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Abstract4

A spectrahedron is the feasible set of a semidefinite program, SDP, i.e., the intersection of5

an affine set with the positive semidefinite cone. While strict feasibility is a generic property6

for random problems, there are many classes of problems where strict feasibility fails and this7

means that strong duality can fail as well. If the minimal face containing the spectrahedron is8

known, the SDP can easily be transformed into an equivalent problem where strict feasibility9

holds and thus strong duality follows as well. The minimal face is fully characterized by the10

range or nullspace of any of the matrices in its relative interior. Obtaining such a matrix11

may require many facial reduction steps and is currently not known to be a tractable problem12

for spectrahedra with singularity degree greater than one. We propose a single parametric13

optimization problem with a resulting type of central path and prove that the optimal solution14

is unique and in the relative interior of the spectrahedron. Numerical tests illustrate the efficacy15

of our approach and its usefulness in regularizing SDPs.16
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1 Introduction52

?〈sec:intro〉?
A spectrahedron is the intersection of an affine manifold with the positive semidefinite cone. Specif-53

ically, if Sn denotes the set of n × n symmetric matrices, Sn+ ⊂ Sn denotes the set of positive54

semidefinite matrices, A : Sn → Rm is a linear map, and b ∈ Rm, then55

F = F(A, b) := {X ∈ Sn+ : A(X) = b} (1.1) ?eq:feasset?

is a spectrahedron. We emphasize that F is given to us as a function of the algebra, the data A, b,56

rather than the geometry.57

Our motivation for studying spectrahedra arises from semidefinite programs, SDPs, where a58

linear objective is minimized over a spectrahedron. In contrast to linear programs, strong dual-59

ity is not an inherent property of SDPs , but depends on a constraint qualification (CQ) such60
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as the Slater CQ. For an SDP not satisfying the Slater CQ, the central path of the standard in-61

terior point algorithms is undefined and there is no guarantee of strong duality or convergence.62

Although instances where the Slater CQ fails are pathological, see e.g. [12] and [27], they occur in63

many applications and this phenomenon has lead to the development of a number of regularization64

methods, [9, 23,24,31,32].65

In this paper we focus on the facial reduction method, [5–7], where the optimization problem66

is restricted to the minimal face of Sn+ containing F , denoted face(F). We note that the different67

regularization methods for SDP are not fundamentally unrelated. Indeed, in [32] a relationship68

between the extended dual of Ramana, [31], and the facial reduction approach is established and69

in [39] the authors show that the dual expansion approach, [23, 24] is a kind of dual of facial70

reduction. When knowledge of the minimal face is available, the optimization problem is easily71

transformed into one for which the Slater CQ holds. Many of the applications of facial reduction72

to SDP rely on obtaining the minimal face through analysis of the underlying structure. See, for73

instance, the recent survey [11] for applications to hard combinatorial optimization and matrix74

completion problems.75

In this paper we are interested in instances of SDP where the minimal face can not be obtained76

analytically. An algorithmic approach was initially presented in [7] and subsequent analyses of77

this algorithm as well as improvements, applications to SDP , and new approaches may be found78

in [8, 26, 28–30, 38, 39]. While these algorithms differ in some aspects, their main structure is79

the same. At each iteration a subproblem is solved to obtain an exposing vector for a face (not80

necessarily minimal) containing F . The SDP is then reduced to this smaller face and the process81

repeated until the SDP is reduced to face(F). Since at each iteration, the dimension of the ambient82

face is reduced by one, at most n − 1 iterations are necessary. We remark that this method is a83

kind of dual approach, in the sense that the exposing vector obtained in the subproblem is taken84

from the dual of the smallest face available at the current iteration. We highlight two challenges85

with this approach: (1) each subproblem is itself an SDP and thereby computationally intensive86

and (2) at each iteration a decision must be made regarding the rank of the exposing vector.87

With regard to the first challenge, we note that it is really two-fold. The computational expense88

arises from the complexity of an individual subproblem and also from the number of such problems89

to be solved. The subproblems produced in [8] are nice in the sense that strong duality holds,90

however, each subproblem is an SDP and its computational complexity is comparable to that of91

the original problem. In [29] a relaxation of the subproblem is presented that is less expensive92

computationally, but may require more subproblems to be solved. The number of subproblems93

needed to solve depends of course on the structure of the problem but also on the method used to94

determine that facial reduction is needed. For algorithms using the theorem of the alternative, [5–7],95

a theoretical lower bound, called the singularity degree, is introduced in [35]. In [36] an example is96

constructed for which the singularity degree coincides with the upper bound of n−1, i.e., the worst97

case exists. In [28], the self-dual embedding algorithm of [9] is used to determine whether facial98

reduction is needed. This approach may require fewer subproblems than the singularity degree.99

The second challenge is to determine which eigenvalues of the exposing vector obtained at each100

iteration are identically zero, a classically challenging problem. If the rank of the exposing vector101

is chosen too large, the problem may be restricted to a face which is smaller than the minimal102

face. This error results in losing part of the original spectrahedron. If on the other hand, the rank103

is chosen too small, the algorithm may require more iterations than the singularity degree. The104

algorithm of [8] is proved to be backwards stable only when the singularity degree is one, and the105

3



arguments can not be extended to higher singularity degree problems due to possible error in the106

decision regarding rank.107

Our main contribution in this paper is a primal approach to facial reduction, which does not rely108

on exposing vectors, but instead obtains a matrix in the relative interior of F , denoted relint(F)109

Since the minimal face is characterized by the range of any such matrix, we obtain a facially reduced110

problem in just one step. As a result, we eliminate costly subproblems and require only one decision111

regarding rank.112

While our motivation arises from SDPs, the problem of characterizing the relative interior of113

a spectrahedron is independent of this setting. The problem is formally stated below.114

〈prob:main〉Problem 1.1. Given a spectrahedron F(A, b) ⊆ Sn, find X̄ ∈ relint(F).115

This paper is organized as follows. In Section 2 we introduce notation and discuss relevant116

material on SDP strong duality and facial reduction. We develop the theory for our approach in117

Section 3, prove convergence to the relative interior, and prove convergence to the analytic center118

under a sufficient condition. In Section 4, we propose an implementation of our approach and119

we present numerical results in Section 5. We also present a method for generating instances of120

SDP with varied singularity degree in Section 5. We conclude the main part of the paper with an121

application to matrix completion problems in Section 6.122

2 Notation and Background123

〈sec:prelim〉Throughout this paper the ambient space is the Euclidean space of n× n real symmetric matrices,124

Sn, with the standard trace inner product125

〈X,Y 〉 := trace(XY ) =
n∑
i=1

n∑
j=1

XijYij ,

and the induced Frobenius norm126

‖X‖F :=
√
〈X,X〉.

In the subsequent paragraphs, we highlight some well known results on the cone of positive semidef-127

inite matrices and its faces, as well other useful results from convex analysis. For proofs and further128

reading we suggest [33, 36, 41]. The dimension of Sn is the triangular number n(n + 1)/2 =: t(n).129

We define svec: Sn → Rt(n) such that it maps the upper triangular elements of X ∈ Sn to a vector130

in Rt(n) where the off-diagonal elements are multiplied by
√

2. Then svec is an isometry and an131

isomorphism with sMat:= svec−1. Moreover, for X,Y ∈ Sn,132

〈X,Y 〉 = svec(X)T svec(Y ).

The eigenvalues of any X ∈ Sn are real and indexed so as to satisfy,133

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X),

and λ(X) ∈ Rn is the vector consisting of all the eigenvalues. In terms of this notation, the operator134

2-norm for matrices is defined as ‖X‖2 := maxi|λi(X)|. When the argument to ‖ · ‖2 is a vector,135

this denotes the usual Euclidean norm. The Frobenius norm may also be expressed in terms of136

eigenvalues: ‖X‖F = ‖λ(X)‖2. The set of positive semidefinite (PSD) matrices, Sn+, is a closed137
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convex cone in Sn, whose interior consists of the positive definite (PD) matrices, Sn++. The cone Sn+138

induces the Löwner partial order on Sn. That is, for X,Y ∈ Sn we write X � Y when X −Y ∈ Sn+139

and similarly X � Y when X − Y ∈ Sn++. For X,Y ∈ Sn+ the following equivalence holds:140

〈X,Y 〉 = 0 ⇐⇒ XY = 0. (2.1) eq:innerprodmatrixprod

?〈def:face〉?Definition 2.1 (face). A closed convex cone f ⊆ Sn+ is a face of Sn+ if141

X,Y ∈ Sn+, X + Y ∈ f =⇒ X,Y ∈ f.

A nonempty face f is said to be proper if f 6= Sn+ and f 6= 0. Given a convex set C ⊆ Sn+, the142

minimal face of Sn+ containing f , with respect to set inclusion, is denoted face(C). A face f is said143

to be exposed if there exists W ∈ Sn+ \ {0} such that144

f = {X ∈ Sn+ : 〈W,X〉 = 0}.

Every face of Sn+ is exposed and the vector W is referred to as an exposing vector . The faces of Sn+145

may be characterized in terms of the range of any of its maximal rank elements. Moreover, each146

face is isomorphic to a smaller dimensional positive semidefinite cone, as is seen in the subsequent147

theorem.148

〈thm:face〉
Theorem 2.2 ( [11]). Let f be a face of Sn+ and X ∈ f a maximal rank element with rank r and149

orthogonal spectral decomposition150

X =
[
V U

] [D 0
0 0

] [
V U

]T ∈ Sn+, D ∈ Sr++.

Then f = V Sr+V T and relint(f) = V Sr++V
T . Moreover, W ∈ Sn+ is an exposing vector for f if and151

only if W ∈ USn−r++ UT .152

We refer to USn−r+ UT , from the above theorem, as the conjugate face, denoted f c. For any153

convex set C, an explicit form for face(C) and face(C)c may be obtained from the orthogonal154

spectral decomposition of any of its maximal rank elements as in Theorem 2.2.155

For a linear map A : Sn → Rm , there exist S1, . . . , Sm ∈ Sn such that156 (
A(X)

)
i

= 〈X,Si〉, ∀i ∈ {1, . . . ,m}.

