
ADMM for the SDP relaxation of the QAP ∗

Danilo Elias Oliveira † Henry Wolkowicz ‡ Yangyang Xu §

September 9, 2018

Abstract

Semidefinite programming, SDP, relaxations have proven to be extremely strong for many hard

discrete optimization problems. This is in particular true for the quadratic assignment problem, QAP,

arguably one of the hardest NP-hard discrete optimization problems. There are several difficulties that

arise in efficiently solving the SDP relaxation, e.g., increased dimension; inefficiency of the current primal-

dual interior point solvers in terms of both time and accuracy; and difficulty and high expense in adding

cutting plane constraints.

We propose using the alternating direction method of multipliers ADMM in combination with facial

reduction, FR, to solve the SDP relaxation. This first order approach allows for: inexpensive iterations,

a method of cheaply obtaining low rank solutions; and a trivial way of exploiting the FR for adding

cutting plane inequalities. In fact, we solve the doubly nonnegative, DNN, relaxation that includes both

the SDP and all the nonnegativity constraints. When compared to current approaches and current best

available bounds we obtain robustness, efficiency and improved bounds.1

Keywords: Quadratic assignment problem, semidefinite programming relaxation, alternating direction

method of multipliers, facial reduction, doubly nonnegative, large scale.

Classification code: 90C22, 90B80, 90C46, 90C06, 90-08

1 Introduction

The quadratic assignment problem, QAP , in the trace formulation [11] is

(QAP) p∗ := min
X∈Πn

〈AXB − 2C,X〉, (1.1)

where A,B ∈ Sn are real symmetric n × n matrices, C is a real n × n matrix, 〈· , ·〉 denotes the trace

inner product, i.e., 〈Y,X〉 = traceY X>, and Πn denotes the set of n × n permutation matrices. A typical

application of the QAP is to assign n facilities to n locations while minimizing total cost. This total cost uses

the flow Aij between a pair of facilities i, j multiplied by the distance Bst between their assigned locations

s, t, respectively. Included is the location cost Cis of placing facility i in location s. The QAP was first

introduced as a model for analyzing the location of economic activities [17,18]. Further applications include:

various layout problems, e.g., hospitals, airports, circuit boards, VLSI keyboards; bandwith minimization of

a graph; image processing; molecular conformations in chemistry; scheduling; supply chains; manufacturing

∗This work is partially supported by NSERC and AFOSR. The first version of this paper appeared in optimization online,

Dec. 16, 2015 and in arXiv:1512.05448, Dec. 17, 2015
†Dept. of Combinatorics and Optimization, University of Waterloo.
‡Dept. of Combinatorics and Optimization, University of Waterloo. Research supported by The Natural Sciences and

Engineering Research Council of Canada and by AFOSR. Email: hwolkowicz@uwaterloo.ca
§Dept. of Mathematical Sciences, Rensselaer Polytechnic Institute. Research partly supported by NSF grant DMS-1719549.

Email: xuy21@rpi.edu
1The code can be downloaded from the author’s webpage https://xu-yangyang.github.io/ADMM QAP/

1

https://uwaterloo.ca/combinatorics-and-optimization/about/people/deolivei
http://orion.math.uwaterloo.ca/~hwolkowi/
https://xu-yangyang.github.io/index.html
http://www.optimization-online.org/DB_HTML/2015/12/5251.html
http://www.optimization-online.org/DB_HTML/2015/12/5251.html
https://arxiv.org/abs/1512.05448
https://xu-yangyang.github.io/ADMM_QAP/

lines. Moreover, many well known discrete optimization problems are a special case of QAP, e.g., the

traveling salesman problem and the maximum cut problem; see e.g., [3, 20,21].

It is well known that the QAP is an NP-hard problem and that problems with size as moderate as

n = 30 still remain difficult to solve, e.g., [1]. Solution techniques rely on efficiently calculating lower and

upper bounds. An important tool for finding lower bounds is the work in [28] that provides a semidefinite

programmming (SDP), relaxation of (1.1). In particular, this relaxation uses facial reduction (FR) to

guarantee strict feasibility for both the relaxation and its dual and thus providing robustness; and FR greatly

simplifies the constraints by making many of them redundant. The methods of choice for SDP are based on

a primal-dual interior-point, p-d i-p, approach. These methods cannot solve large problems, have difficulty

in obtaining high accuracy solutions, and cannot properly exploit sparsity. Moreover, it is very expensive to

add on nonnegativity and other cutting plane constraints. The current state for finding bounds and solving

QAP is given in e.g., [1, 2, 6, 9, 23,24].

1.1 Contributions

In this paper we apply the alternating direction method of multipliers (ADMM) for solving the facially

reduced SDP relaxation of the QAP where we add additional elementwise nonnegativity constraints to

the SDP constraints, i.e., an ADMM method for solving a doubly nonnegative (DNN) problem. Our

model takes particular advantage of the facial reduction by doubling the number of variables so that the

ADMM approach can take advantage of separate simplified subproblems for the semidefinite constraints

and the elementwise nonnegativity constraints. The recent papers [16,27] also present algorithms for solving

the DNN relaxation of QAP, and their methods turn out to be very efficient for finding strong lower bounds

of many QAP instances. However, they do not use the FR technique, and our lower bounds are stronger on

many of our tested instances.

We compare our upper and lower bounds with: the best known results given in [24]; the best known

bounds found at SDPLIB [7]; and with a p-d i-p methods based on the so-called HKM direction. We tested

all symmetric instances from QAPLIB [7] with sizes up to n = 100. We find that our bounds strictly improve

on the existing bounds in the literature and provably solve many instances to optimality. Moreover, we see

that the ADMM method is significantly faster, and can often easily obtain medium-accuracy solutions, that

are sufficient to provide strong lower bounds for QAP . This is partly due to the ability of obtaining low

rank SDP solutions, as well as being able to solve the subproblems within the ADMM method fast and

accurately. Finally, by exploiting low rank projections, we also obtain strong upper bounds.

1.2 Related works

A survey for various eigenvalue and SDP type lower bounds for QAP is given in [1]. Included are exact

solution techniques as well. A copositive program, CP, is formulated in [23] and is shown to be equivalent

to the QAP . Although the CP is convex, it is still intractable. Starting with the CP, several relaxations of

QAP are presented in [23]. A review and a comparison with several other SDP relaxations is included.

Since the submission of our paper, we have become aware of the results in [15, 16, 27]. The work [15]

studies optimization over permutation matrices. It shows that a penalized problem with the `0 seminorm

can recover the solution to the original one if the penalty parameter is sufficiently large. Based on that

observation, [15] uses an `p, p ∈ (0, 1) seminorm to replace the `0 term. In addition, an `p regularization

algorithm is used to find KKT points of a sequence of smoothed `p regularized problems. The algorithm is

guaranteed to return a permutation matrix in a finite number of steps. Applied to the QAP, it will give a

feasible solution and thus provide an upper bound.

General quadratic optimization with linear and also binary constraints is studied in [16]. This includes

QAP as a special case. A Lagrangian-DNN relaxation is solved. Based on a formulation given in [23], lower

bounds for some QAP instances are reported in [16]. It is demonstrated that the Lagrangian-DNN approach

can be significantly faster than a Newton-CG SDP method (SDPNAL) [29], and comparable lower bounds

2

are obtained. In contrast, our method yields the same or even better lower bounds on all the common tested

instances except for Char20c, even though a small tolerance 10−12 was set in [16]. This is most likely due

to the fact that FR was not used.

An improved version of SDPNAL, called SDPNAL+, is given in [27]. Using a good initial point found with

an ADMM type method, SDPNAL+ applies a semismooth Newton-CG to subproblems in the augmented

Lagrangian method framework. It is shown to be superior to several other other SDP solvers and can solve

many difficult SDPs from QAP instances to tolerance of order 10−6. When compared to our appraoch, [27]

obtains a better lower bound only on the instance Tai25a, and for many other tested instances, our results

turn out to be strictly better. As noted above, this is possibly due to the use of FR.

More recently, [13] introduced a MATLAB based software package BBCPOP, that appears to improve

further on [27] for solving the DNN relaxation of QAP . It applies the solver on the same relaxation used

in [16]. It obtained a stronger lower bound than our approach on the single instance Char20c, while our

lower bounds were strictly better on many tested instances.

