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Abstract5

The real radical ideal of a system of polynomials with finitely many6

complex roots is generated by a system of real polynomials having only7

real roots and free of multiplicities. It is a central object in compu-8

tational real algebraic geometry and important as a preconditioner9

for numerical solvers. Lasserre and co-workers have shown that the10

real radical ideal of real polynomial systems with finitely many real11

solutions can be determined by a combination of semi-definite pro-12

gramming (SDP) and geometric involution techniques. A conjectured13

extension of such methods to positive dimensional polynomial systems14

has been given recently by Ma, Wang and Zhi.15

We show that regularity in the form of the Slater constraint qualifi-16

cation (strict feasibility) fails for the resulting SDP feasibility problems.17

Facial reduction is then a popular technique whereby SDP problems18

that fail strict feasibility can be regularized by projecting onto a face19

of the convex cone of semi-definite problems.20

In this paper we introduce a framework for combining facial reduc-21

tion with such SDP methods for analyzing 0 and positive dimensional22

real ideals of real polynomial systems. The SDP methods are imple-23

mented in MATLAB and our geometric involutive form is implemented24

in Maple. We use two approaches to find a feasible moment matrix. We25
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use an interior point method within the CVX package for MATLAB26

and also the Douglas-Rachford (DR) projection-reflection method.27

Illustrative examples show the advantages of the DR approach for28

some problems over standard interior point methods. We also see the29

advantage of facial reduction both in regularizing the problem and also30

in reducing the dimension of the moment matrices. Problems requiring31

more than one facial reduction are also presented.32

1 Introduction33

In breathrough work Lasserre and collaborators [25,39] have shown that the34

real radical ideal of real polynomial systems with finitely many real solutions35

can be determined by a combination of SDP and geometric involution tech-36

niques. The real radical ideal of a system of polynomials with finitely many37

complex roots is generated by a system of real polynomials only having real38

roots and free of multiplicities. It is a central object in computational real39

algebraic geometry and important as a preconditioner for numerical solvers.40

A conjectured extension of such methods to positive dimensional polynomial41

systems has been given recently by Ma, Wang and Zhi [27,28].42

The above approaches use the method of moments and the Semi-definite43

Programming, SDP formulation. In this paper we see that the Slater con-44

straint qualification, strict feasibility, fails for the SDP formulation resulting45

in an ill-posed feasibility problem. Our main contribution is to use facial46

reduction to project the problem onto the minimal face to help regularize47

these computations. Our approach provides tools for working with the ideals48

involved, and gathering data on the open problem above.49

1.1 SDP and Facial Reduction50

The SDP formulation of the moment problem is equivalent to finding X for
the linear feasibility system

AX = b, X ∈ Sk+ , (1.1)

where Sk+ denotes the convex cone of k × k real symmetric positive semi-
definite matrices, and A : Sk+ → Rm is a linear transformation. The stan-
dard regularity assumption for (1.1) is the Slater constraint qualification or
strict feasibility assumption:

there exists X̂ with AX̂ = b, X̂ ∈ intSk+ . (1.2)
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We let X � 0,� 0 denote X ∈ Sk+ ,∈ intSk+ , respectively. It is well known51

that the Slater condition holds generically, e.g., [17]. Surprisingly, many52

SDP problems arising from particular applications, and in particular our53

polynomial system applications, are marginally infeasible, i.e., fail to satisfy54

strict feasibility. This means that the feasible set lies in the boundary of the55

cone, and even the slightest perturbation can make the problem infeasible.56

This creates difficulties with the optimality and duality conditions as well as57

with numerical algorithms. To help regularize such SDP problems so that58

strong duality holds, facial reduction was introduced in 1982 by Borwein and59

Wolkowicz [10,11]. However it was only much later that the power of facial60

reduction was exhibited in many applications, e.g., [1, 43, 46]. Developing61

algorithmic implementations of facial reduction that work for large classes62

of SDP problems and the connections with perturbation and convergence63

analysis has recently been achieved in e.g., [12, 13,16,23].64

A polynomial system of equations can be viewed as a linear (or coeffi-65

cient matrix) function of its monomials [25, 39]. This linear function yields66

part of the system of linear constraints in the SDP formulation of polyno-67

mial systems. The convex cone for polynomials are semi-definite moment68

matrices encoding the real solutions of the polynomial equations and certain69

generalized Macaulay structure possessed by the polynomial systems. Re-70

markable advances have been recently made in this area [7, 25, 39] which is71

an intersection between optimization and algebraic geometry. In this article72

we establish a framework for using facial reduction for such systems and73

then solving the systems using the regularized smaller SDP.74

1.2 Prolongation projection methods for involutive bases of75

polynomial systems76

We now look at the details in the semi-definite linear constraint AX = b for
the polynomial systems. Polynomial systems are remarkable, in that many
of their constraints are hidden. For example consider the degree two system

x2 − x− 1 = 0, xy − y − 1 = 0.

A single prolongation of this system to degree 3 is found by multiplying
them by each of the variables x and y:

x(x2 − x− 1) = x3 − x2 − x
x(xy − y − 1) = x2y − xy − x
y(x2 − x− 1) = x2y − xy − y
y(xy − y − 1) = xy2 − y2 − y.

(1.3)
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Projecting in our paper loosely means eliminating higher degree monomials
in favour of lower degree ones. In the prolonged system we can project the
system from degree 3 to degree 2 by eliminating the highest degree term x2y
that occurs in the second and third equations of (1.3):{

x2y − xy − x = 0
x2y − xy − y = 0

}
=⇒ xy + x = xy + y. (1.4)

Consequently we obtain the new projected (hidden) constraint x = y. This77

process of uncovering the hidden polynomial constraints by prolongation78

and projection is effected numerically through our geometric involutive form79

algorithm which has been implemented in Maple [34,38].80

We note that familiar methods for linear systems of equations are Gaus-81

sian elimination, GE , for exact solutions and singular value decompositions,82

SVD , for least squares solutions. For polynomial systems, the corresponding83

method in the exact case uses Gröbner Bases [5]; while in the approximate84

case we use geometric involutive bases [38].85

1.3 Facial Reduction and SDP methods applied to real rad-86

ical ideals of polynomial systems87

A major motivation for our paper is the success of the work of Lasserre88

et al [25] which gives a new symbolic-numeric approach for computing the89

real radical ideal of zero dimensional polynomial systems using geometric90

involution and SDP techniques. Zero dimensional real polynomial systems91

are systems with real coefficients and finitely many complex and real roots.92

Another major motivation is the important work on this topic in [27, 28]93

which conjectures an extension of [25] to positive dimensional real radical94

ideals. Such ideals have associated real solution components (manifolds) of95

dimension ≥ 1. (See also the paper [36] for examples and many references.)96

The real radical ideal, RRI, of our system P is the set of all polynomials
with the same zero set as P . To give the reader an informal introduction
to RRIs and their interpretation, consider the simple case of univariate poly-
nomials with real coefficients, n = 1. In particular, a real univariate poly-
nomial p(x) can be factored in real factors (x− aj) and conjugate complex
factors (x− α`), (x− ᾱ`) so that

p(x) = Πj(x− aj)djΠk(x− αk)rk(x− ᾱk)rk , (1.5)

where dj and rk are the multiplicities of the roots. The real polynomial ideal
generated by p(x) is the set of polynomials of the form g(x)p(x) where g(x)
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is any real polynomial. The RRI of p(x) is generated by the polynomial

q(x) = Πj(x− aj). (1.6)