The adjoint of A is the unique linear map A∗ : Rm → Sn satisfying157

〈A(X), y〉 = 〈X,A∗(y)〉, ∀X ∈ Sn, y ∈ Rm ,

and has the explicit form A∗(y) =
∑m

i=1 yiSi, i.e., range(A∗) = span{S1, . . . , Sm}. We define158

Ai ∈ Sn to form a basis for the nullspace, null(A) = span{A1, . . . , Aq}.159

For a non-empty convex set C ⊆ Sn the recession cone, denoted C∞, captures the directions in160

which C is unbounded. That is161

C∞ := {Y ∈ Sn : X + λY ∈ C, ∀λ ≥ 0, X ∈ C}. (2.2) ?eq:recession?

Note that the recession directions are the same at all points X ∈ C. For a non-empty set S ⊆ Sn,162

the dual cone (also referred to as the positive polar) is defined as163

S+ := {Y ∈ Sn : 〈X,Y 〉 ≥ 0, ∀X ∈ S}. (2.3) ?eq:dualcone?

A useful result regarding dual cones is that for cones K1 and K2,164

(K1 ∩K2)+ = cl(K+
1 +K+

2 ), (2.4) eq:dualintersection

where cl(·) denotes set closure.165
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2.1 Strong Duality in Semidefinite Programming and Facial Reduction166

?〈sec:sdpstrongduality〉?Consider the standard primal form SDP167

SDP p? := min{〈C,X〉 : A(X) = b,X � 0}, (2.5) ?prob:sdpprimal?

with Lagrangian dual168

D-SDP d? := min{bT y : A∗(y) � C}. (2.6) ?prob:sdpdual?

Let F denote the spectrahadron defined by the feasible set of SDP . One of the challenges in169

semidefinite programming is that strong duality is not an inherent property, but depends on a170

constraint qualification, such as the Slater CQ.171

〈thm:strongduality〉Theorem 2.3 (strong duality, [41]). If the primal optimal value p? is finite and F ∩Sn++ 6= ∅, then172

the primal-dual pair SDP and D-SDP have a zero duality gap, p? = d?, and d? is attained.173

Since the Lagrangian dual of the dual is the primal, this result can similarly be applied to the174

dual problem, i.e., if the primal-dual pair both satisfy the Slater CQ, then there is a zero duality175

gap and both optimal values are attained.176

Not only can strong duality fail with the absence of the Slater CQ, but the standard central path177

of an interior point algorithm is undefined. The facial reduction regularization approach of [5–7]178

restricts SDP to the minimal face of Sn+ containing F :179

SDP-R min{〈C,X〉 : A(X) = b, X ∈ face(F)}. (2.7) ?eq:sdpr?

Since the dimension of F and face(F) is the same, the Slater CQ holds for the facially reduced180

problem. Moreover, face(F) is isomorphic to a smaller dimensional positive semidefinite cone, thus181

SDP-R is itself a semidefinite program. The restriction to face(F) may be obtained as in the182

results of Theorem 2.2. The dual of SDP-R restricts the slack variable to the dual cone183

Z = C −A∗(y) ∈ face(F)+.

Note that F+ = face(F)+. If we have knowledge of face(F), i.e., we have the matrix V such that184

face(F) = V Sr+V T , then we may replace X in SDP by V RV T with R � 0. After rearranging, we185

obtain SDP-R . Alternatively, if our knowledge of the minimal face is in the form of an exposing186

vector, say W , then we may obtain V so that its columns form a basis for null(W ). We see that187

the approach is straightforward when knowledge of face(F) is available. In instances where such188

knowledge is unavailable, the following theorem of the alternative from [7] guarantees the existence189

of exposing vectors that lie in range(A∗).190

〈thm:alternative〉Theorem 2.4 (of the alternative, [7]). Exactly one of the following systems is consistent:191

1. A(X) = b, X � 0,192

2. 0 6= A∗(y) � 0, bT y = 0.193

The first alternative is just the Slater CQ, while if the second alternative holds, then A∗(y)194

is an exposing vector for a face containing F . We may use a basis for null(A∗(y)) to obtain a195

smaller SDP . If the Slater CQ holds for the new SDP we have obtained SDP-R , otherwise, we196
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find an exposing vector and reduce the problem again. We outline the facial reduction procedure197

in Algorithm 2.1. At each iteration, the dimension of the problem is reduced by at least one, hence198

this approach is bound to obtain SDP-R in at most n − 1 iterations, assuming that the initial199

problem is feasible. If at each iteration the exposing vector obtained is of maximal rank then the200

number of iterations required to obtain SDP-R is referred to as the singularity degree, [35]. For a201

non-empty spectrahedron, F , we denote the singularity degree as sd = sd(F).

Algorithm 2.1 Facial reduction procedure using the theorem of the alternative.
〈algo:fr〉 Initialize Si so that (A(X))i = 〈Si, X〉 for i ∈ {1, . . . ,m}

while Item 2. of Theorem 2.4 do
obtain exposing vector W

W =
[
U V

] [D 0
0 0

] [
U V

]
, D � 0

Si ← V TSiV, i ∈ {1, . . . ,m}
end while

202

We remark that any algorithm pursuing the minimal face through exposing vectors of the form203

A∗(·), must perform at least as many iterations as the singularity degree. The singularity degree204

could be as large as the trivial upper bound n − 1 as is seen in the example of [36]. Thus facial205

reduction may be very expensive computationally. On the other hand, from Theorem 2.2 we see206

that face(F) is fully characterized by the range of any of its relative interior matrices. That is,207

from any solution to Problem 1.1 we may obtain the regularized problem SDP-R .208

3 A Parametric Optimization Approach209

〈sec:paramprob〉 In this section we present a parametric optimization problem that solves Problem 1.1.210

〈assump:main〉Assumption 3.1. We make the following assumptions:211

1. A is surjective,212

2. F is non-empty, bounded and contained in a proper face of Sn+.213

The assumption on A is a standard regularity assumption and so is the non-emptiness as-214

sumption on F . The necessity of F to be bounded will become apparent throughout this section,215

however, our approach may be applied to unbounded spectrahedra as well. We discuss such ex-216

tensions in Section 3.2. The assumption that F is contained in a proper face of Sn+ restricts our217

discussion to those instances of SDP that are interesting with respect to facial reduction.218

In the following lemma are stated two useful characterizations of bounded spectrahedra.219

〈lem:boundedchar〉Lemma 3.2. The following holds:220

F is bounded ⇐⇒ null(A) ∩ Sn+ = {0} ⇐⇒ range(A∗) ∩ Sn++ 6= ∅.

Proof. For the first equivalence, F is bounded if and only if F∞ = {0} by Theorem 8.4 of [33]. It221

suffices, therefore, to show that F∞ = null(A) ∩ Sn+. It is easy to see that (Sn+)∞ = Sn+ and that222

the recession cone of the affine manifold defined by A and b is null(A). By Corollary 8.3.3 of [33]223
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the recession cone of the intersection of convex sets is the intersection of the respective recession224

cones, yielding the desired result.225

Now let us consider the second equivalence. For the forward direction, observe that

null(A) ∩ Sn+ = {0} ⇐⇒
(
null(A) ∩ Sn+

)+
= {0}+,

⇐⇒ null(A)⊥ + Sn+ = Sn,
⇐⇒ range(A∗) + Sn+ = Sn.

The second inequality is due to (2.4) and one can verify that in this case null(A)⊥ ∩ Sn+ is closed.226

Thus there exists X ∈ range(A∗) and Y ∈ Sn+ such that X + Y = −I. Equivalently, −X =227

I + Y ∈ Sn++. For the converse, let X ∈ range(A∗)∩ Sn++ and suppose 0 6= S ∈ null(A)∩ Sn+. Then228

〈X,S〉 = 0 which implies, by (2.1), that XS = 0. But then null(X) 6= {0}, a contradiction.229

Let r denote the maximal rank of any matrix in relint(F) and let the columns of V ∈ Rn×r230

form a basis for its range. In seeking a relative interior point of F we define a specific point from231

which we develop a parametric optimization problem.232

〈def:analytic〉Definition 3.3 (analytic center). The analytic center of F is the unique matrix X̂ satisfying233

X̂ = arg max{log det(V TXV ) : X ∈ F}. (3.1) ?eq:analytic?

Under Assumption 3.1 the analytic center is well-defined and this follows from the proof of234

Theorem 3.4, below. It is easy to see that the analytic center is indeed in the relative interior of235

F and therefore a solution to Probelm 1.1. However, the optimization problem from which it is236

derived is intractable due to the unknown matrix V . If V is simply removed from the optimization237

problem (replaced with the identity), then the problem is ill-posed since the objective does not238

take any finite values over the feasible set as it lies on the boundary of the SDP cone. To combat239

these issues, we propose replacing V with I and also perturbing F so that it intersects Sn++. The240

perturbation we choose is that of replacing b with b(α) := b + αA(I), α > 0, thereby defining a241

family of spectrahedra242

F(α) := {X ∈ Sn+ : A(X) = b(α)}.

