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Abstract

The Barvinok-Pataki bound provides an upper bound on the rank of extreme points of a
spectrahedron. This bound depends solely on the number of affine constraints of the problem,
i.e., on the algebra of the problem. Specifically, the triangular number of the rank r is upper
bounded by the number of affine constraints. We revisit this bound and provide a strengthened
upper bound on the rank using the singularity degree of the spectrahedron. Thus we bring
in the geometry and stability of the spectrahedron, i.e., increased instability as seen by higher
singularity degree, yields a lower, strengthened rank bound.
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1 Introduction

The Barvinok-Pataki bound [1, 7] shows that an extreme point X of a spectrahedron with rank r
satisfies t(r) ≤ m, where t(r) is the triangular number, and m is the number of affine constraints.
Thus we get that extreme points have a bound on the rank that depends solely on the number of
constraints, the algebra of the linear manifold that define the spectrahedron. We revisit this bound
and provide a strengthened bound on the rank by adding information from the singularity degree
of the spectrahedron, i.e., the minimum number of facial reduction steps to obtain strict feasibility;
see e.g., the survey [5]. Thus we see that this new bound depends not only on the number of affine
constraints but also on the geometry and stability of the spectrahedron; see Theorem 2.11.

1.1 Background and Notation

We let: Rn,Rm×n be the standard real spaces of n-vectors and m-by-n matrices, respectively; Sn
denotes the Euclidean space of n × n symmetric matrices equipped with the trace inner-product;
the cone of positive semidefinite (definite) matrices is denoted by Sn+ (Sn++), respectively, and we
use the standard partial order notation X � 0 (X � 0), respectively. We use relint to denote the
relative interior.

For Ai ∈ Sn, i ∈ {1, . . . ,m}, we define the linear map A : Sn → Rm, A(X) = (〈Ai, X〉)i ∈ Rm.
A spectrahedron, F is the intersection of an affine set and the positive semidefinite cone. Given
b ∈ Rm and a linear map A : Sn → Rm, we represent the spectrahedron as

F = {X � 0 : A(X) = b}.

Without loss of generality, we assume that A is onto (surjective). We use F to denote a spectra-
hedron throughout this manuscript. Spectrahedra are commonly used for constraint systems in
semidefinite programming (SDP). Given a convex function f from Sn to R, a semidefinite program
is an optimization problem over a spectrahedron:

p∗ = min
X∈Sn

f(X)

s.t. A(X) = b ∈ Rm

X � 0.

(1.1)

Studying the rank, and in particular obtaining low rank solutions, is important in many appli-
cations. For example, for SDP relaxations of protein folding problems, rank three solutions are
important because molecules sit in the three-dimensional space. The Barvinok-Pataki bound pro-
vides a target for finding a low rank solution of a feasible point of a spectrahedron. Note that for a
linear SDP, f(X) = traceCX, we can add the constraint f(X) = p∗ to apply the rank bound for
optimal solutions. Another application is the highly cited paper [3] that exploits knowledge about
a low rank optimal solution to reduce the dimensions using the substitution X = V V T , where
V ∈ Rn×r.

2 A Strengthened Barvinok-Pataki Bound

In this section we present an improved Barvinok-Pataki bound, see Theorem 2.11. We work with
a nonempty spectrahedron. The triangular number, t(n), is defined as t(n) =

(
n+1
2

)
= n(n+ 1)/2.

Note that the surjectivity of A implies that the triangular number t(n) ≥ m.
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2.1 Known Bounds

We recall the following definitions and results. A convex cone F is a face of Sn+ if

for X,Y ∈ Sn+ with {λX + (1− λ)Y : λ ∈ (0, 1)} ⊆ F, we have X,Y ∈ F.

Theorem 2.1 ([7, Theorem 2.1]). Suppose that X ∈ F , where F is a face of the feasible set of (1.1).
Let d = dimF , r = rankX. Then

t(r) ≤ m+ d. (2.1)

Theorem 2.2 ([1, Theorem 1.1]). Let L ⊂ Sn be an affine manifold such that the intersection
F = Sn+ ∩ L 6= ∅ and codimL ≤ t(r + 1) − 1 for some nonnegative integer r. Then there exists
X ∈ F such that rankX ≤ r.

