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Abstract

Recent breakthroughs have been made in the use of semidefinite programming and its application
to real polynomial solving. For example, the real radical of a zero dimensional ideal, can be
determined by such approaches as shown by Lasserre and collaborators. Some progress has been
made on the determination of the real radical in positive dimension by Ma, Wang and Zhi. Such
work involves the determination of maximal rank semidefinite moment matrices. Existing methods
are computationally expensive and have poorer accuracy on larger examples.

This paper is motivated by problems in the numerical computation of the real radical ideal in
the general positive case.

In this paper we give a method to compute the generators of the real radical for any given
degree d. We combine the use of moment matrices and techniques from SDP optimization: facial
reduction first developed by Borwein and Wolkowicz. In use of the semidefinite moment matrices
to compute the real radical, the maximum rank property is very key, and with facial reduction,
it can be guaranteed with very high accuracy. Our algorithm can be used to test the real radical
membership of a given polynomial. In a special situation, we can determine the real radical ideal
in the positive dimensional case.
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1. Introduction

The breakthrough work of Lasserre and collaborators [26], 42] shows that the real radical ideal,
RRI, of a real polynomial system with finitely many solutions can be determined by computing
the kernel of so-called moment matrices arising from a semidefinite programming (SDP) feasibility
problem. This RRI is generated by a system of real polynomials having only real roots that are
free of multiplicities. The number of such real roots may be considerably less than the number
of complex roots (see the paper [35] for examples and references). Global numerical solvers, such
as homotopy continuation solvers typically compute all real roots by first computing all complex
(including real) roots. And if the roots have multiplicity, then elaborate strategies are needed to
avoid difficulties that arise as the paths from the homotopy solvers approach these singular roots
[41]. A conjectured extension of such methods to positive dimensional polynomial systems has been
given recently by Ma, Wang and Zhi [32, [31].
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Our approach also builds on the method of moment matrices. A key step is to solve the problem
of the following type for X

A(X)=b, X €8F, X is maximum rank, (1.1)

where Sff_ denotes the convex cone of k£ x k real symmetric positive semidefinite matrices, and
A: Sﬁ — R! is a linear transformation which enforces the moment matrix structure for X.
The standard regularity assumption for is the Slater constraint qualification or strict
feasibility assumption:
there exists X with AX =0, X € int S_]f_ . (1.2)

We let X = 0, > 0 denote X € Sﬁ , € int S¥ | respectively. It is well known that the Slater condition
for SDP holds generically, e.g., [19]. Surprisingly, many SDP problems arising from particular ap-
plications, and in particular our polynomial system applications, are marginally infeasible, i.e., fail
to satisfy strict feasibility. This means that the feasible set lies within the boundary of the cone,
which creates difficulties with numerical algorithms such as interior point solvers and the maximum
rank can not be computed accurately. To help regularize such SDP problems, facial reduction was
introduced in 1982 by Borwein and Wolkowicz [8,[9]. However it was only much later that the power
of facial reduction was exhibited in many applications, e.g., [51, 48, [1]. Developing algorithmic im-
plementations of facial reduction that work for large classes of SDP problems and the connections
with perturbation and convergence analysis has recently been achieved in e.g., [24] [16], 12, [17].

In this paper, we use facial reduction approach to effectively reduce the size of the SDP problem
associated with the input polynomial system so that it is strictly feasible and then solve the reduced
problem using the Douglas-Rachford method. We then use the geometric involutive basis to check
if the kernel of the moment matrix is a truncated ideal (ideal-like). This leads to a method to
compute the generators of real radicals up to any given degree d. Suppose given a subset S of the
real solution set of the input polynomial system. The vanishing ideal of S denoted by I(.S) contains
the real radical. By our approach, we can determine if I(S) is contained in the real radical. If it
is so, then I(S) is the real radical. If not, then S is not complete and a large S is needed. This
leads to a method to numerically determine the completeness of the real solution subset S. See
[10] for details of this approach. We compare the performance of our techniques with the popular
SDP solver SeDuMi(CVX) which uses an interior point method. On our illustrative examples,
our approach has better accuracy, and the maximum rank condition can be guaranteed without
misleading small eigenvalues.

2. Real radical and moment matrices

2.1. real radical
Suppose that ©z = (z1,29,...,2,) € R™ and consider a system of m multivariate polynomials
P ={pi(z),p2(x),...,pm(x)} C R[x1,x2, ..., ;] With real coefficients. Its solution set or variety is

VR(P1, e, pm) ={z € R" i pj(x) =0, 1 < j < m}. (2.1)
The ideal generated by P = {p1,...,pm} C R is:

and its associated radical ideal over R is defined as
V(P)y = {feR[z]:f*+ E‘;-:lq]z € (P) for some ¢; € R[z],t € N\{0}}. (2.3)

A fundmental result [3] is:



Theorem 2.1. [Real Nullstellensatz] For any ideal I C R[z] we have VT = I(Vz(I)).
Consequently
V(P) = {f(z) €Rz]: f(x) =0 forall z € Vg(P)}. (2.4)
Remark 2.1. An ideal I C Rz| is real radical if and only if for all p1,--- ,pm € R[z]:
pi+-+pn, €l =>p1, - pm€E L (2.5)
For these and many other results see [3] and the references cited therein.
2.2. Moment matrix