It is easy to see that if F 6= ∅ then F(α) has postive definite elements for every α > 0. Indeed243

F + αI ⊂ F(α). Note that the affine manifold may be perturbed by any positive definite matrix244

and I is chosen for simplicity. We now consider the family of optimization problems for α > 0:245

P(α) max{log det(X) : X ∈ F(α)}. (3.2) eq:Palpha

It is well known that the solution to this problem exists and is unique for each α > 0. We include a246

proof in Theorem 3.4, below. Moreover, since face(F(α)) = Sn+ for each α > 0, the solution to P(α)247

is in relint(F(α)) and is exactly the analytic center of F(α). The intuition behind our approach248

is that as the perturbation gets smaller, i.e., α ↘ 0, the solution to P(α) approaches the relative249

interior of F . This intuition is validated in Section 3.3. Specifically, we show that the solutions to250

P(α) form a smooth path that converges to X̄ ∈ relint(F). We also provide a sufficient condition251

for the limit point to be X̂ in Section 3.4.252

We note that our approach of perturbing the spectrahedron in order to use the log det(·) function253

is not entirely new. In [14], for instance, the authors perturb a convex feasible set in order to254

approximate the rank function using log det(·). Unlike our approach, their perturbation is constant.255
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3.1 Optimality Conditions256

We choose the strictly concave function log det(·) for its elegant optimality conditions, though the257

maximization is equivalent to maximizing only the determinant. We treat it as an extended valued258

concave function that takes the value −∞ if X is singular. For this reason we refer to both functions259

det(·) and log det(·) equivalently throughout our discussion.260

Let us now consider the optimality conditions for the problem P(α). Similar problems have been261

thoroughly studied throughout the literature in matrix completions and SDP, e.g., [2, 17, 37, 41].262

Nonetheless, we include a proof for completeness and to emphasize its simplicity.263

〈thm:maxdet〉Theorem 3.4 (optimality conditions). For every α > 0 there exists a unique X(α) ∈ F(α) ∩ Sn++264

such that265

X(α) = arg max{log det(X) : X ∈ F(α)}. (3.3) eq:maxlogdet

Moreover, X(α) satisfies (3.3) if, and only if, there exists a unique y(α) ∈ Rm and a unique266

Z(α) ∈ Sn++ such that267 A∗(y(α))− Z(α)
A(X(α))− b(α)
Z(α)X(α)− I

 = 0. (3.4) eq:optimalsystem

Proof. By Assumption 3.1, F 6= ∅ and bounded and it follows that F(α) ∩ Sn++ 6= ∅ and by268

Lemma 3.2 it is bounded. Moreover, log det(·) is a strictly concave function over F(α) ∩ Sn++ (a269

so-called barrier function) and270

lim
det(X)→0

log det(X) = −∞.

Thus, we conclude that the optimum X(α) ∈ F(α) ∩ Sn++ exists and is unique. The Lagrangian of
problem (3.3) is

L(X, y) = log det(X)− 〈y,A(X)− b〉
= log det(X)− 〈A∗(y), X〉+ 〈y, b〉.

Since the constraints are linear, stationarity of the Lagrangian holds at X(α). Hence there exists271

y(α) ∈ Rm such that (X(α))−1 = A∗(y(α)) =: Z(α). Clearly Z(α) is unique, and since A is272

surjective, we conclude in addition that y(α) is unique.273

3.2 The Unbounded Case274

〈sec:unbounded〉
Before we continue with the convergence results, we briefly address the case of unbounded spec-275

trahedra. The restriction to bounded spectrahedra is necessary in order to have solutions to (3.3).276

There are certainly large families of SDPs where the assumption holds. Problems arising from lift-277

ings of combinatorial optimization problems often have the diagonal elements specified, and hence278

bound the corresponding spectrahedron. Matrix completion problems are another family where the279

diagonal is often specified. Nonetheless, many SDPs have unbounded feasible sets and we provide280

two methods for reducing such spectrahedra to bounded ones. First, we show that the boundedness281

of F may be determined by solving a projection problem.282

〈prop:boundtest〉Proposition 3.5. Let F be a spectrahedron defined by the affine manifold A(X) = b and let283

P := arg min {‖X − I‖F : X ∈ range(A∗)}.

Then F is bounded if P � 0.284
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Proof. First we note that P is well defined and a singleton since it is the projection of I onto285

a closed convex set. Now P � 0 implies that range(A∗) ∩ Sn++ 6= ∅ and by Lemma 3.2 this is286

equivalent to F bounded.287

The proposition gives us a sufficient condition for F to be bounded. Suppose this condition288

is not satisfied, but we have knowledge of some matrix S ∈ F . Then for t > 0, consider the289

spectrahedron290

F ′ := {X ∈ Sn : X ∈ F , trace(X) = trace(S) + t}.

Clearly F ′ is bounded. Moreover, we see that F ′ ⊂ F and contains maximal rank elements of F ,291

hence face(F ′) = face(F). It follows that relint(F ′) ⊂ relint(F) and we have reduced the problem292

to the bounded case.293

Now suppose that the sufficient condition of the proposition does not hold and we do not have294

knowledge of a feasible element of F . In this case we detect recession directions, elements of295

null(A)∩Sn+, and project to the orthogonal complement. Specifically, if F is unbounded then F(α)296

is unbounded and problem (3.2) is unbounded. Suppose, we have detected unboundedness, i.e., we297

have X ∈ F(α) ∩ Sn+ with large norm. Then X = S0 + S with S ∈ null(A) ∩ Sn+ and ‖S‖ � ‖S0‖.298

We then restrict F to the orthogonal complement of S, that is, we consider the new spectrahedron299

F ′ := {X ∈ Sn : X ∈ F , 〈S,X〉 = 0}.

By repeated application, we eliminate a basis for the recession directions and obtain a bounded300

spectrahedron. From any of the relative interior points of this spectrahedron, we may obtain301

a relative interior point for F by adding to it the recession directions obtained throughout the302

reduction process.303

3.3 Convergence to the Relative Interior and Smoothness304

〈sec:convergence〉By simple inspection it is easy to see that (X(α), y(α), Z(α)), as in (3.4), does not converge as305

α↘ 0. Indeed, under Assumption 3.1,306

lim
α↘0

λn(X(α))→ 0 =⇒ lim
α↘0
‖Z(α)‖2 → +∞.

It is therefore necessary to scale Z(α) so that it remains bounded. Let us look at an example.307

Example 3.6. Consider the matrix completion problem: find X � 0 having the form1 1 ?
1 1 1
? 1 1

 .

The set of solutions is indeed a spectrahedron with A and b given by

A

x11 x12 x13

x12 x22 x23

x13 x23 x33

 :=


x11

x12

x22

x23

x33

 , b :=


1
1
1
1
1

 .
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In this case, it is not difficult to obtain

X(α) =

1 + α 1 1
1+α

1 1 + α 1
1

1+α 1 1 + α

 ,

with inverse

X(α)−1 =
1

α(2 + α)

1 + α −1 0

−1 α2+2α+2
1+α −1

0 −1 1 + α

 .

Clearly limα↘0‖X(α)−1‖2 → +∞. However, when we consider αX(α)−1, and take the limit as α
goes to 0 we obtain the bounded limit

Z̄ =

 1
2 −1

2 0
−1

2 1 −1
2

0 −1
2

1
2

 .

Note that X̄ = X(0) is the 3× 3 matrix with all ones, rankX̄ + rankZ̄ = 3, and X̄Z̄ = 0.308

It turns out that multiplying X(α)−1 by α always bounds the sequence (X(α), y(α), Z(α)).309

Therefore, we consider the scaled system310  A∗(y)− Z
A(X)− b(α)
ZX − αI

 = 0, X � 0, Z � 0, α > 0, (3.5) eq:scaledoptimality

that is obtained from (3.4) by multiplying the last equation by α. Abusing our previous notation,311

we let (X(α), y(α), Z(α)) denote a solution to this system and we refer to the set of all such312

solutions as the parametric path. The parametric path has clear parallels to the central path of313

SDP , however, it differs in one main respect: it is not contained in the relative interior of F . In314

the main theorems of this section we prove that the parametric path is smooth and converges as315

α ↘ 0 with the primal limit point in relint(F). We begin by showing that the primal component316

of the parametric path has cluster points.317

〈lem:primalconverge〉Lemma 3.7. Let ᾱ > 0. For every sequence {αk}k∈N ⊂ (0, ᾱ] such that αk ↘ 0, there exists a318

subsequence {αl}l∈N such that X(αl)→ X̄ ∈ F .319

Proof. Let ᾱ and {αk}k∈N be as in the hypothesis. First we show that the sequence X(αk) is320

bounded. For any k ∈ N we have321

‖X(αk)‖2 ≤ ‖X(αk) + (ᾱ− αk)I‖2 ≤ max
X∈F(ᾱ)

‖X‖2 < +∞.

The second inequality is due to X(αk) + (ᾱ − αk)I ∈ F(ᾱ) and the third inequality holds since322

F(ᾱ) is bounded. Thus there exists a convergent subsequence {αl}l∈N with X(αl) → X̄, that323

clearly belongs to F .324

For the dual variables we need only prove that Z(α) converges (for a subseqence) since this325

implies that y(α) also converges, by the assumption that A is surjective. As for X(α), we show326

that the tail of the parametric path corresponding to Z(α) is bounded. To this end, we first prove327

the following technical lemma. Recall that X̂ is the analytic center of Definition 3.3.328
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〈lem:technicalbounded〉Lemma 3.8. Let ᾱ > 0. There exists M > 0 such that for all α ∈ (0, ᾱ],329

0 < 〈X(α)−1, X̂ + αI〉 ≤M.

Proof. Let ᾱ be as in the hypothesis and let α ∈ (0, ᾱ]. The first inequality is trivial since both of330

the matrices are positive definite. For the second inequality, we have,331

〈X(ᾱ)−1 −X(α)−1, X̂ + ᾱI −X(α)〉 = 〈 1
ᾱ
A∗(y(ᾱ))− 1

α
A∗(y(α)), X̂ + ᾱI −X(α)〉,

= 〈 1
ᾱ
y(ᾱ)− 1

α
y(α),A(X̂ + ᾱI)−A(X(α))〉,

= 〈 1
ᾱ
y(ᾱ)− 1

α
y(α), (ᾱ− α)A(I)〉,

= 〈X(ᾱ)−1 −X(α)−1, (ᾱ− α)I〉,
= (ᾱ− α) trace(X(ᾱ)−1)− 〈X(α)−1, (ᾱ− α)I〉.

(3.6) eq:boundednessfirst

On the other hand,332

〈X(ᾱ)−1 −X(α)−1, X̂ + ᾱI −X(α)〉 = n+ 〈X(ᾱ)−1, X̂〉+ ᾱ trace(X(ᾱ)−1)

− 〈X(ᾱ)−1, X(α)〉 − 〈X(α)−1, X̂ + ᾱI〉.
(3.7) eq:boundednesssecond

Combining (3.6) and (3.7) we get

(ᾱ− α) trace(X(ᾱ)−1)− 〈X(α)−1, (ᾱ− α)I〉 = n+ 〈X(ᾱ)−1, X̂〉+ ᾱ trace(X(ᾱ)−1)

− 〈X(ᾱ)−1, X(α)〉 − 〈X(α)−1, X̂ + ᾱI〉.

