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Abstract

A spectrahedron is the feasible set of a semidefinite program, SDP, i.e., the intersection of
an affine set with the positive semidefinite cone. While strict feasibility is a generic property
for random problems, there are many classes of problems where strict feasibility fails and this
means that strong duality can fail as well. If the minimal face containing the spectrahedron is
known, the SDP can easily be transformed into an equivalent problem where strict feasibility
holds and thus strong duality follows as well. The minimal face is fully characterized by the
range or nullspace of any of the matrices in its relative interior. Obtaining such a matrix may
require many facial reduction steps and is currently not known to be a tractable problem
for spectrahedra with singularity degree greater than one. We propose a single parametric
optimization problem with a resulting type of central path and prove that the optimal solution
is unique and in the relative interior of the spectrahedron. Numerical tests illustrate the
efficacy of our approach and its usefulness in regularizing SDPs.

Keywords: Semidefinite programming, SDP, facial reduction, singularity degree, maximizing
log det.
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1 Introduction

A spectrahedron is the intersection of an affine manifold with the positive semidefinite cone
F=F(ADb) :={X €S} : A(X) = b}, (1.1)

where S™ denotes the space of n x n symmetric matrices, "} C S" denotes the cone of positive
semidefinite matrices, A : S® — R™ is a linear map, and b € R™. Our motivation for studying
spectrahedra arises from semidefinite programs, SDPs, where a linear objective is minimized
over a spectrahedron. In contrast to e.g., linear programs, strong duality is not an inherent
property of SDPs, but requires a constraint qualification (CQ) such as the Slater CQ, i.e.,
strict feasibility. For an SDP not satisfying the Slater CQ, the central path of the standard
interior point algorithms is undefined and there is no guarantee of strong duality or convergence.
Although instances where the Slater CQ fails are pathological, see e.g. [10] and [23], they occur in
many applications and this phenomenon has lead to the development of a number of regularization
methods, [7,/19,20,27,28].

In this paper we focus on the facial reduction method, [3-5], where the optimization problem
is restricted to the minimal face of S} containing F, denoted face(F). Other regularization
methods for SDP are given in [19,20,27,28,35]. See, for instance, the recent survey [9] for
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theory and applications. Further analyses and algorithms for facial reduction are discussed
in [6},22,24-2634}35].

The main structure of these approaches is that at each iteration a subproblem is solved to
obtain an ezposing vector for a face (not necessarily minimal) containing F and the SDP is then
reduced to this smaller face. The process is repeated until the SDP is reduced to face(F). We
highlight three challenges with this approach: (1) each subproblem is itself an SDP and thereby
computationally intensive, (2) as many as n — 1 subproblems may have to be solved, see [32],
and (3) at each iteration a decision must be made regarding the rank of the exposing vector.
In [6] it is shown that the subproblem satisfies the Slater CQ and in [25] a relaxation of the
subproblem is given to ease the computational cost. A theoretical lower bound on the number of
facial reduction steps, called the singularity degree, is introduced in [31] for algorithms relying on
the theorem of the alternative (see Theorem [2.4). In [24] an alternative approach is given, using
the self-dual embedding of [7] instead of the theorem of the alternative. This approach may not
require as many steps as the singularity degree.

Our main contribution in this paper is a primal approach to facial reduction, which does
not rely on exposing vectors, but instead obtains a matrix in the relative interior of F, denoted
relint(F). Since the minimal face is characterized by the range of any such matrix, we obtain
the facially reduced problem in just one step. As a result, we eliminate costly subproblems and
require only one decision regarding rank.

While our motivation arises from SDPs, the problem of characterizing the relative interior
of a spectrahedron is independent of this setting. The problem is formally stated below.

Problem 1.1. Given a spectrahedron F(A,b) C S", find X € relint(F).

This paper is organized as follows. In Section [2| we introduce notation and discuss relevant
material on SDP strong duality and facial reduction. We develop the theory for our approach
in Section [3| prove convergence to the relative interior, and prove convergence to the analytic
center under a sufficient condition. In Section [4] we propose an implementation of our approach
and we present numerical results in Section 6} We also present a method for generating instances
of SDP with varied singularity degree in Section

2 Notation and Background

Throughout this paper the ambient space is the Euclidean space of n xn real symmetric matrices,
S, with the standard trace inner product (X,Y) := trace(XY) = 71", 3% | X;;Vj;, and the
induced Frobenius norm || X||r := 1/(X,X). In the subsequent paragraphs, we highlight some
well known results on the cone of positive semidefinite matrices and its faces, as well other useful
results from convex analysis. For proofs and further reading we suggest [29432}37].

The dimension of S” is the triangular number n(n+1)/2 =: t(n). We define svec: S — R
such that it maps the upper triangular elements of X € S™ to a vector in R!"™ where the off-
diagonal elements are multiplied by /2. Then svec is an isometry and an isomorphism with
sMat:= svec™!. Moreover, for X,Y € S”, we have (X,Y) = svec(X)7 svec(Y). The eigenvalues
of any X € S™ are real and ordered so as to satisfy, A\;(X) > --- > A\, (X), and A(X) € R" is
the vector consisting of all the eigenvalues. In terms of this notation, the operator 2-norm for
matrices is defined as || X |2 := max;|\;(X)|. When the argument to || - ||2 is a vector, this denotes
the usual Euclidean norm. The Frobenius norm may also be expressed in terms of eigenvalues:
| X||F = [|AX)]]2- The set of positive semidefinite (PSD) matrices, S';, is a closed convex cone
in S™, whose interior consists of the positive definite (PD) matrices, S” . The cone S’} induces
the Lowner partial order on S". That is, for X,Y € S" we write X =Y when X —Y €8} and



similarly X =Y when X —Y € 8% ,. Note that the following equivalence holds:

(X,Y)=0 < XY =0, VX,Y €S}. (2.1)
Definition 2.1 (face). A closed convex cone f C S is a face of ST} if

X, YeS, X+Yef = X Yecf.

A nonempty face f is said to be proper if f # S and f # 0. Given a convex set C' C S},
the minimal face of S' containing f, with respect to set inclusion, is denoted face(C'). A face f
is said to be exposed if there exists W € S} \ {0} such that

f={XeSi: (W, X) =0}

Every face of S} is exposed and the vector W is referred to as an exposing vector. The faces of
S’} may be characterized in terms of the range of any of its maximal rank elements. Moreover,
each face is isomorphic to a smaller dimensional positive semidefinite cone, as is seen in the
subsequent theorem.

Theorem 2.2 ( [9]). Let f be a face of S} and X € f a mazimal rank element with rank r and
orthogonal spectral decomposition

D 0

X=[v U][O 0

[ v o

es®, DeS,.

Then f = VSCFVT and relint(f) = VS7jr+VT. Moreover, W € S} is an exposing vector for f if
and only if W € USZL;TUT.

We refer to US",™"U T from the above theorem, as the conjugate face, denoted f¢. For any
convex set C, an explicit form for face(C) and face(C)¢ may be obtained from the orthogonal
spectral decomposition of any of its maximal rank elements as in Theorem

For a linear map A : S™ — R™, there exist S1,...,S; € S" such that

(A(X)), =(X,S;), Vie{l,...,m}.

The adjoint of A is the unique linear map A* : R™ — S™ satisfying
<-A<X>7y>:<X7-A*(y)>7 VX eS" yeR™,

and has the explicit form A*(y) = > /", y;S;, i.e., range(A*) = span{Si,...,Sn}. We define
A; € S™ to form a basis for the nullspace, null(A) = span{4;, ..., A;}.