Definition 2.1 (Moment Matrix [28]). Given a linear form A € Rlz|*,x = (x1 - - - xp,) which maps
a polynomial to a real number. A symmetric matriz

M(A) = (\(@%2”))a,penm (2.6)
is called a moment matriz of X where N =1{0,1,2,---}.
Similarly, we define the truncated moment matrix.
Definition 2.2 (Truncated Moment Matrix [28]). Given a linear form A\ € (R[x]2q)*, the truncated
moment matriz of g is defined to be
M(Ag) = Aa(z%2”)) o peny (2.7)
where N = {y € N" : || =X7_;v; < d}.
Example 2.1. Suppose A\ € R[z,yl5, for d=1. Then
Upo Ulo Uo1
M(A) = |uo ugo un| - (2.8)
Upr UL U2
Without loss, we assume ugg = 1 throughout this paper.

The kernel of a positive semidefinite truncated moment matrix has the following “real radical-
like” property:
Lemma 2.1. [28] Assume M(X\g) = 0 and let p,q; € R[z], f := p*™ + > ¢; withm e N, m > 1.
Then, f € ker M(\g) = p € ker M (A\g).

We also have the following theorems which are known:

Theorem 2.2. |27, Lemma 3.1] Suppose that the ideal I = (fi,... fm)r with max;(deg(f;)) = d
and let B be the coefficient matriz of {f1,... fm} C Rlz]. Let M(\g) be a truncated moment matriz
such that B - M (Ag) =0 and M (\g) = 0. If the rank of M(\q) is mazximum then

Pker M(\g) € V1. (2.9)

Theorem 2.3. (Flat extension theorem [14]) Assume M(\g) = 0. The following statements are
equivalent:

(i) There exists an extension M(Ag+1) = 0 and rank M (\g) = rank M (Ag11).
(ii) ker M (A\q) is ideal-like.

Lemma 2.2. [27, Theorem 3.4, Corollary 3.8] Assume M (X) »= 0 and rank M (A\g) = rank M (A\g—1) =
r. Then J = (Pker M(A\q))r is real radical and zero-dimensional. One can extend \g to A =
Yoilq @iy, € Rlz]* where a; > 0 and {v1,...,v.} = VR(Pker M(X\g)). Furthermore X = X\g when A
is restricted to R[z]aq.



3. Computation of generators of the real radical up to a given degree

Based on the maximum rank moment matrix, the geometric involutive form [35], the results of
Curto and Fialkow [14] and Lasserre et al. [27] we give an algorithm for computing the real radical
up to a given degree d.

Throughout this section we consider a system of multivariate polynomials {fi,- -, fm} C
R[x1, g, ..., x| of degree d = max;(deg(f;)). The associated real ideal is denoted
I:= <f17f27'--7fm>]R (31)

and its associated real radical ideal is denoted by JI.
In particular we solve the following problem:

Problem 3.1. Given a system of polynomials {f1,--- , fm} C Rlz1, 22, ..., z,] with associated ideal
I and an integer d we give an algorithm to compute:

(%‘ﬁ)(gd) = {f e ¥T:deg(f) < d}. (3.2)

We will represent (M ) <a) by polynomials corresponding to vectors in ker M (\y) where M (\y)

is the truncated moment matrix to degree d as defined in Definition

In order to obtain our main result we will require that ker M (\y) is ideal-like as defined by Curto
and Fialkow [14]. We note that there is a bijective correspondence between vectors v € ker M ()
and polynomials given by v + P(v) = vT (%) 4enn where (2%)qenn is the vector of all monomials of
degree < d ordered in the same way as the rows of the moment matrix. Conversely each polynomial
g used to form the coefficient matrix B, is mapped to a vector vec(g) in ker M (\y).

Definition 3.1 (Ideal-Like truncated moment matrix [I4]). The kernel of a truncated moment
matriz M (X\g) is ideal-like of degree d if the following two conditions are satisfied:

o If fi, fo € Pker M(\y) then fi1 + fo € Pker M(\y).

o If f € Pker M(\y) and g € R[z| has deg(fg) < d, then fg € Pker M (\g).
The ideal-like property is denoted as RG in [1])].

Our main result is:

Theorem 3.1. Suppose that I = (f1,... fm)r with max;(deg(f;)) = d and let B be the coefficient
matriz of {f1,... fm} C Rlz]. Let M(\q) be a truncated moment matriz such that B - M(\g) = 0
and M (Ag) = 0. If the rank of M(\g) is mazimum and ker M (\y) is ideal-like then

R
Pker M(Ag) = (V7) e (3.3)

To prove the above theorem, we will need Theorem Theorem and Lemma [2.2

We now prove Theorem

PROOF. Suppose ker M (\y) is ideal-like, M (N\g) = 0 and M (\;) has maximum rank together
with the other assumptions in Theorem (3.1

Our goal is to show that

Pler M(Ag) = (V1)

(<a)’



First by Theorem [2.2] the following direction is obvious:

Pker M(Ag) € (VT) _ .
(<d)
So we only need to show

Pker M(A\g) D (W)(Sd) .