After rearranging, we obtain333

〈X(α)−1, X̂ + αI〉 = n+ 〈X(ᾱ)−1, X̂〉+ ᾱ trace(X(ᾱ)−1)− 〈X(ᾱ)−1, X(α)〉
− (ᾱ− α) trace(X(ᾱ)−1),

= n+ α trace(X(ᾱ)−1) + 〈X(ᾱ)−1, X̂〉 − 〈X(ᾱ)−1, X(α)〉.
(3.8) ?eq:boundednessthird?

The first and the third terms of the right hand side are positive constants. The second term is334

positive for every value of α and is bounded above by ᾱ trace(X(ᾱ)−1) while the fourth term is335

bounded above by 0. Applying these bounds as well as the trivial lower bound on the left hand336

side, we get337

0 < 〈X(α)−1, X̂ + αI〉 ≤ n+ ᾱ trace(X(ᾱ)−1) + 〈X(ᾱ)−1, X̂〉 =: M. (3.9) ?eq:boundednessfourth?

338

We need one more ingredient to prove that the parametric path corresponding to Z(α) is339

bounded. This involves bounding the trace inner product above and below by the maximal and340

minimal scalar products of the eigenvalues, respectively.341

〈lem:eigenvaluebound〉Lemma 3.9 (Ky-Fan [13], Hoffman-Wielandt [20]). If A,B ∈ Sn, then342

n∑
i=1

λi(A)λn+1−i(B) ≤ 〈A,B〉 ≤
n∑
i=1

λi(A)λi(B).
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We now have the necessary tools for proving boundedness and obtain the following convergence343

result.344

〈thm:2paramcluster〉
Theorem 3.10. Let ᾱ > 0. For every sequence {αk}k∈N ⊂ (0, ᾱ] such that αk ↘ 0, there exists a345

subsequence {α`}`∈N such that346

(X(α`), y(α`), Z(α`))→ (X̄, ȳ, Z̄) ∈ {Sn+ × Rm × Sn+}

with X̄ ∈ relint(F) and Z̄ = A∗(ȳ).347

Proof. Let ᾱ > 0 and {αk}k∈N be as in the hypothesis. We may without loss of generality assume348

that X(αk) → X̄ ∈ F due to Lemma 3.7. Let k ∈ N. Combining the upper bound of Lemma 3.8349

with the lower bound of Lemma 3.9 we have350

n∑
i=1

λi(X(αk)
−1)λn+1−i(X̂ + αkI) ≤M.

Since the left hand side is a sum of positive terms, the inequality applies to each term:351

λi(X(αk)
−1)λn+1−i(X̂ + αkI) ≤M, ∀i ∈ {1, . . . , n}.

Equivalently,352

λi(X(αk)
−1) ≤ M

λn+1−i(X̂) + αk
, ∀i ∈ {1, . . . , n}. (3.10) eq:dualconverge

Now exactly r eigenvalues of X̂ are positive. Thus for i ∈ {n− r + 1, . . . , n} we have353

λi(X(αk)
−1) ≤ M

λn+1−i(X̂) + αk
≤ M

λn+1−i(X̂)
,

and we conclude that the r smallest eigenvalues of X(αk)
−1 are bounded above. Consequently,354

there are at least r eigenvalues of X(αk) that are bounded away from 0 and rank(X̄) ≥ r. On the355

other hand X̄ ∈ F and rank(X̄) ≤ r and it follows that X̄ ∈ relint(F).356

Now we show that Z(αk) is a bounded sequence. Indeed, from (3.10) we have357

‖Z(αk)‖2 = αkλ1(X(αk)
−1) ≤ αk

M

λn(X̂) + αk
= αk

M

αk
= M.

The second to last equality follows from the assumption that X̂ ∈ Sn+ \ Sn++, i.e. λn(X̂) = 0. Now358

there exists a subsequence {α`}`∈N such that359

Z(α`)→ Z̄, X(α`)→ X̄.

Moreover, for each `, there exists a unique y(α`) ∈ Rm such that Z(α`) = A∗(y(α`)) and since A360

is surjective, there exists ȳ ∈ Rm such that y(α`)→ ȳ and Z̄ = A∗(ȳ). Lastly, the sequence Z(α`)361

is contained in the closed cone Sn+ hence Z̄ ∈ Sn+, completing the proof.362

We conclude this section by proving that the parametric path is smooth and has a limit point363

as α ↘ 0. Our proof relies on the following lemma of Milnor and is motivated by an analogous364

proof for the central path of SDP in [18, 19]. Recall that an algebraic set is the solution set of a365

system of finitely many polynomial equations.366
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〈lem:milnor〉Lemma 3.11 (Milnor [25]). Let V ⊆ Rk be an algebraic set and U ⊆ Rk be an open set defined by367

finitely many polynomial inequalities. Then if 0 ∈ cl(U ∩ V) there exists ε > 0 and a real analytic368

curve p : [0, ε)→ Rk such that p(0) = 0 and p(t) ∈ U ∩ V whenever t > 0.369

〈thm:2paramconverge〉Theorem 3.12. There exists (X̄, ȳ, Z̄) ∈ Sn+ × Rm × Sn+ with all the properties of Theorem 3.10370

such that371

lim
α↘0

(X(α), y(α), Z(α)) = (X̄, ȳ, Z̄).

Proof. Let (X̄, ȳ, Z̄) be a cluster point of the parametric path as in Theorem 3.10. We define the372

set U as373

U := {(X, y, Z, α) ∈ Sn × Rm × Sn × R : X̄ +X � 0, Z̄ + Z � 0, Z = A∗(y), α > 0}.

Note that each of the positive definite constraints is equivalent to n strict determinant (polynomial)374

inequalities. Therefore, U satisfies the assumptions of Lemma 3.11. Next, let us define the set V375

as,376

V :=

(X, y, Z, α) ∈ Sn × Rm × Sn × R :

 A∗(y)− Z
A(X) + αA(I)

(Z̄ + Z)(X̄ +X)− αI

 = 0

 ,

and note that V is indeed a real algebraic set. Next we show that there is a one-to-one corre-377

spondance between U ∩ V and the parametric path without any of its cluster points. Consider378

(X̃, ỹ, Z̃, α̃) ∈ U ∩ V and let (X(α̃), y(α̃), Z(α̃)) be a point on the parametric path. We show that379

(X̄ + X̃, ȳ + ỹ, Z̄ + Z̃) = (X(α̃), y(α̃), Z(α̃)). (3.11) eq:2paramfirst

First of all X̄ + X̃ � 0 and Z̄ + Z̃ � 0 by inclusion in U . Secondly, (X̄ + X̃, ȳ + ỹ, Z̄ + Z̃) solves380

the system (3.5) when α = α̃:381  A∗(ȳ + ỹ)− (Z̄ + Z̃)

A(X̄ + X̃)− b(α̃)

(Z̄ + Z̃)(X̄ + X̃)− α̃I

 =

A∗(ȳ)− Z̄ + (A∗(ỹ)− Z̃)
b+ α̃A(I)− b(α̃)

0

 =

0
0
0

 .
Since (3.5) has a unique solution, (3.11) holds. Thus,382

(X̃, ỹ, Z̃) = (X(α)− X̄, y(α)− ȳ, Z(α)− Z̄),

and it follows that U ∩ V is a translation of the parametric path (without its cluster points):383

U∩V = {(X, y, Z, α) ∈ Sn×Rm×Sn×R : (X, y, Z) = (X(α)−X̄, y(α)−ȳ, Z(α)−Z̄), α > 0}. (3.12) eq:2paramsecond

Next, we show that 0 ∈ cl(U ∩ V). To see this, note that384

(X(α), y(α), Z(α))→ (X̄, ȳ, Z̄),

as α↘ 0 along a subsequence. Therefore, along the same subsequence, we have385

(X(α)− X̄, y(α)− ȳ, Z(α)− Z̄, α)→ 0.
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Each of the elements of this subsequence belongs to U ∩ V by (3.12) and therefore 0 ∈ cl(U ∩ V).386

We have shown that U and V satisfy all the assumptions of Lemma 3.11, hence there exists387

ε > 0 and an analytic curve p : [0, ε)→ Sn ×Rm × Sn ×R such that p(0) = 0 and p(t) ∈ U ∩ V for388

t > 0. Let389

p(t) = (X(t), y(t), Z(t), α(t)),

and observe that by (3.12), we have390

(X(t), y(t), Z(t), α(t)) = (X(α(t))− X̄, y(α(t))− ȳ, Z(α(t))− Z̄). (3.13) eq:2paramthird

Since p is a real analytic curve, the map g : [0, ε) → R defined as g(t) = α(t), is a differentiable391

function on the open interval (0, ε) with392

lim
t↘0

g(t) = 0.

In particular, this implies that there is an interval [0, ε̄) ⊆ [0, ε) where g is monotone. It follows393

that on [0, ε̄), g−1 is a well defined continuous function that converges to 0 from the right. Note394

that for any t > 0, (X(t), y(t), Z(t)) is on the parametric path. Therefore,395

lim
t↘0

X(t) = lim
t↘0

X(g(g−1(t))) = lim
t↘0

X(α(g−1(t)).

Substituting with (3.13), we have396

lim
t↘0

X(t) = lim
t↘0

X(g−1(t)) + X̄ = X̄.

Similarly, y(t) and Z(t) converge to ȳ and Z̄ respectively. Thus every cluster point of the parametric397

path is identical to (X̄, ȳ, Z̄).398

We have shown that the tail of the parametric path is smooth and it has a limit point. Smooth-399

ness of the entire path follows from the Berge Maximum Theorem, [4], or [34, Example 5.22].400

3.4 Convergence to the Analytic Center401

〈sec:analyticcenter〉The results of the previous section establish that the parametric path converges to relint(F) and402

therefore the primal part of the limit point has excatly r positive eigenvalues. If the smallest positive403

eigenvalue is very small it may be difficult to distinguish it from zero numerically. Therefore it is404

desirable for the limit point to be substantially in the relative interior, in the sense that its smallest405

positive eigenvalue is relatively large. The analytic center has this property and so a natural406

question is whether the limit point coincides with the analytic center. In the following modification407

of an example of [19], the parametric path converges to a point different from the analytic center.408

〈ex:noncvg〉Example 3.13. Consider the SDP feasibility problem where A is defined by409

S1 :=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , S2 :=


0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , S3 :=


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,
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410

S4 :=


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , S5 :=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,
and b := (1, 0, 0, 0, 0)T . One can verify that the feasible set consists of positive semidefinite matrices411

of the form412

X =


1− x22 x12 0 0
x12 x22 0 0
0 0 0 0
0 0 0 0

 .
and the analytic center is the determinant maximizer over the positive definite blocks of this set and413

satisfies x22 = 0.5 and x12 = 0. However, the parametric path converges to a matrix with x22 = 0.6414

and x12 = 0. To see this note that415

A(I) =
(
2 1 1 0 1

)T
, b(α) =

(
1 + 2α α α 0 α

)T
.