In many applications we are only interested in real roots, and the RRI shown97

here discards all the complex roots. Moreover it also discards multiplicities98

which is important in improving conditioning for polynomial solvers. Many99

general polynomial system solvers, that are capable of determining all so-100

lutions explicitly or implicitly, compute all complex and real roots first. In101

particular a generic system of n degree d polynomials in n variables generi-102

cally has dn roots and potentially very few roots. Thus the development of103

methods that avoid the calculation of the complex roots and multiplicities104

is important for efficiency of polynomial system solvers.105

1.4 Outline106

Since we use sophisticated results from diverse areas, in Section 2 we present107

basic ideas and objects through simple examples. We give a preliminary108

introduction to moment matrices and also give a preliminary simple illus-109

tration of the power of facial reduction in Section 2.3.110

In Section 3 we give a condensed and more formal description of geomet-111

ric involutive bases and related algorithms. In Section 4 we discuss moment112

matrices and related algorithms.113

In Section 5 we discuss the methods we used to solve our SDP feasibility114

problems. Since the polynomial problems we consider fail strict feasibility,115

we will use facial reduction to regularize them. However standard primal-116

dual interior point semi-definite programming packages do not deliver the117

accuracy required to guarantee facial reduction. This motivates us to use118

Douglas-Rachford (DR) projection/reflection methods.119

In Section 6 we will discuss our implementation of facial reduction. In120

Section 7 we give numerical experiments. Our concluding remarks are in121

Section 8.122

2 Basic setup and illustrative examples123

This paper uses sophisticated methods from diverse areas. To help the124

reader, we informally introduce the methods of the paper and illustrate them125

by simple examples. This helps emphasize that the operations underlying126

our approach are reasonably straightforward.127
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2.1 Real polynomial systems128

For background and references to real algebraic geometry and semi-definite129

programming see e.g., [2, 5, 7, 39,42].130

We consider a (finite) system of ` polynomials P = {p1, ..., p`} ⊂
R[x1, . . . , xn] = R[x], where R[x] is the set of all polynomials with real

coefficients in the n variables x =
(
x1 x2 . . . xn

)T
. We let d = deg(P )

denote the degree of the polynomial system, i.e., the maximum of the degrees
of the polynomials pj in P . The solution set or variety of P is

VK(p1, ..., p`) = {x ∈ Kn : pj(x) = 0, ∀1 ≤ j ≤ `}. (2.1)

This is the real variety of P if K = R and the complex variety of P if K = C.
The real ideal generated by P = {p1, . . . , p`} ⊂ R[x] is:

〈P 〉R = 〈p1, . . . , p`〉R = {f1p1 + . . .+ f`p` : fj ∈ R[x],∀1 ≤ j ≤ `}. (2.2)

Monomials are denoted by xα := xα1
1 · · ·xαn

n , where α ∈ Nn, N is the set of
nonnegative integers, and the degree of xα is |α| := ‖α‖1 = α1 + · · · + αn.
It is clear that the degree of each monomial |α| ≤ d, the degree of the
polynomial. Then for appropriate coefficients ak,α, and for each k,

we sort by total degree of |α| in nondecreasing order
with components of α sorted in lexicographic order.

(2.3)

We can rewrite the system of ` polynomials, P , as

P =

∑
|α|≤d

ak,α x
α : k = 1, . . . , `

 . (2.4)

Throughout this paper, we use graded reverse lexicographic order, which131

orders first by degree and then by reverse lexicographic order. This order132

respects the Cartan class of variables, which is important in our numerical133

determination geometric features of polynomial systems such as those in134

Definition 3.3.135

Definition 2.1 (Coefficient matrix of P , C(P )). Let x(≤d) be the column136

vector of monomials xα with 0 ≤ |α| ≤ d sorted as in (2.3). Suppose that137

the coefficients ak,α in (2.4) are similarly sorted. Then define the coefficient138

matrix of P by C(P ) = (ak,α).139

The following lemma follows immediately.140
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Lemma 2.1. With C(P ),x(≤d) defined in Definition 2.1, we have

P = C(P )x(≤d),

with C(P ) ∈ R`×N(n,d) and N(n, d) :=

(
d+ n
d

)
is the number of mono-141

mials in x(≤d).142

The well-known presentation of polynomial systems as linear functions143

of their monomials and the related coefficient matrix and its kernel and144

rowspace has been exploited in [31–33, 40] and in the historical work by145

Macaulay [30].146

Example 2.1. Consider the system of two univariate polynomials

P = {x8 − x4 − 2, x8 − 3x4 + 2} ⊂ R[x]. (2.5)

Here the coefficient matrix is given by C(P ) in the equations

C(P )x(≤8) =

(
−2 0 0 0 −1 0 0 0 1

2 0 0 0 −3 0 0 0 1

)
1
x
...
x7

x8

 =

(
0
0

)
(2.6)

A familiar computation for many readers is to eliminate the polynomials
using a Gröbner basis calculation: x8− x4− 2− (x8− 3x4 + 2) = 2x4− 4 or
equivalently x4−2. The original 8 degree polynomials can be discarded since
they are consequences of x4−2. In particular x8−x4−2 = x4(x4−2)+(x4−
2) = (x4 + 1)(x4 − 2) so it lies in the ideal generated by x4 − 2. Similarly
x8 − 3x4 + 2 lies in the ideal generated by x4 − 2 and can be discarded. All
polynomials in the ideal generated by P are polynomial multiples of the single
polynomial

x4 − 2. (2.7)

It is easy to see that every system of univariate polynomials is equivalent to147

a single univariate polynomial by applying such simple operations. For sys-148

tems of multivariate polynomials, such a minimal object is called a Gröbner149

basis. Gröbner bases have been intensively studied [14] and usually consist150

of several polynomials. We use the geometric involutive form algorithm dis-151

cussed in Section 3 to obtain a numerically stable cousin of Gröbner bases.152

7



2.2 Moment matrices and polynomials153

Moment matrices combined with SDP provide a method to discard the com-154

plex roots in polynomial systems with finitely many roots, such as the two155

complex roots of x4−2 in Example 2.1 above. Here we focus on the construc-156

tion of moment matrices. For theoretical background the reader is directed157

to e.g., [2, 26].158

A moment matrix is an infinite real symmetric matrix M = (Mα,β) with159

indices corresponding to the indices of the monomials α, β ∈ Nn. Here α is160

the index for rows and β is the index for columns. Without loss of generality,161

we assume that M0,0 = 1.162

Definition 2.2 (Moment matrix). Let u = {uα : α ∈ Nn, |α| ≤ d} ∈ RN(n,d)

be a vector of indeterminates where the entries are indexed corresponding to
the exponent vectors of the monomials in n variables of degree at most d.
The degree d moment matrix of u is a N(n, d)×N(n, d) symmetric matrix
with rows and columns corresponding to monomials in n variables of degree
at most d, and defined as

Md(u) = M(u) =
[
uα+β

]
|α|,|β|≤d .

Given a multivariate polynomial system P ⊂ R[x], with d = deg(P ) and
M ∈ RN(n,d)×N(n,d) be the truncated real symmetric moment matrix. The
linear constraints imposed by P are, see (2.9) below,

C(P )M = 0,

where C(P ) is the coefficient matrix function given in Definition 2.1.163

Example 2.2 (Moment matrix for univariate example x = (x1)). The mo-164

ment matrix in the univariate (n = 1) case is the infinite matrix whose165

(α, β) entry is uα+β and α, β ∈ N given by:166

M(u) =



u0 u1 u2 u3 u4 · · ·
u1 u2 u3 u4 u5 · · ·
u2 u3 u4 u5 u6 · · ·
u3 u4 u5 u6 u7 · · ·
u4 u5 u6 u7 u8 · · ·
...

...
...

...
...

. . .


, u0 = 1. (2.8)

Note that (2.8) is a Hankel matrix. In Example 2.1 a degree 8 input system
was reduced to a degree 4 output polynomial P = {x4 − 2}. Let us associate
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uα ↔ xα. Then we recover the polynomial equation using the coefficient
matrix as

C(P )u(≤4) =
(
−2 0 0 0 1

)


1
u1

u2

u3

u4

 = 0.