Theorem 2.3 ([1, Theorem 1.2]). Let r > 0, n ≥ r + 2. Let L ⊂ Sn be an affine manifold such
that the intersection F = Sn+ ∩ L 6= ∅ and bounded, and codimL = t(r + 1), for some nonnegative
integer r. Then there exists X ∈ F such that rankX ≤ r.

Remark 2.4. Theorems 2.1 to 2.3 all concern bounds on the rank of a feasible point to a spectra-
hedron. We continue with some remarks for the three theorems above.

Given the number of constraints, Theorem 2.1 gives an upper bound on the rank of a solution.
The most well-known application of Theorem 2.1 is the case of extreme points. An extreme point
X of a convex set C is a point that cannot be expressed as a convex combination of any two
distinct points in C. The minimal face containing an extreme point X is 0-dimensional, i.e.,
dim(face({X})) = 0. From (2.1), we conclude that

t(rank(X)) ≤ m, for all extreme points X ∈ F . (2.2)

Theorem 2.2 is a consequence of [2, Theorem 1.3] which can be interpreted as follows. For the

feasible constraint system of (1.1), there is a solution X such that its rank is bounded by b
√
8m+1−1

2 c.
We may obtain an equivalent bound by defining the smallest r ∈ N satisfying

(
r+2
2

)
> m. Therefore

if we have
(
r+2
2

)
− 1 ≥ m, where m is the number of linearly independent constraints, we obtain the

statement in Theorem 2.2.

Theorem 2.3 is stated with a bounded spectrahedron. Suppose that we are given a triple (r,m, n),
where r is an upper bound on the target rank; m =

(
r+2
2

)
is the number of linearly independent

constraints; and the embedding space Sn such that n ≥ r+ 2 ≥ 3. Then there exists a point X ∈ F
such that rank(X) ≤ r.

In this note the Barvinok-Pataki bound refers to (2.2).

Theorem 2.5. (Barvinok-Pataki bound [1,7]) Every extreme point X ∈ F satisfies t(rank(X)) ≤
m.

2.2 Facial Reduction

The minimal face of C ⊆ Sn+, face(C), is the intersection of all faces containing C. A face F is
exposed if it is the intersection of Sn+ and a hyperplane. In other words, F admits the representation
F = Sn+ ∩ Z⊥, for some Z ∈ Sn+. The vector Z is called an exposing vector of F . An exposing
vector is maximal if it is of the highest rank over all exposing vectors.

Proposition 2.6. (theorem of the alternative) For the feasible constraint system of (1.1), exactly
one of the following statements holds:
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1. There exists X � 0 such that A(X) = b,

2. There exists y ∈ Rm such that

A∗(y) ∈ Sn+ \ {0}, 〈b, y〉 = 0. (2.3)

Facial reduction (FR) is a process of identifying the minimal face of Sn+ containing the affine
set {X : A(X) = b}. Since Sn+ is facially exposed, the process can be characterized as identifying
an exposing vector. Algorithm 2.1 below is a pseudo code for FR algorithm. More details can be
found in [5, 8, 10]. Finding an exposing vector Z in Algorithm 2.1 is generally done by solving the

Algorithm 2.1 Pseudo Code for Facial Reduction Algorithm

Require: data (A, b) for affine set {X : A(X) = b}
while 6 ∃X � 0 satisfying A(X) = b do

find an exposing vector Z
compute V such that range(V ) = null(Z)
A ← AV (·) := A(V (·)V T )

end while

auxiliary problem (2.3). After FR we obtain the minimal face of Sn+ containing {X : A(X) = b}
and this minimal face has the representation V Sr+V T for some r ≤ n. We call this vector V a facial
vector. A minimal facial vector is the one with the minimum number of columns.

It is known that every FR step results in at least one constraint becoming redundant, see
e.g., [10, Section 3.5]. We give a short proof below.