By feasibility, X(α) has the form416 
1 + 2α− x22 x12 x13 x14

x12 x22 0 1
2(α− x33)

x13 0 x33 0
x14

1
2(α− x33) 0 α

 .
Moreover, the optimality conditions of Theorem 3.4 indicate that X(α)−1 ∈ range(A∗) and hence417

is of the form418 
∗ 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .
It follows that x12 = x13 = x14 = 0 and X(α) has the form419 

1 + 2α− x22 0 0 0
0 x22 0 1

2(α− x33)
0 0 x33 0
0 1

2(α− x33) 0 α

 .
Of all the matrices with this form, X(α) is the one maximizing the determinant, that is

([X(α)]22, [X(α)]33)T = arg max x33(1 + 2α− x22)(αx22 −
1

4
(α− x33)2),

s.t. 0 < x22 < 1 + 2α,

x33 > 0,

αx22 >
1

4
(α− x33)2.

16



Due to the strict inequalities, the maximizer is a stationary point of the objective function. Com-
puting the derivative with respect to x22 and x33 we obtain the equations

x33(−(αx22 −
1

4
(α− x33)2) + α(1 + 2α− x22) = 0,

(1 + 2α− x22)((αx22 −
1

4
(α− x33)2) +

1

2
x33(α− x33)) = 0.

Since x33 > 0 and (1 + 2α− x22) > 0, we may divide them out. Then solving each equation for x22

we get

x22 =
1

8α
(α− x33)2 + α+

1

2
, (3.14) ex:first

x22 =
1

4α
(α− x33)2 − 1

2α
x33(α− x33). (3.15) ex:second

Substituting (3.14) into (3.15) we get

0 =
1

4α
(α− x33)2 − 1

2α
x33(α− x33)− 1

8α
(α− x33)2 − α− 1

2
,

=
1

8α
(α− x33)2 − 1

2
x33 +

1

2α
x2

33 − α−
1

2
,

=
1

8α
x2

33 −
1

4
x33 +

1

8
α− 1

2
x33 +

1

2α
x2

33 − α−
1

2
,

=
5

8α
x2

33 −
3

4
x33 +

1

8
α− α− 1

2
,

Now we solve for x33,

x33 =

3
4 ±

√
9
16 − 4( 5

8α)(1
8α− α−

1
2)

2 5
8α

,

=
3α

5
± 4α

5

√
11α+ 5

4α
,

=
1

5
(3α+ 2

√
α
√

11α+ 5).

Since x33 is fully determined by the stationarity constraints, we have [X(α)]33 = x33 and [X(α)]33 →
0 as α↘ 0. Substituting this expression for x33 into (3.14) we get

[X(α)]22 =
1

8α
(α− 1

5
(3α+ 2

√
α
√

11α+ 5))2 + α+
1

2
,

=
1

8α
(α2 − 2α

1

5
(3α+ 2

√
α
√

11α+ 5) +
1

25
(9α2 + 6α

√
α
√

11α+ 5 + 4α(11α+ 5))) + α+
1

2
,

=
1

8
α− 1

20
(3α+ 2

√
α
√

11α+ 5) +
1

200
(9α+ 6

√
α
√

11α+ 5 + 4(11α+ 5)) + α+
1

2
,

=
31

25
α− 7

100

√
α
√

11α+ 5 +
6

10
.

Now it is clear that [X(α)]22 → 0.6 as α↘ 0.420
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3.4.1 A Sufficient Condition for Convergence to the Analytic Center421

?〈sec:sufficientanalytic〉?
Recall that face(F) = V Sr+V T . To simplify the discussion we may assume that V =

[
I
0

]
, so that422

face(F) =

[
Sr+ 0
0 0

]
. (3.16) eq:facialstructure

This follows from the rich automorphism group of Sn+, that is, for any full rank W ∈ Rn×n, we423

have WSn+W T = Sn+. Moreover, it is easy to see that there is a one-to-one correspondence between424

relative interior points under such transformations.425

Let us now express F in terms of null(A), that is, if A0 ∈ F and recall that A1, . . . , Aq, q =426

t(n)−m, form a basis for null(A), then427

F = (A0 + span{A1, . . . , Aq}) ∩ Sn+.

Similarly,428

F(α) = (αI +A0 + span{A1, . . . , Aq}) ∩ Sn+.

Next, let us partition Ai according to the block structure of (3.16):429

Ai =

[
Li Mi

MT
i Ni

]
, i ∈ {0, . . . , q}. (3.17) eq:partNi

Since A0 ∈ F , from (3.16) we have N0 = 0 and M0 = 0. Much of the subsequent discussion focuses430

on the linear pencil
∑q

i=1 xiNi. Let N be the linear mapping such that431

null(N ) =

{
q∑
i=1

xiNi : x ∈ Rq
}
.

〈lem:maxdetN〉Lemma 3.14. Let {N1, . . . , Nq} be as in (3.17), span{N1, . . . , Nq} ∩ Sn+ = {0}, and let432

Q := arg max{log det(X) : X = I +

q∑
i=1

xiNi � 0, x ∈ Rq}. (3.18) eq:Q

Then for all α > 0,433

αQ = arg max{log det(X) : X = αI +

q∑
i=1

xiNi � 0, x ∈ Rq}. (3.19) eq:alphaQ

Proof. We begin by expressing Q in terms of N :434

Q = arg max{log det(X) : N (X) = N (I)}.

By the assumption on the span of the matrices Ni and by Lemma 3.2, the feasible set of (3.18) is435

bounded. Moreover, the feasible set contains positive definite matrices, hence all the assumptions of436

Theorem 3.4 are satisfied. It follows that Q is the unique feasible, positive definite matrix satisfying437

Q−1 ∈ range(N ∗).438

Moreover, αQ is positive definite, feasible for (3.19), and (αQ)−1 ∈ range(N ∗). Therefore αQ439

is optimal for (3.19).440
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Now we prove that the parametric path converges to the analytic center under the condition of441

Lemma 3.14.442

〈thm:analyticcenter〉
Theorem 3.15. Let {N1, . . . , Nq} be as in (3.17). If span{N1, . . . , Nq} ∩ Sn+ = {0} and X̄ is the443

limit point of the primal part of the parametric path as in Theorem 3.12, then X̄ = X̂.444

Proof. Let445

X̄ =:

[
Ȳ 0
0 0

]
, X̂ =:

[
Ŷ 0
0 0

]
and suppose, for eventual contradiction, that Ȳ 6= Ŷ . Then let r, s ∈ R be such that446

det(Ȳ ) < r < s < det(Ŷ ).

Let Q be as in Lemma 3.14 and let x ∈ Rq satisfy Q = I +
∑q

i=1 xiNi. Now for any α > 0 we have447

X̂ + α(I +

q∑
i=1

xiAi) =

(
Ŷ + αI + α

∑q
i=1 xiLi α

∑q
i=1 xiMi

α
∑q

i=1 xiM
T
i αQ

)
.

Note that there exists ε > 0 such that X̂ + α
∑q

i=1 xiAi � 0 whenever α ∈ (0, ε). It follows that448

X̂ + α(I +

q∑
i=1

xiAi) ∈ F(α), ∀α ∈ (0, ε).

Taking the determinant, we have

1

αn−r
det(X̂ + α(I +

q∑
i=1

xiAi)) =
1

αn−r
det

(
αQ− α2(

q∑
i=1

xiMi)(Ŷ + αI + α

q∑
i=1

xiLi)
−1(

q∑
i=1

xiM
T
i )

)

× det(Ŷ + αI + α

q∑
i=1

xiLi),

= det

(
Q− α(

q∑
i=1

xiMi)(Ŷ + αI + α

q∑
i=1

xiLi)
−1(

q∑
i=1

xiM
T
i )

)

× det(Ŷ + αI + α

q∑
i=1

xiLi).

Now we have449

lim
α↘0

1

αn−r
det(X̂ + α(I +

q∑
i=1

xiAi)) = det(Q) det(Ŷ ).

Thus, there exists σ ∈ (0, ε) so that for α ∈ (0, σ) we have450

det(X̂ + α(I +

q∑
i=1

xiAi)) > sαn−r det(Q).

As X(α) is the determinant maximizer over F(α), we also have451

det(X(α)) > sαn−r det(Q), ∀α ∈ (0, σ). (3.20) eq:detX
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On the other hand X(α)→ X̄ and let452

X(α) =:

[
αI +

∑q
i=1 x(α)iLi

∑q
i=1 x(α)iMi∑q

i=1 x(α)iM
T
i αI +

∑q
i=1 x(α)iNi

]
.

Then αI +
∑q

i=1 x(α)iLi → Ȳ and there exists δ ∈ (0, σ) such that for all α ∈ (0, δ),453

det(αI +

q∑
i=1

x(α)iLi) < r.

Moreover, by definition of Q,454

det(αI +

q∑
i=1

x(α)iNi) ≤ det(αQ) = αn−r det(Q).

