
Semidefinite Programming and facial reduction for1

Systems of Polynomial Equations2

Greg Reid ∗ Fei Wang † Henry Wolkowicz‡ Wenyuan Wu §3

Revision started July 10, 20154

Latest version as of Sunday 2nd August, 2015, at 15:555

Abstract6

For a real polynomial system with finitely many complex roots, the7

real radical ideal, RRI, is generated by a lower degree system that has8

only real roots and the roots are free of multiplicities. RRI is a central9

object in computational real algebraic geometry. The computation of10

such RRI is of practical interest since multiplicities of roots yield sin-11

gular Jacobians and cause problems for numerical solvers. Moreover12

the number of real roots can be far less than the number of complex13

roots and Lasserre and co-workers have shown that the RRI of a 0-14

dimensional real polynomial system with finitely many real solutions15

can be determined by a combination of techniques from a semidefinite16

programming (SDP) feasibility problem and geometric involution. A17

conjectured extension of such methods to positive dimensional polyno-18

mial systems has been given recently by Ma, Wang and Zhi.19

In this paper we show that regularity in the form of the Slater20

constraint qualification (strict feasibility) fails for the moment matrix21

in the SDP feasibility problem. We use facial reduction and obtain22

a smaller regularized problem for which strict feasibility holds. We23

use this framework for analyzing RRIs of 0 and positive dimensional24

∗Dept. Appl. Math., University of Western Ontario, London, Ontario, Canada
†Dept. Appl. Math., University of Western Ontario, London, Ontario, Canada
‡Department of Combinatorics and Optimization, University of Waterloo, Waterloo,

Ontario N2L 3G1, Canada. Research supported in part by The Natural Sciences and En-
gineering Research Council of Canada (NSERC) and the U.S. Air Force Office of Scientific
Research (AFOSR).
§Chongqing Key Lab. of Automated Reasoning and Cognition, CIGIT Email:

wuwenyuan@cigit.ac.cn. Partly supported by NSFC 11471307 and West Light Foun-
dation of the Chinese Academy of Science.

1

http://www.orcca.on.ca/~reid/NewWeb/
http://www.apmaths.uwo.ca/people/grad_students.html
http://orion.math.uwaterloo.ca/~hwolkowi/
http://sourcedb.cigit.cas.cn/yw/ywrc/201204/t20120427_3564519.html

real polynomial systems. The SDP methods are implemented in MAT-25

LAB and our geometric involutive form is implemented in Maple. We26

consider two approaches to find a feasible moment matrix. We com-27

pare the SeDuMi interior point approach within the YALMIP package28

for MATLAB with the Douglas-Rachford (DR) projection-reflection29

method.30

Illustrative examples show the advantages of the DR approach for31

some problems over standard interior point methods. We also see the32

advantage of facial reduction both in regularizing the problem and also33

in reducing the dimension of the moment matrices.34

1 Introduction35

The breakthrough work of Lasserre and collaborators [30, 45] shows that36

the real radical ideal, RRI , of a real polynomial system with finitely many37

solutions can be determined by a combination of a semidefinite program-38

ming, SDP , feasibility problem and the geometric involutive form, GIF .39

This RRI is generated by a system of real polynomials having only real40

roots that are free of multiplicities. Global numerical solvers, such as homo-41

topy continuation solvers typically compute all real roots by first computing42

all complex (including real) roots. And if the roots have multiplicity, then43

elaborate strategies are needed to avoid difficulties that arise as the paths44

from the homotopy solvers approach these (singular Jacobian) roots [44].45

Furthermore, random polynomial systems of k real polynomials of degree46

d in n variables can have dn roots, and if the coefficients follow a certain47

probability distribution have only dn/2 real roots on average, see [21] and48

the references therein. Therefore, consideration of only the real roots sim-49

plifies the problem. A conjectured extension of such methods to positive50

dimensional polynomial systems has been given recently by Ma, Wang and51

Zhi [33, 34]. These extensions depend on the method of moments within a52

SDP formulation.53

Our SDP feasibility formulation is a moment problem equivalent to find-
ing X for a linear system of the following type (also Problem 1.1 below)

AX = b, X ∈ Sk+ , (1.1)

where Sk+ denotes the convex cone of k × k real symmetric positive semi-
definite matrices, and A : Sk+ → Rm is a linear transformation. The stan-
dard regularity assumption for (1.1) is the Slater constraint qualification or
strict feasibility assumption:

there exists X̂ with AX̂ = b, X̂ ∈ intSk+ . (1.2)

2

We let X � 0,� 0 denote X ∈ Sk+ ,∈ intSk+ , respectively. It is well known54

that the Slater condition for SDP holds generically, e.g., [19]. Surprisingly,55

many SDP problems arising from particular applications, and in particu-56

lar our polynomial system applications, are marginally infeasible, i.e., fail57

to satisfy strict feasibility. This means that the feasible set lies within the58

boundary of the cone, and even the slightest perturbation of the data can59

make the problem infeasible. This creates difficulties with the optimality60

and duality conditions as well as with numerical algorithms. To help regu-61

larize such SDP problems so that strong duality holds, facial reduction was62

introduced in 1982 by Borwein and Wolkowicz [11,12]. However it was only63

much later that the power of facial reduction was exhibited in many appli-64

cations, e.g., [1, 49, 52]. Developing algorithmic implementations of facial65

reduction that work for large classes of SDP problems and the connections66

with perturbation and convergence analysis has recently been achieved in67

e.g., [14, 17,18,28].68

A polynomial system of maximum degree d equations in n variables can69

be viewed as the equation Cx = 0, a function of its monomials [30, 45].70

Here x is a vector of the N(n, d) = (d+n)!
d!n! =

(
d+ n
d

)
monomials up to71

the degree d of the polynomial system. This equation yields part of the72

system of linear constraints in the SDP formulation of polynomial systems.73

The convex cone for polynomials are semi-definite moment matrices encod-74

ing the real solutions of the polynomial equations and certain generalized75

Hankel-Macaulay structure possessed by the polynomial systems. Remark-76

able advances have been recently made in this area [8, 30, 45] which is an77

intersection between optimization and algebraic geometry. In this article we78

establish a framework for using facial reduction for such systems and then79

solving the systems using the regularized smaller SDP. We note that familiar80

methods for linear systems of equations when d = 1 are Gaussian elimina-81

tion, GE , for exact solutions and singular value decompositions, SVD , for82

least squares solutions. For polynomial systems, the corresponding method83

in the exact case uses Gröbner Bases [4]. A major difference for Gröbner84

Bases to the case d = 1 is that generalized row operations involving multi-85

plication by monomials and not just scalars is permitted. The operation of86

multiplying a polynomial by such a monomial raises its degree and is called87

prolongation. Eliminating between prolonged equations, is called projec-88

tion. In the approximate case, as in our paper, we use geometric involutive89

bases [43] which use the SVD.90

In particular a polynomial system can possess constraints resulting from91

this process that are higher than the degree of the system. So in this paper,92

3

as in [30, 45] and in Ma, Wang and Zhi [33, 34], higher degree systems can93

result. This continual extension of the underlying space is a significant94

practical and theoretical challenge in algorithm development.95

The RRI of our system P is the set of all polynomials with the same96

zero set as P . To give the reader an informal introduction to RRIs and97

their interpretation, consider the simple case of univariate polynomials with98

real coefficients, n = 1. In this case, the factors of the coefficients are99

either complex or real. The RRI discards the complex factors and also100

the multiplicities from the polynomial, to obtain a new polynomial. This101

reduced polynomial is the generating polynomial for the RRI of the original102

polynomial, and has the same real roots, no multiplicities and no complex103

roots.104

Combining SDP methods and applying them to a polynomial system105

P with coefficient matrix C(P) and associated moment matrix M(u) ∈106

RN(n,d)×N(n,d) yields the following problem central to our paper:107

Problem 1.1 (Moment Matrix Feasibility Problem). Find u ∈ RN(n,2d)

where N(n, d) =

(
d+ n
d

)
so that

C(P)M(u) = 0, M11(u) = 1, M(u) � 0.

Also see Problem 5.1 in Section 5.108

We continue in Section 2 with material on real polynomial systems, their109

RRIs and the coefficient matrix representations. In Section 3 we give a110

condensed and more formal description of geometric involutive bases and111

the related algorithms. In Section 4 we combine the moment matrix and112

geometric involutive form algorithms to yield our fundamental Algorithm 4.1113

for polynomial systems. In particular Algorithm 4.1 proceeds by putting114

the polynomials into GIF using Algorithm 3.1; we then solve the related115

moment matrix problem using Algorithm 2.1. These two steps are iterated116

until satisfaction of the Rank-Dim-Involutive Stopping Criterion 4.1.117

In Section 5 we describe the facial reduction and projection methods for118

finding feasible solutions for the moment matrix feasibility problem 1.1. We119

also describe the Douglas-Rachford (DR) projection/reflection method that120

we use. We also present our implementation of facial reduction. Section 6121

gives the numerical experiments. Our concluding remarks are in Section 7.122

4

2 Real radical ideals and moment matrices123

We now present some material on real polynomial systems, their RRIs and124

the coefficient matrix representation needed for our paper. For background125

and references to real algebraic geometry see e.g., [2, 4, 8, 45].126

2.1 Real polynomial systems127

We consider a (finite) system of m polynomials in n variables

P := {p1, ..., pm} ⊂ R[x1, . . . , xn] =: R[x],

where R[x] is the set of all polynomials with real coefficients in the n variables

x =
(
x1, x2, . . . , xn

)T
. We let d = deg(P) denote the degree of the polynomial

system, i.e., the maximum of the degrees of the polynomials pj in P . The
solution set or variety of P is

VK(p1, ..., pm) = {x ∈ Kn : pj(x) = 0, ∀1 ≤ j ≤ m}. (2.1)

This is the real variety of P if K = R and the complex variety of P if K = C.
The real ideal generated by P = {p1, . . . , pm} ⊂ R[x] is:

〈P 〉R = 〈p1, . . . , pm〉R = {f1p1 + . . .+fmpm : fj ∈ R[x],∀1 ≤ j ≤ m}. (2.2)

We denote a monomial by xα := xα1
1 · · ·xαn

n , where α ∈ Nn, N is the set128

of nonnegative integers. The degree of the monomial is |α| := ‖α‖1 =129

α1 + · · ·+ αn. It is clear that the degree of each monomial satisfies |α| ≤ d,130

the degree of the polynomial. Throughout this paper we use graded reverse131

lexicographic order, grevlex , to order the set of monomials.1132

We can rewrite the system of m polynomials, P , as

P =

∑
|α|≤d

ak,α x
α : k = 1, . . . ,m

 . (2.3)

This order respects the Cartan class of variables, which is important in our133

numerical determination of the geometric features of the polynomial systems134

such as those in Definition 3.3 below.135

1This is often called grevlex in the literature. It compares the total degree first and
then compares exponents of the last indeterminate but while reversing the outcome so
that the monomial with smaller exponent is larger in the ordering.