By Theorems and Ag can be extended to A\gyr1 such that J = (Pker M (A\gy1))r is real
radical and zero-dimensional. Since I C J, we have VI CJ. By Theorem one can extend A\g
to XA =31 oAy, € Rlz]* where o > 0 and {v1,...,v,} = Vr(Pker M(\g41)) = Vr(J) and A,
is an evaluation mapping at v; such that A, (f) = f(v;). Thus \g = >, a,-)\g}i.l) where )\q(fil) is the
truncated linear form of \,,. Since v/ C J, we have {vy,...,v,} C Va(V1).

Now we can prove the other inclusion:

Pker M(Ag) 2 (%)(Sd)'

So we let g € (%)Kd) and we want to show that g € Pker M()\g), that is to show that
vec(g)TM(N\g) = 0. -

Since g € v/ with deg(g) < d, we have g(v;) = 0,i = 1,...,r. Therefore, we have g*(v;) =
vec(g)TM()\S,?))vec(g) = 0. Since M(Aq(g)) =0, we have vec(g)T M(\,,) =0 for i = 1,...,r. Hence
it aivec(g)TM()\z(,il)) =0, so vec(9)TM()\g) = 0 and g € Pker M ()\g) which is what we wanted
to show. O

By Theorem [3.1] we now have a complete algorithm to Problem [3.1}

Algorithm 1: RealRadical(F,d)
Input(F = {f1,..., fm} C Rlz], x € R", an integer d > deg(F').)
Set I’ to be the prolongation of F' to degree d.
repeat
B := CoeffMtx(F").
Solve for maximum rank moment matrix M (\g) such that BT M (\g) = 0, M ()\g) = 0.
(This can be done by Algorithm [2|in the next section.)
F" :=P(ker M(A\g)).
Compute GIF(F").
Project/ Prolong GIF(F") to degree d: F' := GIF(F")(<q).
until dim F’ = dim F";
Output(F’, a basis for {f € VT :deg(f) < d}.)

In Algorithm [I} CoeffMtx computes the coefficients in the monomial basis, although potentially
other bases could be used. It exploits the property that the the GIF algorithm obtains polynomials
in a form that satisfies the ideal-like property. In particular note that for a given f in Definition (3.1
fg=">,aax"f is expanded in term of so-called prolongations by monomials 2. The invariance of
geometric involutive bases under prolongation-projection implies that each zf is in the basis, and
by superposition fg is also in the basis. We note that Pommaret involutive bases don’t necessarily
satisfy the ideal-like property but can be extended easily by an explicit algorithm to such basis
[22, 40]. Groebner bases can also be extended, by essentially reformulating them as involutive basis
[22].



Involutivity originates in the geometry of differential equations. See Kuranishi [25] for a famous
proof of termination of Cartan’s prolongation algorithm for nonlinear partial differential equations.
A by-product of these methods has been their implementation for linear homogeneous partial
differential equations with constant coeflicients, and consequently for polynomial algebraic systems.
See [22] for applications and symbolic algorithms for polynomial systems. The symbolic-numeric
version of a geometric involutive form, GIF, was first described and implemented in Wittkopf
and Reid [46]. It was applied to approximate symmetries of differential equations in [6] and to
polynomial solving in [38, B0, B9]. See [50] where it is applied to the deflation of multiplicities in
multivariate polynomial solving. For more details and examples see [37, [6]. The details of the GIF
algorithm, including, prolongations and projections, can be found in our earlier work [35].

4. SDP and facial reduction

A symmetric matrix M of sizes k x k is called positive semidefinite, denoted as M = 0, if one
of the following two criteria is satisfied:

1. 2T Mz > 0 for all z € RF.
2. All eigenvalues of M are non-negative.

Similarly, a symmetric matrix M of sizes k X k is called positive definite, denoted as M > 0, if one
of the following two criteria is satisfied:

1. 2T Mz > 0 for all nonzero = € R¥,
2. All eigenvalues of M are strictly positive.

The set of all k x k symmetric matrices are denoted as S*¥. The cone of k x k all positive semidefinite
matrices is denoted as S_]’ﬁ. The cone of k x k all positive definite matrices is denoted as S_]ﬁ L

Definition 4.1 (Trace product). Given two symmetric matrices A, B, we define the trace inner
product (A, B) = trace(ATB) = > AijBij.

Definition 4.2. Suppose Ai, ..., A; € RF¥E the linear operator A from RF¥*k to R is defined as:

A(X) = [(A1, X), o0 (A, X)TT, X € RPE, (4.1)
The adjoint operator of A from R! to R¥** denoted as A*, is defined as:

l
A*y = ZAzyu Y € Rl. (4.2)
i=1

Definition 4.3. Given a matriz H = (a;;)1<ij<k € R¥*¥, define vec(H) to be the vectorization of
H, i.e.,

UEC(H) — [a117a12a ey A1E,QA21,022, 00, Ay - - 7ak‘k]T'

The matriz representation of the linear operator A, denoted as A, is A = [vec(Ay), ..., vec(A)]T.



4.1. Face, minimal face and facial structure

We give a brief introduction to faces, minimal faces, and lemmas about facial structure. The
definitions below can be found in [8, 9] 111 [18| [34].

Definition 4.4. Given convex cones F, K and FF C K, we call F a face of K, FF I K if
z,yeKix+ye FF = x,ye F.