To complete the proof, we apply the Hadamard-Fischer inequality to det(X(α)). For α ∈ (0, δ) we455

have456

det(X(α)) ≤ det(αI +

q∑
i=1

x(α)iLi) det(αI +

q∑
i=1

x(α)iNi) < rαn−r det(Q),

a contradiction of (3.20).457

Remark 3.16. Note that Example 3.13 fails the hypotheses of Theorem 3.15. Indeed, the matrix458 
0 0 0 0
0 0 0 −1
0 0 2 0
0 −1 0 0

 lies in null(A) and the bottom 2× 2 block is nonzero and positive semidefinite.459

4 The Projected Gauss-Newton Method460

〈sec:projGN〉We have constructed a parametric path that converges to a point in the relative interior of F . In this461

section we propose an algorithm to follow the path to its limit point. We do not prove convergence462

of the proposed algorithm and address its performance in Section 5. We follow the (projected)463

Gauss-Newton approach (the nonlinear analog of the Newton method) originally introduced for464

SDPs in [22] and improved more recently in [10]. This approach has been shown to have improved465

robustness compared to other symmetrization approaches. For well posed problems, the Jacobian466

for the search direction remains full rank in the limit to the optimum.467

4.1 Scaled Optimality Conditions468

The idea behind this approach is to view the system defining the parametric path as an overde-469

termined map and use the Gauss-Newton (GN) method for nonlinear systems. In the process, the470

linear feasibility equations are eliminated and the GN method is applied to the remaining bilinear471

equation. For α ≥ 0 let Gα : Sn+ × Rm × Sn+ → Sn × Rm × Rn×n be defined as472

Gα(X, y, Z) :=

 A∗(y)− Z
A(X)− b(α)
ZX − αI

 . (4.1) ?eq:GdefGN?
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The solution to Gα(X, y, Z) = 0 is exactly (X(α), y(α), Z(α)) when α > 0; and for α = 0 the473

solution set is474

F × (A∗)−1(D)×D, D := range(A∗) ∩ face(F)c.

Clearly, the limit point of the parametric path satisfies G0(X, y, Z) = 0. We fix α > 0. The GN475

direction, (dX, dy, dZ), uses the overdetermined GN system476

G′α(X, y, Z)

dXdy
dZ

 = −Gα(X, y, Z). (4.2) eq:GNorig

Note that the search direction is a strict descent direction for the norm of the residual, ‖ vec(Gα(X, y, Z))‖22,477

when the Jacobian is full rank. The size of the problem is then reduced by projecting out the first478

two equations. We are left with a single linearization of the bilinear complementarity equation,479

i.e., n2 equations in only t(n) variables. The least squares solution yields the projected GN direc-480

tion after backsolves. We prefer steps of length 1, however, the primal and dual step lengths, αp481

and αd respectively, are reduced, when necessary, to ensure strict feasibility: X + αpdX � 0 and482

Z + αddZ � 0. The parameter α is then reduced and the procedure repeated. On the parametric483

path, α satisfies484

α =
〈Z(α), X(α)〉

n
. (4.3) eq:alpharep

Therefore, this is a good estimate of the target for α near the parametric path. As is customary,485

we then use a fixed σ ∈ (0, 1) to move the target towards optimality, α← σα.486

4.1.1 Linearization and GN Search Direction487

For the purposes of this discussion we vectorize the variables and data in Gα. Let A ∈ Rm×t(n) be488

the matrix representation of A, that is489

Ai,: := svec(Si)
T , i ∈ {1, . . . ,m}.

Let N ∈ Rt(n)×(t(n)−m) be such that its columns form a basis for null(A) and let x̂ be a particular490

solution to Ax = b(α), e.g., the least squares solution. Then the affine manifold determined from491

the equation A(X) = b(α) is equivalent to that obtained from the equation492

x = x̂+Nv, v ∈ Rt(n)−m.

Moreover, if z := svec(Z), we have the vectorization493

gα(x, v, y, z) :=

 AT y − z
x− x̂−Nv

sMat(z) sMat(x)− αI

 =:

rdrp
Rc

 , (4.4) ?eq:systemg?

Now we show how the first two equations of the above system may be projected out, thereby494

reducing the size of the problem. First we have495

g′α(x, v, y, z)


dx
dv
dy
dz

 =

 ATdy − dz
dx−Ndv

sMat(dz) sMat(x) + sMat(z)sMat(dx)

 ,
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and it follows that the GN step as in (4.2) is the least squares solution of the system496  ATdy − dz
dx−Ndv

sMat(dz) sMat(x) + sMat(z) sMat(dx)

 = −

rdrp
Rc

 .
Since the first two equations are linear, we get dz = ATdy + rd and dx = Ndv − rp. Substituting497

into the third equation we have,498

sMat(ATdy + rd) sMat(x) + sMat(z) sMat(Ndv − rp) = −Rc.

After moving all the constants to the right hand side we obtain the projected GN system in dy and499

dv,500

sMat(ATdy) sMat(x) + sMat(z) sMat(Ndv) = −Rc + sMat(z) sMat(rp)− sMat(rd) sMat(x). (4.5) eq:projGN

The least squares solution to this system is the exact GN direction when rd = 0 and rp = 0,501

otherwise it is an approximation. We then use the equations dz = ATdy + rd and dx = Ndv − rp502

to obtain search directions for x and z.503

In [10, Theorem 1], it is proved that if the solution set of G0(X, y, Z) = 0 is a singleton such504

that X + Z � 0 and the starting point of the projected GN algorithm is sufficiently close to the505

parametric path then the algorithm, with a crossover modification, converges quadratically. As we506

showed above, the solution set to our problem is507

F × (A∗)−1(D)×D,

which is not a singleton as long as F 6= ∅. Indeed, D is a non-empty cone. Although the convergence508

result of [10] does not apply to our problem, their numerical tests indicate that the algorithm509

converges even for problems violating the strict complementarity and uniqueness assumptions and510

our observations agree.511

4.2 Implementation Details512

Several specific implementation modifications are used. We begin with initial x, v, y, z with cor-513

responding X,Z � 0. If we obtain P � 0 as in Proposition 3.5 then we set Z = P and define y514

accordingly, otherwise Z = X = I. We estimate α using (4.3) and set α ← 2α to ensure that our515

target is somewhat well centered to start.516

4.2.1 Step Lengths and Linear Feasibility517

We start with initial step lengths αp = αd = 1.1 and then backtrack using a Cholesky factorization518

test to ensure positive definiteness519

X + αpdX � 0, Z + αddZ � 0.

If the step length we find is still > 1 after the backtrack, we set it to 1 and first update v, y and520

then update x, z using521

x = x̂+Nv, z = AT y.
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This ensures exact linear feasibility. Thus we find that we maintain exact dual feasibility after a522

few iterations. Primal feasibility changes since α decreases. We have experimented with including523

an extra few iterations at the end of the algorithm with a fixed α to obtain exact primal feasibility524

(for the given α). In most cases the improvement of feasibility with respect to F was minimal and525

not worth the extra computational cost.526

4.2.2 Updating α and Expected Number of Iterations527

In order to drive α down to zero, we fix σ ∈ (0, 1) and update alpha as α← σα. We use a moderate528

σ = .6. However, if this reduction is performed too quickly then our step lengths end up being too529

small and we get too close to the positive semidefinite boundary. Therefore, we change α using530

information from min{αp, αd}. If the steplength is reasonably near 1 then we decrease using σ; if531

the steplength is around .5 then we leave α as is; if the steplength is small then we increase to532

1.2α; and if the steplength is tiny (< .1), we increase to 2α. For most of the test problems, this533

strategy resulted in steplengths of 1 after the first few iterations.534

We noted empirically that the condition number of the Jacobian for the least squares problem535

increases quickly, i.e., several singular values converge to zero. Despite this we are able to obtain536

high accuracy search directions.1537

Since we typically have steplengths of 1, α is generally decreased using σ. Therefore, for a538

desired tolerance ε and a starting α = 1 we would want σk < ε, or equivalently,539

k < log10(ε)/ log10(σ).

For our σ = .6 and t decimals of desired accuracy, we expect to need k < 4.5t iterations.540

5 Generating Instances and Numerical Results541

〈sec:numerics〉 In this section we analyze the performance of an implementation of our algorithm. We begin with542

a discussion on generating spectrahedra. A particular challenge is in creating spectrahedra with543

specified singularity degree. Following this discussion, we present and analyze the numerical results.544

5.1 Generating Instances with Varying Singularity Degree545

〈sec:generating〉Our method for generating instances is motivated by the approach of [40] for generating SDPs with546

varying complementarity gaps. We begin by proving a relationship between strict complementarity547

of a primal-dual pair of SDP problems and the singularity degree of the optimal set of the primal548

SDP . This relationship allows us to modify the code presented in [40] and obtain spectrahedra549

having various singularity degrees. Recall the primal SDP550

SDP p? := min{〈C,X〉 : A(X) = b,X � 0}, (5.1) ?prob:sdpprimalcopy?

with dual551

D-SDP d? := min{bT y : A∗(y) � C}. (5.2) ?prob:sdpdualcopy?

1Our algorithm finds the search direction using (4.5). If we looked at a singular value decomposition then we get
the equivalent system Σ(V T ds̄) = (UTRHS). We observed that several singular values in Σ converge to zero while
the corresponding elements in (UTRHS) converge to zero at a similar rate. This accounts for the improved accuracy
despite the huge condition numbers. This appears to be a similar phenomenon to that observed in the analysis of
interior point methods in [42,43] and as discussed in [16].
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Let OP ⊆ Sn+ and OD ⊆ Sn+ denote the primal and dual optimal sets respectively, where the dual552

optimal set is with respect to the variable Z. Specifically,553

OP := {X ∈ Sn+ : A(X) = b, 〈C,X〉 = p?}, OD := {Z ∈ Sn+ : Z = C −A∗(y), bT y = d?, y ∈ Rm }.

Note that OP is a spectrahedron determined by the affine manifold554 [
A(X)
〈C,X〉

]
=

(
b
p∗

)
.

We note that the second system in the theorem of the alternative, Theorem 2.4, for the spectrahe-555

dron OP is556

0 6= τC +A∗(y) � 0, τp? + yT b = 0. (5.3) eq:opalternative

We say that strict complementarity holds for SDP and D-SDP if there exists X? ∈ OP and Z? ∈557

OD such that558

〈X?, Z?〉 = 0 and rank(X?) + rank(Z?) = n.

If strict complementarity does not hold for SDP and D-SDP and there exist X? ∈ relint(OP ) and559

Z? ∈ relint(OD), then we define the complementarity gap as560

g := n− rank(X?)− rank(Z?).