For a non-empty convex set C' C S™ the recession cone, denoted C*°, captures the directions
in which C is unbounded. That is

C®:={Y eS": X+\Y €C, YA >0, X € C}. (2.2)

Note that the recession directions are the same at all points X € C. For a non-empty set S C S™,
the dual cone (also referred to as the positive polar) is defined as

St:={yeS":(X,Y)>0, VX € S}. (2.3)
For cones K; and Ko, with cl(-) denoting set closure, a useful result regarding dual cones is:

(K1 N K)t =c(K{ + Ky), (2.4)



2.1 Strong Duality in Semidefinite Programming and Facial Reduction
Consider the standard primal form SDP

SDP p* = min{(C, X) : A(X) =b,X > 0}, (2.5)
with Lagrangian dual
D-SDP d* := min{b’y : A*(y) < C}. (2.6)

Let F denote the spectrahadron defined by the feasible set of SDP . One of the challenges in
semidefinite programming is that strong duality is not an inherent property, but depends on a
constraint qualification, such as the Slater CQ.

Theorem 2.3 (strong duality, [37]). If the primal optimal value p* is finite and F NS", # 0,
then the primal-dual pair SDP and D-SDP have a zero duality gap, p* = d*, and d* is attained.

Since the Lagrangian dual of the dual is the primal, this result can similarly be applied to
the dual problem, i.e., if the primal-dual pair both satisfy the Slater CQ, then there is a zero
duality gap and both optimal values are attained.

Not only can strong duality fail with the absence of the Slater CQ, but the standard central
path of an interior point algorithm is undefined. The facial reduction regularization approach
of [3(5] restricts SDP to the minimal face of S" containing F:

SDP-R min{(C, X) : A(X) = b, X € face(F)}. (2.7)

Since the dimension of F and face(F) is the same, the Slater CQ holds for the facially reduced
problem. Moreover, face(F) is isomorphic to a smaller dimensional positive semidefinite cone,
thus SDP-R is itself a semidefinite program. The restriction to face(F) may be obtained as in
the results of Theorem 2.2l The dual of SDP-R restricts the slack variable to the dual cone

7 =C — A*(y) € face(F)*.

Note that F* = face(F)". If we have knowledge of face(F), i.e., we have the matrix V such that
face(F) = VS:LVT, then we may replace X in SDP by VRV” with R > 0. After rearranging, we
obtain SDP-R . Alternatively, if our knowledge of the minimal face is in the form of an exposing
vector, say W, then we may obtain V so that its columns form a basis for null(W). We see
that the approach is straightforward when knowledge of face(F) is available. In instances where
such knowledge is unavailable, the following theorem of the alternative from [5] guarantees the
existence of exposing vectors that lie in range(.A*).

Theorem 2.4 (of the alternative, [5]). Ezactly one of the following systems is consistent:
1. A(X)=b, X -0,
2. 04 A*(y) =0, bTy = 0.

The first alternative is just the Slater CQ, while if the second alternative holds, then A*(y) is
an exposing vector for a face containing F. We may use a basis for null(A*(y)) to obtain a smaller
SDP . If the Slater CQ holds for the new SDP we have obtained SDP-R., otherwise, we find
an exposing vector and reduce the problem again. We outline the facial reduction procedure in
Algorithm At each iteration, the dimension of the problem is reduced by at least one, hence
this approach is bound to obtain SDP-Rin at most n — 1 iterations, assuming that the initial
problem is feasible. If at each iteration the exposing vector obtained is of maximal rank then the



Algorithm 2.1 Facial reduction procedure using the theorem of the alternative.
Initialize S; so that (A(X)); = (S;, X) fori € {1,... ,m}
while Item 2. of Theorem 2.4 do
obtain exposing vector W

D 0
W= V] {0 0] U V], D»o
Si<—VTSiV, iE{l,...,m}
end while

number of iterations required to obtain SDP-R is referred to as the singularity degree, |31]. For
a non-empty spectrahedron, F, we denote the singularity degree as sd = sd(F).

We remark that any algorithm pursuing the minimal face through exposing vectors of the
form A*(-), must perform at least as many iterations as the singularity degree. The singularity
degree could be as large as the trivial upper bound n — 1 as is seen in the example of [32]. Thus
facial reduction may be very expensive computationally. On the other hand, from Theorem
we see that face(F) is fully characterized by the range of any of its relative interior matrices.
That is, from any solution to Problem we may obtain the regularized problem SDP-R .

3 A Parametric Optimization Approach

In this section we present a parametric optimization problem that solves Problem

Assumption 3.1. We make the following assumptions: (1) A is surjective; (2) F is non-empty,
bounded and contained in a proper face of S}.

The assumption on A is a standard regularity assumption and so is the non-emptiness as-
sumption on F. The necessity of F to be bounded will become apparent throughout this section,
however, our approach may be applied to unbounded spectrahedra as well. We discuss such
extensions in Section The assumption that F is contained in a proper face of S} restricts
our discussion to those instances of SDP that are interesting with respect to facial reduction.

In the following lemma are stated two useful characterizations of bounded spectrahedra.

Lemma 3.2. The following holds:
F is bounded <= null(A)NS} = {0} <= range(A")NS}, #0.

Proof. For the first equivalence, F is bounded if and only if 7> = {0} by Theorem 8.4 of [29].
It suffices, therefore, to show that 7°° = null(A) NS}. It is easy to see that (S})>* = S} and
that the recession cone of the affine manifold defined by A and b is null(.A). By Corollary 8.3.3
of [29] the recession cone of the intersection of convex sets is the intersection of the respective
recession cones, yielding the desired result.

Now let us consider the second equivalence. For the forward direction, observe that

null(A) NS? = {0} < (null(A)NS?)" = {0},
< null(A)*" +ST =8",
<= range(A")+ S} =S".
The second inequality is due to 1) and one can verify that in this case null(A)+ N S? is closed.
Thus there exists X € range(A*) and Y € S} such that X +Y = —I. Equivalently, —X =

I+Y €8, . For the converse, let X € range(A*)NS" , and suppose 0 # S € null(A)NS’}. Then
(X, S) = 0 which implies, by (2.1, that XS = 0. But then null(X) # {0}, a contradiction. [



Let r denote the maximal rank of any matrix in relint(F) and let the columns of V' € R™*"
form a basis for its range. In seeking a relative interior point of F we define a specific point from
which we develop a parametric optimization problem.

Definition 3.3 (analytic center). The analytic center of F is the unique matrix X satisfying
X = argmax{logdet(VTXV): X € F}. (3.1)

Under Assumption the analytic center is well-defined and this follows from the proof of
Theorem below. It is easy to see that the analytic center is indeed in the relative interior of
F and therefore a solution to Probelm However, the optimization problem from which it is
derived is intractable due to the unknown matrix V. If V is simply removed from the optimization
problem (replaced with the identity), then the problem is ill-posed since the objective does not
take any finite values over the feasible set as it lies on the boundary of the SDP cone. To combat
these issues, we propose replacing V' with I and also perturbing F so that it intersects St , . The
perturbation we choose is that of replacing b with b(«) := b+ a.A(I), a > 0, thereby defining a
family of spectrahedra

Fla) ={X €S} : A(X) =b(a)}.