Lemma 2.7. At least one linear constraint of the SDP becomes redundant after each step of FR.

Proof. Let A∗(y) be the exposing vector satisfying the system (2.3). Let V be a minimal facial
vector satisfying null(A∗(y)) = range(V ). Clearly, V TA∗(y)V =

∑m
i=1 yiV

TAiV = 0. After the
reduction the constraints have the form trace(V TAiV X) = bi, ∀i. Since y ∈ Rm is a nonzero
vector, the matrices in {V TAiV }i=1,...,m are not linearly independent.

By Lemma 2.7 we may remove redundant constraints in each FR step and proceed to the next
iteration. Lemma 2.7 plays an important role in obtaining the tighter bound in Section 2.3. For
the minimum length of FR iterations, we give a special name.

Definition 2.8. [9,11] Given a spectrahehedron F , the singularity degree of F , denoted by sd(F),
is the smallest number of facial reduction steps for finding face(F).

It is known that if we find an exposing vector Z in relint({X � 0 : A(X) = b}) at every
iteration, the number of FR steps is equal to sd(F). The singularity degree has an obvious upper
bound n. In fact the singularity degree admits a tighter upper bound.

Lemma 2.9. [9,10] Let F be a nonempty spectrahedron such that F 6= {0}. Then the singularity
degree of F satisfies the following bound:

sd(F) ≤ min{n− 1,m}.

We close this section by showing that the rank of feasible points are unchanged after facial
reduction.
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Lemma 2.10. Let V ∈ Rn×r be a minimal facial vector containing the set F := {X � 0 : A(X) =
b}, i.e., V Sr+V T ⊇ F . Then, for V RV T feasible, we have rank(V RV T ) = rank(R).

Proof. Suppose that rank(R) = r. Then R has the spectral decomposition R =
∑r

i=1 λixix
T
i and

V RV T =
r∑

i=1

λiV xi(V xi)
T .

Let Xr =
[
x1 · · · xr

]
and consider the equation

[
V x1 · · · V xr

]
a = V Xra = 0 for a ∈ Rr.

Then we have
V TV Xra = 0 =⇒ Xra = 0 =⇒ XT

r Xra = 0 =⇒ a = 0.

Thus V RV T is the sum of rank one matrices that are linearly independent and hence rank(V RV T ) =
rank(R).

2.3 The Improved Bound

In this section we present the strengthened Barvinok-Pataki bound. By Lemma 2.10, the ranks
of feasible points of the original spectrahedron are completely determined by the ranks of feasible
points in the facially reduced spectrahedron. Using Lemma 2.7 and Lemma 2.9 we obtain the main
result of this manuscript; a tighter upper bound on rank by including the singularity degree.

Theorem 2.11. (A strengthened Barvinok-Pataki bound) Suppose that the singularity degree of
the nonempty spectrahedron F satisfies s = sd(F) > 0. Then there exists a point X ∈ F with
r = rank(X) that satisfies

t(r) ≤ min{t(n− s),m− s}. (2.4)

Proof. From Lemma 2.7, we have at most m− s linearly independent constraints after FR. Then
the upper bound m− s follows from Theorem 2.5. Since each FR step reduces the variable size by
at least 1, we have r ≤ n− s. Since t is monotonic on the positive real line, t(r) ≤ t(n− s) follows.

We now show (2.4) is well-defined. Suppose that F = {0}. Then the inequality clearly holds.
We may assume that F 6= {0}. Due to Lemma 2.9, t(n−s) is positive. Now suppose that m ≤ n−1.
Then sd(F) ≤ m. Suppose to the contrary sd(F) = m. We note that Lemma 2.7 leads to F = Sn+,
which contradicts the assumption. Thus, we obtain sd(F) ≤ m − 1 and m − s is positive in this
case. Now suppose that m > n− 1. Then m− s > n− s− 1 ≥ 0, where the last inequality follows
from Lemma 2.9.