Given a monempty convex subset S of K, the minimal face of K containing S is defined to be the
intersection of all faces of K containing S.

Definition 4.5. Suppose F' is a face of S_]f_, the orthogonal complement of F' denoted as F*, is
defined to be F+ = {Z € 8¥: Z- X = 0,YX € F}. The dual cone of F, denoted as F*, is defined
tobe F*={ZecS":7Z-X »0,vYX € F}.

The following lemmas about the facial structure of the semidefinite cone S_’f_ are well known,
see e.g. [47].

Lemma 4.1. Any face F of S_]ﬁ is either 0, S_Iﬁ or
F={XecS": X=UMU" MecS}} (4.3)
where U is an k X r matriz.

Lemma 4.2. Suppose F is a face of S¥ and W € Sk. Then S¥ N {W}+ and F N {W}+ are faces
of Sk, where (W}t ={X e Sk: X -W =0}.

4.2. Facial reduction

The idea of facial reduction was originally developed by Borwein and Wolkowicz [8, 9] in the
1980s. However it has been nontrivial to develop practical algorithms implementing facial reduction.
Only recently have practical algorithms been developed. For example it was recently applied to
solve the large sensor network localization problems [24] 16].

We consider the set Fp = {X € S¥ : A(X) = b,X > 0}, clearly Fp is a convex subset of S¥.
The following theorem gives information on the facial structure of Fp:

Theorem 4.1 ([34, SDP version of Lemma 28.4] ). Define Fyi, to be the minimal face containing
Fp. A* is the adjoint of A defined before. For a face F' < S_lfr containing Fp, the following holds :

() 40PEE, g Joxeminren

In addition, F' = Fyy, if and only if (IT) has no solution.

The matrix Z is called the exposing vector of F. Each time (1) is solved, an exposing vector
7 is obtained and can be used to update F' < {Z}+ N F. Repeating this process until (II) is
infeasible ((II) admits no solution), we get a sequence of faces containing Fp: Fy D Fy; D Fy D
-++ D Fuin D F, where Fy = Sf_ and Fj;1 = F;N{Z;}*. This iteration process to find the minimal
face Fuin is called facial reduction on the primal form and is guaranteed to terminate in at most
n — 1 iterations [45]. The minimal number of facial reductions is called the singularity degree.
The correctness of Theorem [4.1]in the SDP case is due to the following theorem:



Theorem 4.2 (Primal Theorem of Alternative [LT, [I8]). Suppose A : Sk — R is a linear trans-
formation, b € R, P € S* and Z € S*. Then exactly one of the following alternative systems is
consistent:

(I) 0<PecF:={PecS":AP)=0b,P>=0}. (Slater) (4.5a)

(II) 0#4ZeD:={ZecS8" :Z=Ay>=0,bTy=0}. (Auziliary) (4.5b)

PRrROOF. Note that if (II) is consistent, then Z exposes a face of S7 that contains the minimal
face (F,S%). That is, for P € F we have

trace ZP = trace(A*y)P = 1 b = 0.

The remainder of the proof can be found in [11] [I§].
Equation (4.5al) is called the primal problem and equation (4.5b)) is called the auziliary problem.

4.3. Facial reduction maximum rank algorithm

Our facial reduction algorithm follows from Theorem [{.1, We use the following Lemmas to
convert (I),(II) of Theorem to equivalent problems which are easier and more practical to
solve. The proofs of these Lemmas can be found in the Appendix.

Lemma 4.3. Suppose a face is given as F = {X € S¥: X =UMUT, M ¢ ST}, Then
IXEF AX)=b < IX eS8}, UTAU(X) =1, (4.6)
where UT AU is a linear operator from S™ to R! defined as
UTAU(X) = [(UT AU, X), ... (UTAU, X)), X eS". (4.7)

Lemma 4.4. Suppose F = {X € S*: X =UMUT, M ¢ ST}, Then

32 =% Ay e F*\ F-, 0Ty =0 (4.8)
e
3Z =Y, UTAUy = 0#0, by =0. (4.9)

Lemma 4.5. Suppose Z is an exposing vector satisfying (@ and Z satisfying with V =
null(2), F={X € S*: X =UMUT , M € 8"} is the face. Then

{(ZV'nF={XecS": X=0vMVTU" M€ S"}. (4.10)

Recall in Algorithm (I, we need to find M(\g) such that BTM(\g) = 0,M()\g) = 0. All
such moment matrices form a convex subset of R¥*¥. Also in general, all the moment matrix
M(Xg) form an affine subspace A(X) = b. The construction of A is described in [35]. So the set
{M(X\g) : BEM(X\g) = 0, M()\g) = 0} can be converted to a convex set F, := {X € S¥ : A(X) =



b, BTX =0, X = 0}. The algorithm to find maximum rank solutions of Fp needed in Algorithm
is summarized as follows:

Algorithm 2: Facial reduction on the primal. Compute the minimal face F,;, := USi ur
of S¥ containing F,, where F, := {X € &% : A(X) = b,BTX = 0,X = 0}. Obtain the

maximum rank solution of .