5

Definition 2.1 (Coefficient matrix of P , C(P)). Let x(≤d) = (xα) be the136

column vector of monomials xα with 0 ≤ |α| ≤ d ordered as in grevlex above.137

Suppose that the coefficients ak,α in (2.3) are similarly ordered. Then define138

the coefficient matrix of P by C(P) = (ak,α).139

The following lemma follows immediately.140

Lemma 2.1. With C(P), x(≤d) defined in Definition 2.1, we have

P = C(P)x(≤d), (2.4)

with C(P) ∈ Rm×N(n,d) and N(n, d) :=

(
d+ n
d

)
is the number of mono-141

mials in x(≤d).142

The well known presentation of polynomial systems as linear functions143

of their monomials along with the related coefficient matrix and its kernel144

and rowspace has been exploited in [37–39,46] and in the historical work by145

Macaulay [36]. For an introductory example see [41].146

2.2 Moment matrices147

Moment matrices M(µ) arise as a means of representing real polynomial148

systems. We outline the procedure for finding M(µ) in Algorithm 2.1. For149

theoretical background the reader is directed to e.g., [2, 31].150

A moment matrix is an infinite real symmetric matrix M = (Mα,β) with151

indices corresponding to the indices of the monomials α, β ∈ Nn. Here α is152

the index for rows and β is the index for columns. Without loss of generality,153

we assume that M0,0 = 1. The matrix arises from considering the product154

of monomials xαxβ = xα+β and then the correspondence uα ↔ xα extends155

to the formal correspondence xαxβ ↔ uα+β.156

Definition 2.2 (Moment matrix). Let u = {uα : α ∈ Nn, |α| ≤ d} ∈ RN(n,d)

be a vector of indeterminates where the entries are indexed corresponding to
the exponent vectors of the monomials in n variables of degree at most d.
The degree d moment matrix of u is a N(n, d)×N(n, d) symmetric matrix
with rows and columns corresponding to monomials in n variables of degree
at most d, and defined as

M(u) =
[
uα+β

]
|α|,|β|≤d .

Given a multivariate polynomial system P ⊂ R[x] with d = deg(P) we157

let M denote the truncated moment matrix .158

6

Lemma 2.2. The truncated moment matrix M ∈ SN(n,d)
+ . The linear con-159

straints imposed by P from (2.4) are C(P)M = 0, where C(P) is the coeffi-160

cient matrix function given in Definition 2.1.161

Example 2.1 (Moment matrix for univariate example x = (x1)). The mo-162

ment matrix in the univariate (n = 1) case is the infinite matrix whose163

(α, β) entry is uα+β and α, β ∈ N given by:164

M(u) =



u0 u1 u2 u3 u4 · · ·
u1 u2 u3 u4 u5 · · ·
u2 u3 u4 u5 u6 · · ·
u3 u4 u5 u6 u7 · · ·
u4 u5 u6 u7 u8 · · ·
...

...
...

...
...

. . .


, u0 = 1. (2.5)

Note that (2.5) is a Hankel matrix. Let us associate uα ↔ xα. Then we165

recover the polynomial equation using the coefficient matrix as C(P)x(≤d).166

This implies that in terms of the moment matrix, we get C(P)M(u) = 0.167

168

Algorithm 2.1: M - Moment Matrix

1 Input(P ⊂ R[x1, . . . , xn]. Set d := deg(P));
2 Use an SDP method to find a maximum rank moment matrix M(µ∗)

with the additional coefficient constraint C(P)M(u∗) = 0;
3 Output(M(u∗) � 0, the maximum rank moment matrix)

169

170

171

3 Geometric involutive bases172

In this section we introduce the basic objects for geometric involutive bases.173

Algorithm 3.1 finds the GIF. For more details and examples see [9, 41].174

Involutivity originates in the geometry of differential equations. See175

Kuranishi [29] for a famous proof of termination of Cartan’s prolongation176

algorithm for nonlinear partial differential equations. A by-product of these177

methods has been their implementation for linear homogeneous partial dif-178

ferential equations with constant coefficients, and consequently for polyno-179

mial algebraic systems. See [24] for applications and symbolic algorithms for180

polynomial systems. The symbolic-numeric version of a geometric involutive181

form, GIF , was first described and implemented in Wittkopf and Reid [47].182

7

It was applied to approximate symmetries of differential equations in [9]183

and to polynomial solving in [40, 42, 43]. See [51] where it is applied to the184

deflation of multiplicities in multivariate polynomial solving.185

Definition 3.1. Let P be a finite subset of R[x] of degree d. The k-th
prolongation of system P is

D̂
k
(P) := {xαp : 0 ≤ deg(xαp) ≤ d+ k, α ∈ Nn, p ∈ P}.

For example D̂
k
(P) for P = {x2−x−1, xy−y−1} consists of P together

with the 4 polynomials in

x(x2 − x− 1) = x3 − x2 − x
x(xy − y − 1) = x2y − xy − x
y(x2 − x− 1) = x2y − xy − y
y(xy − y − 1) = xy2 − y2 − y.

(3.1)

We can project by eliminating higher degree monomials in favour of lower186

degree ones. In the prolonged system we can project the system from degree187

3 to degree 2 by eliminating the highest degree term x2y that occurs in the188

second and third equations of (3.1) to obtain the new projected equation189

y − x = 0.190

Definition 3.2. Given a subspace V of Jd := RN(n,d) and m ≤ d, define191

πm(V) as the vectors of V with the components of degree ≥ d − m dis-192

carded. Given P ⊂ R[x] of degree d define πm(P) := πm kerC(P). The k-th193

prolongation of the kernel is Dk(P) := kerC(D̂
k
P).194

See for example [43] and the references in [41] for the stable numerical im-195

plementations of this paper’s operations using SVD methods. In Remark 3.5196

of [41] we discuss how prolongation and projection can equivalently be com-197

puted in the kernel or rowspace, and how polynomial generators can always198

be extracted. Underlying this is a 1−1 correspondence between the relevant199

vector spaces (not elements).200

Definition 3.3 (Symbol, class and Cartan involution test). Suppose201

P ⊂ R[x] of degree d. The symbol matrix S(P) of P is the submatrix of C(P)202

corresponding to its degree d monomials. Then the class of a monomial xα203

is the least j such that αj 6= 0.204

Suppose that the columns of S(P) are sorted in descending order by205

class and that it is reduced to Gauss echelon form. For k = 1, 2, ..., n define206

8

the quantities β
(k)
d as the number of pivots in this reduced matrix of class207

k. In a generic system of coordinates the symbol is involutive if208

k=n∑
k=1

kβ
(k)
d = rank S(D̂P) (3.2)

Suppose Q ⊂ R[x] has degree d′ and a basis for kerC(Q) is given by the

rows of the matrix B. To extract the β
(k)
q in (3.2) at projected degree d ≤ d′

we first numerically project kerC(Q) onto the subspace Jd by deleting the
coordinates in B of degree > d to give a spanning set B̃ for πd

′−dQ. Then
delete the columns in B̃ corresponding to variables of degree < d to obtain
a matrix Ad corresponding to the orthogonal complement of the degree d

symbol. Let A
(k)
d be the submatrix of B̃ with columns corresponding to

variables of class ≤ k. In generic coordinates for k = 1 . . . n:

β
(k)
d =

(
n+ d− k − 1

d− 1

)
−
(

rank A
(k−1)
d − rank A

(k)
d

)
.

Then the SVD can approximate the ranks in this equation for carrying out209

the Cartan Test (3.2).210

Definition 3.4 (Involutive System). A system of polynomials P ⊂ R[x] is211

involutive if dim πDP = dim P and the symbol of P is involutive.212

Definition 3.5. Let P ∈ R[x] with d = degP and k, m be integers with213

k ≥ 0 and 0 ≤ m ≤ k + d. Then πmDkP is projectively involutive if214

dim πmDkP = dim πm+1Dk+1P and the symbol of πmDkP is involutive.215

In [9] we proved that a system is projectively involutive if and only if it216

is involutive. In Algorithm 3.1 we seek the smallest k such that there exists217

an m with πmDkP approximately involutive, and generates the same ideal218

as the input system. We choose the system corresponding to the largest219

such m ≤ k if there are several such values for the given k.220

221

9

Algorithm 3.1: GIF: Geometric involutive form

1 Input(P ⊂ R[x1, . . . , xn]; tolerance ε.);
2 Set k := 0, d := deg(P) and B for kerC(P), J = {} ;
3 while J 6= ∅ do

4 Compute Dk(P); initialize set of involutive systems I := {} ;
5 for j from 0 to (d+ k) do

6 Compute R := πjDk(P);
7 if R involutive then
8 I := I ∪ {R}
9 end if

10 end for

11 Select all R̄ from I: Dd+k−d̄R̄ ⊆ Dk(P) where d̄ = deg(R̄) ;
12 Place the selected involutive R̄ from I in the set J ;
13 k := k + 1

14 end while
15 Output(Return R = GIF(P) the polynomial generators of the

involutive system in J of lowest degree.)

222

223

224

The degree of the geometric involutive basis in our method can be lower225

than that given in [33, 34] since Algorithm 3.1 updates the generators with226

projections. However, in the absence of a proof of determination of the real227

radical, we conclude that the larger moment matrices of [34] can capture228

new members of the real radical in situations where our method has already229

terminated.230

Additional discussion and examples are given in the long version of our231

work [41].232

4 Combining the moment matrix and geometric233

involutive form algorithms234

The complete method that combines the moment matrix and geometric235

involution techniques is given in Algorithm 4.1.236

Recall that M = M(u) = (Mα,β) denotes the moment matrix indexed
by α, β for rows and columns, respectively. And, d = deg(P), M ∈ SN(n,d),
and the linear constraints imposed by our system of polynomials P ⊂ R[x]
are given using the coefficient matrix C(P)M = 0. We let 〈P 〉R denote the

10

associated polynomial ideal and let

R
√
〈P 〉R = {f ∈ R[x] : f2m +

s∑
j=1

q2
j ∈ 〈P 〉R , qj ∈ R[x],m ∈ N+}

denote the RRI generated by polynomials P over R. A fundamental result [4]
that is a consequence of the real nullstellensatz is

R
√
〈P 〉R = {f(x) ∈ R[x] : f(x) = 0,∀x ∈ VR(P)}.