We note that previous success of ADMM for solving SDP is presented in e.g., [26]. Convincing results

on a few combinatorial optimization problems were obtained.. A detailed survey for ADMM can be found

in [5].

1.3 Outline

We continue in Section 2 with a new derivation of the facially reduced SDP relaxation of the QAP from

[28]. This derivation is novel in that it directly includes the so-called gangster constraints. The new

ADMM approach is presented in Section 3, where details of the ADMM subproblems are included, as

well as details for obtaining the lower bounds from possibly inaccurate solutions of the SDP , and obtaining

the upper bounds efficiently. Our numerics are presented in Section 4 with several tables. We conclude in

Section 5.

2 A New Derivation for the SDP Relaxation

In this section we present a new derivation of the facially reduced SDP relaxation of the QAP obtained

in [28]. The derivation is new in that the gangster constraints are obtained directly. We first briefly

introduce FR and then derive the SDP relaxation from the dual of the Lagrangian dual.

2.1 Original FR for SDP relaxation of QAP

The SDP relaxation of the QAP in [28] begins with a set of quadratic constraints that represent the permu-

tation matrices. Then, the Lagrangian relaxation (Lagrangian dual) is formed and shown to be equivalent

to an SDP. The dual of this Lagrangian dual is then the SDP relaxation of the QAP. However, it is then

shown in [28] that strict feasibility fails for this SDP relaxation. But one can find the barycenter, Ŷ , of the

feasible set and use the spectral decomposition

Ŷ =
[
V̂ Û

] [D � 0 0

0 0

] [
V̂ Û

]T
to obtain the facial reduction, minimal face F , of all feasible Y for the SDP relaxation,

Y ∈ F := V̂ S(n−1)2+1
+ V̂ T E Sn

2+1,

where E denotes face. Using the substitution Y = V̂ RV̂ T results in a smaller dimensional problem and,

moreover, this substitution and the addition of the gangster constraints, makes many of the original con-

straints redundant. The result is an elegant, much simplified, stable SDP relaxation.

3

2.2 The new derivation

We now provide the new derivation of the facially reduced SDP relaxation in [28]. We start with the following

equivalent quadratically constrained quadratic problem for QAP

min
X
〈AXB − 2C,X〉

s.t. XijXik = 0, XjiXki = 0, ∀i, ∀j 6= k,

X2
ij −Xij = 0, ∀i, j, (2.1)
n∑
i=1

X2
ij − 1 = 0, ∀j,

n∑
j=1

X2
ij − 1 = 0, ∀i.

Remark 2.1. Note that the quadratic orthogonality constraints X>X = I, XX> = I, and the linear row

and column sum constraints Xe = e, X>e = e, can all be represented using linear combinations of those in

(2.1). This observation avoids the need for adding all the redundant quadratic constraints and then removing

redundant linear constraints in the SDP. Here e is the vector of all ones.

In addition, the first set of constraints, the elementwise orthogonality of the row and columns of X, are

referred to as the gangster constraints. They are particularly strong constraints and enable many of the other

constraints to be redundant. In fact, after the FR is done, many of these gangster constraints also become

redundant.

The Lagrangian for (2.1) is

L0(X,U, V,W, u, v) =〈AXB − 2C,X〉+

n∑
i=1

∑
j 6=k

U
(i)
jk XijXik +

n∑
i=1

∑
j 6=k

V
(i)
jk XjiXki +

∑
i,j

Wij(X
2
ij −Xij)

+

n∑
j=1

uj

(
n∑
i=1

X2
ij − 1

)
+

n∑
i=1

vi

 n∑
j=1

X2
ij − 1

 .

The dual problem is a maximization of the dual functional d0,

max d0(U, V,W, u, v) := min
X
L0(X,U, V,W, u, v). (2.2)

To simplify the dual problem, we homogenize L0 by multiplying the degree-one terms in X by a scalar

variable x0 and adding the single constraint x2
0 = 1 to the dual functional. We add the additional dual

variable w0 and let

L1(X,x0, U, V,W,w0, u, v) =〈AXB − 2x0C,X〉+

n∑
i=1

∑
j 6=k

U
(i)
jk XijXik +

n∑
i=1

∑
j 6=k

V
(i)
jk XjiXki

+
∑
i,j

Wij(X
2
ij − x0Xij) +

n∑
j=1

uj

(
n∑
i=1

X2
ij − 1

)

+

n∑
i=1

vi

 n∑
j=1

X2
ij − 1

+ w0(x2
0 − 1).

This homogenization technique is the same as that in [28]. The new dual problem is

max d1(U, V,W,w0, u, v) := min
X,x0

L1(X,x0, U, V,W,w0, u, v). (2.3)

Note that the dual functionals satisfy d1 ≤ d0. Hence, our relaxation still yields a lower bound to (2.1).

In fact, the relaxations give the same lower bound. This follows from strong duality of the trust region

subproblem as shown in [28].

4

Let x = vec(X), y = [x0;x], and w = vec(W), where vec(X) denotes the columnwise vectorization of X.

Then

L1(X,x0, U, V,W,w0, u, v) = y> [LQ + B1(U) + B2(V) + Arrow(w,w0) +K1(u) +K2(v)] y − e>(u+ v)− w0,

where

K1(u) = blkdiag(0, u⊗ I), K2(v) = blkdiag(0, I ⊗ v),

B1(U) = blkdiag(0, Ũ), B2(V) = blkdiag(0, Ṽ),

LQ =

[
0 − vec(C)>

− vec(C) B ⊗A

]
, Arrow(w,w0) =

[
w0 − 1

2w
>

− 1
2w Diag(w)

]
.

Here, ⊗ denotes the Kronecker product, and Ũ and Ṽ are n× n block matrices. Ũ has zero diagonal blocks

and the (j, k)-th off-diagonal block is the diagonal matrix Diag(U
(1)
jk , . . . , U

(n)
jk), for all j 6= k. Ṽ has zero

off-diagonal blocks and the i-th diagonal block is


0 V

(i)
12 · · · V

(i)
1n

V
(i)
21 0 · · · V

(i)
2n

...
...

. . .
...

V
(i)
n1 V

(i)
n2 · · · 0

. We use blkdiag(A1, A2) to

denote the block diagonal matrix with principal diagonal blocks A1, A2, cf. the same command in MATLAB.

Hence, the dual problem (2.3) is equivalent to the SDP

max − e>(u+ v)− w0 (2.4)

s.t. LQ + B1(U) + B2(V) + Arrow(w,w0) +K1(u) +K2(v) � 0.

To obtain the SDP relaxation of (2.1), we further take the dual of (2.4). Before presenting the relaxation,

we give a few definitions.

Definition 2.2 (block matrix Y ∈ Sn2+1). Given n2 matrices Ỹij for i = 1, . . . , n and j = 1, . . . , n that

satisfy Ỹij = Ỹ >ji , let Ȳ be the n×n block matrix with Ỹij as the (i, j)-th block. We form the symmetric block

matrix

Y =

[
y00 y>0
y0 Ȳ

]
, (2.5)

where y00 is a scalar, and y0 is a vector in Rn2

.

Definition 2.3 (Gangster index set). The gangster index set, J is defined to be the union of the top left

index (00) and the set of indices i < j in the matrix Ȳ in (2.5) corresponding to:

1. the off-diagonal elements in the n diagonal blocks;

2. the diagonal elements in the off-diagonal blocks.

Definition 2.4 (Gangster operator). The gangster operator, GJ : Sn2+1 → Sn2+1 is defined by

GJ(Y)ij =

{
Yij if (i, j) ∈ J or (j, i) ∈ J
0 otherwise.

By abuse of notation, we let the same symbol denote the projection onto R|J|, and thus for y ∈ R|J|, the

adjoint yields Y = G∗J(y) ∈ Sn2+1 obtained by symmetrization and filling in the missing elements with zeros.

Now, taking the dual of (2.4), we have the SDP relaxation of (2.1):

min 〈LQ, Y 〉
s.t. GJ(Y) = E00

diag(Ȳ) = y0

trace(Ỹii) = 1, ∀i∑n
i=1 Ỹii = I

Y � 0,

(2.6)

5

where E00= e0e
T
0 is the outer product of the first unit vector, the block matrix Y is defined in Definition 2.2

and the gangster index set J and the gangster operator GJ are defined in Definitions 2.3 and 2.4. Note that

the variable Y in (2.6) is in a higher dimensional space compared to the original variable X in (2.1). This

can be motivated from the lifting Y =

(
1

vec(X)

)(
1

vec(X)

)>
. We apply ADMM to an equivalent, more

succinct, modification of (2.6). (See (3.1) and Theorem 3.1, below.)