It is easy to see that if F # () then F(«) has postive definite elements for every a > 0. Indeed
F+al C F(a). Note that the affine manifold may be perturbed by any positive definite matrix
and [ is chosen for simplicity. We now consider the family of optimization problems for a > 0:

P(a) max{logdet(X) : X € F(a)}. (3.2)

It is well known that the solution to this problem exists and is unique for each « > 0. We include
a proof in Theorem below. Moreover, since face(F(«)) = S’ for each o > 0, the solution
to P(«) is in relint(F(«)) and is exactly the analytic center of F(«). The intuition behind our
approach is that as the perturbation gets smaller, i.e., a N\ 0, the solution to P(«) approaches
the relative interior of F. This intuition is validated in Section Specifically, we show that
the solutions to P(a) form a smooth path that converges to X € relint(F). We also provide a
sufficient condition for the limit point to be X in Section

We note that our approach of perturbing the spectrahedron in order to use the logdet(-)
function is not entirely new. In [12], for instance, the authors perturb a convex feasible set in
order to approximate the rank function using log det(-). Unlike our approach, their perturbation
is constant.

3.1 Optimality Conditions
We choose the strictly concave function logdet(-) for its elegant optimality conditions, though
the maximization is equivalent to maximizing only the determinant. We treat it as an extended
valued concave function that takes the value —oo if X is singular. For this reason we refer to
both functions det(-) and log det(-) equivalently throughout our discussion.

Let us now consider the optimality conditions for the problem P(«). Similar problems have
been thoroughly studied throughout the literature in matrix completions and SDP, e.g., |1}/14]
33,37]. Nonetheless, we include a proof for completeness and to emphasize its simplicity.

Theorem 3.4 (optimality conditions). For every a > 0 there exists a unique X (o) € F(a) NS
such that
X () = argmax{logdet(X) : X € F(a)}. (3.3)



Moreover, X («a) satisfies (3.3) if, and only if, there exists a unique y(a) € R™ and a unique
Z (o) € ST, such that
A*(y(@)) — Z(a)
A(X(a)) = b(a) | =0. (3.4)
Z(a)X (o) =T

Proof. By Assumption F # 0 and bounded and it follows that F(a) N ST, # (0 and by
Lemma it is bounded. Moreover, logdet(-) is a strictly concave function over F(a) NS}, (a
so-called barrier function) and

lim logdet(X) = —oo.
ot a0 0B At X) = —oo

Thus, we conclude that the optimum X (o) € F(a) N S”, exists and is unique. The Lagrangian

of problem (3.3) is

L(X,y) =logdet(X) — (y, A(X) — b)
= log det(X) — (A™(y), X) + (y, b).

Since the constraints are linear, stationarity of the Lagrangian holds at X («). Hence there exists
y(a) € R™ such that (X(a))™! = A*(y(a)) =: Z(a). Clearly Z(a) is unique, and since A is
surjective, we conclude in addition that y(«) is unique. O

3.2 The Unbounded Case

Before we continue with the convergence results, we briefly address the case of unbounded spec-
trahedra. The restriction to bounded spectrahedra is necessary in order to have solutions to (3.3]).
There are certainly large families of SDPs where the assumption holds. Problems arising from
liftings of combinatorial optimization problems often have the diagonal elements specified, and
hence bound the corresponding spectrahedron. Matrix completion problems are another family
where the diagonal is often specified. Nonetheless, many SDPs have unbounded feasible sets and
we provide two methods for reducing such spectrahedra to bounded ones. First, we show that
the boundedness of F may be determined by solving a projection problem.

Proposition 3.5. Let F be a spectrahedron defined by the affine manifold A(X) = b and let
P :=argmin {||X — I||p : X € range(A")}.
Then F is bounded if P > 0.

Proof. First we note that P is well defined and a singleton since it is the projection of I onto
a closed convex set. Now P > 0 implies that range(A*) N ST, # 0 and by Lemma this is
equivalent to F bounded. 0

The proposition gives us a sufficient condition for F to be bounded. Suppose this condition
is not satisfied, but we have knowledge of some matrix S € F. Then for ¢ > 0, consider the

spectrahedron
F:={X eS": X € F, trace(X) = trace(S) + t}.

Clearly F’ is bounded. Moreover, we see that ' C F and contains maximal rank elements of
F, hence face(F') = face(F). It follows that relint(F’) C relint(F) and we have reduced the
problem to the bounded case.

Now suppose that the sufficient condition of the proposition does not hold and we do not
have knowledge of a feasible element of F. In this case we detect recession directions, elements



of null(A) NS, and project to the orthogonal complement. Specifically, if F is unbounded then
F(«) is unbounded and problem is unbounded. Suppose, we have detected unboundedness,
i.e., we have X € F(a) NS} with large norm. Then X = Sp + S with § € null(4) NS} and
IIS] > 1|So||. We then restrict F to the orthogonal complement of S, that is, we consider the
new spectrahedron

F={XeS":XeF, (5X)=0}

By repeated application, we eliminate a basis for the recession directions and obtain a bounded
spectrahedron. From any of the relative interior points of this spectrahedron, we may obtain
a relative interior point for F by adding to it the recession directions obtained throughout the
reduction process.

3.3 Convergence to the Relative Interior and Smoothness
By simple inspection it is easy to see that (X (a),y(«), Z(«)), as in (3.4), does not converge as
a N\, 0. Indeed, under Assumption

Clyi{‘% )\n(X(Oé)) -0 = il{l%”Z(a)HQ — +00.

It is therefore necessary to scale Z(«) so that it remains bounded. Let us look at an example.

Example 3.6. Consider the matrix completion problem: find X > 0 having the form
11 7
1 1 1
711

The set of solutions is indeed a spectrahedron with A and b given by

I11 1
T11 T12 T13 x12 1
Al (12 @2 wo3| | := |22 |, bi=]1
r13 T23 33 o3 1
33 1
In this case, it is not difficult to obtain
1
X(a) = 1 1+« 1 ,
1
TFa 1 1 + «
with inverse
1 14+« —1 0
X -1 — -1 a2+2a+2 -1
@7 = v o%+%0+2
0 -1 14+«

Clearly limoo|| X (o) 7Y|2 — +o0. However, when we consider aX (o)™, and take the limit as
a goes to 0 we obtain the bounded limit

Note that X = X (0) is the 3 x 3 matriz with all ones, rankX + rankZ = 3, and XZ = 0.



It turns out that multiplying X («) ' by o always bounds the sequence (X («),y(c), Z(a)).
Therefore, we consider the scaled system

A(y) — Z
AX)=bla)| =0, X =0, Z=0, a>0, (3.5)
ZX —al

that is obtained from by multiplying the last equation by «. Abusing our previous notation,
we let (X (a),y(a),Z(a)) denote a solution to this system and we refer to the set of all such
solutions as the parametric path. The parametric path has clear parallels to the central path of
SDP , however, it differs in one main respect: it is not contained in the relative interior of F. In
the main theorems of this section we prove that the parametric path is smooth and converges as
a N\, 0 with the primal limit point in relint(F). We begin by showing that the primal component
of the parametric path has cluster points.

Lemma 3.7. Let & > 0. For every sequence {ay}tren C (0,a] such that cy, \, 0, there exists a
subsequence {ay}ien such that X(oy) - X € F.