This implies that in terms of the solution x:

C(P )x(≤4)(x(≤4))T =
(
−2 0 0 0 1

)


1
x
x2

x3

x4




1
x
x2

x3

x4


T

= 0. (2.9)

In the SDP-moment matrix approach we impose u0 = 1. We note that the
association uα ↔ xα extends to the formal correspondence xαxβ ↔ uα+β.
This allows for the construction of the truncated moment matrix to degree
d = 4 of the polynomial system as:

M(u) =


1 u1 u2 u3 u4

u1 u2 u3 u4 u5

u2 u3 u4 u5 u6

u3 u4 u5 u6 u7

u4 u5 u6 u7 u8

 . (2.10)

Appending the linear constraints, we get

C(P )M(u) = 0 . (2.11)

The linear constraints (2.11) are:

{u4 − 2 = 0, u5 − 2u1 = 0, u6 − 2u2 = 0, u7 − 2u3 = 0, u8 − 2u4 = 0} (2.12)

which via the correspondence uα ←→ xα is equivalent to {x4−2, x5−2x, x6−
2x2, x7 − 2x3, x8 − 2x4}. The equivalent SDP problem here is to find a
maximal rank generic point u = (uα) where |α| ≤ 2d in the moment matrix
with

M(u) � 0, C(P )M(u) = 0 . (2.13)
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By imposing these simple linear constraints we get an explicit simplified
moment matrix problem in only three variables:

M(u) =


1 u1 u2 u3 2
u1 u2 u3 2 2u1

u2 u3 2 2u1 2u2

u3 2 2u1 2u2 2u3

2 2u1 2u2 2u3 4

 � 0. (2.14)

We note that the substitution of the linear constraints to simplify the problem
and reduce the number of variables is equivalent to facial reduction; see
Section 6 below. This moment matrix problem in (2.14) is then sent to an
SDP solver to approximately find a vector (u1, u2, u3) if possible such that M
is a positive semi-definite matrix with maximum rank. This solver returns
an approximation which can be recognized for illustrative convenience as
(u1, u2, u3) = (0,

√
2, 0), u0 = 1, u4 = 2. Its associated moment matrix and

moment matrix kernel are:

M =


1 0

√
2 0 2

0
√

2 0 2 0√
2 0 2 0 2

√
2

0 2 0 2
√

2 0

2 0 2
√

2 0 4

 ,

kerM = spanR




−2
0
0
0
1

 ,


−
√

2
0
1
0
0

 ,


0

−
√

2
0
1
0


 .

The kernel yields the generating set of three polynomials

S = {−2 + x4,−
√

2 + x2,−
√

2x+ x3}
= {(

√
2 + x2)(−

√
2 + x2),−

√
2 + x2, x(−

√
2 + x2)}. (2.15)

The factorization in (2.15) allows a trivial Application of the geometric in-
volutive form algorithm that yields a geometric involutive basis

{−
√

2 + x2}. (2.16)

The first and third polynomials in (2.15) are a consequence of −
√

2 + x2 by167

our inclusion test, so are discarded, e.g., [26]. Thus we have a basis of the168

RRI in (2.16). There are efficient eigenvalue methods that can exploit this169
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geometric form to efficiently numerically compute the roots as eigenvalues170

[33, 35, 37, 40]. For such solving methods tailored to the real radical and its171

advantages see [25]. The degree 8 system trivially has two real roots given172

by the polynomial in (2.16), i.e., ±21/4.173

2.3 A class of univariate geometric polynomials174

In this section we experimentally explore the behavior of our facial reduction
approach (Facial Douglas-Rachford, or abbreviated as FDR) compared to
a standard SDP solver (Yalmip SDP, abbreviated as YSDP) which does
not use facial reduction. In particular we consider the class of univariate
geometric polynomials which are the partial sums to odd degree d of the
geometric series:

pd(x) = 1 + x+ x2 + · · ·+ xd−1 + xd

where d = 1, 3, 5, . . .. Then for odd degree d we have

pd(x) = (x+ 1)(1 + x2 + · · ·+ xd−3 + xd−1)

where the even degree factor 1 + x2 + · · · + xd−3 + xd−1 has only complex175

roots. The d roots are x = exp
(

2jπi
d+1

)
, j = 1, · · · , d, and the non-real roots176

appear in complex conjugate pairs. Consequently a generator for the RRI is177

x+ 1.1178

We solved this class of problems for odd degrees d using both the FDR2
179

method with MATLAB R2013b and the YSDP (Yalmip SDP, R20140605)180

method. We used a laptop (Windows 8.1, Intel Core(TM) i7-4600U CPU181

@2.10GHz 2.70 GHz, 8GB RAM, 64-bit OS, x64-based processor).182

The running times (in cpu secs) for both methods are given in Figure183

2.3; the range of values for the FDR method is clearly better.184

3 Geometric involutive bases185

In this section we introduce the basic objects for geometric involutive bases.186

For details and examples see [8, 36].187

Involutivity originates in the geometry of differential equations. See188

Kuranishi [24] for a famous proof of termination of Cartan’s prolongation189

algorithm for nonlinear partial differential equations. A by-product of these190

1We denote the generator of the RRI by R
√

〈pd(x)〉R = 〈x + 1〉R.
2The Facial reduction Douglas Rachford method is presented in Section 5.2.2 below.
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Figure 2.1: Times (cpu secs) for the FDR method versus the YSDP methods
applied to pd(x) = 1 + x + . . . + xd for odd degrees 1 ≤ d ≤ 69. The blue
curve (data1 on the left) shows YSDP times and the green curve (data2 on
the right) shows the significantly better FDR times.

methods has been their implementation for linear homogeneous partial dif-191

ferential equations with constant coefficients, and consequently for polyno-192

mial algebraic systems. See [21] for applications and symbolic algorithms for193

polynomial systems. The symbolic-numeric version of a geometric involutive194

form was first described and implemented in Wittkopf and Reid [41]. It was195

applied to approximate symmetries of differential equations in [8] and to196

polynomial solving in [35,37,38]. See [45] where it is applied to the deflation197

of multiplicities in multivariate polynomial solving.198

Definition 3.1. Let P be (as usual) a finite subset of R[x] of degree d. The199

k-th prolongation of system P is D̂
k
(P ) = {xαp : 0 ≤ deg(xαp) ≤ d+ k, α ∈200

Nn, p ∈ P}.201

For example D̂
k
(P ) for P = {x2−x−1, xy−y−1} consists of P together202
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with the 4 polynomials in (1.3).203

Definition 3.2. Given a subspace V of Jd := RN(n,d) and ` ≤ d, define204

π`(V ) as the vectors of V with the components of degree ≥ d− ` discarded.205

Given P ⊂ R[x] of degree d define π`(P ) := π` kerC(P ). The k-th prolon-206

gation of the kernel is Dk(P ) := kerC(D̂
k
P ).207

See for example [38] and the published references in [36] for the stable208

numerical implementations of this paper’s operations using SVD methods.209

In Remark 3.5 of [36] we discuss how prolongation and projection can equiv-210

alently be computed in the kernel or rowspace, and how polynomial gener-211

ators can always be extracted. Underlying this is a 1 to 1 correspondence212

between the relevant vector spaces (not elements).213

Definition 3.3 (Symbol, class and Cartan involution test). Suppose214

P ⊂ R[x] of degree d. The symbol matrix S(P ) of P is the submatrix of C(P )215

corresponding to its degree d monomials. Then the class of a monomial xα216

is the least j such that αj 6= 0.217

Suppose that the columns of S(P ) are sorted in descending order by218

class and that it is reduced to Gauss echelon form. For k = 1, 2, ..., n define219

the quantities β
(k)
d as the number of pivots in this reduced matrix of class220

k. In a generic system of coordinates the symbol is involutive if221

k=n∑
k=1

kβ
(k)
d = rank S(D̂P ) (3.1)

Suppose Q ⊂ R[x] has degree d′ and a basis for kerC(Q) is given by the

rows of the matrix B. To extract the β
(k)
q in (3.1) at projected degree d ≤ d′

we first numerically project kerC(Q) onto the subspace Jd by deleting the
coordinates in B of degree > d to give a spanning set B̃ for πd

′−dQ. Then
delete the columns in B̃ corresponding to variables of degree < d to obtain
a matrix Ad corresponding to the orthogonal complement of the degree d

symbol. Let A
(k)
d be the submatrix of B̃ with columns corresponding to

variables of class ≤ k. In generic coordinates for k = 1 . . . n:

β
(k)
d =

(
n+ d− k − 1

d− 1

)
−
(

rank A
(k−1)
d − rank A

(k)
d

)
.

Then the SVD can approximate the ranks in this equation for carrying out222

the Cartan Test (3.1).223
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Definition 3.4 (Involutive System). A system of polynomials P ⊂ R[x] is224

involutive if dim πDP = dim P and the symbol of P is involutive.225

Definition 3.5. Let P ∈ R[x] with d = degP and k, ` be integers with k ≥ 0226

and 0 ≤ ` ≤ k + d. Then π`DkP is projectively involutive if dim π`DkP =227

dim π`+1Dk+1P and the symbol of π`DkP is involutive.228

In [8] we prove that a system is projectively involutive if and only if it229

is involutive. In the following algorithm we seek the smallest k such that230

there exists an ` with π`DkP approximately involutive, and generates the231

same ideal as the input system. We choose the system corresponding to the232

largest such ` ≤ k if there are several such values for the given k.