Now we describe the relationship between strict complementarity of SDP and D-SDP and the561

singularity degree of OP .562

〈prop:scsd〉Proposition 5.1. If strict complementarity holds for SDP and D-SDP , then sd(OP ) ≤ 1.563

Proof. Let X? ∈ relint(OP ). If X? � 0, then sd(OP ) = 0 and we are done. Thus we may assume564

rank(X?) < n. By strict complementarity, there exists (y?, Z?) ∈ Rm ×Sn+ feasible for D-SDP with565

Z? ∈ OD and rank(X?)+rank(Z?) = n. Now we show that (1,−y?) satisfies (5.3). Indeed, by dual566

feasibility,567

C −A∗(y?) = Z? ∈ Sn+ \ {0},

and by complementary slackness,568

p? − (y?)T b = 〈X?, C〉 − 〈A∗(y?), X?〉 = 〈X?, Z?〉 = 0.

Finally, since rank(X?) + rank(Z?) = n we have sd(OP ) = 1, as desired.569

From the perspective of facial reduction, the interesting spectrahedra are those with singularity570

degree greater than zero and the above proposition gives us a way to construct spectrahedra with571

singularity degree exactly one. Using the algorithm of [40] we construct strictly complementary572

SDPs and then use the optimal set of the primal to construct a spectrahedron with singularity573

degree exactly one. Specifically, given positive integers n,m, r, and g the algorithm of [40] returns574

the data A, b, C corresponding to a primal dual pair of SDPs , together with X? ∈ relint(OP ) and575

Z? ∈ relint(OD) satisfying576

rank(X?) = r, rank(Z?) = n− r − g.

24



Now if we set577

Â(X) :=

(
A(X)
〈C,X〉

)
, b̂ =

(
b

〈C,X?〉

)
,

then OP = F(Â, b̂). Moreover, if g = 0 then sd(OP ) = 1, by Proposition 5.1. This approach could578

also be used to create spectrahedra with larger singularity degrees by constructing SDPs with579

greater complementarity gaps, if the converse of Proposition 5.1 were true. We provide a sufficient580

condition for the converse in the following proposition.581

〈prop:sdscconverse〉Proposition 5.2. If sd(OP ) = 0, then strict complementarity holds for SDP and D-SDP . More-582

over, if sd(OP ) = 1 and the set of solutions to (5.3) intersects R++ × Rm , then strict complemen-583

tarity holds for SDP and D-SDP .584

Proof. Since we have only defined singularity degree for non-empty spectrahedra, there exists X? ∈585

relint(OP ). For the first statement, by Theorem 2.3, there exists Z? ∈ OD. Complementary586

slackness always holds, hence 〈Z?, X?〉 = 0 and since X? � 0 we have Z? = 0. It follows that587

rank(X?) + rank(Z?) = n and strict complementarity holds for SDP and D-SDP .588

For the second statement, let (τ̄ , ȳ) and (τ̃ , ỹ) be solutions to (5.3) with τ̄ > 0 and τ̃C +A∗(ỹ)589

of maximal rank. Let590

Z̄ := τ̄C +A∗(τ̄), Z̃ := τ̃C +A∗(ỹ).

Then there exists ε > 0 such that τ̄ + ετ̃ > 0 and rank(Z̄ + εZ̃) ≥ rank(Z̃). Define591

τ := τ̄ + ετ̃ , y := ȳ + εỹ, Z := Z̄ + εZ̃.

Now (τ, y) is a solution to (5.3), i.e.,592

0 6= τC +A∗(y) � 0, τp? + yT b = 0.

Moreover, rank(X?) + rank(Z) = n since sd(OP ) = 1 and Z is of maximal rank. Now we define593

Z? :=
1

τ
Z = C −A∗

(
−1

τ
y

)
.

Since τ > 0, it is clear that Z? � 0 and it follows that
(
− 1
τ y, Z

?
)

is feasible for D-SDP . Moreover,594

this point is optimal since595

d? ≥ −1

τ
yT b = p? ≥ d?.

Therefore Z? ∈ OD and since rank(Z?) = rank(Z), strict complementarity holds for SDP and596

D-SDP .597

5.2 Numerical Results598

?〈sec:numericsreal〉?
For the numerical tests, we generate instances with n ∈ {50, 80, 110, 140} and m = 2n. These are599

problems of small size relative to state of the art capabilities, nonetheless, we are able to demonstrate600

the performance of our algorithm through them. In Table 5.1 and Table 5.2 we record the results601

for the case sd = 1. For each instance, specified by n, m, and r, the results are the average of five602

runs. By r, we denote the maximum rank over all elements of the generated spectrahedron, which603

is fixed to r = n/2. In Table 5.1 we record the relevant eigenvalues of the primal variable, primal604
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n m r λ1(X) λr(X) λr+1(X) λn(X) ‖A(X)− b‖2 〈Z,X〉 αf
50 100 25 1.06e+02 2.80e+01 1.97e-11 5.07e-13 3.17e-12 1.26e-13 1.10e-12

80 160 40 8.74e+01 3.22e+01 1.20e-10 9.00e-13 7.28e-12 2.95e-13 2.01e-12

110 220 55 7.74e+01 3.73e+01 3.56e-10 7.23e-13 9.12e-12 3.65e-13 2.14e-12

140 280 70 7.82e+01 3.84e+01 4.11e-10 7.08e-13 1.26e-11 5.20e-13 2.65e-12

Table 5.1: Results for the case sd = 1. The eigenvalues refer to those of the primal variable, X,
and each entry is the average of five runs.

〈tab:sd1〉
n m r λ1(Z) λrd(Z) λrd+1(Z) λn(Z)

50 100 25 1.85e+00 9.07e-02 3.96e-14 1.27e-14

80 160 40 1.96e+00 6.91e-02 6.23e-14 2.30e-14

110 220 55 1.98e+00 2.61e-02 5.77e-14 2.78e-14

140 280 70 2.03e+00 2.46e-02 6.96e-14 3.39e-14

Table 5.2: Eigenvalues of the dual variable, Z, corresponding to the primal variable of Table 5.1.
Each entry is the average of five runs.

〈tab:sd1dual〉
n m r g λ1(X) λr(X) λr+1(X) λr+g(X) λr+g+1(X) λn(X) ‖A(X)− b‖2 〈Z,X〉 αf

50 100 17 5 9.89e+01 1.85e+01 6.62e-05 2.61e-05 2.13e-10 6.10e-13 4.99e-12 2.04e-13 1.07e-12
80 160 27 8 1.11e+02 2.00e+01 1.89e-05 1.28e-05 7.36e-11 5.17e-13 8.40e-12 2.73e-13 1.27e-12
110 220 37 11 1.09e+02 2.42e+01 3.52e-05 2.33e-05 2.05e-10 1.52e-12 1.92e-11 6.46e-13 2.33e-12
140 280 47 14 1.63e+02 2.64e+01 1.07e-04 2.65e-05 1.02e-10 1.17e-13 9.84e-12 3.52e-13 1.48e-12

Table 5.3: Results for the case sd = 2. The eigenvalues refer to those of the primal variable, X,
and each entry is the average of five runs.

〈tab:sd2〉
n m r g λ1(Z) λrd(Z) λrd+1(Z) λrd+g(Z) λrd+g+1(Z) λn(Z)

50 100 17 5 2.22e+00 2.51e-02 1.04e-07 8.38e-08 9.18e-14 1.51e-14

80 160 27 8 2.03e+00 3.65e-02 1.03e-07 7.45e-08 7.92e-14 1.69e-14

110 220 37 11 2.13e+00 6.11e-02 1.78e-07 1.23e-07 1.36e-13 2.76e-14

140 280 47 14 2.19e+00 4.16e-02 7.39e-08 4.35e-08 6.04e-14 8.14e-15

Table 5.4: Eigenvalues of the dual variable, Z, corresponding to the primal variable of Table 5.3.
Each entry is the average of five runs.

〈tab:sd2dual〉

feasibility, complementarity, and the value of α at termination, denoted αf . The values for primal605

feasibility and complementarity are sufficiently small and it is clear from the eigenvalues presented,606

that the first r eigenvalues are significantly smaller than the last n− r. These results demonstrate607

that the algorithm returns a matrix which is very close to the relative interior of F . In Table 5.2608

we record the relevant eigenvalues for the corresponding dual variable, Z. Note that rd := n − r609

and the eigenvalues recorded in the table indicate that Z is indeed an exposing vector. Moreover,610

it is a maximal rank exposing vector. While, we have not proved this, we observed that it is true611

for every test we ran with sd = 1.612

In Table 5.3 and Table 5.4 we record similar values for problems where the singularity degree613

may be greater than 1. Using the approach described in Section 5.1 we generate instances of614

SDP and D-SDP having a complementarity gap of g and then we construct our spectrahedron615

from the optimal set of SDP . By Proposition 5.1 and Proposition 5.2 the resulting spectrahedron616
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may have singularity degree greater than 1. We observe that primal feasibility and complementarity617

are attained to a similar accuracy as in the sd = 1 case. The eigenvalues of the primal variable618

fall into three categories. The first r eigenvalues are sufficiently large so as not to be confused619

with 0, the last n − r − g eigenvalues are convincingly small, and the third group of eigenvalues,620

exactly g of them, are such that it is difficult to decide if they should be 0 or not. A similar621

phenomenon is observed for the eigenvalues of the dual variable. This demonstrates that exactly g622

of the eigenvalues are converging to 0 at a rate significantly smaller than that of the other n− r− g623

eigenvalues.624

6 An Application to PSD Completions of Simple Cycles625

〈sec:psdcyclecompl〉 In this final section, we show that our parametric path and the relative interior point it converges626

to have interesting structure for cycle completion problems.627

Let G = (V,E) be an undirected graph with n = |V | and let a ∈ R|E|. Let us index the628

components of a by the elements of E. A matrix X ∈ Sn is a completion of G under a if Xij = aij629

for all {i, j} ∈ E. We say that G is partially PSD under a if there exists a completion of G under630

a such that all of its principle minors consisting entirely of aij are PSD. Finally, we say that G is631

PSD completable if for all a such that G is partially PSD, there exists a PSD completion. Recall632

that a graph is chordal if for every cycle with at least four vertices, there is an edge connecting633

non-adjacent vertices. The classical result of [17] states that G is PSD completable if, and only if,634

it is chordal.635

An interesting problem for non-chordal graphs is to characterize the vectors a for which G636

admits a PSD completion. Here we consider PSD completions of non-chordal cycles with loops.637

This problem was first looked at in [3], where the following special case is presented.638

?〈thm:simplecycle〉?Theorem 6.1 (Corollary 6, [3]). Let n ≥ 4 and θ, φ ∈ [0, π]. Then639

C :=


1 cos(θ) cos(φ)

cos(θ) 1 cos(θ) ?

cos(θ) 1
. . .