Proof. Let & and {ag}ren be as in the hypothesis. First we show that the sequence X («y) is
bounded. For any k£ € N we have

[ X (ar)ll2 < | X (o) + (@ — ap)ll2 £ max [[ X2 < +oo.
XeF(a)

The second inequality is due to X (ay) + (@ — a;)! € F(@) and the third inequality holds since
F(@) is bounded. Thus there exists a convergent subsequence {a;}ieny with X (o) — X, that
clearly belongs to F. O

For the dual variables we need only prove that Z(«) converges (for a subseqgence) since this
implies that y(«) also converges, by the assumption that A is surjective. As for X (a), we show
that the tail of the parametric path corresponding to Z(«) is bounded. To this end, we first
prove the following technical lemma. Recall that X is the analytic center of Definition

Lemma 3.8. Let & > 0. There exists M > 0 such that for all o € (0, @],
0<(X(a) ™", X+al) <M.

Proof. Let a be as in the hypothesis and let o € (0,a]. The first inequality is trivial since both
of the matrices are positive definite. For the second inequality, we have,

(X(@)™ = X(a), X +al - X(a)) = %A*(y(@)) - éA*(y(a)), X +al - X(a)),
= (=y(@) — ~y(a), ACX +al) — AX(a),
— (@) - Ly (@ - A, oo
= (X(a)™ = X(a)7, (@ - a)I),
= (@ — a)trace(X(a)™!) — (X(a)™}, (@ — a)I)
On the other hand,
(X(@) = X(a)"L, X +al — X(a)) =n+ (X(@)~% X) + atrace(X(a) ™) 57)

—(X(a)™", X (o) — (X(a)"1, X + al).



Combining (3.6) and (3.7]) we get
(@ — a) trace(X (@) ™) — (X ()™, (@ — a)I) = n+ (X(a)~", X) + atrace(X (a)1)
—(X(@)" X(a)) = (X(a)"", X +al).
After rearranging, we obtain
(X() ", X +al) =n+(X(@) ", X) + atrace(X(a) ™) — (X (a) ", X (o))
— (@ — a)trace(X (a)™h), (3.8)
=n+ atrace(X(a) ™) + (X (@)~ X) — (X(a)~L, X ().
The first and the third terms of the right hand side are positive constants. The second term is
positive for every value of o and is bounded above by & trace(X (a@)~!) while the fourth term is

bounded above by 0. Applying these bounds as well as the trivial lower bound on the left hand
side, we get

0 < (X(a) ", X +al) <n+atrace(X (@)™ + (X(a)™', X) =: M. (3.9)
O

We need one more ingredient to prove that the parametric path corresponding to Z(«) is
bounded. This involves bounding the trace inner product above and below by the maximal and
minimal scalar products of the eigenvalues, respectively.

Lemma 3.9 (Ky-Fan [11], Hoffman-Wielandt [17]). If A, B € S", then

Z)\ Ans1—i(B )g(A,B)gzn:/\i(A)/\ B
=1

We now have the necessary tools for proving boundedness and obtain the following conver-
gence result.

Theorem 3.10. Let & > 0. For every sequence {ay }ken C (0, @] such that oy, \ 0, there exists
a subsequence {oy}oen such that

(X (), ylae), Z(aw)) = (X,5,Z) € {S§ x R™ x S}}
with X € relint(F) and Z = A*(3).

Proof. Let & > 0 and {ay }ren be as in the hypothesis. We may without loss of generality assume
that X (az) — X € F due to Lemman Let k € N. Combining the upper bound of Lemma
with the lower bound of Lemma we have 37 \i(X (o) ™D A1 (X +apl) < M. Since the

left hand side is a sum of positive terms, the inequality applies to each term:

Ni( X (ar) DApr—i(X +apl) <M, Vie{l,...,n}.

Equivalently,
M
(X (ap)™) < . , Vie{l,...,n}. (3.10)
Z Ant1-i(X) + ay
Now exactly r eigenvalues of X are positive. Thus for i € {n —r+1,... ,n} we have
M M
)\Z‘(X(Oék)fl) < < ,

Ar1-i(X) Far ~ App1—i(X)

10



and we conclude that the r smallest eigenvalues of X (az)~! are bounded above. Consequently,

there are at least r eigenvalues of X (ay) that are bounded away from 0 and rank(X) > r. On
the other hand X € F and rank(X) < r and it follows that X € relint(F).
Now we show that Z(ay) is a bounded sequence. Indeed, from (3.10|) we have

M M
AL oM (X)) NV<ap—r—— =ap— = M.
1Z(ag)ll2 = arAi (X (ag) ™) < k/\n(X)+ak Ko

The second to last equality follows from the assumption that X € St \S T, e A X)=0.
Now there exists a subsequence {ay}sen such that Z(ay) — Z, X(ay) — X. Moreover, for each
¢, there exists a unique y(ay) € R™ such that Z(ay) = A*(y(ay)) and since A is surjective, there
exists ¥ € R™ such that y(ay) — § and Z = A*(y). Lastly, the sequence Z(ay) is contained in
the closed cone S"! hence 7 e S?, completing the proof. O

We conclude this section by proving that the parametric path is smooth and has a limit point
as a \( 0. Our proof relies on the following lemma of Milnor and is motivated by an analogous
proof for the central path of SDP in [15/16]. Recall that an algebraic set is the solution set of a
system of finitely many polynomial equations.

Lemma 3.11 (Milnor [21]). Let V C R¥ be an algebraic set and U C R* be an open set defined
by finitely many polynomial inequalities. Then if 0 € cl(U N'V) there exists € > 0 and a real
analytic curve p : [0,¢) — R¥ such that p(0) = 0 and p(t) € U NV whenever t > 0.

Theorem 3.12. There exists (X,4,Z) € ST x R™ x S with all the properties of Theorem
such that

lim (X (a), y(a), Z(a)) = (X, 7, 2).

a\,0
Proof. Let (X,9,Z) be a cluster point of the parametric path as in Theoremu We define the
set U as

U={(X,y,Z,0) €ES"xR" xS"xR: X+X =0, Z+Z =0, Z=A(y), a>0}.

Note that each of the positive definite constraints is equivalent to n strict determinant (polyno-
mial) inequalities. Therefore, U satisfies the assumptions of Lemma Next, let us define the
set V as,

A*(y) =
V= (X,y,Z,0) e S" xR™ x§" xR: A(X) + «A(I) =0,
(Z+2)(X+X)—al

and note that V is indeed a real algebraic set. Next we show that there is a one-to-one corre-
spondance between ¢ NV and the parametric path without any of its cluster points. Consider
(X,9,Z,a) eUNY and let (X (&),y(a@), Z(&)) be a point on the parametric path. We show that

(X+X,94+9, 2+ 2) = (X(a),y(a), Z(a)). (3.11)

ANl

First of all X —|— X = 0and Z+ Z > 0 by inclusion in U. Secondly, (X + X, 5+ 4,2 +
the system (3.5) when o = a&:

) solves

AW+9) —(Z+2) A (9) = Z + (A*(9) — 2) 0
AX +X)—ba) | = b+aA() b(a) = |0
(Z+2) (X +X)—al 0 0

11



Since (3.5)) has a unique solution, (3.11]) holds. Thus,
(ngvz) = (X(Oé) _va(a) —Q,Z(Ol) - Z)v

and it follows that & NV is a translation of the parametric path (without its cluster points):

UNY = {(X,5,7,0) € 8" x R™ xS" xR : (X, 7) = (X(0) — X,y(a) — §, Z(a) — Z), @ >0},
(3.12)
Next, we show that 0 € cl(d N V). To see this, note that

(X(a),y(a), Z(e)) = (X, 7, Z),
as a \, 0 along a subsequence. Therefore, along the same subsequence, we have
(X(a) - Xay(a) —ﬂ,Z(Oz) - Z,Oé) — 0.