Algorithm 3.1: GIF: Geometric involutive form

1 Input( Q ⊂ R[x1, . . . , xn]; tolerance ε.);
2 Set k := 0, d := deg(Q) and P := kerC(Q);
3 while I 6= ∅ do

4 Compute Dk(P ); initialize set of involutive systems I := {} ;
5 for ` from 0 to (d+ k) do

6 Compute R := π`Dk(P );
7 if R involutive then
8 I := I ∪ {R}
9 end if

10 end for

11 Remove systems R̄ from I: Dd+k−d̄R̄ 6⊆ Dk(P );
12 k := k + 1

13 end while
14 Output( Return the polynomial generators of the GIF (R̄) in I of

lowest degree d̄ = deg R̄.)

233

The degree of the geometric involutive basis in our method can be lower234

than that given in [27, 28] since Algorithm 3.1 updates the generators with235

projections. However in the absence of a proof of determination of the real236

radical the larger moment matrices of [28] can capture new members of the237

real radical in situations where our method has already terminated.238

Additional discussion and examples are given in the long version of our239

work [36].240
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4 Moment matrices & algorithms241

In this section we outline algorithms for combining geometric involutive
form and moment matrix methods; see Definition 2.2. Recall that M =
M(u) = (Mα,β) denotes the moment matrix indexed by α, β for rows and
columns, respectively. And, d = deg(P ), M ∈ RN(n,d)×N(n,d), and the linear
constraints imposed by our system of polynomials P ⊂ R[x] are given by the
coefficient times moment matrix multiplication C(P )M = 0. We let 〈P 〉R
denote the associated polynomial ideal and let

R
√
〈P 〉R = {f ∈ R[x] : f2m +

s∑
j=1

q2
j ∈ 〈P 〉R , qj ∈ R[x],m ∈ N+}.

denote the real radical ideal generated by polynomials P over R. A funda-
mental result [5] that is a consequence of the real nullstellensatz is

R
√
〈P 〉R = {f(x) ∈ R[x] : f(x) = 0,∀x ∈ VR(P )}.

Algorithm 4.1: GIF – M Method

1 Input( P = {p1, ..., pk} ⊂ R[x1, . . . , xn]);
2 Set Q0 := P, j := 0;
3 while r = d do
4 d := dim ker GIF(Qj), Qj+1 := gen(GIF(Qj));

5 Find u∗ = u(Qj+1) ∈ RN(n,2d): M(u∗) � 0, C(Qj+1)M(u∗) = 0;
6 r := rank(M(u∗)), Qj+2 := gen(ker M(u∗));
7 j := j + 2

8 end while
9 Output(Qj+1 ⊂ R[x1, . . . , xn]; Qj+1 is in geometric involutive form ;

R
√
〈P 〉R ⊇ 〈Qj+1〉R ⊇ 〈P 〉R.)

Algorithm 4.1 uses the following subroutines described as Algorithms 4.2242

and 4.3.243

Remark 4.1 (Rank-Dim-Involutive Stopping Criterion). A natural
termination criterion used in Algorithm 4.1 is that the generators stabilize
at some iteration and the system is involutive:

gen(GIF(Q)) = gen(ker M(u∗)) and Q involutive where u∗ = u(Q) (4.1)

By [25] 〈gen(ker M(Qj+1))〉 is a sequence of ideals containing R
√
〈P 〉 . We244

get an ascending chain of ideals in a Noetherian ring R[x1, ..., xn]. Hence,245
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Algorithm 4.2: M - Moment Matrix

1 Input( Q ⊂ R[x1, . . . , xn]. Set d := deg(Q).);
2 Construct the moment matrix to degree 2d.;
3 Use SDP methods to numerically solve for a generic point u∗ = u(Q)

that maximizes the rank of the moment matrix subject to the
constraints C(Q)M(u∗) = 0.;

4 Output( Return M(u∗) � 0 the moment matrix evaluated at this
generic point.)

Algorithm 4.3: gen

1 Input( GIF(Q) or ker M(u∗) where u∗ = u(Q).);
2 Output(Polynomial generators corresponding to GIF(Q) or ker M(u∗))

together with the finiteness of the Cartan-Kuranishi geometric involutive246

form algorithm, Algorithm 4.1 terminates.247

5 Mathematical background for the projection meth-248

ods249

In this section we describe the background for the projection methods for250

finding feasible solutions for the moment problems. An important part of251

these methods is building an efficient matrix representation for the linear252

constraints on the moment matrices resulting from the polynomial systems.253

5.1 Linear constraints for multivariate polynomial moment254

matrices255

Recall that we introduced moment matrices informally by a simple example256

in Section 2.2; see also Definition 2.2. Let uα := uα1,...,αn where α ∈ Nn257

and the degree of uα is |α| = α1 + . . . + αn. Let 〈α(≤d)〉 be an array of the258

subscripts α of 〈uα〉 with 0 ≤ |α| ≤ d and sorted as in (2.3).259

Consider a truncated moment matrix M(u) = (uα+β)α,β∈RN(d,n) . The
generalized truncated moment matrix can be represented as follows, where
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〈·〉 yields the addition of the subscripts for the fj :

M(u) =


〈f0(u), f0(u)〉 〈f0(u), f1(u)〉 〈f0(u), f2(u)〉 . . . 〈f0(u), fl(u)〉
〈f1(u), f0(u)〉 〈f1(u), f1(u)〉 〈f1(u), f2(u)〉 . . . 〈f1(u), fl(u)〉
〈f2(u), f0(u)〉 〈f2(u), f1(u)〉 〈f2(u), f2(u)〉 . . . 〈f2(u), fl(u)〉

...
...

...
. . .

...
〈fl(u), f0(u)〉 〈fl(u), f1(u)〉 〈fl(u), f2(u)〉 . . . 〈fl(u), fl(u)〉

 .
Here, 〈f0, f1, ..., fl〉 corresponds to the array 〈uα〉 with 0 ≤ |α| ≤ d sorted as260

in (2.3). We denote the i-th element in 〈uα〉 by uiα. Then fi(u) is uiα.261

In the univariate case the moment matrices have Hankel structure as262

shown in (2.10). In Table 5.1 we display a truncated bivariate moment ma-263

trix partitioned into block submatrices having the same degree. Notice that

M(u) =



u00 u10 u01 u20 u11 u02 u30 u21 u12 u03
u10
u01

u20 u11
u11 u02

u30 u21 u12
u21 u12 u03

u40 u31 u22 u13
u31 u22 u13 u04

u20
u11
u02

u30 u21
u21 u12
u12 u03

u40 u31 u22
u31 u22 u13
u22 u13 u04

u50 u41 u32 u23
u41 u32 u23 u14
u32 u23 u14 u05

u30
u21
u12
u03

u40 u31
u31 u22
u22 u13
u13 u04

u50 u41 u32
u41 u32 u23
u32 u23 u14
u23 u14 u05

u60 u51 u42 u33
u51 u42 u33 u24
u42 u33 u24 u15
u33 u24 u15 u06


Table 5.1: A truncated bivariate moment matrix partitioned into block
submatrices having the same degree.

264

the matrix in Table 5.1 is not Hankel. However each of its block matrices is265

rectangular Hankel; though even this feature is lost for multivariate moment266

matrices in more than two variables.267

As mentioned above, without loss of generality we assume that u00 = 1.268

As an abbreviation, we may denote M = M(u) = Md(u).269

Besides being a symmetric matrix, the moment matrix also has other270

linear constraints among its entries. One can easily see these constraints in271

the truncated univariate matrix (2.10) and bivariate matrix in Table 5.1.272

An important requirement of our projection methods is to maintain these273

constraints. For example, in the bivariate case above, the matrix elements274

M(u)14 = M(u)22 = u20 are equal.275

We now outline a simple algorithm to find a non-redundant matrix rep-276

resentation of these constraints. To list these constraints we start from the277
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first row and traverse the matrix from left to right across the rows and then278

traverse the rows from top to bottom. Note also that we only need examine279

entries above the main diagonal since the matrix is symmetric.280

For (2.10) the first linear constraint traversing from the first row down-
wards is M(u)14 = M(u)22. We denote ei as the i-th unit vector and
Eij = 1

2(eTi ej + eTj ei). To impose this constraint, we construct matrix
At = E22 − E14, where t represents the index of the linear constraints and
t = 2 in this case. The constraint is then given by

〈At,M〉 = trace((E22 − E14)M) = 0.