Remark 2.5. If one more feasible quadratic constraint q(X) can be added to (2.1), and q(X) cannot be

linearly represented by those in (2.1), the relaxation following the same derivation as above can be tighter. We

conjecture that no more such q(X) exists, and thus (2.6) is the tightest among all Lagrange dual relaxations

from a quadratically constrained program like (2.1). However, this does not mean that more linear inequality

constraints cannot be added, i.e., linear cuts.

2.3 Strict feasibility by FR

As above, let e be the vector of all ones of appropriate dimension, and let V ∈ Rn×(n−1) be full column rank

with V T e = 0, and

V̂ =

[
1 0
1
ne V ⊗ V

]
. (2.7)

FR is applied in [28] by using the substitution

Y = V̂ RV̂ > ∈ Sn
2+1. (2.8)

This way, it is shown that (2.6) is equivalent to

p∗R := minR 〈V̂ >LQV̂ , R〉
s.t. GJ(V̂ RV̂ >) = E00

R � 0,

(2.9)

a greatly simplified SDP. This simplification arising from FR allows for the ADMM to be applied efficiently

for the DNN problem, i.e., we use the equivalence in (2.8) to relate Y,R and apply the gangster constraints

and nonnegativity on Y while applying the semidefinite constraint on R.

Note that after FR , many constraints in (2.6) become redundant, and also we can remove redundant

indices in J : the diagonal (zero) constraints in the last column of off-diagonal blocks and in the (n−2, n−1)

off-diagonal block. By abuse of notation, we use the same notation J and GJ after removing these indices.

Another advantage of (2.9) is that strict feasibility holds, i.e., there exists a feasible R � 0, as shown in

Lemma 2.6. In addition, strict feasibility holds for its dual problem, see Lemma 2.7. Both lemmas are

from [28].

Lemma 2.6. The matrix R̂ defined by

R̂ :=

[
1 0

0 1
n2(n−1) (nIn−1 − En−1)⊗ (nIn−1 − En−1)

]
∈ S(n−1)2+1

++

is (strictly) feasible for (2.9).

We note that the gangster operator is self-adjoint, G∗J = GJ . Therefore, the dual of (2.9) can be written

as the following:
d∗Y := max

Y
〈E00, Y 〉 (= Y00)

s.t. V̂ >GJ(Y)V̂ � V̂ >LQV̂ .
(2.10)

Again by abuse of notation, using the same symbol twice, we get the two equivalent dual constraints:

V̂ >GJ(Y)V̂ � V̂ >LQV̂ ; V̂ >G∗J(y)V̂ � V̂ >LQV̂ .

6

As above, the dual variable for the first form is Y ∈ Sn2+1 and for the second form is y ∈ R|J|. We have

used G∗ for the second form to emphasize that only the first form is self-adjoint.

Lemma 2.7. Define matrices Ŷ , Ẑ, with M > 0 sufficiently large, by

Ŷ := M

[
n 0

0 In ⊗ (In − En)

]
∈ S(n−1)2+1

++ , Ẑ := V̂ >LQV̂ − V̂ >GJ(Ŷ)V̂ ∈ S(n−1)2+1
++ .

Then they are (strictly) feasible variable and slack for (2.10).

3 A New ADMM Algorithm for the SDP Relaxation

We can write (2.9) equivalently as

min
R,Y
〈LQ, Y 〉 s.t. GJ(Y) = E00, Y = V̂ RV̂ >, R � 0. (3.1)

The following theorem from [28] shows the equivalence between (2.6) and (3.1).

Theorem 3.1. A matrix Y is feasible for (2.6) if, and only if, it is feasible for (3.1).

Therefore we can work with (3.1). The augmented Lagrange of (3.1) is

LA(R, Y, Z) = 〈LQ, Y 〉+ 〈Z, Y − V̂ RV̂ >〉+
β

2
‖Y − V̂ RV̂ >‖2F . (3.2)

Recall that (R, Y, Z) are the primal reduced, primal, and dual variables respectively. We denote (R, Y, Z) as

the current iterate. Our new algorithm, an application of ADMM, uses the augmented Lagrangian in (3.2)

and performs the following updates to obtain a new iterate (R+, Y+, Z+):

R+ = arg min
R∈S+

LA(R, Y, Z), (3.3a)

Y+ = arg min
Y ∈Pi

LA(R+, Y, Z), (3.3b)

Z+ =Z + γ · β(Y+ − V̂ R+V̂
>), (3.3c)

where the simplest case for the polyhedral constraints Pi is the linear manifold from the gangster constraints:

P1 = {Y ∈ Sn
2+1 : GJ(Y) = E00}.

We use this notation as we add additional simple polyhedral constraints. The second case is the polytope:

P2 = P1 ∩ {0 ≤ Y ≤ 1}.

Let V̂ be normalized such that V̂ >V̂ = I. Then the R-subproblem can be explicitly solved by

R+ = arg minR�0〈Z, Y − V̂ RV̂ >〉+ β
2 ‖Y − V̂ RV̂

>‖2F
= arg minR�0

∥∥∥Y − V̂ RV̂ > + 1
βZ
∥∥∥2

F

= arg minR�0

∥∥∥R− V̂ >(Y + 1
βZ
)
V̂
∥∥∥2

F

= PS+

(
V̂ >
(
Y + 1

βZ
)
V̂
)
,

(3.4)

where S+ denotes the SDP cone, and PS+ is the orthogonal projection onto S+. For any symmetric matrix

W , we have

PS+(W) = U+Σ+U
>
+ ,

7

where (U+,Σ+) contains the positive eigenpairs of W ; we let (U−,Σ−) be for the negative eigenpairs.

If i = 1 in (3.3b), the Y -subproblem also has a closed-form solution:

Y+ = arg min
GJ (Y)=E00

〈LQ, Y 〉+ 〈Z, Y − V̂ R+V̂
>〉+

β

2
‖Y − V̂ R+V̂

>‖2F

= arg min
GJ (Y)=E00

∥∥∥∥Y − V̂ R+V̂
> +

LQ + Z

β

∥∥∥∥2

F

=E00 + GJc

(
V̂ R+V̂

> − LQ + Z

β

)
. (3.5)

One major advantage of using ADMM is that the complexity increases marginally when we add con-

straints to (2.9) and tighten the SDP relaxation. If 0 ≤ V̂ RV̂ > ≤ 1 is added in (2.9), then we simply add

the constraints 0 ≤ Y ≤ 1 to (3.1). This yields the new problem

p∗RY := min
R,Y
{〈LQ, Y 〉 : GJ(Y) = E00, 0 ≤ Y ≤ 1, Y = V̂ RV̂ >, R � 0}. (3.6)

The ADMM for solving (3.6) has the same R-update and Z-update as those in (3.3). The Y -update is

changed to

Y+ = E00 + min

(
1, max

(
0, GJc

(
V̂ R+V̂

> − LQ + Z

β

)))
. (3.7)

The nonnegativity constraint means that the ≤ 1 constraint is redundant. But the inclusion makes the

algorithm converge faster and avoid roundoff error. We emphasize again that it is the FR that allows for the

splitting into polyhedral and semidefinite constraints. The update for R+ is a nearest semidefinite problem

and we can efficiently cheat and reduce the number of eigenvalues we allow to be positive by using the

Eckart-Young Theorem, [10]. The update for Y+ is a projection onto a simple polyhedral set and is very

efficient and accurate.

3.1 Lower bound

If we solve (3.6) to high accuracy, we get a lower bound for the original QAP. However, the problem size

of (3.6) can be extremely large, and it would be very expensive to obtain a highly accurate solution. In the

following, we provide an inexpensive way to get a valid lower bound from the output of our algorithm that

solves (3.6) to a moderate accuracy. Our method is to find a feasible solution of the dual problem of (3.6).

The lemma below shows that any feasible dual solution provides a valid lower bound to (3.6) and thus the

original QAP.