Algorithm 4.1 proceeds by putting the polynomials into GIF using Al-237

gorithm 3.1; we then solve the related moment matrix problem using Algo-238

rithm 2.1. These two steps are iterated until satisfaction of the Rank-Dim-239

Involutive Stopping Criterion 4.1, that is r = d. If the ideal generated by240

the input system is zero dimensional then the output is a GIF for the real241

radical. If the input system is positive dimensional, then the output is a242

GIF for an intermediate idea between the input ideal and the real radical.243

244

Algorithm 4.1: GIF – SDP Method

1 Input(P = {p1, ..., pk} ⊂ R[x1, . . . , xn]);
2 Set P0 := P, j := 0;
3 while r = d do
4 d := dim ker GIF(Pj), Pj+1 := GIF(Pj);

5 Find u∗ ∈ RN(n,2d): M(u∗) � 0, C(Pj+1)M(u∗) = 0 (Described in
Algorithm 2.1);

6 r := rank(M(u∗)), Pj+2 := gen(ker M(u∗));
7 j := j + 2

8 end while
9 Output(Pj+1 ⊂ R[x1, . . . , xn]; Pj+1 is in geometric involutive form ;

R
√
〈P 〉R ⊇ 〈Pj+1〉R ⊇ 〈P 〉R.)

245

246

247

The Algorithms 2.1, 3.1, and 4.2 are subroutines for our principal Algo-248

rithm 4.1.249

250

Algorithm 4.2: gen

1 Input(ker M(u∗) where M(u∗) is the optimal max-rank moment
matrix.);

2 Output(Polynomial generators corresponding to ker M(u∗))

251

252

253

11

Remark 4.1 (Rank-Dim-Involutive Stopping Criterion). A natural
termination criterion used in Algorithm 4.1 is that the generators stabilize
at some iteration and the system is involutive:

gen(GIF(P)) = gen(ker M(u∗)) and P involutive, (4.1)

where u∗ corresponds to the optimal moment matrix M(µ∗). From results254

in [30], 〈gen(ker M(Pj+1))〉 is a sequence of ideals containing R
√
〈P 〉 . We255

get an ascending chain of ideals in a Noetherian ring R[x1, ..., xn]. Hence,256

together with the finiteness of the Cartan-Kuranishi geometric involutive257

form algorithm, Algorithm 4.1 terminates in a finite number of steps.258

5 Facial reduction and projection methods259

In this section we describe the facial reduction and projection methods for260

finding feasible solutions for the moment matrix feasibility problem. Our261

moment problem is given in Problem 5.1, where M(u) implicitly denotes the262

moment matrix constraints, i.e., the intersection of the space of generalized263

Hankel matrices with the semidefinite cone.264

Problem 5.1 (Moment Matrix Feasibility Problem). Let C = C(P) be a
given N(n, d)×m (coefficient) matrix of full column rank. Find u ∈ RN(n,2d)

so that
CTM(u) = 0, M(u)11 = 1, M(u) � 0.

5.1 Representations for linear constraints for moment prob-265

lems266

An important initial step for our methods is building an efficient (onto)267

matrix representation for the linear constraints on the moment matrices268

resulting from the polynomial systems. Recall that we introduced moment269

matrices informally by a simple example in Section 2.2; see also Definition270

2.2. Let uα := u(α1,...,αn) where α ∈ Nn and the degree of uα is |α| =271

α1 + . . . + αn. Let
(
u(α≤d)

)
be an array of the uα’s with 0 ≤ |α| ≤ d and272

sorted in grevlex order as described above.273

Consider a truncated moment matrixM(u) = (uα+β)α,β∈Nn,|α|,|β|≤d. The
generalized truncated moment matrix can be represented as follows, where

〈fi(u), fj(u)〉∗ = u(i) + u(j).

12

We assume the length of 〈u(α≤d)〉 is k + 1. (We provide a formula for k in
Algorithm 5.1 below.)

M(u) =


〈f0(u), f0(u)〉∗ 〈f0(u), f1(u)〉∗ 〈f0(u), f2(u)〉∗ . . . 〈f0(u), fk(u)〉∗
〈f1(u), f0(u)〉∗ 〈f1(u), f1(u)〉∗ 〈f1(u), f2(u)〉∗ . . . 〈f1(u), fk(u)〉∗
〈f2(u), f0(u)〉∗ 〈f2(u), f1(u)〉∗ 〈f2(u), f2(u)〉∗ . . . 〈f2(u), fk(u)〉∗

...
...

...
. . .

...
〈fk(u), f0(u)〉∗ 〈fk(u), f1(u)〉∗ 〈fk(u), f2(u)〉∗ . . . 〈fk(u), fk(u)〉∗


In the univariate case the moment matrices have Hankel structure as274

shown in (2.5). In Table 5.1 we display a truncated bivariate moment matrix275

partitioned into block submatrices having the same degree. Notice that the

M(u) =



u00 u10 u01 u20 u11 u02 u30 u21 u12 u03
u10
u01

u20 u11
u11 u02

u30 u21 u12
u21 u12 u03

u40 u31 u22 u13
u31 u22 u13 u04

u20
u11
u02

u30 u21
u21 u12
u12 u03

u40 u31 u22
u31 u22 u13
u22 u13 u04

u50 u41 u32 u23
u41 u32 u23 u14
u32 u23 u14 u05

u30
u21
u12
u03

u40 u31
u31 u22
u22 u13
u13 u04

u50 u41 u32
u41 u32 u23
u32 u23 u14
u23 u14 u05

u60 u51 u42 u33
u51 u42 u33 u24
u42 u33 u24 u15
u33 u24 u15 u06


Table 5.1: block partitioned bivariate moment matrix; submatrices have
same degree

276

matrix in Table 5.1 is not Hankel. However each of its block matrices is277

rectangular Hankel; though even this feature is lost for multivariate moment278

matrices in more than two variables. As mentioned above, without loss of279

generality we assume that u00 = 1.280

Besides being a symmetric matrix, the moment matrix also has other281

linear constraints among its entries. One can easily see these constraints282

in the truncated univariate matrix (2.5) and bivariate matrix in Table 5.1.283

An important requirement of our projection methods is to maintain these284

constraints. For example, in the bivariate case above, the matrix elements285

M(u)14 = M(u)22 are both equal to u20. We now outline a simple algorithm286

to find a non-redundant matrix representation of these constraints in the287

general n variable case. To list these constraints we start from the first row288

and traverse the matrix from left to right across the rows and then traverse289

the rows from top to bottom. Note also that we only need to examine entries290

13

above the main diagonal since the matrix is symmetric.291

For M(u) in Table 5.1 the first linear constraint traversing from the
first row is M(u)14 = M(u)22. We denote ei as the i-th unit vector and
Eij = 1

2(eTi ej+eTj ei) as the ij-th unit matrix . To impose this first constraint

on a matrix M ∈ Sk+1
+ , we construct matrix A2 = E22−E14. The constraint

is then given by

〈A2,M〉 = trace((E22 − E14)M) = 0.

Since we always assume M(u)1,1 = 1, we need to set A1 = E11. We can292

similarly construct A3, A4, · · · , Ar, where r is the number of the total lin-293

ear constraints. We denote At the matrix representative of the t-th linear294

constraint.295

296

Algorithm 5.1: Matrix representation of moment matrix constraints

1 Input(d, n) (d is the degree, n is the number of the variables) ;

2 Compute k := N(n, d)− 1 =

(
d+ n
d

)
− 1.

3 Initialize an array T = 〈α(≤d)〉 of length k + 1, T (i) is the i-th
element of T .

4 Initialize an array S = 〈s〉 of length k + 1 with the i-th element
S(i) = [(1, i);T (i)].

5 Let t = 2 and A1 = E11. for i from 2 to k + 1, do
6 for j from i to k + 1, do
7 if ∃g, h, α with s = [(g, h);α] ∈ S such that T (i) + T (j) = α

then
8 At = Eij − Egh, t = t+ 1
9 else

10 Adjoin a new element s = [(i, j);α] to S where
α = T (i) + T (j)

11 end if

12 end for

13 end for
14 Output(Return an array of (k + 1)× (k + 1) matrix representatives
{At} where t ∈ E , E = {1, 2, . . . , r} and r is the total number of the
linear constraints.);

297

298

299

Algorithm 5.1 determines all the (non-redundant) matrix representatives
of the linear constraints of the multivariate moment matrix. For example, if

14

the input is (d, n) = (2, 2), then T = [(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)]
and

S = [[(1, 1); (0, 0)], [(1, 2); (1, 0)], · · · , [(1, 6); (0, 2)]]

There are no redundant constraints produced by this algorithm. This300

avoids having an overdetermined linear system.301

5.2 First step of facial reduction302

Semidefinite programming has become an important tool in many areas of
optimization and algebraic geometry, e.g., [2, 8, 48]. The semidefinite cone
St+ has been extensively studied and the facial structure is well understood.
If X ∈ St+ , then we let face (X,St+) denote the smallest face of St+ contain-
ing X. And if f is a face of St+ , denoted f � St+ , then the conjugate face

is f c := f⊥ ∩ St+ . Let X =
[
U V

] [D 0
0 0

] [
U V

]T
be the spectral de-

composition of X with
[
U V

]
orthogonal and both D ∈ Sr++ and diagonal.

Then
face (X,St+) = USr+UT

= {Y ∈ St+ : V TY = 0}
= {Y ∈ St+ : trace(V V T)Y = 0}.

Similarly,

face (X,St+)c = V St−r+ V T

= {Z ∈ St+ : UTZ = 0}
= {Z ∈ St+ : trace(UUT)Z = 0}.