Since we always assume M(u)1,1 = 1, we need to set A1 = E11. Here At is281

called the matrix representative of the t-th linear constraint. The collection282

of all such matrix representatives for a given moment matrix is called the283

matrix representation of the moment matrix structure.284

Algorithm 5.1 below determines all the (non-redundant) matrix repre-285

sentatives of the linear constraints defining the matrix representation of the286

multivariate moment matrix structure.287

Algorithm 5.1: Matrix representation of moment matrix structure

1 Input(d, n);
2 Initialize array T = 〈α(≤d)〉 and T (i) is the i-th element of T .

3 Initialize n array S = 〈s〉 with the same length as 〈α(≤d)〉 and
S(i) = [(1, i);α(≤d)(i)] where S(i), α(≤d)(i) is the i-th element of S,
〈α(≤d)〉.

4 Let m be the length of T , t = 2 and A1 = E11.
5 for i from 2 to m, do
6 for j from i to m, do
7 if there exists an s = [(g, h);α] ∈ S such that T (i) + T (j) = α

then
8 At = Eij − Egh, t = t+ 1
9 else

10 Adjoin a new element s = [(i, j);α] to S where
α = T (i) + T (j)

11 end if

12 end for

13 end for
14 Output( Return an array of matrix representatives {At} where t ∈ E ,
E = {1, 2, . . . , η} and η is the total number of the linear constraints.);
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There are no redundant relations produced by this algorithm so we can288

avoid an overdetermined system.289

In what follows for applications to multivariate polynomial systems of
degree d in n variables we have

k := N(n, d) =

(
d+ n
d

)
(5.1)

Our main problem is the following.290

Problem 5.1 (Main Problem). Let B be a given (k+ 1)×m matrix of full
column rank. Find u ∈ R2k+1 so that

BTM(u) = 0, traceE11M(u) = 1, M(u) � 0.

We denote Hk+1, space of generalized Hankel matrices. That is these291

matrices have the multivariate structure whose matrix representation is com-292

puted by Algorithm 5.1. It is well known that the special case of Hankel ma-293

trices are notoriously ill-conditioned. This means that the cone Sk+1
+ ∩Hk+1

294

is thin, i.e., it is close to the boundary of Sk+1
+ , e.g., [4, 6, 20]. Therefore,295

solving Problem 5.1 using semi-definite programming techniques results in296

numerical difficulties.297

5.2 Methods of alternating projection and Douglas-Rachford298

projection-reflection299

To apply the methods of alternating projection, MAP or Douglas-Rachford
reflection-projection, we want to express the main Problem 5.1 as an equiv-
alent problem with moment matrix M = M(u):

A(M) = b, BTM = 0, M ∈ Sk+1
+ . (5.2)

Here the linear transformation A is obtained from Algorithm 5.1. The fol-300

lowing Corollary 5.1 provides the details of the system that we want to301

solve. We first apply facial reduction and get a smaller system. Recall from302

Algorithm 5.1, we get an array of representing matrix At s where t ∈ E ,303

E = {1, 2, . . . , η}.304

Corollary 5.1. Let V be (k+1)×(k+1−m) and satisfy V TV = I, V TB = 0.
Let Āt ← V TAtV,∀t ∈ E. Let Ā : Sk+1−m → RE be defined by

Ā(M̄) :=
((

trace ĀtM̄
)
t

)
∀t∈E (5.3)
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Then the main Problem 5.1 with V M̄V T = M(u) is equivalent to (5.2),
i.e., to

Ā(M̄) = e1, M̄ ∈ Sk+1−m,

and we get M(u) = V M̄V T .305

Let L denote the matrix representation for Ā in the linear constraints
in Corollary 5.1. There are two projections we use to update the current
point pc. First, we look at PL, the linear manifold projection. For the
linear system Lp = b = e1 where L has full row rank, we solve the nearest
point problem min

{
1
2‖p− pc‖

2
2 : Lp = b

}
, i.e., we find the projection onto

the linear manifold for the linear constraints. We use L†, the Moore-Penrose
generalized inverse of L. The residual and the update p+ are then

rc = b− Lpc; p+ = pc + L†rc. (5.4)

Second, we project the updated symmetric matrix P+ = PL(Pc) = sHMat(p+)306

onto the semi-definite cone using the Eckart-Young Theorem [18], i.e., we307

diagonalize and zero out the negative eigenvalues. Here sHMat = sHvec∗ =308

sHvec−1 is both the adjoint and the inverse mapping. We denote PSk+, the309

positive semi-definite projection and get the new positive semi-definite ap-310

proximation PSk+(P+).311

5.2.1 Method of alternating projections312

The MAP method is particularly simple, see e.g., the recent book [19]. We313

begin with an initial estimate, e.g., Pc = αI ∈ Mmk for a large α > 0.314

We then repeat the projection steps in Items 1, 2, 3 till a sufficiently small315

desired tolerance is obtained in the norm of the residual.316

1. Evaluate the residual rc = b − Lpc. Use the residual to evaluate the
linear projection and obtain the update

PL = PL(Pc).

2. Evaluate the positive semi-definite projection using the Eckart-Young
Theorem and update the current approximation

PSDP = PSk+(PL).

3. Update the cosine value in (5.5). Then update Pc = PSDP .317

20



The (linear) convergence rate is measured using cosines of angles from three
consecutive iterates

cos(θ) =

(
trace ((PL − Pc)∗(PSDP − PL))

‖PL − Pc‖ ‖PSDP − PL)‖

)
. (5.5)

5.2.2 Douglas-Rachford reflection method318

Recall the projections defined above PL,PSk+ . We want to find, see (5.2),

P ∈ G ∩ Sk+1
+ , where G :=

{
P ∈ Sk+1

+ : A(P ) = b
}
.

We now apply the Douglas-Rachford (DR) projection/reflection method [15].319

(See also e.g., [3, 9].)320

Using the QR algorithm applied to B and A, we start with an initial
estimate

P0 � 0 with B′P0 = 0 and (1, 1) component = 1. (5.6)

Define the reflections RL,RPSD : Sk+1
+ → Sk+1

+ using the corresponding
projections, i.e.,

RL(P ) := 2PL(P )− P, RPSD(P ) := 2PPSD(P )− P, ∀P ∈ Hmk.

• Initialization: We set our current estimate Pc = P0 to satisfy (5.6).321

We calculate the residual ResL = R − A ∗ s2Mat(Pc), set normres =322

‖ResL‖, denote the reflected residual ResreflL = ResL and reflected323

point RPSD = Pc.324

• Iterate: We continue iterating from this point while normres > toler,325

our desired tolerance.326

• We use Resrefl to project the current reflected PSD point RPSD onto327

the linear manifold to get the projected point PL = RPSD+A†Resrefl.328

Then we reflect to get our second reflection point RL = 2∗PL−RPSD329

• At this time we set our new/current estimate for convergence to be330

Pc = Pnew = (Pc +RL)/2.331

• We now project Pc to get PPSD. We check the residual here for the332

stopping criteria normres = ‖ResL‖ = ‖R−APPSD‖.333

• We now calculate the first reflection point RPSD = 2 ∗PPSD −Pc and334

update the reflected residual Resrefl = R−A s2vec(RPSD).335
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The Douglas-Rachford projection/reflection method is simply:336

1. Start at an initial point P0 ∈ Sk+1
+ satisfying (5.6)337

2. Iterate: Pj+1 = 1
2(Pj +RPSD(RL(Pj)), for all j = 0, 1, . . ..338

Also the basic theorem on the convergence of the sequence ΠG(Xk)k339

, [9, Thm 3.3, Page 11], carma.newcastle.edu.au/jon/cycDRinfeas.pdf. so340

the residuals of the projections of the iterates on one of the sets have to be341

used for the stopping criteria. We use the residual after the projection onto342

the SDP cone since finding the residual with respect to the linear manifold343

is inexpensive.344

To check the linear convergence rates we use the cosine of the angles for
the vectors of successive iterates, i.e., for three successive iterates Pc,RPSD,RL,
and

cos(θ) =

∣∣∣∣trace ((RPSD −RL)∗(RPSD − Pc))
‖(RPSD −RL)‖ ‖RPSD − Pc‖

∣∣∣∣ .
6 Facial reduction implementation345

Our moment problem is a feasibility problem of the form

BTM(u) = 0, M(u) � 0, (6.1)

where B is a given matrix and M(u) is a linear function of the variables
u. Constraints on M(u) are described in Section 5.2, where the problem is
changed to equality form and then uses facial reduction to get the form

Ā(P ) = b̄, P � 0. (6.2)

This form includes the first step of facial reduction using the matrix B,346

see Corollary 5.1 and (5.3). Here Ā(P ) = (trace ĀiP ) ∈ Rm, for specific347

symmetric matrices Āi.348

The projection methods behave poorly when Slater condition fails. We
therefore attempt to apply further steps of facial reduction and reduce sys-
tem (6.2) until a strictly feasible point exists. We use the following theorem
of the alternative or characterization of a strictly feasible point; see e.g., [13].