Lemma 3.2 (Lagrangian dual problem). Let

R := {R : R � 0}, Y := {Y : GJ(Y) = E00, 0 ≤ Y ≤ 1}, Z := {Z : V̂ >ZV̂ � 0}.

Define

g(Z) := min
Y ∈Y
〈LQ + Z, Y 〉.

Then the dual problem of (3.6) is d∗Z := max
Z∈Z

g(Z), and the weak duality holds, i.e, d∗Z ≤ p∗RY , where p∗RY is

the optimal objective value of (3.6).

8

Proof. The dual problem of (3.6) can be derived as

d∗Z := max
Z

min
R∈R,Y ∈Y

〈LQ, Y 〉+ 〈Z, Y − V̂ RV̂ >〉

= max
Z

min
Y ∈Y
〈LQ, Y 〉+ 〈Z, Y 〉+ min

R∈R
〈Z,−V̂ RV̂ >〉

= max
Z

min
Y ∈Y
〈LQ, Y 〉+ 〈Z, Y 〉+ min

R∈R
〈V̂ >ZV̂ ,−R〉

= max
Z∈Z

min
Y ∈Y
〈LQ + Z, Y 〉

= max
Z∈Z

g(Z),

where the fourth equality holds because if Z 6∈ Z, then minR∈R〈V̂ >ZV̂ ,−R〉 = −∞. Weak duality follows

in the usual way by exchanging the max and min.

For any Z ∈ Z, we have g(Z) ≤ d∗Z . Hence, from the above lemma, it follows that g(Z) is a lower bound

of (3.6) and thus of the original QAP. In addition, note that g(Z) is easy to evaluate. Let (Rout, Y out, Zout)

be the output of the ADMM for (3.6). We use the dual function value at the projected point PZ(Zout),

namely g
(
PZ(Zout)

)
, as the lower bound. Below we show how to get PZ(Z̃) for any symmetric matrix Z̃.

Let V̂⊥ be the orthonormal basis of the null space of V̂ . Then V̄ = (V̂ , V̂⊥) is an orthogonal matrix.

Given any Z ∈ Z, let W = V̄ >ZV̄ , and we write W into the 2× 2 block matrix

[
W11 W12

W21 W22

]
. We have

Z ∈ Z ⇔V̂ >ZV̂ � 0⇔ V̂ >ZV̂ = V̂ >V̄ W V̄ >V̂ = W11 � 0.

Hence,

PZ(Z̃) = arg min
Z∈Z

‖Z − Z̃‖2F = V̄ W ∗V̄ >,

where

W ∗ = arg min
W11�0

‖V̄ W V̄ > − Z̃‖2F

= arg min
W11�0

‖W − V̄ >Z̃V̄ ‖2F

=

[
PS−(W̃11) W̃12

W̃21 W̃22

]
,

where S− denotes the negative semidefinite cone, and we have assumed V̄ >Z̃V̄ =

[
W̃11 W̃12

W̃21 W̃22

]
. Note that

PS−(W11) = −PS+(−W11).

3.2 Upper bound from feasible solution

Let (Rout, Y out, Zout) be the output of the ADMM for (3.6). Assume the largest eigenvalue and the cor-

responding eigenvector of Y are λ and v, respectively. Then λvv> is a best rank-one approximation of Y .

We let Xout be the square matrix reshaped from the second through the last elements of the first column

of λvv>. This is our approximation to (a multiple of) the optimal permutation matrix. Note that for any

permutation matrix X we have traceXTX = n. This implies that

‖Xout −X‖2F = −2 traceXTXout + constant.

Thus to find the nearest permutation matrix to our approximation, we can take advantage of the Birkoff-von

Neumann Theorem e.g., [4], that the permutation matrices are the extreme points of the doubly stochastic

9

matrices. We only need to solve the linear program

max
X

{
〈Xout, X〉 : Xe = e, X>e = e, X ≥ 0

}
(3.8)

by a simplex method that gives a basic feasible optimal solution, i.e., a permutation matrix.

3.3 Low-rank solution

Instead of finding a feasible solution with (3.8), we can directly get one by restricting R to a rank-one matrix,

i.e., rank(R) = 1 and R � 0. With this constraint, the R-update can be modified to

R+ = PS+∩R1

(
V̂ >
(
Y +

Z

β

)
V̂

)
, (3.9)

where R1 = {R : rank(R) = 1} denotes the set of rank-one matrices. For a symmetric matrix W with largest

eigenvalue λ > 0 and corresponding eigenvector w, we have

PS+∩R1 = λww>.

Despite of the nonconvexity of the rank-one constraint, we observed empirically that our algorithm almost

always converged to a solution satisfying all the constraints in (3.6). Therefore, we obtained a permutation

matrix from the lower bound.

3.4 Different choices for V, V̂

The matrix V̂ is essential in the steps of the algorithm, see e.g., (3.4). A sparse V̂ helps in the projection if

one is using a sparse eigenvalue code. We have compared several. One is based on applying a QR algorithm

to the original simple V from the definition of V̂ in (2.7). The other two are based on the approach in [22]

and we present the most successful here. The orthogonal V we use is

V =



[
Ibn

2 c ⊗
1√
2

[
1

−1

]]
0(n−2bn

2 c),bn
2 c




Ibn
4 c ⊗

1
2


1

1

−1

−1




0(n−4bn
4 c),bn

4 c


[
. . .
] [
V̂
]

n×n−1

i.e., the block matrix consisting of t blocks formed from Kronecker products along with one block V̂ to

complete the appropriate size so that V >V = In−1, V >e = 0. We take advantage of the 0, 1 structure of the

Kronecker blocks and delay the scaling for the normalization till the end. The main work in the low rank

projection part of the algorithm is to evaluate one (or a few) eigenvalues of W = V̂ >(Y + 1
βZ)V̂ to obtain

the update R+. Here

Y +
1

β
Z =

[
ρ w>

w W̄

]
.

We let

K := V ⊗ V, α = 1/
√

2, v =
1√
2n
e, x =

(
x1

x̄

)
.

10

The structure for V̂ in (2.7) means that we can evaluate the product for Wx as[
α 0

v K

]> [
ρ w>

w W̄

] [
α 0

v K

]
x =

[
α 0

v K

]> [
ρ w>

w W̄

](
αx1

x1v +Kx̄

)
=

[
α v>

0 K>

](
ραx1 + w>(x1v +Kx̄)

αx1w + W̄ (x1v +Kx̄)

)
=

(
ρα2x1 + αw>(x1v +Kx̄) + v>

(
αx1w + W̄ (x1v +Kx̄)

)
K>

(
αx1w + W̄ (x1v +Kx̄)

))
=

(
ρα2x1 +

(
αw> + v>W̄

)
(x1v +Kx̄) + v> (αx1w)

K>
(
αx1w + W̄ (x1v +Kx̄)

))
.

We emphasize that V ⊗ V = (V̄ ⊗ V̄)(D ⊗D)−1, where V̄ denotes the unscaled V , and D is the diagonal

matrix of scale factors to obtain the orthogonality in V . Therefore, we can evaluate

K>W̄K = (V ⊗ V)>W̄ (V ⊗ V) = (V̄ ⊗ V̄)>
[
(D ⊗D)−1W̄ (D ⊗D)−1

]
(V̄ ⊗ V̄).

4 Numerical Experiments

In this section we present the results of extensive numerical tests using our proposed methods. We used

MATLAB version 2018a. All QAP symmetric instances from [7,8] with size up to n = 100 were used in our

tests, while the instances bur26a–bur26h are not symmetric and not used. We divided them into two sets:

QAPLIB instances I and QAPLIB instances II. All the instances were tested on an Intel Xeon Gold 6130

2.10 Ghz PC with 32 cores and 64 Gigabyte memory and running on 64-bit Ubuntu system.

4.1 Parameter settings

The parameters β and γ in the updates (3.3) play important roles on the speed of the ADMM method.

Running the algorithm on a few small-sized problems, we heuristically set γ = 1.618 and β = n
3 . Unless

specified, the algorithm was terminated if it reached a maximum number of iterations or the following

conditions hold in 5 consecutive iterations:

max

(
‖Y k − V̂ RkV̂ ‖F

‖Y k‖F
, β‖Y k+1 − Y k‖

)
≤ tol, (4.1)

where “tol” is a specified tolerance. In (4.1), the first term on the left hand side measures the residual of

primal feasibility while the second term measures the dual feasibility; see [5, Sect. 3.3]. Although we have

the rank-1 constraint, the stopping conditions in (4.1) were still met for most instances.