Each of the elements of this subsequence belongs to U/ NV by and therefore 0 € cl(U NV).
We have shown that ¢/ and V satisfy all the assumptions of Lemma hence there exists
e > 0 and an analytic curve p: [0,e) — S” x R™ x §" x R such that p(0) =0 and p(t) eUU NV
for t > 0. Let
p(t) = (X Yty Ztys r))

and observe that by (3.12)), we have

(X0, Yty Zy> ) = (X (agy) — X, y(aw) — 9, Z(aw) — Z). (3.13)

Since p is a real analytic curve, the map g : [0,¢) — R defined as g(t) = o), is a differentiable
function on the open interval (0,¢) with

lim g(t) = 0.
t{%g()

In particular, this implies that there is an interval [0,&) C [0,¢) where g is monotone. It follows
that on [0,), g~ ! is a well defined continuous function that converges to 0 from the right. Note
that for any ¢t > 0, (X(¢),y(t), Z(t)) is on the parametric path. Therefore,

. . 1 T
lim X (1) = im X (9(g™(1))) = lim X (a1

Substituting with (3.13]), we have

%{I})X(t) e %i\n(l)X(g—l(t)) + X =X.

Similarly, y(¢) and Z(t) converge to § and Z respectively. Thus every cluster point of the
parametric path is identical to (X, 7, Z). O

We have shown that the tail of the parametric path is smooth and it has a limit point.
Smoothness of the entire path follows from the Berge Maximum Theorem, [2], or [30, Example
5.22].

12



3.4 Convergence to the Analytic Center

The results of the previous section establish that the parametric path converges to relint(F) and
therefore the primal part of the limit point has excatly r positive eigenvalues. If the smallest pos-
itive eigenvalue is very small it may be difficult to distinguish it from zero numerically. Therefore
it is desirable for the limit point to be substantially in the relative interior, in the sense that its
smallest positive eigenvalue is relatively large. The analytic center has this property and so a
natural question is whether the limit point coincides with the analytic center. In the following
modification of an example of [16], the parametric path converges to a point different from the
analytic center.

Example 3.13. Consider the SDP feasibility problem where A is defined by the matrices

10 0 0 0 0 0 O 00 0O 00 00 0 0 0 O

(Si)iet. 5 i= 01 00 0 0 01 0010 00 00 0 0 0O
P 000 0/’f0 O1T 0[{’(0 1 0 0”0 O 0 17|10 0 0 0"

0 0 0O 0 1 0 0 0 0 01 0010 0 0 01

and b := (1,0,0,0,0)T. One can verify that the feasible set consists of positive semidefinite matrices of
the form

1-— Tog T12 0 0

_ T12 T2 0 O
X = 0 0O 0 0
0 0O 0 0

and the analytic center is the determinant mazimizer over the positive definite blocks of this set and
satisfies oo = 0.5 and x12 = 0. Howewver, the parametric path converges to a matrix with xso = 0.6 and
x12 = 0. To see this note that

AI)=(2 1 1 0 1)T, bla)=(1+2a a o 0 a)T.

By feasibility, X (a) has the form

1+ 20 — 222 T12 13 T14
T12 Too 0 i(o—xs3)
I13 0 Is33 0
T14 %(a —x33) O e

Moreover, the optimality conditions of Theorem indicate that X ()~ € range(A*) and

1 + 200 — T22 0 0 0

_ 0 T22 0 %(Ox - £E33)
X(a) = 0 0 33 0
0 Ha—mz33) 0 «

Of all the matrices with this form, X (a) is the one mazximizing the determinant, that is

([X ()22, [X(@)]33)T = argmax  w33(1 4 20 — 22) (awa2 — 1(a — 233)?),
s.t. 0 < oo <1+42a, 33 >0, awgy > i(a —r33)%.

Due to the strict inequalities, the maximizer is a stationary point of the objective function. Computing the
derivative with respect to xoo and x33 we obtain the equations

3733(—(045622 - Z(O‘ - .1‘33)2) + 04(1 + 2a — 1'22) =0,
1 1
(1+2a — z22)((aw22 — z(a —x33)%) + §$33(04 — x33)) = 0.

13



Since x33 > 0 and (14 2a — x92) > 0, we may divide them out. Then solving each equation for xes we get

1 1 1
Tog = @(OZ — .’E33)2 + o+ 5 = E(OZ — LE33)2 — %xgg(a — IE33). (314)
Combining these two expressions for xqg we have
1 1 1 1
0= E(a — x33)% — %3733(04 — T33) — 8704(06 —133)° —a — >

1 1 1 1

= 8—a(a — 3333)2 — 51‘33 =+ %.%‘%3 - — 5,
1, 1 1 1 1, 1

= 8*@.1'33 — Z.’E33 + ga - 53}33 + %.%'33 - — 5,
5 4 3 L 1 1

= —T533— - —a—a— —.
8a"3 47 P g 2

Now we solve for xss,

3i i~ 4 (ga—a—3) da 11 1
a3 Vi 2 :331?0‘,/ ZJE’ ~(3a+2vavla+5)

25 5

Since xag s fully determined by the stationarity constraints, we have [X ()]s = x33 and [X ()]s — 0 as
a N\, 0. Substituting this expression for xsz into (3.14) we get

1 1 1
(X (a)]22 = oG g(3a +2yav1la+5)* +a+ 3

1 1 1
=3 —(a? —2a5(3a+2f\/11a+ ) 2—(904 + 6ay/av1la +5 +4a(11a+5)))+a+§,
8}

1 1
ga—?O(Sa-l-Qf\/lla—l— 5) + (9a+6\f\/11a+ +4(11a+5))+a+§,

_31

o — —Ja11 —
= 25¢ 100\F atoty

Now it is clear that [X (a)]22 — 0.6 as « \ 0.

3.4.1 A Sufficient Condition for Convergence to the Analytic Center
Recall that face(F) = VSCFVT. To simplify the discussion we may assume that V = [é] , so that

A (3.15)

ST0
face(F) = [ + } )
This follows from the rich automorphism group of S, that is, for any full rank W € R"*",
we have WSiWT = S'. Moreover, it is easy to see that there is a one-to-one correspondence
between relative interior points under such transformations.

Let us now express F in terms of null(A), that is, if Ay € F and recall that A;,... , A4, ¢ =

t(n) —m, form a basis for null(A), then
F = (Ao +span{Ay,... , A;}) NS,

Similarly,
F(a) = (ol + Ag +span{Ay,... ,As}) NS

Next, let us partition A; according to the block structure of (3.15)):

L; M; .
A; = [MT Ni:| , 1€{0,...,q}. (3.16)
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Since Ay € F, from (3.15) we have Ny = 0 and My = 0. Much of the subsequent discussion
focuses on the linear pencil Y 7_; ;N;. Let N be the linear mapping such that

null(N) = {ixiNi cx € Rq} .

i=1

Lemma 3.14. Let {Ny,... , Ny} be as in (3.16), span{Ny,... , Ny} NS} = {0}, and let

q
Q := argmax{logdet(X): X =1+ inNi =0, z € R} (3.17)
i=1

Then for all o > 0,

q
a@ = argmax{logdet(X) : X = ol + inNi =0, x € R7}. (3.18)
i=1

Proof. We begin by expressing Q in terms of N :
Q = arg max{logdet(X) : N (X) =N (I)}.