∃P̂ , Ā(P̂ ) = b̄, P̂ � 0
⇐⇒

Z = Ā∗y � 0, b̄T y = 0 =⇒ Z = 0.

(6.3)
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Note that if a Z 6= 0 can be found satisfying the left part of the bottom half
of (6.3) and for the top half P̂ � 0, (̄P̂ ) = b̄, then

0 = b̄T y = 〈Ā(P̂ ), y〉 = 〈P̂ , Z〉 =⇒ P̂Z = 0 =⇒ range P̂ ⊆ nullZ.

Therefore, if the full column rank matrix W satisfies rangeW = Z, then we349

can facially reduce the problem using the substitution P̂ = WP̄W T , i.e., we350

can restrict the feasibility problem in (6.2) to the face W ·W T .351

We can implement the test in (6.3) in several ways. We suppose that Ā
is the matrix representation of Ā, i.e., we let p = s2vec(P ) and then we have

Āp = (Ā s2Mat)(s2vec(P )) = ĀP, Ā∗y = s2Mat(ĀT y).

One way would be to first evaluate the orthogonal matrix
[

1
‖b‖b U

]
and

find v so that

s2Mat(ĀT (Uv)) � 0, trace Ā∗(Uv) = (Ā(I)TU)v = 1.

Alternatively, we solve 3

p∗ := min 1
2(b̄T y)2

s.t. Ā∗y � 0
trace Ā∗y = 1

7 Numerical experiments352

7.1 Examples of Ma, Wang and Zhi [28]353

Ma, Wang and Zhi [27,28] present an approach using Pommaret Bases cou-354

pled with moment matrix completion to approximate the real radical ideal355

of a polynomial variety. We applied our approach to [28, Examples 4.1-4.6].356

with the results shown in Table 7.1. In each case we obtained a geometric in-357

volutive basis which can be independently verified as a geometric involutive358

basis for the real radical. In [28] Pommaret bases are successfully obtained359

for the real radical for these examples.360

Here are the 6 systems of polynomials corresponding to the examples

3This can be implemented in e.g., CVX using the norm function or absolute value
function for the objective, i.e., we minimize |b̄T y| rather than using the squared term.
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in [28]:

{x2
1 + x1x2 − x1x3 − x1 − x2 + x3, x1x2 + x2

2 − x2x3 − x1 − x2 + x3,

x1x3 + x2x3 − x2
3 − x1 − x2 + x3} (7.1a)

{x2
1 − x2, x1x2 − x3} (7.1b)

{x2
1 + x2

2 + x2
3 − 2, x2

1 + x2
2 − x3} (7.1c)

{x2
3 + x2x3 − x2

1, x1x3 + x1x2 − x3, x2x3 + x2
2 + x2

1 − x1} (7.1d)

{(x1 − x2)(x1 + x2)2(x1 + x2
2 + x2), (x1 − x2)(x1 + x2)2(x2

1 + x2
2)} (7.1e)

{(x1 − x2)(x1 + x2)(x1 + x2
2 + x2), (x1 − x2)(x1 + x2)(x2

1 + x2
2)} (7.1f)

System (7.1a) for [28, Example 4.1]: Our GIF algorithm 3.1 with input361

tolerance 10−10 shows that the system is already in geometric involutive362

form. The corresponding Pommaret basis is given in [28, Example 4.1].363

The Pommaret basis looks different from the system, but is just a linear364

combination of the system’s polynomials to accomplish the Gröbner like365

requirement for its highest terms under the term ordering prescribed in the366

problem. The resulting coefficient matrix of this GIF form, is a full rank367

m = 3, 3 × 10 matrix which is input to the FDR algorithm. Since it has368

rank m = 3, one facial reduction yields a reduced (10 −m) × (10 −m) =369

7× 7 moment matrix. Application of the FDR algorithm using the reduced370

moment matrix, yields convergence in 13 iterations and 0.09 secs, with a371

projected residual error of 10−14. These statistics are shown in Table 7.1.372

The reduction in moment matrix size from 10×10 to a 7×7 matrix is recorded373

in the rightmost column of the Table by the fraction 10
7 . Determination of374

this reduced moment matrix then yields the full 10 × 10 moment matrix375

of rank r = 7. Since the dimension of the kernel for GIF form is d = 7 =376

r Algorithm 4.1 terminates with the input system as its output. It can377

be checked that the ideal generated by this system is real radical. Our378

facial reduction algorithms in Section 6 provide checks for the existence of379

additional facial reductions. They show that there are no additional facial380

reductions for this problem.381

System (7.1d) for [28, Example 4.4]: This is very similar to the previous382

system (7.1a). As [28] notes the coordinates for this example are not delta-383

regular, which they and we remedy by a linear change of coordinates. We384

show that the original system is geometrically involutive, which is equivalent385

to the determination of a Pommaret basis by [28]. Just as in the previous386

example, we form a 10 × 10 moment matrix from the GIF form, which is387

transformed by one facial reduction to a 7×7 matrix. There are no additional388

facial reductions, and the full moment matrix and its rank r are determined.389
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We find that dimension of the kernel for GIF form is d = 7 = r, so Algorithm390

4.1 terminates with the input system as its output. It can be verified the391

the output is a GIF form for the real radical of the ideal.392

System (7.1b) for [28, Example 4.2]: This is quite similar to the sys-393

tems (7.1b) and (7.1d). Our methods are similarly efficiently applied to394

this system. Our GIF algorithm first applied one prolongation to the second395

system (7.1b) to yield a degree 3 system. After projectiing from this de-396

gree 3 system it shows that the resulting degree 2 system is involutive and397

consists of 3 polynomials. This degree 2 system is geometrically equivalent398

to the Pommaret basis found by [28]. This system is simply the original399

2 polynomials, together with their compatibility condition or S-polynomial400

x2(x2
1 − x2) − x1(x1x2 − x3) = x1x3 − x2

2. Thus the input system R is re-401

placed with πDR with corresponding 3×10 coefficient matrix. The resulting402

10 × 10 moment matrix is facially reduced to a 7 × 7 moment matrix. As403

in the previous examples, no new relations are detected in the kernel of the404

next moment matrix, d = r = 7 and the algorithm terminates. It can be405

verified that the GIF form is a basis for the real radical ideal of the input406

system.407

Unlike the systems (7.1a),(7.1b),(7.1d), the remaining three systems408

(7.1c),(7.1e),(7.1f) of [28] lead to new members in the kernel of their moment409

matrices.410

System (7.1c) for [28, Example 4.3]: Our initial application of FDR411

showed slow convergence. However a random linear change of coordinates412

applied to the input system R dramatically improved the convergence. Ap-413

plying the GIF algorithm we found that D̂R is involutive and has a 8 × 20414

coefficient matrix. The dimension of its kernel is d = 12. Facial reduc-415

tion then reduces the 20× 20 moment matrix to a 12× 12 moment matrix416

which has rank r = 7 6= d so the algorithm has not terminated. The new417

member of the real radical arising in the moment matrix kernel can be alter-418

natively derived by hand by elimination of two of the systems polynomials:419

x2
1 +x2

2 +x2
3−2−(x2

1 +x2
2−x3) = x2

3 +x3−2 = (x3 +2)(x3−1). Then noting,420

as explained in [28], that only the root x3 = 1 leads to real solutions. The421

GIF form of degree 2 of the new system is computed. Its coefficient matrix422

is 5 × 10 and has kernel of dimension d = 5. We note that even with the423

change of coordinates the FDR iteration of this second moment matrix did424

not initially converge until we reduced the required projected residual error425

for production of the first moment matrix to 10−14. The second moment426

matrix then was computed quickly and accurately as a 10×10 matrix which427

is reduced by one facial reduction to a 5 × 5 matrix. Since the rank of428

the moment matrix is r = 5 = d our algorithm has terminated. It can be429
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checked that the output is equivalent to that found by [28] and that the430

resulting GIF form is a basis for the real radical.431

System (7.1e) for [28, Example 4.5]: Direct application of Algorithm 4.1432

to (7.1e) is relatively inefficient. Instead of this approach we consider an al-433

ternative subsystem approach which has the potential to be applied to larger434

systems. Exploiting subsystem structure is a long established approach in435

system solving.436

We apply Algorithm 4.1 to the subsystem consisting of the first polyno-
mial of P1 = (x1−x2)(x1 +x2)2(x1 +x2