Problem 5.2 (Moment Matrix Feasibility Problem). Our main problem is
the following feasibility problem for the moment matrix M :

A(M) = b = e1, BTM = 0, M ∈ Sk+1
+ , (5.1)

Here k and the linear transformation A is obtained from Algorithm 5.1.303

A(M) =
(
〈At,M〉

)
∀t∈E ∈ Rr×1. The full column rank matrix B is obtained304

from the coefficient matrix in Definition 2.1 and equation (2.4).305

The following Theorem 5.1 provides the details of the system after 1 step306

of facial reduction obtained by applying the coefficient matrix constraint to307

the moment matrix, i.e., BTM = 0. Recall from Algorithm 5.1, we get an308

array of representing matrix At ’s where t ∈ E , E = {1, 2, . . . , r}.309

15

Theorem 5.1 (First step facial reduction). Let B ∈ RN(n,d)×m be as above
and full column rank. Let V ∈ RN(n,d)×(N(n,d)−m) satisfy V TB = 0 and[
B V

]
nonsingular. Let

Āt := V TAtV, ∀t ∈ E = {1, 2, . . . , r}

and define the linear transformation Ā : SN(n,d)−m → Rr×1 by

Ā(P) :=
(
〈Āt, P 〉

)
t∈E . (5.2)

Then Problem 5.1 is equivalent to

Ā(P) = b, P ∈ SN(n,d)−m
+ , (5.3)

where we can recover the moment matrix using M = V PV T .310

Note that for stability, we need to process the linear constraint (5.2)311

further to obtain an equivalent linear system Â(P̂) = b̂ where Â is an onto312

map.313

5.2.1 Potential second facial reduction314

Our initial semidefinite moment problem is a feasibility problem of the form

BTM(u) = 0, M(u) � 0, (5.4)

where B is a given coefficient matrix and the moment matrix M(u) is a
linear function of the variables u. Constraints on M(u) are described in
Section 5.1. In Section 5.3 the problem is changed to equality form and
then uses facial reduction to get the form

Ā(P) = b, P � 0. (5.5)

This form includes the first step of facial reduction using the matrix B, see315

Theorem 5.1 and (5.2).316

The projection methods behave poorly, converge slowly, when the Slater
condition fails, e.g., [18]. We therefore attempt to apply further steps of
facial reduction and reduce system (5.5) until a strictly feasible point exists.
We use the following theorem of the alternative or characterization of a
strictly feasible point; see e.g., [13]:

∃P, Ā(P) = b, P � 0
⇐⇒

Z = Ā∗y � 0, bT y = 0 =⇒ Z = 0.
(5.6)

16

Note that if a Z 6= 0 can be found satisfying the left part of the bottom half
of (5.6) and for the top half P � 0, Ā(P) = b, then

0 = bT y = 〈Ā(P), y〉 = 〈P,Z〉 =⇒ PZ = 0 =⇒ rangeP ⊆ nullZ.

Therefore, if the full column rank matrix W satisfies rangeW = nullZ, then317

we can facially reduce the problem to a lower matrix P̄ using the substitution318

P = WP̄W T , i.e., we can restrict the feasibility problem in (5.5) to the face319

W S̄+W
T .320

We can implement the test in (5.6) in several ways. One way is to solve
the following minimization problem 2

p∗ := min 1
2(b̄T y)2

s.t. Z = Ā∗y � 0
trace Ā∗y = 1

where

Ā∗y =

r∑
t=1

(Āty).

If the objective p∗ is 0, then it implies we may need a second facial
reduction. A stable approach, in the sense that strict feasibility holds, to
solving this auxiliary problem is given in [13] as

max δ
s.t. Z = Ā∗y � δI

traceZ = 1
b̄T y = 0

(5.7)

5.2.2 Backward stability for facial reduction steps321

We now see that we can find the equivalent facial reduced problem efficiently
and accurately. We start with the Moment Matrix Feasibility Problem in
(5.1).

A(M) = b = e1, BTM = 0, M ∈ SN(n,d)
+ .

As above, B ∈ R(k+1)×m and is full column rank. We apply the QR fac-
torization and numerically obtain the output B ≈ Q̃R̃, where Q =

[
Ũ Ṽ

]
is orthogonal, and R̃ upper triangular with the last m rows being zero, see

2 This can be implemented in e.g., CVX using the norm function or absolute value
function for the objective, i.e., we minimize |b̄T y| rather than using the squared term.

17

e.g., [25]. The QR factorization is backwards stable, i.e., we get the exact
equation

Q̃R̃ = B + δB,
‖δB‖
‖B‖

= O(εmachine), (5.8)

Thus we have exactly found the QR factorization of a nearby matrix. We
then use Theorem 5.1 to obtain the facially reduced problem in (5.3) i.e., we
form the matrices Ãt. The matrix V has orthonormal columns. Therefore
the congruence is a backward stable operation and we have

Ãt = Ṽ T (At + δAt)Ṽ ,
‖δAt‖
‖At‖

= O(εmachine),∀t ∈ E = {1, 2, . . . , r}. (5.9)

Therefore, we can combine the above two steps and conclude that the first
step of facial reduction is a stable operation, i.e.,

Ã(P) = b, P ∈ SN(n,d)−m
+ , (5.10)

is obtained efficiently and accurately; we have found the exact facial reduc-322

tion of a nearby problem.323

Note that we then use a singular value decomposition to remove the324

redundant linear constraints so that the linear map Ã in the resulting lin-325

ear constraints can be assumed to be onto. This can be done using the326

SVD factorization, again a backwards stable algorithm. We have shown the327

following.328

Theorem 5.2 (Backward stability of first FR). The first step of facial329

reduction is backward stable. More precisely, we find a linear system (5.10)330

with Ã onto and equivalent to a nearby system to the original moment matrix331

feasibility problem in the sense of (5.8) and (5.9).332

We do not include the analysis for a second step of facial reduction. This333

is more difficult as we need to include the accuracy in solving the auxiliary334

problem for the theorem of the alternative discussed in Section 5.2.1. Such335

an analysis can be found in [13, Theorem 1.38].336

5.3 Projection methods337

We now consider two projection methods. We first consider the method of338

alternating projection, MAP and use the defined projections to introduce339

the Douglas-Rachford reflection-projection method. It is the latter method340

that we implement as it displayed better convergence properties in our tests.341

18

5.3.1 Method of alternating projections, MAP342

The method of alternating projections, MAP, is particularly simple, see343

e.g., the recent book [22]. Let s2vec denote the mapping (isometry) from a344

matrix to a column vector taken columnwise with the off-diagonal elements345

multiplied by
√

2. Let s2Mat = s2vec∗ = s2vec−1 be the inverse mapping346

from a column vector to a matrix. The inverse here is identical to the adjoint347

map. Let L = (s2vec(Āt)
T)t∈E denote the matrix representation for Ā in348

Theorem 5.1 (s2vec(Āt)
T is the t-th row of L).349

We begin with an initial estimate, e.g., Pc = αI ∈ SN(n,d)−m
+ for a large

α > 0. There are two projections we use to update the current point Pc.
First, we look at PL, the linear manifold projection. We map Pc to a column
vector pc = s2vec(Pc), then for the linear system Lp = b = e1 where L has
full row rank, we solve the nearest point problem min

{
1
2‖p− pc‖

2
2 : Lp = b

}
,

i.e., we find the projection onto the linear manifold for the linear constraints.
We use L†, the Moore-Penrose generalized inverse of L. The residual and
the pl satisfying the minimization problem are then

rc = b− Lpc; pl = pc + L†rc. (5.11)

Second, we project the updated symmetric matrix PL = PL(Pc) = s2Mat(pl)350

onto the semidefinite cone using the Eckart-Young Theorem [20], i.e., we di-351

agonalize and zero out the negative eigenvalues. We denote PS+, the positive352

semidefinite projection and get the new positive semidefinite approximation353

PS+(PL).354

We repeat the projection steps in Items 1, 2, 3 described above till a355

sufficiently small desired tolerance is obtained in the norm of the residual.356

1. Evaluate the residual rc = b − Lpc. Use the residual to evaluate the
linear projection and obtain the update

PL = PL(Pc).

2. Evaluate the positive semidefinite projection using the Eckart-Young
Theorem and update the current approximation

PPSD = PS+(PL).

3. Update the cosine value in (5.12). Then update Pc = PPSD.357

The (linear) convergence rate is measured using cosines of angles from three
consecutive iterates

cos(θ) =

(
trace ((PL − Pc)∗(PPSD − PL))

‖PL − Pc‖ ‖PPSD − PL)‖

)
. (5.12)

19

5.3.2 Douglas-Rachford reflection method358

Recall the projections defined above PL,PS+ , PPSD. We want to find, see
(5.3),

P ∈ G ∩ SN(n,d)−m
+ , where G :=

{
P : Ā(P) = b = R

}
.

We now apply the Douglas-Rachford (DR) projection/reflection method [16].359

(See also e.g., [3, 10].)360

Using the QR algorithm applied to B to find V and Ā, we start with an
initial estimate

P0 = αI ∈ SN(n,d)−m
+ for some α . (5.13)

Define the reflections RL,RPSD : SN(n,d)−m
+ → SN(n,d)−m

+ using the corre-
sponding projections, i.e.,

RL(P) := 2PL(P)− P, RPSD(P) := 2PS+(P)− P.

• Initialization: We set our current estimate Pc = P0. We calculate361

the residual ResL = R − Ā(Pc), set normres = ‖ResL‖, denote the362

reflected residual ResreflL = ResL and reflected point RPSD = Pc.363

• Iterate: We continue iterating from this point while normres > toler,364

our desired tolerance.365

• 1. We use ResreflL to project the current reflected PSD point366

RPSD onto the linear manifold to get the projected point PL =367

RPSD + s2Mat(L†ResreflL). Then we reflect to get our second368

reflection point RL = 2PL −RPSD.369

2. At this time we set our new/current estimate for convergence to370

be Pc = Pnew = (Pc +RL)/2.371

3. We now project Pc to get PPSD = PS+(Pc). We check the372

residual here for the stopping criteria normres = ‖ResL‖ =373

‖R− Ā(PPSD)‖.374

4. We now calculate the first reflection point RPSD = 2PPSD − Pc375

and update the reflected residual ResreflL = R− Ā(RPSD).376

Also according to the basic theorem on the convergence of the sequence377

ΠG(Xk)k , [10, Thm 3.3, Page 11], the residuals of the projections of the378

iterates on one of the sets have to be used for the stopping criteria. We use379

the residual after the projection onto the SDP cone since we want our final380

matrix to be semidefinite.381

20

Algorithm 5.2 summarizes our Facial reduction & Douglas-Rachford method.382

383

Algorithm 5.2: FDR method

1 Input(Degree of system d, number of variables n, a N(n, d)×m
coefficient matrix B) ;

2 Compute the matrix representation A using Algorithm 5.1.;

3 Use QR to find V s.t. V TB = 0 and
[
B V

]
nonsingular; compute

the matrix representation L of the linear transformation Ā described
in Theorem 5.1.;

4 Start at an initial point P0 satisfying (5.13).;
5 Iterate: Pj+1 = 1

2(Pj +RPSD(RL(Pj)), for all j = 0, 1,;
6 Stop if normres ≤ toler.;
7 Output(A PSD N(n, d)×N(n, d) moment matrix M = V Pj+1V

T .)