?
. . .

. . . cos(θ)
cos(φ) cos(θ) 1

 , (6.1) simple

has a positive semidefinite completion if, and only if,

φ ≤ (n− 1)θ ≤ (n− 2)π + φ for n even

and
φ ≤ (n− 1)θ ≤ (n− 1)π − φ for n odd.

The partial matrix (6.1) has a positive definite completion if, and only if, the above inequalities are640

strict.641

Using the results of the previous sections we present an analytic expression for exposing vectors
in the case where a PSD completion exists but not a PD one, i.e., the Slater CQ does not hold
for the corresponding SDP . We begin by showing that the primal part of the parametric path
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is always Toeplitz. In general, for a partial Toeplitz matrix, the unique maximum determinant
completion is not necessarily Toeplitz. For instance, the maximum determinant completion of

6 1 x 1 1
1 6 1 y 1
x 1 6 1 z
1 y 1 6 1
1 1 z 1 6


is given by x = z = 0.3113 and y = 0.4247.642

〈md〉Theorem 6.2. If the parital matrix643

P :=


a b c
b a b ?

b a
. . .

?
. . .

. . . b
c b a


has a positive definite completion, then the unique maximum determinant completion is Toeplitz.644

First we present the following technical lemma. Let Jn ∈ Sn be the matrix with ones on the645

antidiagonal and zeros everywhere else, that is, [Jn]ij = 1 when i + j = n + 1 and zero otherwise.646

For instance, J2 =

[
0 1
1 0

]
.647

〈persymm〉Lemma 6.3. If A is the maximum determinant completion of P , then A = JAJ .648

Proof. As A is a completion of P , so is JAJ . Furthermore, det(A) = det(JAJ). Since the maximum649

determinant completion is unique, we must have that A = JAJ .650

Proof of Theorem 6.2. The proof is by induction on the size n. When n = 4 the result follows from651

Lemma 6.3.652

Suppose Theorem 6.2 holds for size n − 1. Let A be the maximum determinant completion of
P . Then by the optimality conditions of Theorem 3.4,

A−1 =



∗ ∗ 0 · · · 0 ∗

∗ ∗ ∗ 0
. . . 0

0 ∗ ∗ ∗ . . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 ∗ ∗ ∗
∗ 0 · · · 0 ∗ ∗


.

Let α := A1,n−1, and consider the (n− 1)× (n− 1) partial matrix653 
a b α
b a b ?

b a
. . .

?
. . .

. . . b
α b a

 , (6.2) simple2
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By the induction assumption, (6.2) has a Toeplitz maximum determinant completion, say B. Note654

that655

B−1 =



∗ ∗ 0 · · · 0 ∗

∗ ∗ ∗ 0
. . . 0

0 ∗ ∗ ∗ . . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 ∗ ∗ ∗
∗ 0 · · · 0 ∗ ∗


. (6.3) ?simple4?

Now consider the partial matrix656 
B


c
?
...
?
b


[
c ? · · · ? b

]
a


(6.4) simple3

Since this is a chordal pattern we only need to check that the fully prescribed principal minors are
positive definite. These are B and a α c

α a b
c b a

 ,
the latter of which is a principal submatrix of the positive definite matrix A. Thus (6.4) has a
maximum determinant completion, say C. Then

C−1 =


∗


∗
0
...
0
∗


[
∗ 0 · · · 0 ∗

]
∗


=:

[
L M
MT N

]
.

By the properties of block inversion,

C =

[
(L−MN−1MT )−1 ∗

∗ ∗

]
=

[
B ∗
∗ ∗

]
,

and it follows that B−1 = L −MN−1MT . Since MN−1MT only has nonzero entries in the four
corners, we obtain that

L =



∗ ∗ 0 · · · 0 ∗

∗ ∗ ∗ 0
. . . 0

0 ∗ ∗ ∗ . . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 ∗ ∗ ∗
∗ 0 · · · 0 ∗ ∗


.
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We now see that C−1 and A−1 have zeros in all entries (i, j) with |i − j| > 1 and (i, j) 6∈ {(1, n −657

1), (1, n), (n− 1, 1), (n, 1)}. Also, A and C have the same entries in positions (i, j) where |i− j| ≤ 1658

or where (i, j) ∈ {(1, n − 1), (1, n), (n − 1, 1), (n, 1)}. But then A and C are two positive definite659

matrices where for each (i, j) either Aij = Cij or (A−1)ij = (C−1)ij , yielding that A = C (see,660

e.g., [1]). Finally, observe that the Toeplitz matrix B is the (n− 1)× (n− 1) upper left submatrix661

of C, and that A = JAJ , to conclude that A is Toeplitz.662

When (6.1) has a PD completion, then this result states that the analytic center of all the663

completions is Toeplitz. When (6.1) has a PSD completion, but not a PD completion then the664

primal part of the parametric path is always Toeplitz and since the Toeplitz matrices are closed,665

(6.1) admits a maximum rank Toeplitz PSD completion. In the following proposition we see that666

the dual part of the parametric path has a specific form.667

〈Tinverse〉Proposition 6.4. Let T = (ti−j)
n
i,j=1 be a positive definite real Toeplitz matrix, and suppose that

(T−1)k,1 = 0 for all k ∈ {3, . . . , n− 1}. Then T−1 has the form

a c 0 d

c b c
. . .

0 c b
. . . 0

. . .
. . .

. . . c
d 0 c a


,

with b = 1
a(a2 + c2 − d2).668

Proof. Let us denote the first column of T by
[
a c 0 · · · 0 d

]T
. By the Gohberg-Semencul

formula (see [15,21]) we have that

T−1 =
1

a
(AAT −BBT ),

where

A =



a 0 0 0

c a 0
. . .

0 c a
. . . 0

. . .
. . .

. . . 0
d 0 c a


, B =



0 0 0 0

d 0 0
. . .

0 d 0
. . . 0

. . .
. . .

. . . 0
c 0 d 0


.

669

?〈cor:expvecsimplecycle〉?
Corollary 6.5. If the set of PSD completions of (6.1) is contained in a proper face of Sn+ then
there exists an exposing vector of the form

CE :=



a c 0 d

c b c
. . .

0 c b
. . . 0

. . .
. . .

. . . c
d 0 c a


,
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for a face containing the completions. Moreover, CE satisfies

2 cos(θ)c+ b = 0 and a+ cos(θ)c+ cos(φ)d = 0.

Proof. Existence follows from Proposition 6.4. By definition, CE is an exposing vector for the face
if, and only if, CE � 0 and 〈X,CE〉 = 0 for all positive semidefinite completions, X, of C. Since
X and CE are positive semidefinite, we have XCE = 0 and in particular diag(XCE) = 0, which is
satisfied if, and only if,

cos(θ)c+ b+ cos(θ)c = 0 and a+ cos(θ)c+ cos(φ)d = 0,

as desired.670

7 Conclusion671

?〈sec:conclusion〉?
In this paper we have considered a primal approach to facial reduction for SDPs that reduces672

to finding a relative interior point of a spectrahedron. By considering a parametric optimization673

problem, we constructed a smooth path and proved that its limit point is in the relative interior674

of the spectrahedron. Moreover, we gave a sufficient condition for the relative interior point to675

coincide with the analytic center. We proposed a projected Gauss-Newton algorithm to follow the676

parametric path to the limit point and in the numerical results we observed that the algorithm677

converges. We also presented a method for constructing spectrahedra with singularity degree 1 and678

provided a sufficient condition for constructing spectrahedra of larger singularity degree. Finally, we679

showed that the parametric path has interesting structure for the simple cycle completion problem.680

This research has also highlighted some new problems to be pursued. We single out two such681

problems. The first regards the eigenvalues of the limit point that are neither sufficiently small to be682

deemed zero nor sufficiently large to be considered as non-zero. We have experimented with some683

eigenvalue deflation techniques, but none have led to a satisfactory method. Secondly, there does684

not seem to be a method in the literature for constructing spectrahedra with specified singularity685

degree.686

31



Index

(A(X))i = 〈X,Si〉, 5687

(dX, dy, dZ), Gauss-Newton direction, 21688

A, matrix representation, 21689

C∞, recession cone, 5690

S+, dual cone, 5691

Sn+, 2692

cl(·), 5693

face(·), minimal face, 5694

X̂, analytic center of F , 8695

Sn, 2696

Sn++, 5697

F = F(A, b), 2698

null(A) = span{A1, . . . , Aq}, 5, 18699

range(A∗) = span{S1, . . . , Sm}, 5700

relint(·), relative interior, 4701

sMat, 4702

sd = sd(F), singularity degree, 7703

svec, 4704

d?, 6, 23705

f c, conjugate face, 5706

p?, 6, 23707

t(n), triangular number, 4708

A : Sn → Rm , 2709

SDP , semidefinite program, 2710

adjoint, 5711

analytic center of F , X̂, 8712

chordal, 27713

closure, cl(·), 5714

completion, 27715

conjugate face, 5716

constraint qualification (CQ), 2717

CQ, constraint qualification, 2718

dual cone, 5719

exposing vector, 5720

extended valued, 9721

face, 5722

facial reduction, 3723

Frobenius norm, 4724

Gauss-Newton direction, (dX, dy, dZ), 21725

GN system, 21726

Gohberg-Semencul formula, 30727

Löwner partial order, 5728

least squares solution, 21729

linear programs, 2730

matrix representation, A, 21731

maximal and minimal scalar products, 12732

minimal face, 5733

parametric path, 11734

partially PSD, 27735

PD, positive definite matrices, 5736

positive definite (PD), 5737

positive semidefinite (PSD), 4738

PSD completable, 27739

PSD, positive semidefinite matrices, 4740

recession cone, 5741

relative interior, relint(·), 4742

self-dual embedding, 3743

semidefinite programs, SDPs, 2744

singularity degree, sd = sd(F), 7745

spectrahedron, 2746

trace inner product, 4747

triangular number, t(n), 4748

zero duality gap, 6749
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