2 +x2) of (7.1e). The GIF form of P1 is
just P1, and its coefficient matrix is 1×21 matrix with a kernel of dimension
d = 20. The corresponding moment matrix is 21 × 21, which is reduced to
a 20 × 20 matrix after one facial reduction. It has rank r = 18 6= d. So
the algorithm has not terminated, and new members of the real radical are
identified from the kernel of the moment matrix. The new system is degree
5 and has 3 polynomials. Algorithm GIF shows that the first projection of
this system is involutive and is a single fourth degree polynomial. Its co-
efficient matrix is 1 × 15 and its kernel has dimension d = 14. The FDR
algorithm produces a 15 × 15 moment matrix which facially reduced to a
14 × 14 moment matrix. The rank of the moment matrix is r = 14 = d.
The algorithm terminates to coefficient errors within 10−10 with output as
a single polynomial which is approximately:

(x1 − x2)(x1 + x2)(x1 + x2
2 + x2) (7.2)

It can be checked that (7.2) is a geometric involutive basis for the real radical437

for the ideal generated by P1.438

Similarly we apply Algorithm 4.1 to the first polynomial of (7.1e) which
is given by P2 = (x1−x2)(x1 +x2)2(x2

1 +x2
2). The algorithm now terminates

with output as a single polynomial which is approximately:

(x1 − x2)(x1 + x2) (7.3)

This can be verified to be a geometric involutive basis for the real radical439

for the ideal generated by P2.440

Then we consider the system

(x1 − x2)(x1 + x2)(x1 + x2
2 + x2), (x1 − x2)(x1 + x2) (7.4)

The calculation for (7.1f)for Example 4.6 below yields a geometric involutive
basis which is approximately

(x2
1 − x2

2) (7.5)
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FDR FDR FDR GIF-FDR its GIF Mom Mtx redn

Syst. (n,d,p) # its secs proj res err (# FR ) tol factors s(M)/s(M̂)

Ex4.1 (3,2,3) 13 0.09 10−14 1(1) 10−10 10
7

Ex4.2 (3,2,2) 28 0.01 10−14 1(1) 10−10 10
7

Ex4.3 (3,2,2) 888, 238 2.3, 0.6 10−14, 10−13 2(2,1) 10−10 20
12

, 10
5

Ex4.4 (3,2,3) 346 0.53 10−14 1(1) 10−10 10
7

Ex4.5 P1 (2,5,1) 22314, 50 37.6, 0.3 10−12, 10−14 2 (2, 1) 10−10 21
20

, 15
14

Ex4.5 P2 (2,5,1) 957, 1 4.4, 0.1 10−12, 10−14 2 (2, 1) 10−10 21
20

, 6
5

Ex4.6 Q1 (2,4,1) 170, 1 1.0, 0.09 10−12, 10−14 2(2,1) 10−10 21
15

, 6
5

Ex4.6 Q2 (1,4,1) 484, 1 1.4, 0.08 10−12, 10−14 2(2,1) 10−10 15
14

, 6
5

Cyl2d (2,2,1) 10 0.19 10−15 1(1) 10−10 6
5

Cyl3d (3,2,2) 33 0.77 10−14 1(1) 10−10 20
12

Cyl4d (4,2,3) 142 8.45 10−14 1(1) 10−10 70
28

Table 7.1: Statistics for the application of GIF and FDR to polynomial
systems: n = number of variables, d = maximum polynomial degree, p = the
number of polynomials; s(M), s(M̂) sizes of moment matrix M and the faciallly
reduced matrix M̂ , resp. Ex 4.1-4.6 are the 6 examples in MWZ [28]; Cyl2d-Cyl4d
are the intersecting cylinder examples.

It can be independently checked that this is a GIF form for the real radical441

of the ideal of (7.1e).442

System (7.1f) for [28, Example 4.6]: This concerns the real solution of443

Q1 = (7.1f) = (7.1f) subject to the constraints x1 ≥ 1, x2 ≥ 1. Applying444

Algorithm 4.1 to Q1 yields a geometric involutive basis which is approxi-445

mately x2
1−x2

2. This can be indepdently verified to be a geometric basis for446

the real radical of Q1. The statistics of this reduction are given in the table447

in the row labeled as Ex 4.6 Q1.448

To impose x1 ≥ 1, x2 ≥ 1 we substitute x1 = x2
3 + 1, x2 = x2

4 + 1 and449

reduce the resulting polynomial Q2 with Algorithm 4.1. We obtain x1 − x2450

in agreement with [28, Example 4.6]. The statistics of this reduction are451

given in Table 7.1 in the row labeled as Ex 4.6 Q2.452

7.2 Intersecting higher dimensional cylinders453

Consider the systems of polynomials defining the intersection of n−1 cylin-
ders in Rn

Cylnd := x2
1 + x2

2 − 1, x2
1 + x2

3 − 1, · · · , x2
1 + x2

n − 1. (7.6)

Application of the GIF algorithm to the systems Cylnd for n = 2, 3, 4 show454

that the systems become geometrically involutive after 0, 2, 3 prolongations455
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respectively. Table 7.1 shows the statistics for the subsequent application456

of Algorithm 4.1 to these systems. The algorithm converges quickly and457

accurately. Indeed it can be independently determined that the it yields an458

geometric involutive basis for the real radical.459

Further it can be determined that the cylinders form a complete inter-460

section and the length of the prolongation to make them involutive, can be461

determined from the symbol of the initial system [31]. The lower degree462

system, is geometrically formally integrable, and it would be interesting to463

develop methods based on such lower degree systems, to determine, whether464

one can rule out new members in the kernel of the moment matrix of the465

prolonged involutive system from such lower degree systems.466

Finally we mention that recently certain so-called critical point methods467

have been developed for determining witness points [22, 44] on real compo-468

nents of real polynomial systems. Indeed the method developed in [44] is469

successful in finding a point on every component, if the ideal is both real470

radical, and forms a regular sequence. Consequently the systems above, the471

real radical is an important property for such solvers. Such a regular se-472

quence can be checked by dimension computation, we only need a formally473

integrable system which has lower degree than the involutive system, this474

leads to a smaller size of moment matrix. Other interesting related results475

are given in [29].476

7.3 Example of Matlab routine FDR477

Example 7.1. We first use the matrix from (7.7)

B1
T =

[
2 0 0 0 −1

]
. (7.7)

The moment matrix we get is the exactly the same as that in [36, Equation
(37)]:

P =


1.0000 −0.0000 1.4142 −0.0000 2.0000
−0.0000 1.4142 −0.0000 2.0000 −0.0000
1.4142 −0.0000 2.0000 −0.0000 2.8284
−0.0000 2.0000 −0.0000 2.8284 −0.0000
2.0000 −0.0000 2.8284 −0.0000 4.0000