By the assumption on the span of the matrices IV; and by Lemma the feasible set of is
bounded. Moreover, the feasible set contains positive definite matrices, hence all the assumptions
of Theorem are satisfied. It follows that @ is the unique feasible, positive definite matrix
satisfying Q! € range(\N *).

Moreover, a( is positive definite, feasible for , and (aQ)~! € range(N'*). Therefore
a() is optimal for . O

Now we prove that the parametric path converges to the analytic center under the condition
of Lemma [3.74

Theorem 3.15. Let {Ny,..., Ny} be as in (3.16). If span{Ny,... , N} NS? = {0} and X is
the limit point of the primal part of the parametric path as in Theorem then X = X.

- [y ol o [v o
X‘[o 0]’X_'[0 o]

and suppose, for eventual contradiction, that Y # Y. Then let r,s € R be such that

Proof. Let

det(Y) < r < s < det(Y).

Let @ be as in Lemma and let x € R? satisfy Q@ = I + > ; 2;N;. Now for any a > 0 we
have R
Y+ al +« 23:1 miLi « 23:1 JZZMl>

q
X +al+Y z4) = <
( ; ) ad iy @M a

Note that there exists ¢ > 0 such that X +a 3% 2;A; = 0 whenever a € (0,¢). It follows that

q
X +all + Z:cZAl) € Fla), Vae(0,¢).
i=1
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Taking the determinant, we have

q

anr

=1 =1 =1

q
x det(Y 4 afl + aZaziL,),
i=1

q q
:det( — sz Y+0J+ aZ:cl i I(Z»’UzMZT)> xdet(YqLaIJraZ:ciLl)
i=1

=1 =1
Now we have

lim
a0 a”

det(X+aI+le 1) = det(Q) det(Y).
i=1

Thus, there exists o € (0,¢) so that for a € (0,0) we have

det(X + oI + sz i) > sa™ " det(Q).
=1

As X(«) is the determinant maximizer over F(«), we also have
det(X(a)) > sa" " det(Q), Va € (0,0).
On the other hand X (o) — X and let

~fal+ Y1 z(a)L; iz 2()iM;
X = | B el ]

Then ol + Y%, x(a);L; — Y and there exists § € (0, ) such that for all a € (0,4),

q
det(ad + ZCL’ a); L
i=1

1 ) q
det(X + a(I iAi)) = det —a? M) (Y + ol iLi
et(X + af +Zm = o de (aQ a (ZCL‘ Y +« +aZ:c )

l(zq: fUiMiT)>
i=1

(3.19)

Moreover, by definition of @, det(al + Y7 ; z(a);N;) < det(aQ) = o™ " det(Q). To complete

the proof, we apply the Hadamard-Fischer inequality to det(X («)). For a € (0,d) we have

q
det(X () < det(al + Zx( i) det(al + Z ) < ra " det(Q),
i=1

a contradiction of (3.19)).

O]

Remark 3.16. Note that Example[3.13 fails the hypotheses of Theorem[3.15 Indeed, the matrix

0 0 0 O

0o 0 0 -1}, . : . . ‘
00 2 0 lies in null(A) and the bottom 2 x 2 block is nonzero and positive semidefinite.
0 -1 0 0
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4 The Projected Gauss-Newton Method

We have constructed a parametric path that converges to a point in the relative interior of F.
In this section we propose an algorithm to follow the path to its limit point. We do not prove
convergence of the proposed algorithm and address its performance in Section We follow
the (projected) Gauss-Newton approach (the nonlinear analog of the Newton method) originally
introduced for SDPsin [18] and improved more recently in [8]. This approach has been shown
to have improved robustness compared to other symmetrization approaches. For well posed
problems, the Jacobian for the search direction remains full rank in the limit to the optimum.

4.1 Scaled Optimality Conditions

The idea behind this approach is to view the system defining the parametric path as an overde-
termined map and use the Gauss-Newton (GN) method for nonlinear systems. In the process,
the linear feasibility equations are eliminated and the GN method is applied to the remaining
bilinear equation. For av > 0 let G : ST x R™ x ST — §™ x R™ x R"*" be defined as

A*(y) — 2
Go(X,y,Z) = |AX) = bla) | . (4.1)
ZX —al

The solution to G,(X,y,Z) = 0 is exactly (X (o), y(), Z(a)) when a > 0; and for o = 0 the
solution set is
F x (A")"1(D) x D, D :=range(A*) N face(F)".

Clearly, the limit point of the parametric path satisfies Go(X,y, Z) = 0. We fix a > 0. The GN
direction, (dX,dy,dZ), uses the overdetermined GN system

dX
G;(X7y7 Z) dy = _Goc(X7y7Z)' (42)
dz

Note that the search direction is a strict descent direction for the norm of the residual, || vec(Go (X, y, 2))||3,
when the Jacobian is full rank. The size of the problem is then reduced by projecting out the first

two equations. We are left with a single linearization of the bilinear complementarity equation,

i.e., n? equations in only ¢(n) variables. The least squares solution yields the projected GN direc-

tion after backsolves. We prefer steps of length 1, however, the primal and dual step lengths, «,

and «ag4 respectively, are reduced, when necessary, to ensure strict feasibility: X + a,dX > 0 and

Z 4+ agdZ = 0. The parameter « is then reduced and the procedure repeated. On the parametric

path, « satisfies

a=-—"-—7 (4.3)

Therefore, this is a good estimate of the target for a near the parametric path. As is customary,
we then use a fixed o € (0,1) to move the target towards optimality, « + oa.

4.1.1 Linearization and GN Search Direction
For the purposes of this discussion we vectorize the variables and data in Go. Let A € R™*H")
be the matrix representation of A, that is

A= svec(S)T, ie{l,...,m}.
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Let N € RUM*(Un)=m) be such that its columns form a basis for null(A) and let & be a particular
solution to Az = b(«), e.g., the least squares solution. Then the affine manifold determined from
the equation A(X) = b(«) is equivalent to that obtained from the equation

z =%+ Nov, veRMW—™

Moreover, if z := svec(Z), we have the vectorization

ATy — 2 rq
oz, 0,y,2) = z—T — Nv = |7, (4.4)
sMat(z) sMat(x) — ol R,

Now we show how the first two equations of the above system may be projected out, thereby
reducing the size of the problem. First we have

flz Aldy — dz
g'a(a:,v,y,z) d = dx — Ndv )
dz sMat(dz) sMat(z) + sMat(z)sMat(dx)

and it follows that the GN step as in (4.2)) is the least squares solution of the system

ATdy — dz T4
dx — Ndv =— |7
sMat(dz) sMat(z) + sMat(z) sMat(dz) R.

Since the first two equations are linear, we get dz = ATdy 4 rq and dx = Ndv — rp. Substituting
into the third equation we have,

sMat (AT dy + rg) sMat(z) 4 sMat(z) sMat(Ndv — 7)) = —R...

After moving all the constants to the right hand side we obtain the projected GN system in dy
and dv,

sMat (AT dy) sMat (x)+sMat(z) sMat(Ndv) = —R.+sMat(z) sMat(r,) —sMat (rq) sMat (). (4.5)

The least squares solution to this system is the exact GN direction when r4 = 0 and r, = 0,
otherwise it is an approximation. We then use the equations dz = ATdy 4+ rq and dx = Ndv — Tp
to obtain search directions for x and z.

