We used
the subdifferential to derive the optimality conditions for this problem.

We showed that approximating the transaction costs with spline functions and solving the
smooth problem with the interior-point methods give a very good approximation to the optimal
solution. When a higher accuracy was needed, we did a crossover to an active set method.

Our numerical tests showed that we can solve large scale problems efficiently and accurately.
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Figure 6.4: CPU (iter); G has 45 blocks 200 × 200, 10% den.; m = 200, A 10% den.; up/low bnds.

A Transaction Costs

We assume that the transaction costs are given by the following function

fi(xi) =















f−
il (−xi + x̂i − d−

il ) +
∑l

j=1 f−
ij−1(d

−
ij), if xi − x̂i ∈ [−d−

il+1,−d−
il ],

for some l ∈ {0, .., M−
i },

f+
il (xi − x̂i − d+

il ) +
∑l

j=1 f+
ij−1(d

+
ij), if xi − x̂i ∈ [d+

il , d
+
il+1],

for some l ∈ {0, .., M+
i }.

where d+
i0 = d−

i0 = 0, d+

iM+

i
+1

= d−

iM−

i
+1

= +∞.

If the holding in the asset number i has not changed, i.e. xi = x̂i, the transaction costs
associated with this asset should be equal to zero. Therefore fi(x) should satisfy the conditions

fi(x̂i) = 0. (A.1)

The above notation comes naturally from the statement of the problem, but we can simplify
it for the purpose of formulating the solution algorithm. Let Mi = M+

i + M−
i + 1, so that Mi
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Figure 6.5: CPU (iter); G 200× 200 blocks; 10% den.; m = 200, A 10% den.; up/low bnds, M = 25.

is the total number of end points of the intervals (“breakpoints”). We further denote

dil = x̂i − d−

i(M−

i
−l+1)

, l = 0, ..., M−
i + 1,

dil = x̂i + d+

i(l−M+

i
+1)

, l = M−
i + 2, ..., Mi + 1,

and

fil(xi) = f−

i(M−

i
−l)

(−xi + x̂i − d−

i(M−

i
−l)

) +
∑(M−

i
−l)

j=1 f−
ij−1(d

−
ij), l = 0, ..., M−

i ,

fil(xi) = f+

i(l−M+

i
)
(xi − x̂i − d+

i(l−M+

i
)
) +

∑(l−M+

i
)

j=1 f+
ij−1(d

+
ij), l = M−

i + 1, ..., Mi.

Thus we can rewrite the cost functions in the following more compact way:

fi(xi) =







fi0(xi), if xi ≤ di1,
fil(xi), if xi ∈ [dil, dil+1], l = 1, .., Mi,
fiMi

(xi), if xi ≥ diMi
.

(A.2)
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n Blocks A M MATLAB MOSEK
Number Size Density Overlap m Density

53400 89 600 0.006 9 500 0.1 51 3114 (15) 8797 (11)

100000 1000 100 0.1 10 200 0.01 25 2966 (15) 5595 (16)
near opt.

150000 5000 30 0.1 5 300 0.01 11 8890 (18) 5674 (28)
can’t

200000 10000 20 0.1 5 300 0.01 11 18010 (17) solve

Table 6.15: CPU (iter), large-scale problems.
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