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The nullity/kernel matrix of P is the same as in [36, Equation (37)] as well:
2 0.026491 −0.23757
0 −0.81147 −0.090484
0 −0.09366 0.83995
0 0.57379 0.063982
−1 0.052982 −0.47515


though it is difficult to see from the last two columns.478

To check whether the matrix B1 in (7.7) provides the same nullity as the479

nullity of the matrix P , one can look at the following short MATLAB code480

and see that it is so, i.e., the rank is correct and the spans do not change.481

B1=[ B’482

sqrt2 0 -1 0 0483

0 sqrt2 0 -1 0]484

B1 =485

2.0000 0 0 0 -1.0000486

1.4142 0 -1.0000 0 0487

0 1.4142 0 -1.0000 0488

489

>> B1=B1’490

B1 =491

492

2.0000 1.4142 0493

0 0 1.4142494

0 -1.0000 0495

0 0 -1.0000496

-1.0000 0 0497

>> K=[null(P) B1]498

K =499

0.8099 0.4053 0.1922 2.0000 1.4142 0500

-0.2574 0.1542 0.7593 0 0 1.4142501

-0.4913 0.6222 -0.2930 0 -1.0000 0502

0.1820 -0.1091 -0.5369 0 0 -1.0000503

-0.0575 -0.6426 0.1110 -1.0000 0 0504

>> svd(K)505

K>> svd(K)506

2.8284507

2.0000508

1.4142509
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0.0000510

0.0000511

Following is the output during the MATLAB program. Note the quick512

and accurate convergence; though we have to remember this is a tiny problem.513

It took 118 iterations to get 15 decimals accuracy. The moment matrix P514

has the correct rank.515

Starting with new B value516

using [no*VV’] as initial starting point for P517

time for matrix repres. 0.0468003518

Starting while loop for Douglas-Rachford algorithm519

iter cos-vecs norm-proj.-resid. PSD-proj-per.iter.time520

10 0.9938 0.04919 6.23e-05521

20 1 0.005256 6.377e-05522

30 1 0.0004443 6.188e-05523

40 1 3.282e-05 6.23e-05524

50 1 2.167e-06 0.000109525

60 1 1.271e-07 6.467e-05526

70 1 6.36e-09 6.551e-05527

80 1 2.341e-10 6.251e-05528

90 1 3.539e-12 6.349e-05529

100 1 1.037e-12 6.439e-05530

110 1 1.324e-13 6.572e-05531

118 1 7.531e-15 6.404e-05532

time for iterations/while loop is 0.0780005533

max cosine value is 1534

checking feas error in DRalg.m using ***projected*** last iterate Rpsd535

error for norm(B’*P) is 0536

8 Conclusion537

SDP feasibility problems typically involve the intersection of the convex cone538

of semi-definite matrices with a linear manifold. Their importance in ap-539

plications has led to the development of many specific algorithms. However540

these feasibility problems are often marginally infeasible, i.e., they do not541

satisfy strict feasibility as is the case for our polynomial applications. Such542

problems are ill-posed and ill-conditioned.543

The main contribution of this paper is to introduce facial reduction, for544

the class of SDP problems arising from analysis and solution of systems545
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of real polynomial equations for real solutions. Facial reduction yields an546

equivalent problem for which there are strictly feasible points and which, in547

addition, are smaller. Facial reduction also reduces the size of the moment548

matrices occurring in the application of SDP methods. For example the549

determination of a k×k moment matrix for a problem with m linearly inde-550

pendent constraints is reduced to a (k−m)×(k−m) moment matrix by one551

facial reduction. We use facial reduction with our MATLAB implementation552

of Douglas-Rachford iteration (our FDR method). In the case of only one553

constraint, say as in the case of univariate polynomials, one might expect554

that the improvement in convergence due to that facial reduction would be555

minor. However we present a class of geometric univariate polynomials of556

odd degree, where one such facial reduction combined with DR iteration,557

yields the real radical much more efficiently than the standard interior point558

method Yalmip. The high accuracy required by facial reduction and also the559

ill-conditioning commonly encountered in numerical polynomial algebra [40]560

motivated us to implement Douglas-Rachford iteration.561

A fundamental open problem is to generalize the work of [25, 39] to
positive dimensional ideals. The algorithm of [27, 28] for a given input real
polynomial system P , modulo the successful application of SDP methods at
each of its steps, computes a Pommaret basis Q:

R
√
〈P 〉R ⊇ 〈Q〉R ⊇ 〈P 〉R (8.1)

and would provided a solution to this open problem if it is proved that562

〈Q〉R = R
√
〈P 〉R. We believe that the work [27,28] establishes an important563

feature – involutivity – that will necessarily be a a main condition of any the-564

orem and algorithm characterizing the real radical. Involutivity is a natural565

condition, since any solution of the above open problem using SDP, if it es-566

tablishes radical ideal membership, will necessarily need (at least implicitly)567

a real radical Gröbner basis. Our algorithm, uses geometric involutivity, and568

similarly gives an intermediate ideal, which constitutes another variation on569

this family of conjectures.570

In addition to implementing an algorithm to determine a first facial571

reduction. We also implemented a test for the existence of additional facial572

reductions beyond the first (e.g. in the cases of Examples 4.3 and 4.5 of573

[28]). By using the CVX package or Douglas-Rachford iteration to solve574

for the auxiliary problem, we can determine that if we need a second facial575

reduction by checking whether the optimal value of the auxiliary problem576

is close to 0. So far only moderate improvements in convergence have been577

obtained by our preliminary implementation for construction of additional578
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facial reductions.579

Numerical polynomial algebra has been a rapidly expanding and pop-580

ular area [40]. It’s problems are typically very demanding, motivating the581

implementation of methods to improve accuracy. For example Bertini, the582

homotopy package developed for numerical polynomial algebra, uses vari-583

able precision arithmetic, with particularly demanding problems requiring584

thousands of digits of precision. Consequently this is also a motivation to585

develop higher accuracy methods, such as the FDR method of this paper.586

Manipulations with radical ideals would be a by-product from such work.587

We provided a small set of examples, that illustrate some aspects of588

our algorithms. In Maple all of our examples were executed with Maple’s589

Digits := 15 and the input tolerance := 10−10 for the GIF algorithm whch590

intensively uses LAPack’s SVD. Accuracy in the projected residual error591

for our tests were between 10−14 and 10−12. The normalized generators592

obtained for our experiments had coefficients differing less than 10−10 from593

the exact coefficients.594

Our implementation of auxiliary facial reductions, as still preliminary595

and needs improvement. Even if the real radical is theoretically accessible,596

the conditioning of the polynomial system, as measured by the sensitivity597

of changes in the solutions to changes in the coefficients, is a significant598

computational affect. So a more detailed study of this aspect is worthwhile.599
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Index

C(P ), coefficient matrix of P , 6600

L†, the Moore-Penrose generalized in-601

verse, 20602

N(n, d), 7603

P , system of ` polynomials, 6604

VK, variety of P , 6605

N, nonnegative integers, 6606

RL,RPSD, reflections, 21607

Sk+ , semi-definite cone, 2608

d = deg(P ), 6609

i-th unit vector, 18610

Hk+1, space of generalized Hankel ma-611

trices, 19612

PL, the linear manifold projection,613

20614

PSk+ , the positive semi-definite pro-615

jection, 20616

GIF, Geometric involutive form, 14617

RRI, real radical ideal, 4618

alternating projection, MAP, 5, 19,619

20620

associated polynomial ideal, 15621

coefficient matrix of P , C(P ), 6622

complex variety of P , 6623

degree of xα, 6624

degree of the polynomial system, 6625

Douglas-Rachford reflection-projection,626

19627

Douglas-Rachford, DR, 5, 21628

DR, Douglas-Rachford, 5, 21629

facial reduction, 2630

Gaussian elimination, GE, 4631

geometric involutive bases, 4632

Geometric involutive form, GIF, 14633

Gröbner Bases, 4634

Hankel matrix, 8635

i-th, 17, 18636

MAP, alternating projection, 5, 20637

matrix representation, 18638

matrix representative, 18639

method of moments, 2640

minimal face, 2641

Monomials, 6642

Projecting, 4643

prolongation, 3644

real polynomial ideal, 4645

real radical ideal generated by poly-646

nomials P over R, 15647

x RRI, 4648

real variety of P , 6649

reflections, RL,RPSD, 21650

semi-definite cone, Sk+ , 2651

Semi-definite Programming, SDP, 2652

singular value decompositions, SVD,653

4654

Slater constraint qualification, 2655

strong duality, 3656

system of ` polynomials, P , 6657

t-th, 18658

univariate polynomials, 4659

variety of P , VK, 6660
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