4.2 Results on QAPLIB instances I

Two stopping tolerances 10−5 and 10−12 were used for ADMM on QAPLIB instances I, and the maximum

number of iterations was set to 40,000. Solving the SDP to the higher accuracy rarely improved the bounds.

The results of lower and upper bounds are listed in Table 4.1; and the CPU times and iteration numbers of

the algorithm for both tolerances are in Table 4.2. Failure of an algorithm is marked by −1111.

• In Table 4.1 the columns are:

0. Instance name;

1. Opt value: the globally optimal value of each instance, except for problem Tai30a, where optimality of

the value is still not known;

2. Bundle LowBnd: current best known lower bound from [24];

11

3. HKM-FR LowBnd: the lower bound found using the p-d i-p approach with facial reduction and the HKM

search direction and the code SDPT3 [25];2

4. Tol5 ADMM LowBnd: the lower bound found by running ADMMwithout the rank-1 constraint, with

the tolerance 10−5, and evaluating the dual objective using the approach in Section 3.1;

5. Tol5 feas UpBnd: the stronger upper bound found by running ADMMwith the rank-1 constraint and

tolerance 10−5, and also by running ADMMwithout the rank-1 constraint, with tolerance 10−5, and

then using the approach in Section 3.2;

6. Tol12 ADMM LowBnd: the lower bound found by running ADMMwithout rank-1 constraint to the

tolerance 10−12 and then evaluating the dual objective through the approach discussed in section 3.1;

7. Tol12 feas UpBnd: the stronger upper bound found by ADMMwith the rank-1 constraint and tolerance

10−12, and also ADMMwithout the rank-1 constraint with tolerance 10−12 and then using Section 3.2;

8. Tol5 ADMM % gap: the percentage gap between the lower and upper bounds found by our proposed

approach with tolerance 10−5;

9. ADMM Tol5 vs Boundle %Impr LowBnd: the percentage improvement by our proposed approach with

tolerance 10−5 over the current best known lower bound from [24].

Remark 4.1 (Table 4.1). From column 9, we see that our approach improves the currently best-known

bounds for every instance. In addition, we have provably found the global optimal solution for the seven

instances:

Esc16j, Had12, Had14, Had16, Had18, Rou12, Tai12a.

This is mainly due to the inclusion of all the nonnegativity constraints and the projection onto [0, 1], all with

essentially zero extra computational cost, see (3.7). Note that adding the nonnegativity constraints would

be too expensive within an interior point approach. In addition, the bounds rarely improved when using the

smaller tolerance 10−12.

• In Table 4.2 the columns are:

0. Instance name;

1. Tol5 cpusec HighRk: CPU times (in seconds) of ADMMwithout the rank-1 constraint and with tolerance

10−5;

2. Tol5 cpusec LowRk: CPU times (in seconds) of ADMMwith the rank-1 constraint and with tolerance

10−5;

3. HKM cpuratio Tol 9: the ratio between the CPU times by the p-d i-p approach and ADMMwithout

the rank-1 constraint and with tolerance 10−5;

4. Tol5 iterations HighRk: iteration numbers of ADMMwithout the rank-1 constraint and with tolerance

10−5;

5. Tol5 iterations LowRk: iteration numbers of ADMMwith the rank-1 constraint and with tolerance 10−5;

6. Tol12 iterations HighRk: iteration numbers of ADMMwithout the rank-1 constraint and with tolerance

10−12;

7. Tol12 residual HighRk: residual of the output measured as in (4.1) of ADMMwithout the rank-1

constraint and with tolerance 10−12;

8. ADMM Tol12 iterations LowRk: the iteration numbers of ADMMwith the rank-1 constraint and with

tolerance 10−12.

Remark 4.2 (Table 4.2). We see that ADMMwith rank-1 constraint is much faster than that without the

rank-1 constraint to reach the same tolerance. In addition, we notice that for all instances, ADMM can

reach an accuracy of 10−5. However, for most instances, it cannot reach the accuracy of 10−12 even though

running to 40,000 iterations.

2We do not include the times as they were much greater than those by the ADMM approach, e.g., hours instead of minutes

and a day instead of an hour.

12

Problem 1 2 3 4 Tol5 5 Tol5 6 Tol12 7 Tol12 8 Tol5 9 ADMM Tol5

Opt Bundle [24] HKM-FR ADMM feas ADMM feas ADMM vs Bundle

value LowBnd LowBnd LowBnd UpBnd LowBnd UpBnd %gap %Impr LowBnd

Esc16a 68 59 50 64 78 64 78 20.59 7.35

Esc16b 292 288 276 290 294 290 294 1.37 0.68

Esc16c 160 142 132 154 170 154 170 10.00 7.50

Esc16d 16 8 -12 13 20 13 20 43.75 31.25

Esc16e 28 23 13 27 34 27 34 25.00 14.29

Esc16g 26 20 11 25 34 25 34 34.62 19.23

Esc16h 996 970 909 977 1012 977 1012 3.51 0.70

Esc16i 14 9 -21 12 14 12 14 14.29 21.43

Esc16j 8 7 -4 8 8 8 8 0.00 12.50

Had12 1652 1643 1641 1652 1652 1652 1652 0.00 0.54

Had14 2724 2715 2709 2724 2724 2724 2724 0.00 0.33

Had16 3720 3699 3678 3720 3720 3720 3720 0.00 0.56

Had18 5358 5317 5287 5358 5358 5358 5358 0.00 0.77

Had20 6922 6885 6848 6922 6930 6922 6930 0.12 0.53

Kra30a 88900 77647 -1111 86838 104050 86838 105900 19.36 10.34

Kra30b 91420 81156 -1111 87858 114950 87858 114950 29.63 7.33

Kra32 88700 79659 -1111 85775 111450 85775 111450 28.95 6.90

Nug12 578 557 530 568 654 568 654 14.88 1.90

Nug14 1014 992 960 1011 1022 1011 1022 1.08 1.87

Nug15 1150 1122 1071 1141 1196 1141 1196 4.78 1.65

Nug16a 1610 1570 1528 1600 1610 1600 1610 0.62 1.86

Nug16b 1240 1188 1139 1219 1438 1219 1438 17.66 2.50

Nug17 1732 1669 1622 1708 1756 1708 1756 2.77 2.25

Nug18 1930 1852 1802 1894 2160 1894 2160 13.78 2.18

Nug20 2570 2451 2386 2507 2732 2507 2732 8.75 2.18

Nug21 2438 2323 2386 2382 2672 2382 2672 11.89 2.42

Nug22 3596 3440 3396 3529 3856 3529 3856 9.09 2.47

Nug24 3488 3310 -1111 3402 3658 3402 3658 7.34 2.64

Nug25 3744 3535 -1111 3626 4052 3626 4052 11.38 2.43

Nug27 5234 4965 -1111 5130 5602 5130 5602 9.02 3.15

Nug28 5166 4901 -1111 5026 5534 5026 5534 9.83 2.42

Nug30 6124 5803 -1111 5950 6578 5950 6578 10.25 2.40

Rou12 235528 223680 221161 235528 235528 235528 235528 0.00 5.03

Rou15 354210 333287 323235 350217 367782 350217 367782 4.96 4.78

Rou20 725522 663833 642856 695181 765390 695181 765390 9.68 4.32

Scr12 31410 29321 23973 31410 44360 31410 44360 41.23 6.65

Scr15 51140 48836 42204 51140 58304 51140 58304 14.01 4.51

Scr20 110030 94998 83302 106803 149038 106803 149038 38.38 10.73

Tai12a 224416 222784 215637 224416 224416 224416 224416 0.00 0.73

Tai15a 388214 364761 349586 377101 412760 377101 412760 9.19 3.18

Tai17a 491812 451317 441294 476525 546366 476525 546366 14.20 5.13

Tai20a 703482 637300 619092 671675 750450 671676 750450 11.20 4.89

Tai25a 1167256 1041337 -1111 1096657 1271696 1096658 1271696 15.00 4.74

*Tai30a 1818146 1652186 -1111 1706871 1942086 1706872 1942086 12.94 3.01

Tho30 149936 136059 -1111 143576 169958 143576 169958 17.60 5.01

Table 4.1: Results of lower and upper bounds for each instance in QAPLIB Instances I. Failure of an

algorithm is marked by −1111, and the optimal value of the instance marked by ∗ is still unknown.