384

385

386

Our empirical studies showed that the Douglas-Rachford approach out-387

performed MAP and also outperformed the SeDuMi interior point method388

within the YALMIP toolbox. Though the Douglas-Rachford iteration has389

only a linear convergence rate, the method converged robustly to the inter-390

section of the linear constraints and the semidefinite cone. We not that for391

two subspaces, the linear rate for the method is given by the cosine of the392

Friedrichs angle between them, see e.g., [5,6]. Details on the numerical tests393

follow.394

6 Numerical experiments395

In this section we present the numerical tests for the GIF-Moment Matrix396

Algorithm 4.1 that combines the Geometric Involutive Form with an SDP397

solver. We consider the two SDP feasibility solving algorithms: the FDR398

Algorithm 5.2 with facial reduction and the standard interior point solver399

SeDuMi but without facial reduction. GIF is combined with the two SDP400

approaches to yield GIF-FDR and GIF-SeDuMi, respectively.401

In Section 6.1 we consider a class of random univariate polynomials with402

varying degree d. The results are displayed in Figure 6.1 on page 23, and403

Figure 6.2 on page 23. Results for the examples given in Sections 6.2 and404

6.3 are summarized in Table 6.1 page 28.405

We used MATLAB version 2014a and Maple version 18. The computa-406

tions were carried out on a desktop with ubuntu 12.04 LTS, Intel CoreTM2407

Quad CPU Q9550 @ 2.83 GHz × 4, 8GB RAM, 64-bit OS, x64-based pro-408

21

cessor.409

6.1 A class of random univariate polynomials410

We first consider root finding for polynomials of the form

pd(x) = ad,0 + ad,1 x+ ad,2 x
2 + · · ·+ ad,d x

d, d = 1, 3, 5, · · · (6.1)

where ad,j ∼ N(0, 1). A famous early work on random polynomials such as
(6.1) is given by Kac in [27] who derived an integral formula for the average
number of real roots of pd(x):

Ed =
4

π

∫ 1

0

√
1

(1− t2)2 −
(d+ 1)2 t2 d

(1− t2 d+2)
2 dt. (6.2)

An asymptotic form for large d was determined to be Ed ≈ 2
π log (d) +411

0.6257358072...+ 2
πd +O

(
1
d2

)
, e.g., [21] and the references therein.412

We applied GIF-FDR and GIF-SeDuMi to the random polynomials pd(x)413

for odd degrees d with 3 ≤ d ≤ 51. For each odd degree j, 10 sample random414

polynomials were generated by selecting their coefficients as independent415

samples from N(0, 1). Algorithms GIF-FDR and GIF-SeDuMi were then416

applied to approximate the minimal polynomial generating their real radical.417

The residual error for each polynomial at odd degree j was computed by418

substituting that roots of the minimal polynomial into the original input419

polynomial |pj |. The average of the log10 of all these 10 residual errors was420

computed for each degree j. We also checked that the mean number of the421

real roots of these samples was approximately given by (6.2).422

We report on the comparison of the average residual errors versus degree
in Figure 6.1. It is clear that GIF-FDR consistently obtains significantly
better accuracy than GIF-SeDuMi. Figure 6.1 also contains comparison for
cpu-time. Each instance was solved by GIF-SeDuMi first and the residual
error recorded. This error was then used for the desired residual error when
applying GIF-FDR. The average cpu-times per degree are plotted. Again
we see that GIF-FDR performed consistently better even though it has a
theoretical linear convergence time whereas interior point methods have a
theoretical superlinear convergence time. In Figure 6.2 we used the popular
performance profile approach [15] with the following performance profile
function

ρs(τ) =
size{p ∈ P : rp,s ≤ τ}

size(P)
, s = 1, 2 (6.3)

22

Figure 6.1: Comparison in residual and cputime of GIF-FDR vs GIF-
SeDuMi for random polynomials pd(x) = Σd

1ad,jx
j at odd degrees 3 ≤ d ≤ 51

with ad,j ∼ N(0, 1).

where P is the set of problems and rp,s is the ratio of the performance of423

solver s to the best performance by any solver on this problem p. These424

figures show FDR (s = 2) has outperformed SeDuMi (s = 1) in residual and425

cputime.

Figure 6.2: Performance profile of GIF-FDR vs GIF-SeDuMi for random
polynomials pd(x) = Σd

1ad,j x
j at each odd degrees 3 ≤ d ≤ 51 with ad,j ∼

N(0, 1). The profile function used is (6.3).

426

6.2 Examples of Ma, Wang and Zhi [34]427

Ma, Wang and Zhi [33,34] present an approach using Pommaret Bases cou-428

pled with moment matrix completion to approximate the real radical ideal429

23

of a polynomial variety. We applied our approach to [34, Examples 4.1-4.6],430

with the results shown in Table 6.1. In each of the examples we first applied431

GIF-FDR and then GIF-SeDuMi (i.e., FDR replaced with SeDuMi SDP432

solver). In each case we obtained a geometric involutive basis which can be433

independently verified as a geometric involutive basis for the real radical.434

In [34] Pommaret bases are successfully obtained for the real radical for435

these examples.436

Here are the 6 systems of polynomials corresponding to the examples
in [34]:

{x2
1 + x1x2 − x1x3 − x1 − x2 + x3, x1x2 + x2

2 − x2x3 − x1 − x2 + x3,

x1x3 + x2x3 − x2
3 − x1 − x2 + x3} (6.4a)

{x2
1 − x2, x1x2 − x3} (6.4b)

{x2
1 + x2

2 + x2
3 − 2, x2

1 + x2
2 − x3} (6.4c)

{x2
3 + x2x3 − x2

1, x1x3 + x1x2 − x3, x2x3 + x2
2 + x2

1 − x1} (6.4d)

{(x1 − x2)(x1 + x2)2(x1 + x2
2 + x2), (x1 − x2)(x1 + x2)2(x2

1 + x2
2)} (6.4e)

{(x1 − x2)(x1 + x2)(x1 + x2
2 + x2), (x1 − x2)(x1 + x2)(x2

1 + x2
2),

x1 ≥ 1, x2 ≥ 1} (6.4f)

System (6.4a) for [34, Example 4.1]: The first step of applying Algorithm437

4.1 is to use Maple and apply the GIF Algorithm 3.1, page 10, with input438

tolerance 10−10 to (6.4a). This shows that the system is already in geometric439

involutive form. The corresponding Pommaret basis is given in [34, Example440

4.1]. The Pommaret basis looks different from the system, but is just a441

linear combination of the system’s polynomials to accomplish the Gröbner-442

like requirement for its highest terms under the term ordering prescribed in443

the problem. The resulting coefficient matrix of this GIF form, is a full rank444

m = 3, 3× 10 matrix which is input to the FDR algorithm. The dimension445

of the kernel for GIF form is d = 7. Since the coefficient matrix has rank446

m = 3, one facial reduction yields a reduced (10 −m) × (10 −m) = 7 × 7447

moment matrix. Application of the FDR algorithm yields convergence in448

2 iterations and 0.02 secs, with a projected residual error of 10−15. These449

statistics are shown in Table 6.1. The output of FDR is a full 10×10 moment450

matrix of rank r = 7. Since d = 7 = r, Algorithm 4.1 terminates with the451

input system as its output. It can be checked that the ideal generated by452

this system is real radical.453

For comparison, application of GIF-SeDuMi to (6.4a) using a tolerance454

of 10−10 in Maple resulted in a residual error of 10−10, as listed in the last455

24

column of Table 6.1, and an approximation of the generators of the real456

radical.457

System (6.4d) for [34, Example 4.4]: This is very similar to the previous458

system (6.4a). As [34] notes the coordinates for this example are not delta-459

regular, which they and we remedy by a linear change of coordinates. We460

show that the original system is geometrically involutive, which is equivalent461

to the determination of a Pommaret basis by [34]. Just as in the previous462

example, we form a 10 × 10 moment matrix from the GIF form, which463

is transformed by one facial reduction to a 7 × 7 matrix. There are no464

additional facial reductions, and the full moment matrix and its rank r are465

determined. We find that dimension of the kernel for GIF form is d = 7 = r,466

so Algorithm 4.1 terminates with the input system as its output. It can be467

verified the the output is a GIF form for the real radical of the ideal.468

Application of GIF-SeDuMi to (6.4d) using a tolerance of 10−8 in Maple469

resulted in a residual error of 10−8 and an approximation of the generators470

of the real radical.471

System (6.4b) for [34, Example 4.2]: This is quite similar to the sys-472

tems (6.4b) and (6.4d). Our methods are similarly efficiently applied to this473

system. Our GIF algorithm first applied one prolongation to the second474

system (6.4b) to yield a degree 3 system. After projecting from this de-475

gree 3 system it shows that the resulting degree 2 system is involutive and476

consists of 3 polynomials. This degree 2 system is geometrically equivalent477

to the Pommaret basis found by [34]. This system is simply the original478

2 polynomials, together with their compatibility condition or S-polynomial479

x2(x2
1−x2)−x1(x1x2−x3) = x1x3−x2

2. Thus the input system R is replaced480

with πDR represented by its 3×10 coefficient matrix. The resulting 10×10481

moment matrix is facially reduced to a 7 × 7 moment matrix. As in the482

previous examples, no new relations are detected in the kernel of the output483

matrix of the FDR method, d = r = 7 and the algorithm terminates. It can484

be verified that the GIF form is a basis for the real radical ideal of the input485

system.486

Application of GIF-SeDuMi to (6.4b) using a tolerance of 10−9 in Maple487

resulted in a residual error of 10−9 and an approximation of the generators488

of the real radical.489

Unlike the systems (6.4a),(6.4b),(6.4d), the remaining three systems490

(6.4c),(6.4e),(6.4f) of [34] lead to new members in the kernel of their moment491

matrices.492

System (6.4c) for [34, Example 4.3]: Our initial application of FDR493

showed slow convergence. However a random linear change of coordinates494

applied to the input system R dramatically improved the convergence. Ap-495

25

plying the GIF algorithm we found that D̂R is involutive and has a 8 × 20496

coefficient matrix. The dimension of its kernel is d = 12. Applying the FDR497

algorithm, we obtain a PSD moment matrix with rank r = 7 6= d so the498

algorithm has not terminated. The new member of the real radical arising499

in the moment matrix kernel can be alternatively derived by hand by elimi-500

nation of two of the systems polynomials: x2
1 +x2

2 +x2
3−2− (x2

1 +x2
2−x3) =501

x2
3 + x3 − 2 = (x3 + 2)(x3 − 1). Then noting, as explained in [34], that only502

the root x3 = 1 leads to real solutions. The GIF form of the new system503

from the kernel of the moment matrix is computed which has degree 2. Its504

coefficient matrix is 5 × 10 and has kernel of dimension d = 5. After ap-505

plying FDR algorithm, the second PSD moment matrix then was computed506

quickly and accurately as a 10×10 matrix. The rank of the second moment507

matrix is r = 5 = d, so our algorithm has terminated. It can be checked508

that the output is equivalent to that found by [34] and that the resulting509

GIF form is a basis for the real radical.510

Application of GIF-SeDuMi to (6.4c) using a tolerance of 10−8 in Maple511

resulted in a residual error of 10−9 and an approximation of the generators512

of the real radical.513

System (6.4e) for [34, Example 4.5]: Direct application of Algorithm 4.1514

to (6.4e) is relatively inefficient. Instead of this approach we consider an al-515

ternative subsystem approach which has the potential to be applied to larger516

systems. Exploiting subsystem structure is a long established approach in517

system solving.518

We apply Algorithm 4.1 to the subsystem consisting of the first polyno-
mial of P1 = (x1−x2)(x1 +x2)2(x1 +x2