Input(A: S* - RLbER,BERF™ set j=1,U =1.)

repeat
If j =1, set Z=BBT.
Ifj>1,

find Z>0

l
subject to Z = ZAiyi, v'y=0:yeR.
i=1

Find a basis V for null(Z).
Update A by setting A; « VTAV,i=1...1.
Update U by setting U <~ U - V.
j=J+1L
until only has zero solution;
Solve A(P) = b, P = 0. Solution of F, is X := UPU".
Output(X which is mazimum rank solution.)

Theorem 4.3 (Maximum rank). Algom'thm@ returns a mazimum rank solution of F,.

PROOF. At step j, when an exposing vector Z = 0 is found (Z = BB”T when j =1 or Z
satisfies @ when j > 1), we can reduce the problem to an equivalent smaller problem without loss
of information by Lemma and Theorem When @ only has zero solution, we have
reduced the problem to a minimal face with no further facial reductions can be done according to
Theorem and all the feasible solutions of F, has the form X := UPU T By Theorem when
@ only has zero solution, there exists P = 0 such that A(P) = b, P = 0. As aresult, X := UPUT
is the maximum rank solution of ¥, if we can find P which is positive definite. O

Remark 4.1 (Singularity degree). The minimal number of facial reduction steps is called singu-
larity degree. The examples in Section [7 show that some examples with singularity more than 1
can be accurately solved by Facial reduction heuristics. For more details, see [{4), [17].

5. Projection method

In Algorithm |2, we need to solve two problems: the auxiliary problem to solve is and the
primal problem after facial reduction to solve is A(P) = b, P > 0. Essentially, we need to find the
intersection between an affine subspace (linear constraints) and a positive semidefinite cone. We
consider the Douglas-Rachford reflection-projection (DR) method which involves projections and
reflections between two convex sets. These two convex sets are the affine subspace and the positive
semidefinite cone in our case. There are also other projection-based methods, such as method of
alternating projection [21]. We prefer the DR method as it displays better convergence properties
in our tests. Also, unlike the alternating projection method, which is likely to converge to the
boundary of cone, the DR method is likely to converge to the interior of the cone which is needed
in Algorithm 2| for solving A(P) =b, P > 0.



5.1. Projection to the positive semidefinite cone
Given X € 8%, denote Psi (X, r) as the projection of X to Sﬁ such that the projected matrix
has rank r, we have the following well-known theorem:

Theorem 5.1 (Eckart-Young [20]). Suppose X € S¥, the projection of Psi (X,r) with r < k is:
P‘Sﬁ (X,r) = Vpsi(D,r)VT and X = VDVT is the eigenvalue decomposition of X and D is a
diagonal matriz with all the eigenvalues of X. ’Psf_(D,T) is obtained by keeping the first r largest
positive eigenvalues unchanged while setting all the other eigenvalues to zero.

5.2. Projection to an affine subspace

Suppose an affine subspace is given as follows:
{X € Sk, AX) = b} . (5.1)

To project X from S* onto the affine subspace (5.1)), we have the following well-known theorem:

Theorem 5.2. [33] Given a matriz X € S*, and A, b as in . Let A be the matrix representation
of A as defined in Definition and Al be the Moore-Penrose pseudoinverse of A, i.e., AT =
AT(AAT)L,

Suppose X* := argmin{||X — X|| : A(X) = b}

Then X* = X + AT(b— AX). (5:2)

We denote X* = Pa(X).

5.8. Transform of the auziliary problem

The auxiliary problem @ can be solved by CVX or other SDP solvers, but in order to get higher
accuracy, we use Douglas-Rachford iteration. To do that, we need to reformulate the auxiliary
problem @ First, it is easy to see problem @ can be converted to the form:

Find y € R' : b1y = 0, ATy — vec(Z) = 0,
Z = 0,trace(Z) = 1. (5.3)

We add the trace constraint to make sure Z # 0. If is infeasible then @ only has zero
solution.

In addition, the following theorem shows how to transform problem into a simpler form
that is suitable for applying the Douglas-Rachford method.

Theorem 5.3. Suppose A is the matriz representation of the linear operator A and (AT)' is the
Moore-Penrose pseudoinverse of AT. Let L = [bT - (AT)T; T — AT . (AT)T; vec(I)] and R = [0;0;1].
Then problem is equivalent to the following:

Find Z € S*: L -vec(Z) = R, Z = 0. (5.4)

PROOF. Let’s assume vec(Z) = ATy, then we have AT(AT)tvec(Z) = AT(AT)T ATy = ATy =
vec(Z) since (AT)TAT = 1. Also (AT)tvec(Z) = (AT)T ATy = .

It is easy to verify the other direction, by making the substitution y = (AT)vec(Z). O

By our experiments, we found this formulation has the best performance when coupled with
the Douglas-Rachford methods. So we use for solving problem (<)) in Algorithm
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5.4. The Douglas-Rachford method

In Sections [5.1] and we showed how to project a matrix to a positive semidefinite cone
and a affine subspace. Briefly speaking, the DR methods first project a matrix X to the positive
semidefinite cone, then reflect it by multiplying the projected matrix by 2 and subtracting X from
it. Similarly, the resulting matrix is projected and reflected over an affine subspace as well. Finally
the average of the original matrix and the reflected matrix is taken to update X to X,e,. The
convergence rate of DR method is studied by Bauschke et al [4], [5]. The original idea about the
Douglas-Rachford method came from solving partial differential equations [15]. Then later Lions
and Mercier brought the Douglas-Rachford method to light by connecting it to convex analysis
[29]. (More details about the DR method can be found in e.g., [2, [7].) We apply Douglas-Rachford
to solve both the primal problem and the auxiliary problem. One step of the Douglas-Rachford
method is the following:

Y =2Pg(X,7) - X,

Z=2P4(Y)-Y, (5.5)
Xpew = (X + 2)/2.