Remark 2.12. From the proof of Theorem 2.11, we note that we may obtain a tighter bound on the
singularity degree than the one given in Lemma 2.9. If m ≤ n− 1, sd(F) ≤ m− 1 when sd(F) > 0.

We now give an elementary analysis on the bound (2.4). Corollary 2.13 below gives an explicit
upper bound on the rank of a solution. It follows from the definition of the triangular number and
the integrality of the rank function.

Corollary 2.13. Let s = sd(F). Then there exists a solution X to (1.1) such that

rank(X) ≤

⌊√
1 + 8 min{t(n− s) , m− s}

2
− 1

⌋
.

Remark 2.14 below discusses the upper bound min{t(n−s),m−s}. The minimizer of min{t(n−
s),m− s} is determined by the relation among m,n and s.
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Remark 2.14. Let n,m, s be given. Then the following hold.

1. Suppose that m− n+ 1
8 ≥ 0 holds. Then

min{t(n− s),m− s} =

{
t(n− s) if

∣∣s− (n− 1
2

)∣∣ ≤ 1
2

√
8m− 8n+ 1,

m− s otherwise.

2. Suppose that m− n+ 1
8 ≤ 0 holds. Then min{t(n− s),m− s} = m− s.

Proof. Suppose that m− n+ 1
8 ≥ 0 holds. Then

t(n− s) ≥ m− s ⇐⇒ s2 + (1− 2n)s+ n2 + n− 2m ≥ 0

Using the root formula for the quadratic function with respect to s, we note that the inequality
holds only when

s ≥ n− 1

2
+

1

2

√
8m− 8n+ 1 or s ≤ n− 1

2
− 1

2

√
8m− 8n+ 1.

We now suppose that m − n + 1
8 ≤ 0 holds. Then m − s ≤ n − s − 1

8 . We compare the numbers
n− s− 1

8 and t(n− s):

t(n− s)−
(
n− s− 1

8

)
=

1

2

(
s2 − 2ns+ s+ n2 − n+

1

4

)
=

1

2

(
s−

(
n− 1

2

))2

≥ 0.

Thus, we have that

t(n− s) ≥ n− s− 1

8
≥ m− s.

We give an elementary example to illustrate the advantage of the new improved Barvinok-Pataki
bound.

Example 2.15. Consider the spectrahedron F = {X ∈ S4+ : trace(AiX) = bi, i = 1, 2, 3} with the
data

A1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , A2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , A3 =


0 0 0 1
0 0 0 0
0 0 1 0
1 0 0 0

 , b =

1
0
0

 .

Theorem 2.5 gives two possibilities for the rank r of a solution to F :

t(1) = 1 ≤ 3 or t(2) = 3 ≤ 3.

We obtain an exposing vector by solving the auxiliary system (2.3) for y ∈ R3:

A∗(y) =


y1 0 0 y3
0 0 0 0
0 0 y3 0
y3 0 0 y2

 ∈ S4+ \ {0}, bT y = y1 = 0.

It is easy to see that Diag([0; 0; 0; 1]) is a maximal exposing vector and we complete the first round
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of FRwith the minimal facial vector

V1 =


1 0 0
0 1 0
0 0 1
0 0 0

 . (2.5)

The second constraint becomes redundant. We now have the new data

V T
1 A1V1 =

1 0 0
0 0 0
0 0 0

 , V T
1 A3V1 =

0 0 0
0 0 0
0 0 1


and proceed to the next iteration for FR. By solving the auxiliary system (2.3) we obtain

V2 =

1 0
0 1
0 0

 and V T
2 V

T
1 A1V1V2 =

[
1 0
0 0

]
(2.6)

and the third constraint becomes redundant. We note that X̄ =

[
1 0
0 1

]
is a Slater point and

FR algorithm terminates. The FR algorithm terminated with two iterations, i.e., sd(F) = 2.

We apply Theorem 2.11 to F . Since t(n− sd(F)) = t(4− 2) = 3 and m− sd(F) = 3− 2 = 1,
we conclude that every extreme point X of F satisfies t(rank(X)) ≤ 1. The only rank satisfying
this bound is rank(X) = 1. The point Diag([1; 0; 0; 0]) certifies the existence of a rank 1 solution.