2 +x2) of (6.4e). The GIF form of P1

is just P1, and its coefficient matrix is 1× 21 matrix with a kernel of dimen-
sion d = 20. The corresponding moment matrix is 21× 21, which is reduced
to a 20 × 20 matrix after one facial reduction. It has rank r = 18 6= d. So
the algorithm has not terminated, and new members of the real radical are
identified from the kernel of the moment matrix. The new system is degree
5 and has 3 polynomials. Algorithm GIF shows that the first projection
of this system is involutive and is a single fourth degree polynomial. Its
coefficient matrix is 1 × 15 and its kernel has dimension d = 14. The FDR
algorithm produces a 15× 15 positive semidefinite moment matrix with the
rank being r = 14 = d. The algorithm terminates to coefficient errors within
10−10 with output as a single polynomial which is approximately:

(x1 − x2)(x1 + x2)(x1 + x2
2 + x2) (6.5)

It can be checked that (6.5) is a geometric involutive basis for the real radical519

for the ideal generated by P1.520

26

Similarly we apply Algorithm 4.1 to the second polynomial of (6.4e)
which is given by P2 = (x1 − x2)(x1 + x2)2(x2

1 + x2
2). The algorithm now

terminates with output as a single polynomial which is approximately:

(x1 − x2)(x1 + x2) (6.6)

This can be verified to be a geometric involutive basis for the real radical of521

the ideal generated by P2.522

Then we consider the system

(x1 − x2)(x1 + x2)(x1 + x2
2 + x2), (x1 − x2)(x1 + x2) (6.7)

Application of GIF to (6.7) reduces it to a geometric involutive basis which
is approximately

(x2
1 − x2

2) (6.8)

A further application of FDR reveals that (6.8) is a GIF form for the real523

radical of the ideal of (6.4e).524

Application of GIF-SeDuMi to (6.4e) also yields an approximation of the525

generators of the real radical. The most notable feature of this calculation526

was the its requirement of fairly large tolerances (10−4 and 10−5). Reference527

[34, Example 4.5] also notes a similarly large tolerance in their calculations,528

to correctly compute the real radical for this example.529

System (6.4f) for [34, Example 4.6]: Let Q1 = {(x1− x2)(x1 + x2)(x1 +530

x2
2 + x2), (x1 − x2)(x1 + x2)(x2

1 + x2
2)} then (6.4f) is Q1 subject to the531

constraints x1 ≥ 1, x2 ≥ 1.532

Applying Algorithm 4.1 to Q1 yields a geometric involutive basis which is533

approximately x2
1−x2

2. This can be independently verified to be a geometric534

basis for the real radical of Q1. The statistics of this reduction are given in535

Table 6.1 in the row labeled as Ex 4.6 Q1.536

To impose x1 ≥ 1, x2 ≥ 1 we substitute x1 = x2
3 + 1, x2 = x2

4 + 1537

into the geometric involutive basis of the real radical of Q1, that is into538

x2
1 − x2

2, and reduce the resulting polynomial Q2 = (x2
3 + 1)2 − (x2

4 + 1)2 =539

(x2
3−x2

4)(x2
3 +x2

4 + 2) with Algorithm 4.1 to yield a basis for its real radical540

which is x2
3−x2

4 or equivalently x1−x2 in agreement with [34, Example 4.6].541

The statistics of this reduction are given in Table 6.1 in the row labeled as542

Ex 4.6 Q2.543

Application of GIF-SeDuMi to (6.4f) also yields an approximation of544

the real radical. The most notable feature of this calculation was the large545

tolerance 10−6 and residual error for the reduction of Q1.546

27

Input FDR FDR FDR Mom Mtx GIF-SeDuMi

Polyn. data # its cpu-sec res-err redn factor Int Pt

System (n,d,m) (1,2) (1,2) max(1,2) s(M)/s(M̂) tol, res err

Ex 4.1 (3,2,3) 2 0.02 10−15 10
7

10−10, 10−10

Ex 4.2 (3,2,2) 156 0.23 10−14 10
7

10−9, 10−9

Ex 4.3 (3,2,2) 256, 2 2.4, 0.08 10−13 20
12

, 10
5

10−8, 10−9

Ex 4.4 (3,2,3) 106 0.06 10−15 10
7

10−8, 10−8

Ex 4.5 P1 (2,5,1) 9582, 29 7.0, 0.17 10−13 21
20

, 15
14

10−4, 10−8

Ex 4.5 P2 (2,5,1) 148, 1 0.3,0.06 10−14 21
20

, 6
5

10−5, 10−8

Ex 4.6 Q1 (2,4,2) 34, 2 0.11,0.08 10−13 21
15

, 6
5

10−6, 10−8

Ex 4.6 Q2 (2,4,1) 86, 1 0.28, 0.03 10−14 15
14

, 6
5

10−8, 10−9

Cyl2d (2,2,1) 1 0.06 10−15 6
5

10−10, 10−13

Cyl3d (3,2,2) 2 0.09 10−15 20
12

10−8, 10−9

Cyl4d (4,2,3) 7 0.31 10−14 70
28

10−7, 10−8

Cyl5d (5,2,4) 10 0.52 10−14 252
64

DNC

Table 6.1: Statistics for the application of GIF-FDR and GIF-SeDuMi:
Ex 4.1-4.6 are 6 examples in MWZ [34]; Cyl2d-Cyl5d are cylinder examples; n
number of variables; d maximum polynomial degree; m number of polynomials;
two entries (1,2) are included for the number of iterations and cpu-time if FDR is
used twice in the example; (s(M), s(M̂)) sizes of moment matrix M and facially
reduced matrix M̂ , resp. Rightmost two columns are SVD tolerance and moment
matrix residual error for the Interior Point calculation using SeDuMi combined with
GIF. DNC - Did Not Converge. The Maple SVD computations in GIF-FDR were
executed with tolerance := 10−10 and Digits := 15.

28

6.3 Intersecting higher dimensional cylinders547

Consider the systems of polynomials defining the intersection of n−1 cylin-
ders in Rn

Cylnd := x2
1 + x2

2 − 1, x2
1 + x2

3 − 1, · · · , x2
1 + x2

n − 1. (6.9)

Application of the GIF algorithm to the systems Cylnd for n = 2, 3, 4, 5548

show that the systems become geometrically involutive after 0, 1, 2, 3 pro-549

longations respectively. The GIF-FDR algorithm converges quickly and ac-550

curately (see Table 6.1). It can be independently determined that in each551

case it yields an geometric involutive basis for the real radical. However552

SeDuMi-GIF crashes after several hours on the largest system Cyl5d .553

Further it can be determined that the cylinders form a complete inter-554

section and the length of the prolongation to make them involutive, can be555

determined from the symbol of the initial system [37]. The lower degree556

input systems (6.9) are geometrically formally integrable, and it would be557

interesting to develop methods based on such lower degree systems, to de-558

termine, whether one can rule out new members in the kernel of the moment559

matrix of the prolonged involutive system from such lower degree systems.560

Recently certain critical point methods have been developed for deter-561

mining witness points [26,50] on real components of real polynomial systems.562

Indeed the method developed in [50] is successful in finding a point on every563

component, if the ideal is both real radical, and forms a regular sequence.564

Consequently for systems such as those above, the real radical is an im-565

portant property for such solvers. The regular sequence requirement can be566

checked by dimension computation and can exploit a formally integrable sys-567

tem which has lower degree than the involutive system. Interesting related568

results are given in [35]. By experiment we found that the 0 dimensional569

systems for the critical points of (6.9) are also real radical and remarkably570

have no non-real roots. The number of real critical points corresponding to571

n = 2, 3, 4, 5 can be determined to be 2, 4, 8, 16.572

7 Conclusion573

SDP feasibility problems typically involve the intersection of the convex cone574

of semidefinite matrices with a linear manifold. Their importance in appli-575

cations has led to the development of many specific algorithms. However576

these feasibility problems are often marginally infeasible, i.e., they do not577

satisfy strict feasibility as is the case for our polynomial applications. Such578

problems are ill-posed and ill-conditioned.579

29

The main contribution of this paper is to introduce facial reduction, for580

the class of SDP problems arising from analysis and solution of systems581

of real polynomial equations for real solutions. Facial reduction yields an582

equivalent problem for which there are strictly feasible points and which, in583

addition, are smaller. Facial reduction also reduces the size of the moment584

matrices occurring in the application of SDP methods. For example the585

determination of a k×k moment matrix for a problem with m linearly inde-586

pendent constraints is reduced to a (k−m)×(k−m) moment matrix by one587

facial reduction. We use facial reduction with our MATLAB implementation588

of Douglas-Rachford iteration (our FDR method). In the case of only one589

constraint, say as in the case of univariate polynomials, one might expect590

that the improvement in convergence due to that facial reduction would be591

minor. However we present a class of random univariate polynomials, where592

one such facial reduction combined with DR iteration, yields the real radical593

much more efficiently than the standard interior point method in SeDuMi.594

The high accuracy required by facial reduction and also the ill-conditioning595

commonly encountered in numerical polynomial algebra [46] motivated us596

to implement Douglas-Rachford iteration.597

A fundamental open problem is to generalize the work of [30, 45] to
positive dimensional ideals. The algorithm of [33, 34] for a given input real
polynomial system P , modulo the successful application of SDP methods at
each of its steps, computes a Pommaret basis Q:

R
√
〈P 〉R ⊇ 〈Q〉R ⊇ 〈P 〉R (7.1)

and would provide a solution to this open problem if it is proved that598

〈Q〉R = R
√
〈P 〉R. We believe that the work [33, 34] establishes an impor-599

tant feature – involutivity – that will necessarily be a main condition of600

any theorem and algorithm characterizing the real radical. Involutivity is601

a natural condition, since any solution of the above open problem using602

SDP, if it establishes radical ideal membership, will necessarily need (at603

least implicitly) a real radical Gröbner basis. Our algorithm, uses geomet-604

ric involutivity, and similarly gives an intermediate ideal, which constitutes605

another variation on this family of conjectures.606

In addition to implementing an algorithm to determine a first facial607

reduction. We also implemented a test for the existence of additional facial608

reductions beyond the first (e.g., in the cases of Examples 4.3 and 4.5 of609

[34]). By using the CVX package or Douglas-Rachford iteration to solve610

for the auxiliary problem (5.7), we can determine if we need a second facial611

reduction by checking whether the optimal value of the auxiliary problem612

30

is close to 0. Our implementation of auxiliary facial reductions, as still613

preliminary and needs improvement. So a more detailed study of this aspect614

is worthwhile.615

Numerical polynomial algebra has been a rapidly expanding and pop-616

ular area [46]. Its problems are typically very demanding, motivating the617

implementation of methods to improve accuracy. For example Bertini, the618

homotopy package developed for numerical polynomial algebra, uses vari-619

able precision arithmetic, with particularly demanding problems requiring620

thousands of digits of precision. Consequently this is also a motivation to621

develop higher accuracy methods, such as the FDR method of this paper.622

Manipulations with radical ideals would be a by-product from such work.623

An important open problem is the following: Give an numerical algorithm,624

capable in principle of determining an approximate real witness point on625

each component of a real variety. We note that the methods of Wu and626

Reid [50] and Hauenstein [26] only answer this question under certain con-627

ditions, say that the ideal is real radical and defined by a regular sequence.628

Also see [32], which gives an alternative extension of complex numerical629

algebraic geometry to the reals, in the complex curve case.630

We provided a small set of examples, that illustrate some aspects of631

our algorithms. In Maple all of our examples were executed with Maple’s632

Digits := 15 and the input tolerance := 10−10 for the GIF algorithm which633

intensively uses LAPack’s SVD. Accuracy in the projected residual error634

for our tests were between 10−14 and 10−12. The normalized generators635

obtained for our experiments had coefficients differing less than 10−10 from636

the exact coefficients.637

In addition we prove that our facial reduction steps are backwards sta-638

ble. See Theorem 5.2 and Section 5.2.2. The advantage for the use of639

Douglas-Rachford iterations in our SDP solution techniques and its linear640

convergence is discussed at the end of Section 5.3.2. We note that the sim-641

plest structured matrices from polynomial systems are Hankel matrices and642

are notoriously ill-conditioned, see e.g., [7, 23]. In particular such matrices643

all lie close to the boundary of the semidefinite cone. Therefore, even after644

successful facial reduction guarantees a strictly feasible solution, the set of645