In [8, Theorem 1], it is proved that if the solution set of Go(X,y, Z) = 0 is a singleton such
that X + Z > 0 and the starting point of the projected GN algorithm is sufficiently close to the
parametric path then the algorithm, with a crossover modification, converges quadratically. As
we showed above, the solution set to our problem is

F x (A)~YD) x D,

which is not a singleton as long as F # (). Indeed, D is a non-empty cone. Although the
convergence result of [8] does not apply to our problem, their numerical tests indicate that
the algorithm converges even for problems violating the strict complementarity and uniqueness
assumptions and our observations agree.
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4.2 Implementation Details

Several specific implementation modifications are used. We begin with initial x,v,y, z with
corresponding X, Z >~ 0. If we obtain P > 0 as in Proposition then we set Z = P and define
y accordingly, otherwise Z7 = X = I. We estimate « using and set a < 2a to ensure that
our target is somewhat well centered to start.

4.2.1 Step Lengths and Linear Feasibility
We start with initial step lengths o, = ag = 1.1 and then backtrack using a Cholesky factorization
test to ensure positive definiteness

X+apdX =0, Z+aqdZ 0.

If the step length we find is still > 1 after the backtrack, we set it to 1 and first update v,y and
then update x, z using
=&+ Nv, z=ATly.

This ensures exact linear feasibility. Thus we find that we maintain exact dual feasibility after a
few iterations. Primal feasibility changes since a decreases. We have experimented with including
an extra few iterations at the end of the algorithm with a fixed « to obtain exact primal feasibility
(for the given «). In most cases the improvement of feasibility with respect to F was minimal
and not worth the extra computational cost.

4.2.2 Updating o and Expected Number of Iterations

In order to drive a down to zero, we fix 0 € (0,1) and update alpha as a < oca. We use a
moderate o = .6. However, if this reduction is performed too quickly then our step lengths end
up being too small and we get too close to the positive semidefinite boundary. Therefore, we
change « using information from min{e,, aq}. If the steplength is reasonably near 1 then we
decrease using o; if the steplength is around .5 then we leave « as is; if the steplength is small
then we increase to 1.2a; and if the steplength is tiny (< .1), we increase to 2«. For most of the
test problems, this strategy resulted in steplengths of 1 after the first few iterations.

We noted empirically that the condition number of the Jacobian for the least squares problem
increases quickly, i.e., several singular values converge to zero. Despite this we are able to obtain
high accuracy search directionsﬂ

Since we typically have steplengths of 1, « is generally decreased using o. Therefore, for
a desired tolerance e and a starting @ = 1 we would want o* < ¢, or equivalently, %k <
logg(€)/logg(c). For our 0 = .6 and ¢ decimals of desired accuracy, we expect to need k < 4.5t
iterations.

5 Generating Instances and Numerical Results

In this section we analyze the performance of an implementation of our algorithm. We begin
with a discussion on generating spectrahedra. A particular challenge is in creating spectrahedra
with specified singularity degree. Following this discussion, we present and analyze the numerical
results.

'Our algorithm finds the search direction using . If we looked at a singular value decomposition then we
get the equivalent system E(VTdE) = (UTRHS). We observed that several singular values in ¥ converge to zero
while the corresponding elements in (U7 RHS) converge to zero at a similar rate. This accounts for the improved
accuracy despite the huge condition numbers. This appears to be a similar phenomenon to that observed in the
analysis of interior point methods in [38l39] and as discussed in [13].
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5.1 Generating Instances with Varying Singularity Degree

Our method for generating instances is motivated by the approach of [36] for generating SDPs with
varying complementarity gaps. We begin by proving a relationship between strict complementar-

ity of a primal-dual pair of SDP problems and the singularity degree of the optimal set of the

primal SDP . This relationship allows us to modify the code presented in [36] and obtain spec-

trahedra having various singularity degrees. Recall the primal and dual SDPsin and ,

respectively. Let Op C S} and Op C S'} denote the primal and dual optimal sets respectively,

where the dual optimal set is with respect to the variable Z. Specifically,

Op ={X €St :AX)=b, (C,X)=p*}, Op:={Z €St :Z=C-A*(y), b'y=d*, yc R™}.

Note that Op is a spectrahedron determined by the affine manifold

{é(,))%] B (ﬁ) ‘

We note that the second system in the theorem of the alternative, Theorem for the spectra-
hedron Op is
0#7C+ A*(y) = 0, 7p* +y7b = 0. (5.1)

We say that strict complementarity holds for SDP and D-SDP if there exists X* € Op and
Z* € Op such that

(X*,Z*) =0 and rank(X™) + rank(Z*) = n.
If strict complementarity does not hold for SDP and D-SDP and there exist X* € relint(Op)
and Z* € relint(Op), then we define the complementarity gap as

g :=n —rank(X™) — rank(Z").

Now we describe the relationship between strict complementarity of SDP and D-SDP and the
singularity degree of Op.

Proposition 5.1. If strict complementarity holds for SDP and D-SDP , then sd(Op) < 1.

Proof. Let X* € relint(Op). If X* = 0, then sd(Op) = 0 and we are done. Thus we may
assume rank(X*) < n. By strict complementarity, there exists (y*, Z*) € R™ x S feasible for
D-SDP with Z* € Op and rank(X*) +rank(Z*) = n. Now we show that (1, —y*) satisfies (5.1
Indeed, by dual feasibility,

C—A"(y*)=7* S} \ {0},

and by complementary slackness,
P = ()b = (X7, 0) — (A" (y"), X*) = (X*, Z%) = 0.
Finally, since rank(X™*) + rank(Z*) = n we have sd(Op) = 1, as desired. O

From the perspective of facial reduction, the interesting spectrahedra are those with singular-
ity degree greater than zero and the above proposition gives us a way to construct spectrahedra
with singularity degree exactly one. Using the algorithm of [36] we construct strictly comple-
mentary SDPsand then use the optimal set of the primal to construct a spectrahedron with
singularity degree exactly one. Specifically, given positive integers n, m,r, and g the algorithm
of [36] returns the data A,b,C' corresponding to a primal dual pair of SDPs, together with
X* € relint(Op) and Z* € relint(Op) satisfying

rank(X™) =r, rank(Z*) =n—r —g.
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Now if we set (x)
p A(X - b
A= (6%) 1= (103
then Op = F (,[l, 13) Moreover, if g = 0 then sd(Op) = 1, by Proposition This approach could
also be used to create spectrahedra with larger singularity degrees by constructing SDPs with

greater complementarity gaps, if the converse of Proposition [5.1] were true. We provide a sufficient
condition for the converse in the following proposition.

Proposition 5.2. If sd(Op) = 0, then strict complementarity holds for SDP and D-SDP .
Moreover, if sd(Op) = 1 and the set of solutions to (5.1)) intersects Ry x R™, then strict
complementarity holds for SDP and D-SDP .

Proof. Since we have only defined singularity degree for non-empty spectrahedra, there exists
X* e relint(Op). For the first statement, by Theorem [2.3] there exists Z* € Op. Complementary
slackness always holds, hence (Z*, X*) = 0 and since X* > 0 we have Z* = 0. It follows that
rank(X™*) + rank(Z*) = n and strict complementarity holds for SDP and D-SDP .
For the second statement, let (7, %) and (7, §) be solutions to (5.1)) with 7 > 0 and 7C + A* ()
of maximal rank. Let
Z :=7C + AY(7), Z:=7C + A*().