4.3 Results on QAPLIB instances II

Since the tests on QAPLIB instances I show now improvement from the smaller tolerance 10−12, we simply

set the tolerance to 10−5 for the tests on QAPLIB instances II. For the instances with size n < 60, we

set the maximum number of iterations to 40,000. For larger instances, to reduce cputime, we simply run

ADMM with the rank-1 constraint and ADMM without rank-1 constraint, but each to a maximum 2, 000

iterations. For the former, at every 100 iterations, we found a feasible solution (thus an upper bound) by

the method in Section 3.2. For the latter, at every 100 iterations we obtain a lower bound and also an

upper bound by the methods in Sections 3.1 and 3.2. We reported the best lower and upper bounds that

we obtained. The results are shown in Table 4.3 for instances of size n < 60 and in Table 4.4 for instances

of size n ≥ 60. The columns used are similar to those in Tables 4.1 and 4.2.

Remark 4.3. From Tables 4.3 and 4.4, we see that our method provably found exact optimal solutions for

the 15 instances:

13

http://anjos.mgi.polymtl.ca/qaplib/

1 Tol5 2 Tol5 3 HKM 4 Tol5 5 Tol5 6 Tol12 7 Tol12 8 Tol12

cpusec cpusec cpuratio iterations iterations iterations residual iterations

HighRk LowRk Tol 9 HighRk LowRk HighRk HighRk LowRk

Esc16a 20.14 2.64 9.37 2053 280 7309 9.87e-13 305

Esc16b 3.10 2.93 8.08 338 311 641 3.94e-13 334

Esc16c 8.44 3.68 4.88 961 403 3751 9.69e-13 592

Esc16d 17.39 2.18 10.22 1889 236 7812 9.87e-13 270

Esc16e 24.04 2.63 8.79 2719 288 11784 9.93e-13 310

Esc16g 33.54 2.61 8.63 3839 285 9096 9.87e-13 304

Esc16h 4.01 2.73 10.60 433 300 886 8.47e-13 354

Esc16i 100.79 2.26 8.76 11653 290 27106 9.96e-13 323

Esc16j 56.90 2.67 7.93 6898 306 29743 9.95e-13 338

Had12 8.39 0.53 5.91 2682 157 2845 8.64e-13 178

Had14 23.07 0.99 10.46 3919 169 4747 2.35e-13 181

Had16 111.92 1.88 12.51 14179 210 14362 6.80e-13 228

Had18 268.58 3.57 13.28 18068 259 40000 2.07e-06 271

Had20 196.70 6.17 14.53 9038 309 40000 5.55e-07 321

Kra30a 988.47 62.61 -1111 8466 632 40000 2.08e-07 654

Kra30b 1481.32 63.31 -1111 12882 623 40000 8.73e-07 645

Kra32 1355.11 92.43 -1111 9020 720 40000 5.28e-07 737

Nug12 22.27 0.53 5.93 5813 146 40000 3.82e-09 163

Nug14 49.76 1.01 8.43 7667 167 40000 2.94e-07 186

Nug15 53.68 1.49 7.79 6547 200 40000 2.11e-07 221

Nug16a 117.57 1.76 12.24 11591 193 40000 1.46e-06 208

Nug16b 62.72 1.98 11.83 6410 207 40000 5.87e-10 234

Nug17 135.80 2.31 13.13 10727 204 40000 9.12e-07 215

Nug18 250.85 3.22 15.23 15862 226 40000 1.79e-06 240

Nug20 238.68 5.82 14.35 9786 276 40000 4.55e-07 289

Nug21 651.15 8.27 14.95 22465 322 40000 3.62e-06 340

Nug22 942.50 9.84 13.90 27839 325 40000 5.69e-06 338

Nug24 572.04 13.47 -1111 12148 335 40000 7.55e-07 346

Nug25 1308.41 18.38 -1111 24051 375 40000 5.05e-06 386

Nug27 1875.89 30.54 -1111 25201 454 40000 4.16e-06 465

Nug28 1658.48 34.50 -1111 18417 447 40000 2.73e-06 461

Nug30 2584.42 48.92 -1111 22613 469 40000 3.06e-06 478

Rou12 23.19 0.44 6.90 6327 127 6360 2.02e-13 142

Rou15 19.00 1.27 9.46 2219 170 19769 6.08e-13 184

Rou20 88.20 5.60 16.08 3684 263 40000 2.08e-07 275

Scr12 3.71 0.48 5.79 1135 142 2878 6.65e-13 160

Scr15 8.06 1.14 10.75 1061 158 2023 8.11e-13 176

Scr20 858.08 5.94 17.96 34679 264 40000 7.68e-06 276

Tai12a 1.56 0.50 6.70 421 127 454 1.38e-13 145

Tai15a 17.01 1.22 10.34 1955 157 29673 5.41e-13 170

Tai17a 39.60 2.31 12.04 2997 216 22276 7.29e-13 234

Tai20a 66.02 5.62 15.85 2755 252 40000 1.72e-08 267

Tai25a 128.14 17.20 -1111 2244 350 12809 6.33e-13 362

Tai30a 433.54 55.82 -1111 3698 527 39288 3.74e-13 539

Tho30 2045.32 51.37 -1111 17854 522 40000 2.23e-06 533

Table 4.2: CPU times (in seconds) and iteration numbers by different approaches on QAPLIB Instances I.

Failure of an algorithm is marked by −1111.

chr12a, chr12b, chr12c, chr15a, chr15b, chr15c, chr18a, chr20a, chr20b, chr22a, chr22b, chr25a,

Esc16f, Esc32e, Esc32f.

For the rest of the instances, our method yielded a relative gap smaller than 20% for 26 instances, between

20% to 40% for 8 instances, and greater than 40% for only 1 instance. In addition, the ADMMwith the

rank-1 constraint reached the same stopping tolerance in much less time.

4.4 Influence of the nonnegativity constraints

To highlight the importance of the nonnegativity constraints in strengthening the bounds, i.e., in using

a DNN model, we now compare results with and without the restriction 0 ≤ Y ≤ 1, i.e., Y is updated

according to (3.5) or (3.7). For the instances in Table 4.1 with n ≤ 24, we obtained the same lower bounds

as those from the HKM p-d i-p approach by updating Y according to (3.5). The upper and lower bounds