At each step, we calculate the residual Res := || A(Y') — b||, which is the residual after projecting
onto the positive semidefinite cone. If the residual is less than the given tolerance, we stop and
return Y. According to the basic theorem on the convergence of the sequence, [7, Thm 3.3, Page
11], the residuals of the projections of the iterates on one of the sets have to be used for the stopping
criteria. We use the residual after the projection onto the SDP cone since we want our final matrix
to be positive semidefinite.

5.5. Choosing the appropriate rank for the projections

In practice, some problems appear to be very ill-conditioned. One example is the geometric
polynomial in Section [7} Those examples have eigenvalue decomposition of the solutions from
problem @ with some eigenvalues that are very small compared to the others, and the DR
iterations converge very slowly. This indicates the rank r used in the projection P&’ﬁ (X,r) can
not be maximum.

To deal with such problems, we would have to project the matrix to a good rank r matrix as
described in Theorem when applying the DR method to for solving problem @ In other
words, at each step of facial reduction, we are not computing the smallest possible face. Instead,
we try to find a bigger but much more accurate face. So we may need more facial reductions but
we can obtain more accurate results.

The strategy we used to get this good matrix is to look at the eigenvalues of Z in . We
drop the eigenvalues which are significantly smaller than the other eigenvalues and r is chosen
to be the number of eigenvalues which are well conditioned. For example, if the eigenvalues are
0.7,0.2,0.00002, 0,0, 0, we will choose r = 2 instead of 3 or 6. After this, we will resolve (5.4) with
the updated r to obtain a more accurate face.

6. A special case for determining positive dimensional real radical

Our theorem on the determination of the real radical up to finite degree is illustrated graphically
in Figure Here suppose F' = {f1,..., fm} C R[z] and we applied Algorithm RealRadical(F’ d)
for a given d, and that the resulting system has leading monomials shown as the corners of the black
monomial staircase. See [I3] for the description of such diagrams. Then the system is prolonged
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and the kernel of its moment matrix is examined for new generators at degrees d+1,d+2,.... The
only way that this is not a complete generating set for the real radical (and that our conjecture
fails), is that there is a minimum degree d’ > d where after prolongation to d’ new generators
are determined that lie outside simple prolongations of the black leading generators. These have
leading monomials shown in red. Some times the completeness of the generating set at degree d
can be checked by a critical point calculation. For example, if the critical point method shows that
the variety is real positive dimensional, then this could rule out the existence of the red staircase
predicting a 0-dimensional real variety. In particular, if the number of red circles in Figure is
1 and the variety of F' is real positive dimensional, then RealRadical(F,d) returns the generators
of {/(F)r. So we have the following theorem:

Theorem 6.1. Given a system of polynomials F = {f1,--- , fm} C Rlz1, 29, ..., z,] with associated
ideal I and an integer d. Let G = {g1,...,g9x} C Rx] be the output of the RealRadical(F,d) algorithm
applied to F' and s is the number of different polynomials of degree d in G. If s = (d:ﬁf) —1 and
the variety of F' is real positive dimensional. Then

V()R = (G- (6.1)

ProoF. By Theorem|3.1 (R <F>R)(<d) = spang G. Suppose in contradiction {/(F)r D (G)g,

then there exists a d’ > d such that (H)®)(<ay C ( y <F>R) <o) where H is the prolongation of G
to degree d’. Therefore there exists a polynomial § € spang G but g ¢ spang H with deg(g) =d > d

where G = {g1, ..., G/} spans (R <F>R>(<d/)'

Now assume the number of different polynomials of degree d’ in H is t and the number of different
polynomials of degree d’ in G is ¢, then t < t because the existence of §g. From combinatorics, the
number of different monomials of degree d in n variables is (d:ﬁil). Since G is already involutive and
5§ = (diﬁzl) —1, we have t = (d/:{fl_ 1) —1 as well. Also clearly t < (d/:fl_ 1), so we have t = (d/:fl_ 1)
which means {/(F)r is a 0-dimensional real variety, a contradiction with the assumption that the

variety of F' is real positive dimensional. So the theorem is proved. ]

7. Examples

In this section, we give some examples. We used MATLAB version 2015a. The computations
were carried out on a desktop with ubuntu 12.04 LTS, Intel Core™2 Quad CPU Q9550 @ 2.83
GHz x 4, 8GB RAM, 64-bit OS, x64-based processor.

We give the first examples (Ex and EX showing additional facial reductions for poly-
nomials, that can be accurately approximated in practice. Our previous attempts [35] were not
accurate.

Example 7.1 (Reducible cubic).