Then there exists € > 0 such that 7 + 7 > 0 and rank(Z 4 €Z) > rank(Z). Define
Ti=T4ef, yi=G+ej, Z:=Z+¢cZ.

Now (7,%) is a solution to (5.1)), i.e., 0 # 7C + A*(y) = 0, 7p* + y*'b = 0. Moreover, rank(X*) +
rank(Z) = n since sd(Op) = 1 and Z is of maximal rank. Now we define

VARES 1Z:C'—.A* (—1y>.
T T

Since 7 > 0, it is clear that Z* > 0 and it follows that (—%y,Z*) is feasible for D-SDP .
Moreover, this point is optimal since d* > —%yTb = p* > d*. Therefore Z* € Op and since
rank(Z*) = rank(Z7), strict complementarity holds for SDP and D-SDP . O

5.2 Numerical Results

n o [ ] N [ AE [ Aa®) | M) [TAX) -0 | (ZX) | a

50 | 100 | 25 | 1.06e4+02 | 2.80e4+01 | 1.97e-11 | 5.07e-13 3.17e-12 1.26e-13 | 1.10e-12

80 | 160 | 40 | 8.74e+01 | 3.22e4+01 | 1.20e-10 | 9.00e-13 7.28e-12 2.95e-13 | 2.01e-12

110 | 220 | 55 | 7.74e+01 | 3.73e+01 | 3.56e-10 | 7.23e-13 9.12e-12 3.65e-13 | 2.14e-12

140 | 280 | 70 | 7.82e+01 | 3.84e+01 | 4.11e-10 | 7.08e-13 1.26e-11 5.20e-13 | 2.65e-12

Table 5.1: Results for the case sd = 1. The eigenvalues refer to those of the primal variable, X,
and each entry is the average of five runs.

For the numerical tests, we generate instances with n € {50, 80,110,140} and m = 2n. These
are problems of small size relative to state of the art capabilities, nonetheless, we are able to
demonstrate the performance of our algorithm through them. In Table and Table we
record the results for the case sd = 1. For each instance, specified by n, m, and r, the results are
the average of five runs. By r, we denote the maximum rank over all elements of the generated
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n m [ | MDD | @ [ Aen@) | @)
50 | 100 | 25 | 1.85e+00 | 9.07e-02 | 3.96e-14 | 1.27e-14
80 | 160 | 40 | 1.96e+00 | 6.91e-02 | 6.23e-14 | 2.30e-14
110 | 220 | 55 | 1.98e400 | 2.61e-02 | 5.77e-14 | 2.78e-14
140 | 280 | 70 | 2.03e+00 | 2.46e-02 | 6.96e-14 | 3.39e-14

Table 5.2: Eigenvalues of the dual variable, Z, corresponding to the primal variable of Table
Each entry is the average of five runs.

T m [ [ 9 a® ) [ i) [ Rrre ) | Mg [ X)) [ TAXK) — bl | (Z.X) B
50 100 17 5 9.89e4-01 1.85e+01 6.62e-05 2.61e-05 2.13e-10 6.10e-13 4.99e-12 2.04e-13 1.07e-12
80 160 27 8 1.11e402 2.00e+01 1.89e-05 1.28e-05 7.36e-11 5.17e-13 8.40e-12 2.73e-13 1.27e-12
110 220 37 11 1.09e+02 2.42e+01 3.52e-05 2.33e-05 2.05e-10 1.52e-12 1.92e-11 6.46e-13 2.33e-12
140 280 47 14 1.63e+02 2.64e+401 1.07e-04 2.65e-05 1.02e-10 1.17e-13 9.84e-12 3.52e-13 1.48e-12
Table 5.3: Results for the case sd = 2. The eigenvalues refer to those of the primal variable, X,
and each entry is the average of five runs.
n m r g )\I(Z) )\Td(Z) )\Td+1(Z) )‘Td-l—g(Z) )‘Td-i-g-‘rl(Z) )‘n(Z)
50 [ 100 | 17 | 5 | 2.22e+00 | 2.51e-02 | 1.04e-07 | 8.38e-08 9.18e-14 1.51e-14
80 | 160 | 27 | 8 | 2.03e+00 | 3.65e-02 | 1.03e-07 | 7.45e-08 7.92e-14 1.69e-14
110 | 220 | 37 | 11 | 2.13e+00 | 6.11e-02 | 1.78e-07 | 1.23e-07 1.36e-13 2.76e-14
140 | 280 | 47 | 14 | 2.19e+00 | 4.16e-02 | 7.39e-08 | 4.35e-08 6.04e-14 | 8.14e-15

Table 5.4: Figenvalues of the dual variable, Z, corresponding to the primal variable of Table [5.3
Each entry is the average of five runs.

spectrahedron, which is fixed to r = n/2. In Table we record the relevant eigenvalues of the
primal variable, primal feasibility, complementarity, and the value of a at termination, denoted
ay. The values for primal feasibility and complementarity are sufficiently small and it is clear
from the eigenvalues presented, that the first r eigenvalues are significantly smaller than the last
n — r. These results demonstrate that the algorithm returns a matrix which is very close to the
relative interior of F. In Table we record the relevant eigenvalues for the corresponding dual
variable, Z. Note that r; := n — r and the eigenvalues recorded in the table indicate that Z is
indeed an exposing vector. Moreover, it is a maximal rank exposing vector. While, we have not
proved this, we observed that it is true for every test we ran with sd = 1.

In Table and Table we record similar values for problems where the singularity degree
may be greater than 1. Using the approach described in Section we generate instances of
SDP and D-SDP having a complementarity gap of g and then we construct our spectrahedron
from the optimal set of SDP . By Proposition[5.1|and Proposition the resulting spectrahedron
may have singularity degree greater than 1. We observe that primal feasibility and complemen-
tarity are attained to a similar accuracy as in the sd = 1 case. The eigenvalues of the primal
variable fall into three categories. The first r eigenvalues are sufficiently large so as not to be
confused with 0, the last n — r — g eigenvalues are convincingly small, and the third group of
eigenvalues, exactly g of them, are such that it is difficult to decide if they should be 0 or not. A
similar phenomenon is observed for the eigenvalues of the dual variable. This demonstrates that
exactly g of the eigenvalues are converging to 0 at a rate significantly smaller than that of the
other n — r — g eigenvalues.
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6 Conclusion

In this paper we have considered a primal approach to facial reduction for SDPs that reduces
to finding a relative interior point of a spectrahedron. By considering a parametric optimiza-
tion problem, we constructed a smooth path and proved that its limit point is in the relative
interior of the spectrahedron. Moreover, we gave a sufficient condition for the relative interior
point to coincide with the analytic center. We proposed a projected Gauss-Newton algorithm to
follow the parametric path to the limit point and in the numerical results we observed that the
algorithm converges. We also presented a method for constructing spectrahedra with singularity
degree 1 and provided a sufficient condition for constructing spectrahedra of larger singularity
degree. Finally, we showed that the parametric path has interesting structure for the simple cycle
completion problem.

This research has also highlighted some new problems to be pursued. We single out two such
problems. The first regards the eigenvalues of the limit point that are neither sufficiently small
to be deemed zero nor sufficiently large to be considered as non-zero. We have experimented
with some eigenvalue deflation techniques, but none have led to a satisfactory method. Secondly,
there does not seem to be a method in the literature for constructing spectrahedra with specified
singularity degree.
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