14

http://anjos.mgi.polymtl.ca/qaplib/

Problem 1. 2. 3. 4. 5 Tol5 6 Tol5 7 ADMM 8 ADMM

opt ADMM feas ADMM cpusec cpusec iterations iterations

value LowBnd UpBnd %gap HighRk LowRk HighRk LowRk

Chr12a 9552 9552 9552 0.00 6.53e+01 4.08e-01 21061 117

Chr12b 9742 9742 9742 0.00 3.32e+01 4.11e-01 10592 119

Chr12c 11156 11156 11156 0.00 7.42e+01 3.96e-01 23982 115

Chr15a 9896 9896 9896 0.00 2.07e+02 1.28e+00 31937 173

Chr15b 7990 7990 7990 0.00 2.69e+01 9.84e-01 3976 133

Chr15c 9504 9504 9504 0.00 1.54e+01 1.06e+00 2192 147

Chr18a 11098 11098 11098 0.00 4.94e+02 2.86e+00 40000 198

Chr18b 1534 1534 2264 32.24 5.72e+01 3.08e+00 3843 243

Chr20a 2192 2192 2192 0.00 7.40e+02 4.31e+00 40000 217

Chr20b 2298 2298 2298 0.00 1.42e+02 5.31e+00 6355 243

Chr20c 14142 14139 14142 0.02 7.28e+02 5.03e+00 40000 232

Chr22a 6156 6156 6156 0.00 4.02e+02 9.37e+00 14051 310

Chr22b 6194 6194 6194 0.00 3.80e+02 9.45e+00 11418 304

Chr25a 3796 3796 3796 0.00 3.06e+02 1.70e+01 6164 355

Els19 17212548 17209789 17212548 0.02 6.17e+02 4.48e+00 40000 269

Esc16f 0 0 0 0.00 3.22e+02 3.39e+02 40000 40000

Esc32a 130 104 168 38.10 2.89e+03 9.16e+01 20398 700

Esc32b 168 132 264 50.00 2.52e+03 8.31e+01 17920 658

Esc32c 642 616 686 10.20 4.48e+02 1.01e+02 3177 780

Esc32d 200 191 228 16.23 8.68e+02 1.09e+02 6334 825

Esc32e 2 2 2 0.00 1.81e+03 1.05e+02 13040 836

Esc32f 2 2 2 0.00 1.80e+03 1.07e+02 13040 836

Esc32g 6 6 8 25.00 6.04e+02 1.06e+02 4405 855

Esc32h 438 425 482 11.83 3.02e+03 1.00e+02 21515 795

*Sko42 15812 15335 17086 10.25 1.06e+04 3.87e+02 21013 911

*Sko49 23386 22653 25076 9.66 3.03e+04 1.18e+03 28771 1316

*Sko56 34458 33390 36580 8.72 3.90e+04 2.68e+03 21106 1664

Ste36a 9526 9259 13866 33.23 1.02e+04 1.87e+02 40000 851

Ste36b 15852 15668 25878 39.45 1.01e+04 1.56e+02 40000 700

Ste36c 8239110 8134720 11152926 27.06 1.01e+04 1.69e+02 40000 798

*Tai35a 2422002 2216645 2599924 14.74 7.40e+02 1.33e+02 3225 661

*Tai40a 3139370 2843312 3392692 16.19 1.94e+03 2.99e+02 4665 852

*Tai50a 4938796 4390976 5332790 17.66 6.36e+03 1.33e+03 5393 1348

*Tho40 240516 226522 269452 15.93 8.52e+03 2.90e+02 21131 828

*Wil50 48816 48125 50040 3.83 1.73e+04 1.43e+03 15370 1473

Table 4.3: Results of lower and upper bounds, iteration numbers, and also CPU times (in seconds) by

ADMM for each instance in QAPLIB Instances II with size no larger than 64. Optimal values of the

instances marked by ∗ are still unknown.

for the remaining 10 instances by ADMM with updates (3.5) and (3.7) are shown in Table 4.5. We see

that for all those 10 problems, ADMM using (3.7) obtained better lower bounds. ADMM with the rank-1

constraint can hardly achieve the tolerance 10−5 if the bound constraint is not enforced. In addition, except

for Kra30b, Kra32, and Nug28, better upper bounds were also obtained by using (3.7).

Moreover, for the instances in Table 4.3 that were solved to optimality, if we update Y according to (3.5),

the generated solution will not be optimal any more. For most of these 15 instances, ADMM with update

(3.5) yielded the trivial lower bound 0. In Table 4.6, we present the 6 instances, for which ADMM with

(3.7) improved the relative gap significantly over that with (3.5).

4.5 Improved lower bounds

For the problems marked with ∗ in Tables 4.1, 4.3, and 4.4, their optimal values are still unknown, and we

obtained better lower bounds than those given in [7]. In Table 4.7, the fourth column shows the improvement

percentage of the lower bounds for those 23 instances. Its last two columns list the gap between current lower

bound and the best known feasible solutions according to Tables 4.1, 4.3, and 4.4, and also the improved gap

by the proposed approach. We note that around 10% improvement has been achieved on instances Tai60a,

Tai80a, and Tai100a, 2% on 6 instances, and less than 0.01% improvement on the other 4 instances.

15

http://anjos.mgi.polymtl.ca/qaplib/

Problem 1. 2. 3. 4. 5 Tol5 6 Tol5

opt ADMM feas ADMM cpusec cpusec

value LowBnd UpBnd %gap HighRk LowRk

Esc64a 116 98 120 18.33 1.64e+04 1.11e+04

*Sko64 48498 46888 50840 7.77 1.56e+04 1.13e+04

*Sko72 66256 64205 70672 9.15 3.01e+04 2.07e+04

*Sko81 90998 87756 96456 9.02 5.94e+04 3.77e+04

*Sko90 115534 111300 121390 8.31 9.32e+04 6.72e+04

*Sko100a 152002 145775 160794 9.34 1.38e+05 9.37e+04

*Sko100b 153890 147332 162004 9.06 1.38e+05 9.45e+04

*Sko100c 147862 142018 156230 9.10 1.38e+05 9.46e+04

*Sko100d 149576 143205 157100 8.84 1.39e+05 9.53e+04

*Sko100e 149150 142977 155858 8.26 1.38e+05 9.51e+04

*Sko100f 149036 142413 156088 8.76 1.40e+05 9.70e+04

*Tai60a 7205962 6319630 7759332 18.55 1.34e+04 1.01e+04

Tai64c 1855928 1809370 1917484 5.64 1.65e+04 1.14e+04

*Tai80a 13499184 11613474 14618694 20.56 5.17e+04 3.08e+04

*Tai100 21052466 17704527 22641778 21.81 1.53e+05 9.33e+04

*Wil100 273038 267469 278898 4.10 1.41e+05 9.67e+04

Table 4.4: Results of lower and upper bounds and also CPU times (in seconds) by ADMM for each instance

in QAPLIB Instances II with size at least 64. Optimal values of the instances marked by ∗ are still

unknown.

Problem ADMM feas. Y as in (3.7) ADMM feas. Y as in (3.5)

LowBnd UpBnd Iter.HighRk Iter.LowRk LowBnd UpBnd Iter.HighRk Iter.LowRk

Kra30a 86838 104050 8466 632 78687 104050 25974 40000

Kra30b 87858 114950 12882 623 79510 108550 21248 40000

Kra32 85775 111450 9020 720 77130 105500 3904 40000

Nug24 3402 3658 12148 335 3235 3844 4629 39616

Nug25 3626 4052 24051 375 3454 4078 8974 40000

Nug27 5130 5602 25201 454 4922 5708 20763 40000

Nug28 5026 5534 18417 447 4813 5466 15916 40000

Nug30 5950 6578 22613 469 5694 6630 10524 40000

Tai30a 1706871 1942086 3698 527 1578074 1963808 1072 40000

Tho30 143576 169958 17854 522 136004 170390 34289 40000

Table 4.5: Lower and upper bounds by ADMM for solving SDP relaxation with or without the restriction

0 ≤ Y ≤ 1 on certain instances in QAPLIB Instances I

Problem ADMM feas. Y as in (3.7) ADMM feas. Y as in (3.5)

LowBnd UpBnd Iter.HighRk Iter.LowRk LowBnd UpBnd Iter.HighRk Iter.LowRk

Chr18b 1534 2264 3843 243 477 2446 19642 21302

Esc32c 616 686 3177 780 529 692 2460 40000

Esc32h 425 482 21515 795 330 522 1685 40000

Tai35a 2216645 2599924 3225 661 2030958 2728422 1222 40000

Tai40a 2843312 3392692 4665 852 2594394 3475274 1433 40000

Tho40 226522 269452 21131 828 215639 290124 40000 40000

Table 4.6: Lower and upper bounds by ADMM for solving SDP relaxation with or without the restriction

0 ≤ Y ≤ 1 on certain instances in QAPLIB Instances II.

5 Conclusion

In this paper we have shown the efficiency of using the ADMM approach for solving the facially reduced

SDP relaxation of the QAP problem with added nonnegativity constraints, i.e., the usually hard-to-solve

16

http://anjos.mgi.polymtl.ca/qaplib/
http://anjos.mgi.polymtl.ca/qaplib/
http://anjos.mgi.polymtl.ca/qaplib/

Problem QAPLIB ADMM % Impr QAPLIB New

LowBnd LowBnd LowBnd %gap %gap

Sko42 14934 15335 2.61 5.55 3.02

Sko49 22004 22653 2.86 5.91 3.13

Sko56 32610 33390 2.34 5.36 3.10

Sko64 45736 46888 2.46 5.70 3.32

Sko72 62691 64205 2.36 5.38 3.10

Sko81 86072 87756 1.92 5.41 3.56

Sko90 109030 111300 2.04 5.63 3.66

Sko100a 143846 145775 1.32 5.37 4.10

Sko100b 145522 147332 1.23 5.44 4.26

Sko100c 139881 142018 1.50 5.40 3.95

Sko100d 141289 143205 1.34 5.54 4.26

Sko100e 140893 142977 1.46 5.54 4.14

Sko100f 140691 142413 1.21 5.60 4.44

Tai30a 1706855 1706871 <0.01 6.12 6.12

Tai35a 2216627 2216645 <0.01 8.48 8.48

Tai40a 2843274 2843312 <0.01 9.43 9.43

Tai50a 4390920 4390976 <0.01 11.09 11.09

Tai60a 5578356 6319630 11.73 22.59 12.30

Tai80a 10501941 11613474 9.57 22.20 13.97

Tai100 15844731 17704527 10.50 24.74 15.90

Tho40 224414 226522 0.93 6.69 5.82

Wil50 47098 48125 2.13 3.52 1.42

Wil100 264442 267469 1.13 3.15 2.04

Table 4.7: New lower bounds by the proposed approaches for QAPLIB unsolved instances.