(z+y) (@ +y° +2). (7.1)
Note that the second factor has no real roots, so it is discarded and the real radical is generated by
(z +y). The moment matriz corresponding to 1s a 10 x 10 matriz. The coefficient matriz
B is[0,2,2,0,0,0,1,1,1, l]T. Using Algorithm er two facial reductions, we obtained a maxi-
mum rank 4 moment matriz with residual less than 10714 in less than 200 DR iterations and the
generators of real radical is computed to degree 3.
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Example 7.2 (Reducible quintic).
(I+z+y) (= +y*+2). (7.2)

The moment matrixz corresponding to is a 21 x 21 matriz. We solve this problem using
Algorithm [1.  Algorithm [1] can get 14 decimal accuracy and a mazimum rank moment matriz of
rank 6 in about 1300 DR iterations with 2 facial reductions. The output approrimates the real
radical ideal generated by (1 + x + y) and its prolongations to degree 5.

Example 7.3 (Two variable geometric polynomial with 3 facial reductions).
L+ (z+y) + (@ +y)° + (z+y)° (7.3)

The moment matriz corresponding to is a 10 x 10 matriz. The coefficient matriz B is
[2,2,2,1,0,1,1,1,1,1]7.

This example is a demonstration of the ill-conditioned case discussed in Section[5.5. We first
solve it using Algorithm (2 with rank r to be maximum in 7735_ (X, ), which returns solution of rank

5 with residual 1077 after 2 facial reductions. However, the DR method for solving the auziliary
problem @ converges very slowly. So we check the eigenvalues of solution of the auziliary
problem @ After the first facial reduction, the eigenvalues are 0.5,0.2,0.18,0.08,0,0,0,0,0.
So we drop the fourth one and set r = 3. We resolve using the DR method, which again is
quite slow. So we check the eigenvalues and they are now 0.709,0.29,0.00002,0,0,0,0,0,0,0. The
third one is very small so we drop it and set r = 2. Then we resolve with v = 2. This time
the auziliary problem is solved with residual 1072, Then a third facial reduction is done by setting
r =3 and the residual is 10714,

After 8 facial reductions, the face is reduced to dimension 4 and the moment matriz is obtained
with residual 10713, The eigenvalues of the final moment matriz are 4.70, 3.48,0.89, 0.59,
0,0,0,0,0,0 which gives the correct maximum rank of 4.

Application of Algorithm[1] yields the correct generators of the real radical up to degree 3.

Example 7.4. [10]
f={2yz —vy, 22 +y, zy, 4o’z + 423 + y}. (7.4)

The real radical of this polynomial system is [10)]:

{22 +y/2,yz — y/2,y2 +y/2,xz,xy,y + 2}.

The moment matriz of this problem is 20 x 20. We use Algorithm[3 to solve for mazimum rank
moment matriz. The sizes of the SDP problem are [20, 16, 14, 8] after 3 facial reductions. The
residual of the aumiliary problem at each facial reduction is 10712 10714, (The first facial reduction
is done by Matlab eigenvalue decomposition so we don’t put its residual here.) The moment matriz
is solved with residual 10713 and the mazimum rank is 8.

We then compare algorithm [2| with traditional interior point solver SeDuMi(CVX). As the com-
putations in the above examples and Table demonstrate, the traditional interior point SDP
solver SeDuMi(CVX) is not the right choice for computing the maximum rank moment matrices
as it usually has poor performance when it is trying to maximize rank. With facial reductions and
the DR method, we can get much better accuracy and also the correct maximum rank.
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8. Perturbed examples

In this section, we study how small perturbations affect our algorithm [2l The computational
results are shown in Table [B.3l

Example 8.1 (Perturbed Reducible cubic).
(z +y)(z* + y* + 0.000001zy + 2). (8.1)

Example 8.2 (Perturbed Reducible quintic).

(142 +y)(z* + y* +0.000001zy + 2). (8.2)

Example 8.3.
1+ 1.000001(z + ) 4 0.999999(z + y)? + 1.000001(x + y)>. (8.3)

Example 8.4.
f={2uz—y+e 2 +y—e ay+e 422 +423 +y—e, e=1x 1071}, (8.4)

In examples and where the coefficients of the real radical ideal change continuously
with respect to the changes of the input polynomial system, algorithm [2] has the same performance
on the examples without perturbation. For example where theoretically the real radical ideal
can be very different under small perturbations, algorithm [2|still works very well if the perturbation
is smaller than the residual of the final moment matrix.

9. Conclusion

SDP feasibility problems typically involve the intersection of the convex cone of semi-definite
matrices with a linear manifold. Their importance in applications has led to the development
of many specific algorithms. However these feasibility problems are often marginally infeasible,
i.e., they do not satisfy strict feasibility as is the case for our polynomial applications. Such
problems are ill-posed and ill-conditioned.

This paper is part of a series in which we exploit facial reduction and its application systems
of real polynomial and differential equations for real solutions. The current work is directed at
guaranteeing the maximal rank property and the ideal-like condition to ensure all the generators of
the real radical up to a given degree are captured. It also establishes the first examples of additional
facial reduction that are effective in practice for polynomial systems.

This builds on our work in [35] in which we introduced facial reduction, for the class of SDP prob-
lems arising from analysis and solution of systems of real polynomial equations for real solutions.
Facial reduction yields an equivalent smaller problem for which there are strictly feasible generic
points. Facial reduction also reduces the size of the moment matrices occurring in the application
of SDP methods. For example the determination of a £ X k moment matrix for a problem with m
linearly independent constraints is reduced to a (k —m) x (k — m) moment matrix by one facial
reduction. The high accuracy required by facial reduction and also the ill-conditioning commonly
encountered in numerical polynomial algebra [43] motivated us to implement Douglas-Rachford
iteration in [35].