Hankel matrices are all nearly singular. This makes the related feasibility646

problems particularly difficult. Despite this we were successful in finding647

feasible solutions. Such conditioning issues warrant further study. Indeed648

consider p(x, y) = x2 + y2 + ε = 0. Even though (x, y) = (0, 0) is the unique649

solution for ε = 0, with associated real radical ideal 〈x, y〉R, the solution650

is not a real continuous function of ε as ε passes through 0. So the prob-651

lem in terms of the variety is not well-posed. An interesting challenge is to652

31

formulate appropriate well-posed nearby problems in an appropriate space.653

The backwards stable tools, of facial reduction and auxiliary reduction, and654

associated spaces are interesting possibilities for such approaches.655

References656

[1] A. Alfakih and H. Wolkowicz. Matrix completion problems. In Hand-657

book of semidefinite programming, volume 27 of Internat. Ser. Oper.658

Res. Management Sci., pages 533–545. Kluwer Acad. Publ., Boston,659

MA, 2000. 3660

[2] A.F. Anjos and J.B. Lasserre, editors. Handbook on Semidefinite, Conic661

and Polynomial Optimization. International Series in Operations Re-662

search & Management Science. Springer-Verlag, 2011. 5, 6, 15663

[3] F.J.A. Artacho, J.M. Borwein, and M.K. Tam. Recent results on664

Douglas-Rachford methods. Serdica Mathematical Journal, 39:313–330,665

2013. 20666

[4] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Ge-667

ometry, volume 10 of Algorithms and Computation in Math. Springer-668

Verlag, 2 edition, 2006. 3, 5, 11669

[5] H. H. Bauschke and D. Noll. On the local convergence of the Douglas-670

Rachford algorithm. Arch. Math. (Basel), 102(6):589–600, 2014. 21671

[6] H.H. Bauschke, J.Y. Bello Cruz, T.T.A. Nghia, H.M. Phan, and672

X. Wang. The rate of linear convergence of the Douglas-Rachford al-673

gorithm for subspaces is the cosine of the Friedrichs angle. J. Approx.674

Theory, 185:63–79, 2014. 21675

[7] B. Beckermann. The condition number of real Vandermonde, Krylov676

and positive definite Hankel matrices. Numer. Math., 85(4):553–577,677

2000. 31678

[8] G. Blekherman, P.A. Parrilo, and R.R. Thomas, editors. Semidefinite679

optimization and convex algebraic geometry, volume 13 of MOS-SIAM680

Series on Optimization. Society for Industrial and Applied Mathe-681

matics (SIAM), Philadelphia, PA; Mathematical Optimization Society,682

Philadelphia, PA, 2013. 3, 5, 15683

32

[9] J. Bonasia, F. Lemaire, G.J. Reid, and L. Zhi. Determination of ap-684

proximate symmetries of differential equations. Group Theory and Nu-685

merical Analysis, 39:249, 2005. 7, 8, 9686

[10] J.M. Borwein and M.K. Tam. A Cyclic Douglas–Rachford Iteration687

Scheme. J. Optim. Theory Appl., 160(1):1–29, 2014. 20688

[11] J.M. Borwein and H. Wolkowicz. Facial reduction for a cone-convex689

programming problem. J. Austral. Math. Soc. Ser. A, 30(3):369–380,690

1980/81. 3691

[12] J.M. Borwein and H. Wolkowicz. Regularizing the abstract convex692

program. J. Math. Anal. Appl., 83(2):495–530, 1981. 3693

[13] Y-L. Cheung, S. Schurr, and H. Wolkowicz. Preprocessing and regu-694

larization for degenerate semidefinite programs. In D.H. Bailey, H.H.695

Bauschke, P. Borwein, F. Garvan, M. Thera, J. Vanderwerff, and696

H. Wolkowicz, editors, Computational and Analytical Mathematics, In697

Honor of Jonathan Borwein’s 60th Birthday, volume 50 of Springer Pro-698

ceedings in Mathematics & Statistics, pages 225–276. Springer, 2013. 16,699

17, 18700

[14] Y.-L. Cheung and H. Wolkowicz. Sensitivity analysis of semidefinite701

programs without strong duality. Technical report, University of Wa-702

terloo, Waterloo, Ontario, 2014. submitted June 2014, 37 pages. 3703

[15] E.D. Dolan and J.J. Moré. Benchmarking optimization software with704

performance profiles. Math. Program., 91(2, Ser. A):201–213, 2002. 22705

[16] Jr.J. Douglas and Jr.H.H. Rachford. On the numerical solution of heat706

conduction problems in two and three space variables. Trans. Amer.707

Math. Soc., 82:421–439, 1956. 20708

[17] D. Drusvyatskiy, N. Krislock, Y-L. Cheung Voronin, and H. Wolkow-709

icz. Noisy sensor network localization: robust facial reduction and the710

Pareto frontier. Technical report, University of Waterloo, Waterloo,711

Ontario, 2014. arXiv:1410.6852, 20 pages. 3712

[18] D. Drusvyatskiy, G. Li, and H. Wolkowicz. Alternating projections for713

ill-posed semidenite feasibility problems. Technical report, University714

of Waterloo, Waterloo, Ontario, 2014. submitted Sept. 2014, 12 pages.715

3, 16716

33

[19] M. Dür, B. Jargalsaikhan, and G. Still. The Slater condition is generic717

in linear conic programming. Technical report, University of Trier,718

Trier, Germany, 2012. 3719

[20] C. Eckart and G. Young. A principal axis transformation for non-720

Hermitian matrices. Bull. Amer. Math. Soc., 45:118–121, 1939. 19721

[21] A. Edelman and E. Kostlan. How many zeros of a random polynomial722

are real? Bull. Amer. Math. Soc. (N.S.), 32(1):1–37, 1995. 2, 22723

[22] R. Escalante and M. Raydan. Alternating projection methods, volume 8724

of Fundamentals of Algorithms. Society for Industrial and Applied725

Mathematics (SIAM), Philadelphia, PA, 2011. 19726

[23] W. Gautschi and G. Inglese. Lower bounds for the condition number727

of Vandermonde matrices. Numer. Math., 52(3):241–250, 1988. 31728

[24] V.P. Gerdt and Y.A. Blinkov. Involutive bases of polynomial ideals.729

Mathematics and Computers in Simulation, 45(5):519–541, 1998. 7730

[25] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins731

University Press, Baltimore, Maryland, 3nd edition, 1996. 18732

[26] Jonathan D Hauenstein. Numerically computing real points on alge-733

braic sets. Acta applicandae mathematicae, 125(1):105–119, 2013. 29,734

31735

[27] M. Kac. On the average number of real roots of a random algebraic736

equation. Bull. Amer. Math. Soc., 49:314–320, 1943. 22737

[28] N. Krislock and H. Wolkowicz. Explicit sensor network localization738

using semidefinite representations and facial reductions. SIAM Journal739

on Optimization, 20(5):2679–2708, 2010. 3740

[29] M. Kuranishi. On e. cartan’s prolongation theorem of exterior differ-741

ential systems. American Journal of Mathematics, pages 1–47, 1957.742

7743

[30] J.B. Lasserre, M. Laurent, and P. Rostalski. A prolongation–projection744

algorithm for computing the finite real variety of an ideal. Theoretical745

Computer Science, 410(27):2685–2700, 2009. 2, 3, 4, 12, 30746

[31] M. Laurent and P. Rostalski. The approach of moments for polynomial747

equations. In Miguel F. Anjos and Jean B. Lasserre, editors, Handbook748

34

on semidefinite, conic and polynomial optimization, International Se-749

ries in Operations Research & Management Science, 166, pages 25–60.750

Springer, New York, 2012. 6751

[32] Y. Lu, D.J. Bates, A.J. Sommese, and C.W. Wampler. Finding all752

real points of a complex curve. In Algebra, geometry and their inter-753

actions, volume 448 of Contemp. Math., pages 183–205. Amer. Math.754

Soc., Providence, RI, 2007. 31755

[33] Y. Ma. Polynomial Optimization via Low-rank Matrix Completion and756

Semidefinite Programming. PhD thesis, 2012. 2, 4, 10, 23, 30757

[34] Y. Ma, C. Wang, and L. Zhi. A certificate for semidefinite relaxations758

in computing positive dimensional real varieties. Journal of Symbolic759

Computation, 72:1 – 20, 2016. 2, 4, 10, 23, 24, 25, 26, 27, 28, 30, 40, 41760

[35] Y. Ma and L. Zhi. Computing real solutions of polynomial systems via761

low-rank moment matrix completion. In Proceedings of the 37th In-762

ternational Symposium on Symbolic and Algebraic Computation, pages763

249–256. ACM, 2012. 29764

[36] F.S. Macaulay and P. Roberts. The algebraic theory of modular systems.765

Number 19. University press Cambridge, 1916. 6766

[37] H.M. Möller and T. Sauer. H-bases for polynomial interpolation and767

system solving. Advances in Computational Mathematics, 12(4):335–768

362, 2000. 6, 29769

[38] B. Mourrain. Isolated points, duality and residues. Journal of Pure770

and Applied Algebra, 117:469–493, 1997. 6771

[39] B. Mourrain. A new criterion for normal form algorithms. In Applied772

algebra, algebraic algorithms and error-correcting codes, pages 430–442.773

Springer, 1999. 6774

[40] G.J. Reid, J. Tang, and L. Zhi. A complete symbolic-numeric linear775

method for camera pose determination. In Proceedings of the 2003776

international symposium on Symbolic and algebraic computation, pages777

215–223. ACM, 2003. 8778

[41] G.J. Reid, F. Wang, and W. Wu. Geometric involutive bases for posi-779

tive dimensional polynomial ideals and sdp methods. Technical report,780

Department of Appl. Math., University of Western Ontario, 2014. 6, 7,781

8, 10782

35

[42] G.J. Reid and L. Zhi. Solving polynomial systems via symbolic-numeric783

reduction to geometric involutive form. Journal of Symbolic Computa-784

tion, 44(3):280–291, 2009. 8785

[43] R. Scott, G.J. Reid, W. Wu, and L. Zhi. Geometric involutive bases and786

applications to approximate commutative algebra. In Lorenzo Robbiano787

and John Abbott, editors, Approximate Commutative Algebra, pages788

99–124. Springer, 2010. 3, 8789

[44] A.J. Sommese and C.W. Wampler. The Numerical solution of systems790

of polynomials arising in engineering and science, volume 99. World791

Scientific, 2005. 2792

[45] F. Sottile. Real solutions to equations from geometry, volume 57 of793

University Lecture Series. American Mathematical Society, Providence,794

RI, 2011. 2, 3, 4, 5, 30795

[46] Hans J. Stetter. Numerical polynomial algebra. Society for Industrial796

and Applied Mathematics (SIAM), Philadelphia, PA, 2004. 6, 30, 31797

[47] A.D. Wittkopf and G.J. Reid. Fast differential elimination in c: The cd-798

iffelim environment. Computer Physics Communications, 139(2):192–799

217, 2001. 7800

[48] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of801

semidefinite programming. International Series in Operations Research802

& Management Science, 27. Kluwer Academic Publishers, Boston, MA,803

2000. Theory, algorithms, and applications. 15804

[49] H. Wolkowicz and Q. Zhao. Semidefinite programming relaxations for805

the graph partitioning problem. Discrete Appl. Math., 96/97:461–479,806

1999. Selected for the special Editors’ Choice, Edition 1999. 3807

[50] W. Wu and G.J. Reid. Finding points on real solution components and808

applications to differential polynomial systems. In Proceedings of the809

38th international symposium on International symposium on symbolic810

and algebraic computation, pages 339–346. ACM, 2013. 29, 31811

[51] X. Wu and L. Zhi. Determining singular solutions of polynomial systems812

via symbolic–numeric reduction to geometric involutive forms. Journal813

of Symbolic Computation, 47(3):227–238, 2012. 8814

36

[52] Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite pro-815

gramming relaxations for the quadratic assignment problem. J. Comb.816

Optim., 2(1):71–109, 1998. Semidefinite programming and interior-817

point approaches for combinatorial optimization problems (Fields In-818

stitute, Toronto, ON, 1996). 3819

37

Index

C(P), coefficient matrix of P , 6820

Eij = 1
2(eTi ej + eTj ei), 14821

L = (s2vec(Āt)
T)t∈E , 19822

L†, the Moore-Penrose generalized in-823

verse, 19824

N(n, d), 6825

P , system of m polynomials, 5826

VK, variety of P , 5827

N, nonnegative integers, 5828

RL,RPSD, reflections, 20829

R[x], set of all real polynomials in n830

variables, 5831

Sk+ , semi-definite cone, 2832

face (X,St+), smallest face of St+ con-833

taining X, 15834

〈P 〉R, real ideal generated by P , 5835

s2Mat, 19836

s2vec, 19837

d = deg(P), 5838

ei, 14839

i-th unit vector, 14840

ij-th unit matrix, 14841

m, number of polynomials in P , 5842

n, number of variables in P , 5843

PL, the linear manifold projection,844

19845

PS+ , the positive semidefinite projec-846

tion, 19847

adjoint map, 19848

alternating projection, MAP, 18, 19849

associated polynomial ideal, 11850

Cartan class of variables, 5851

coefficient matrix of P , C(P), 6852

complex variety of P , 5853

conjugate face, 15854

degree of the monomial, 5855

degree of the polynomial system, 5856

Douglas-Rachford reflection-projection,857

18858

Douglas-Rachford, DR, 20, 22859

DR, Douglas-Rachford, 20, 22860

Gaussian elimination, GE, 3861

geometric involutive bases, 3862

geometric involutive form, GIF, 2, 7,863

9864

GIF, geometric involutive form, 9865

Gröbner Bases, 3866

graded reverse lexicographic order, grevlex,867

5868

Hankel matrix, 7869

i-th, 14870

main problem, 15871

MAP, alternating projection, 18, 19872

matrix representative, 14873

method of moments, 2874

monomial, 5875

project, 8876

real radical ideal, RRI, 2877

real variety of P , 5878

reflections, RL,RPSD, 20879

RRI, real radical ideal, 2, 4880

SDP, semidefinite programming, 2881

semi-definite cone, Sk+ , 2882

semidefinite programming, SDP, 2883

singular value decompositions, SVD,884

3885

Slater constraint qualification, 2886

38

smallest face of St+ containingX, face (X,St+),887

15888

strong duality, 3889

system of m polynomials, P , 5890

t-th, 14, 19891

truncated moment matrix, 6892

univariate polynomials, 4893

variety of P , VK, 5894

39

Contents895

1 Introduction 2896

2 Real radical ideals and moment matrices 5897

2.1 Real polynomial systems . 5898

2.2 Moment matrices . 6899

3 Geometric involutive bases 7900

4 Combining the moment matrix and geometric involutive901

form algorithms 10902

5 Facial reduction and projection methods 12903

5.1 Representations for linear constraints for moment problems . 12904

5.2 First step of facial reduction 15905

5.2.1 Potential second facial reduction 16906

5.2.2 Backward stability for facial reduction steps 17907

5.3 Projection methods . 18908

5.3.1 Method of alternating projections, MAP 19909

5.3.2 Douglas-Rachford reflection method 20910

6 Numerical experiments 21911

6.1 A class of random univariate polynomials 22912

6.2 Examples of Ma, Wang and Zhi [34] 23913

6.3 Intersecting higher dimensional cylinders 29914

7 Conclusion 29915

Index 38916

List of Tables917

5.1 block partitioned bivariate moment matrix; submatrices have918

same degree . 13919

40

6.1 Statistics for the application of GIF-FDR and GIF-SeDuMi:920

Ex 4.1-4.6 are 6 examples in MWZ [34]; Cyl2d-Cyl5d are cylinder921

examples; n number of variables; d maximum polynomial degree;922

m number of polynomials; two entries (1,2) are included for the923

number of iterations and cpu-time if FDR is used twice in the ex-924

ample; (s(M), s(M̂)) sizes of moment matrix M and facially re-925

duced matrix M̂ , resp. Rightmost two columns are SVD tolerance926

and moment matrix residual error for the Interior Point calculation927

using SeDuMi combined with GIF. DNC - Did Not Converge. The928

Maple SVD computations in GIF-FDR were executed with toler-929

ance := 10−10 and Digits := 15. 28930

List of Algorithms931

2.1 M - Moment Matrix . 7932

3.1 GIF: Geometric involutive form 10933

4.1 GIF – SDP Method . 11934

4.2 gen . 11935

5.1 Matrix representation of moment matrix constraints 14936

5.2 FDR method . 21937

List of Figures938

6.1 Comparison in residual and cputime of GIF-FDR vs GIF-939

SeDuMi for random polynomials pd(x) = Σd
1ad,j x

j at odd940

degrees 3 ≤ d ≤ 51 with ad,j ∼ N(0, 1). 23941

6.2 Performance profile of GIF-FDR vs GIF-SeDuMi for random942

polynomials pd(x) = Σd
1ad,j x

j at each odd degrees 3 ≤ d ≤ 51943

with ad,j ∼ N(0, 1). The profile function used is (6.3). 23944

41

	Introduction
	Real radical ideals and moment matrices
	Real polynomial systems
	Moment matrices

	Geometric involutive bases
	Combining the moment matrix and geometric involutive form algorithms
	Facial reduction and projection methods
	Representations for linear constraints for moment problems
	First step of facial reduction
	Potential second facial reduction
	Backward stability for facial reduction steps

	Projection methods
	Method of alternating projections, MAP
	Douglas-Rachford reflection method

	Numerical experiments
	A class of random univariate polynomials
	Examples of Ma, Wang and Zhi MWZ:2012
	Intersecting higher dimensional cylinders

	Conclusion
	Index