DNN relaxation. We exploited the FR relation Y = V RV T by applying the polyhedral constraints to Y

and the positive semidefinite and rank constraints to R. The addition of the nonnegativity constraints to Y

causes essentially no extra cost but significantly improves the bounds. For most instances in QAPLIB, we

have improved both lower and upper bounds for the QAP, and in several instances, the bounds provably

find the optimal permutation matrix.

In a forthcoming study, begun in [19], we propose to include this in a branch and bound framework

and implement it in a parallel programming approach, see e.g., [14]. In addition, we propose to test the

possibility of using warm starts in the branching/bounding process and test it on the larger test sets such

as used in e.g., [9].

The most expensive steps of our code was the matrix multiplication W = V W̄V T and the eigenvalue

decomposition of W . We hope that a more efficient approach for this special matrix multiplication can be

found. Moreover, since only a few eigenvalues of W are needed it is hoped that a more efficient algorithm

can be used, e.g., the MATLAB code eigifp based on [12].

References

[1] K.M. Anstreicher. Recent advances in the solution of quadratic assignment problems. Math. Program.,

97(1-2, Ser. B):27–42, 2003. ISMP, 2003 (Copenhagen).

[2] K.M. Anstreicher and N.W. Brixius. A new bound for the quadratic assignment problem based on

convex quadratic programming. Math. Program., 89(3, Ser. A):341–357, 2001.

17

http://anjos.mgi.polymtl.ca/qaplib/
http://www.ms.uky.edu/~qye/software.html

[3] R.K. Bhati and A. Rasool. Quadratic assignment problem and its relevance to the real world: A survey.

International Journal of Computer Applications, 96(9):42–47, 2014.

[4] G. Birkhoff. Three observations on linear algebra. Univ. Nac. Tucumán. Revista A., 5:147–151, 1946.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning

via the alternating direction method of multipliers. Found. Trends Machine Learning, 3(1):1–122, 2011.

[6] S. Burer and R.D.C. Monteiro. Local minima and convergence in low-rank semidefinite programming.

Math. Program., 103(3, Ser. A):427–444, 2005.

[7] R.E. Burkard, S. Karisch, and F. Rendl. QAPLIB – a quadratic assignment problem library. European

J. Oper. Res., 55:115–119, 1991. anjos.mgi.polymtl.ca/qaplib/.

[8] R.E. Burkard, S.E. Karisch, and F. Rendl. QAPLIB—a quadratic assignment problem library. J. Global

Optim., 10(4):391–403, 1997.

[9] E. de Klerk and R. Sotirov. Exploiting group symmetry in semidefinite programming relaxations of the

quadratic assignment problem. Math. Program., 122(2, Ser. A):225–246, 2010.

[10] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrica,

1(3):211–218, 1936.

[11] C. S. Edwards. A branch and bound algorithm for the Koopmans-Beckmann quadratic assignment

problem. Mathematical Programming Study, 13:35–52, 1980.

[12] G.H. Golub and Q. Ye. An inverse free preconditioned Krylov subspace method for symmetric general-

ized eigenvalue problems. SIAM J. Sci. Comput., 24(1):312–334 (electronic), 2002.

[13] N. Ito, S. Kim, M. Kojima, A. Takeda, and K.C. Toh. Bbcpop: A sparse doubly nonnegative relaxation

of polynomial optimization problems with binary, box and complementarity constraints. arXiv preprint

arXiv:1804.00761, 2018.

[14] R. Jain and P. Yao. A parallel approximation algorithm for positive semidefinite programming. In 2011

IEEE 52nd Annual Symposium on Foundations of Computer Science—FOCS 2011, pages 463–471.

IEEE Computer Soc., Los Alamitos, CA, 2011.

[15] Bo Jiang, Ya-Feng Liu, and Zaiwen Wen. lp-norm regularization algorithms for optimization over

permutation matrices. SIAM Journal on Optimization, 26(4):2284–2313, 2016.

[16] S. Kim, M. Kojima, and K.-C. Toh. A Lagrangian-DNN relaxation: a fast method for computing tight

lower bounds for a class of quadratic optimization problems. Math. Program., 156(1-2, Ser. A):161–187,

2016.

[17] T.C. Koopmans and M.J. Beckmann. Assignment problems and the location of economic activities.

Econometrica, 25:53–76, 1957.

[18] E.L. Lawler. The quadratic assignment problem. Management Sci., 9:586–599, 1963.

[19] Z. Liao. Branch and bound via ADMM for the quadratic assignment problem. Master’s thesis, University

of Waterloo, 2016.

[20] P. Pardalos, F. Rendl, and H. Wolkowicz. The quadratic assignment problem: a survey and recent

developments. In P.M. Pardalos and H. Wolkowicz, editors, Quadratic assignment and related problems

(New Brunswick, NJ, 1993), pages 1–42. Amer. Math. Soc., Providence, RI, 1994.

18

[21] P. Pardalos and H. Wolkowicz, editors. Quadratic assignment and related problems. American Math-

ematical Society, Providence, RI, 1994. Papers from the workshop held at Rutgers University, New

Brunswick, New Jersey, May 20–21, 1993.

[22] T.K. Pong, H. Sun, N. Wang, and H. Wolkowicz. Eigenvalue, quadratic programming, and semidefinite

programming relaxations for a cut minimization problem. Comput. Optim. Appl., 63(2):333–364, 2016.

[23] J. Povh and F. Rendl. Copositive and semidefinite relaxations of the quadratic assignment problem.

Discrete Optim., 6(3):231–241, 2009.

[24] F. Rendl and R. Sotirov. Bounds for the quadratic assignment problem using the bundle method. Math.

Program., 109(2-3, Ser. B):505–524, 2007.

[25] K.C. Toh, M.J. Todd, and R.H. Tütüncü. SDPT3—a MATLAB software package for semidefinite

programming, version 1.3. Optim. Methods Softw., 11/12(1-4):545–581, 1999. Interior point methods.

[26] Z. Wen, D. Goldfarb, and W. Yin. Alternating direction augmented Lagrangian methods for semidefinite

programming. Math. Program. Comput., 2(3-4):203–230, 2010.

[27] L. Yang, D. Sun, and K.-C. Toh. SDPNAL+: a majorized semismooth Newton-CG augmented La-

grangian method for semidefinite programming with nonnegative constraints. Math. Program. Comput.,

7(3):331–366, 2015.

[28] Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relaxations for the

quadratic assignment problem. J. Comb. Optim., 2(1):71–109, 1998. Semidefinite programming and

interior-point approaches for combinatorial optimization problems (Fields Institute, Toronto, ON, 1996).

[29] X.Y. Zhao, D. Sun, and K.C. Toh. A newton-cg augmented lagrangian method for semidefinite pro-

gramming. SIAM Journal on Optimization, 20(4):1737–1765, 2010.

19

	Introduction
	Contributions
	Related works
	Outline

	A New Derivation for the SDPRelaxation
	Original FRfor SDPrelaxation of QAP
	The new derivation
	Strict feasibility by FR

	A New ADMMAlgorithm for the SDPRelaxation
	Lower bound
	Upper bound from feasible solution
	Low-rank solution
	Different choices for V,V"0362V

	Numerical Experiments
	Parameter settings
	Results on QAPLIB instances I
	Results on QAPLIB instances II
	Influence of the nonnegativity constraints
	Improved lower bounds

	Conclusion