Rank of optimal solutions contains important information in many instances of SDP relaxations
for combinatorial optimization problems. Interesting instances include the SDP relaxations for the
quadratic assignment problem [6] or the protein side-chain positioning problems [4]. In these prob-
lems rank 1 optimal solutions of the SDP relaxations give global optimal solutions for the underly-
ing nonconvex combinatorial problems. Example 2.16 below illustrates that Theorem 2.11 provides
useful information on the optimal solution rank. The upper bound we obtain in Theorem 2.11 can
function as a target rank when we seek for a low rank optimal solution.

Example 2.16. With A1, A2, A3 defined in Example 2.15, we define additional data matrices

A4 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 , A5 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , C =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0

 , b =


1
0
0
0
0

 .

Consider the following SDP

p∗ = min trace(CX)
s.t. trace(AiX) = bi, i = 1, . . . , 5

X ∈ S4+.
(2.7)

In order to obtain the singularity degree of the feasible region F to (2.7) we consider the auxiliary
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system (2.3)

A∗(y) =


y1 y5 0 y3
y5 0 y4 0
0 y4 y3 0
y3 0 0 y2

 ∈ S4+ \ {0}, bT y = y1 = 0.

It is easy to see that Diag([0; 0; 0; 1]) is a maximal exposing vector and we complete the first round
of FRwith the minimal facial vector V1 defined in (2.5). The second constraint becomes redundant
and we proceed to the next FR step with

V T
1 A1V1 =

1 0 0
0 0 0
0 0 0

 , V T
1 A3V1 =

0 0 0
0 0 0
0 0 1

 , V T
1 A4V1 =

0 0 0
0 0 1
0 1 0

 , V T
1 A5V1 =

0 1 0
1 0 0
0 0 0

 .
Then a maximal exposing vector to the facially reduced spectrahedron may be chosen with Diag([0; 0; 1])
and hence we obtain the minimal facial vector V2 from (2.6). The third and the fourth constraints
become redundant and we are left with

V T
2 V

T
1 A1V1V2 =

[
1 0
0 0

]
, V T

2 V
T
1 A5V1V2 =

[
0 1
1 0

]
.

It is clear that X̄ = I2 is feasible and positive definite. Thus we again have sd(F) = 2.

After FR, we obtain the following facially reduced SDP

p∗ = min

[
0 0
0 1

]
•X

s.t.

[
1 0
0 0

]
•X = 1,

[
0 1
1 0

]
•X = 0

X ∈ S2+.

(2.8)

The optimal value p∗ to (2.8) (and (2.7)) is 0. We now consider the singularity degree of the optimal
set

F∗ := F ∩ {X : 〈C,X〉 = 0}.

By a similar approach we obtain that sd(F∗) = 3. We note that t(n − sd(F∗)) = t(4 − 3) = 1
and (m+ 1)− sd(F∗) = 3. Thus the extreme points X∗ of the optimal set F∗ hold rank(X∗) ≤ 1.

Therefore all extreme points of the optimal set are rank 1. The point X∗ =

[
1 0
0 0

]
meets the bound.

3 Conclusion

Suppose that we are given a spectrahedron F = {X � 0 : A(X) = b} with b ∈ Rm. The
Barvinok-Pataki bound guarantees the existence of a point X satisfying rank(X) = r and t(r) ≤ m.
An obvious question is: when is the bound tight? We present a strengthened bound using the
singularity degree sd(F)

t(r) ≤ min {t(n− sd(F)), m− sd(F)} ≤ m.

The knowledge of the strengthened bound can help obtain low rank solutions in many applications.
For example, the strengthened bound can be used for reducing the variable dimensions in nonlinear
methods for solving SDPs, e.g., [3]. We may perform low rank projections on the semidefinite
cone that arise in alternating direction method of multipliers (ADMM). For SDP relaxations for
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combinatorial optimization problems, we can recover a global optimal solution for its underlying
combinatorial problem if the bound on the rank is 1.
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