A fundamental open problem is to generalize the work of [26], [42] to positive dimensional ideals.

In essence, this requires to determine a degree bound d such that <M ) = actually generates the
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whole real radical v/I. At the current stage, there is no practical degree bound when I is real
positive dimensional. In section [6] we only give an answer for a special case.

An important open problem is the following: Give an numerical algorithm, capable in principle
of determining an approximate real point on each component of a real variety. We note that
the methods of Wu and Reid [49] and Hauenstein [23] only answer this question under certain
conditions, say that the ideal is real radical and defined by a regular sequence. Also see [30], which
gives an alternative extension of complex numerical algebraic geometry to the reals, in the complex
curve case.

Recently, Hauenstein et al [I0] have made progress on this problem by using sample points
determined by Hauenstein’s critical point algorithm which is able to certify the generators of the
real radical ideal in some cases. Our results Theorem [3.1]enables the determination of the generators
up to a given degree. Thus gives an answer to the open problem of real radical ideal membership
test left in [I0]. Potentially, the efficiency for computing the sample points can also be improved
which will be described in a subsequent work.
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Appendix A. Proofs of Lemma
Appendiz A.1. Proof of Lemma[{.3

First suppose there exists X = UMU7 satisfying A(X) = b , then we have UT AU (M) =

A(UMUT) = b due to the cyclic property of the trace product.

For the other direction, suppose there exists X satisfying UTAU(X) = b, let X = UXTUT

then it is easy to see A(X) = b as well. O
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Appendixz A.2. Proof of Lemma

Suppose holds, there exists Z = Zi:l Ay € F* which means (Z,UMUT) = 0 for all
M € 87 and (U ZU, M) = 0 for all M € S".. Also Z ¢ F* which means (U? ZU, M) # 0 for some
M € 8" which indicates UTZU # 0.

Now suppose holds, since Z = U1 ZU = 0, we have (Z,UMU") = (UT ZU, M) = 0 for all
M € 87 Hence Z € F*. Since Z # 0, we have Z ¢ null(U”) so Z ¢ F*. O

Appendiz A.3. Proof of Lemma[{.]

First, suppose X = UVMVTUT, then (Z,X) = (UTZU,VMVT) = 0 which means ZX = 0
since Z = 0,X = 0. So X € {Z}L and X € F.

For the other direction, if X € F, then X = UMUT for some M € St IfX e {Z}+, then
X7 = 0 which means (X, Z) = (M, UTZU) = (M,Z) =0 = MZ = 0. Hence M = VMVT for
V =null(Z) and X = UVMVTU for some M € S7. O

Appendix B. Tables and figures

min # FR | rank (FR) | Singlty deg | Res(FR) | Res(CVX)
2 10, 9, 4 1 10~ 107°
2 21, 20, 6 1 10~ 14 107°
3 10,9, 7, 4 2 10713 107°
3 20, 16, 14, 8 2 1013 107°

Table B.1: Comparison between facial reduction and SeDuMi (1) Here: min (max) # FR means
minimal (maximum) number of facial reductions in our tests; rank(FR) means the size of the problem after
each facial reduction, the first one is the size of the original problem; Singlty degree is the singularity degree
of the SDP problem after the 1st facial reduction; Res(FR) is the residual of the final moment matrix using
facial reduction and DR iterations (Algorithm [2); Res(CVX) is the residual of the final moment matrix using
CVX(SeDuMi).

max rank res each FR # DR each FR | toler FR | toler CVX
Ex[7.1 4 10~ 1071 120, 7 10-16 10~ 12
Ex|[7.2 6 10715,10714 267, 6 1016 1077
Ex|[7.3 4 10715,10714,1071° 260, 143, 1 10716 107°
Ex [7.4 8 10715, 10714, 1074 | 625, 192, 29 10716 1077

Table B.2: Comparison between facial reduction and SeDuMi (2) max rank is the maximum rank
of the moment matrix; res each FR is the residual of solving the corresponding SDP problem by DR after
each facial reduction; # DR each FR is the number of DR iterations to solve the corresponding SDP problem
after each facial reduction; toler FR is the tolerance of eigenvalues to obtain the correct maximum rank using
facial reductions (Algorithm ; toler CVX is the tolerance of eigenvalues to obtain the correct maximum
rank using CVX(SeDuMi);
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min # FR | rank (FR) | Singlty deg | # DR each FR | Res(FR)
Ex|[8.1 2 10, 9, 4 1 120, 7 10714
Ex 3.2 2 21, 20, 6 1 245, 6 10713
Ex[R.3 3 10,9, 7, 4 2 260, 146, 1 1013
Ex [8.4] 3 20, 16, 14, 8 2 616, 452, 29 1013

Table B.3: Perturbations

d d

Figure B.1: In the Figure, the black monomial staircase represents the leading monomials of the generators of the real
radical determined to degree d by RealRadical(F,d). The only way these can fail to be a complete set of generators
for the real radical is that there is a minimum degree d’ > d where additional generators with leading monomials of
exactly degree d’ shown in red are found outside black monomial staircase.
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