
ADMM for the SDP relaxation of the QAP ∗1

Danilo Elias Oliveira † Henry Wolkowicz ‡ Yangyang Xu §
2

December 15, 20153

Abstract4

The semidefinite programming SDP relaxation has proven to be extremely strong for many hard5

discrete optimization problems. This is in particular true for the quadratic assignment problem QAP,6

arguably one of the hardest NP-hard discrete optimization problems. There are several difficulties that7

arise in efficiently solving the SDP relaxation, e.g., increased dimension; inefficiency of the current primal-8

dual interior point solvers in terms of both time and accuracy; and difficulty and high expense in adding9

cutting plane constraints.10

We propose using the alternating direction method of multipliers ADMM to solve the SDP relaxation.11

This first order approach allows for inexpensive iterations, a method of cheaply obtaining low rank solu-12

tions, as well a trivial way of adding cutting plane inequalities. When compared to current approaches13

and current best available bounds we obtain remarkable robustness, efficiency and improved bounds.14

Keywords: Quadratic assignment problem, semidefinite programming relaxation, alternating direction15

method of moments, large scale.16

Classification code: 90C22, 90B80, 90C46, 90-0817

Contents18

1 Introduction 219

2 A New Derivation for the SDP Relaxation 220

3 A New ADMM Algorithm for the SDP Relaxation 521

3.1 Lower bound . 622

3.2 Feasible solution of QAP . 723

3.3 Low-rank solution . 824

3.4 Different choices for V, V̂ . 825

4 Numerical experiments 926

5 Concluding Remarks 1027

Index 1028

∗This work is partially supported by NSERC and AFOSR.
†Dept. of Combinatorics and Optimization, University of Waterloo.
‡Dept. of Combinatorics and Optimization, University of Waterloo. Research supported by The Natural Sciences and

Engineering Research Council of Canada and by AFOSR. Email: hwolkowicz@uwaterloo.ca
§Institute for Mathematics and its Applications (IMA), University of Minnesota

1

https://uwaterloo.ca/combinatorics-and-optimization/about/people/deolivei
http://orion.math.uwaterloo.ca/~hwolkowi/
http://www.ima.umn.edu/~yangyang/

List of Tables29

1 QAP Instances I and II. Requested tolerance 1e− 5. 1030

1 Introduction31

The quadratic assignment problem (QAP), in the trace formulation is32

p∗X := min
X∈Πn

〈AXB − 2C,X〉, (1.1)

where A,B ∈ Sn are real symmetric n× n matrices, C is a real n× n matrix, 〈· , ·〉 denotes the trace inner33

product, 〈Y,X〉 = traceY X>, and Πn denotes the set of n× n permutation matrices. A typical objective of34

the QAP is to assign n facilities to n locations while minimizing total cost. The assignment cost is the sum35

of costs using the flows in Aij between a pair of facilities i, j multiplied by the distance in Bst between their36

assigned locations s, t and adding on the location costs of a facility i in a position s given in Cis.37

It is well known that the QAP is an NP-hard problem and that problems with size as moderate as38

n = 30 still remain difficult to solve. Solution techniques rely on calculating efficient lower bounds. An39

important tool for finding lower bounds is the work in [13] that provides a semidefinite programmming40

(SDP), relaxation of (1.1). The methods of choice for SDP are based on a primal-dual interior-point, p-d i-41

p, approach. These methods cannot solve large problems, have difficulty in obtaining high accuracy solutions42

and cannot properly exploit sparsity. Moreover, it is very expensive to add on nonnegativity and cutting43

plane constraints. The current state for finding bounds and solving QAP is given in e.g., [1, 2, 4, 7, 9].44

In this paper we study an alternating direction method of multipliers (ADMM), for solving the SDP relaxation45

of the QAP. We compare this with the best known results given in [9] and with the best known bounds46

found at SDPLIB [5]. and with a p-d i-p methods based on the so-called HKM direction. We see that the47

ADMM method is significantly faster and obtains high accuracy solutions. In addition there are advantages48

in obtaining low rank SDP solutions that provide better feasible approximations for the QAP for upper49

bounds. Finally, it is trivial to add nonnegativity and rounding constraints while iterating so as to obtain50

significantly stronger bounds and also maintain sparsity during the iterations.51

We note that previous success for ADMM for SDP in presented in [12]. A detailed survey article for52

ADMM can be found in [3].53

2 A New Derivation for the SDP Relaxation54

We start the derivation from the following equivalent quadratically constrained quadratic problem

min
X
〈AXB − 2C,X〉

s.t. XijXik = 0, XjiXki = 0, ∀i, ∀j 6= k,

X2
ij −Xij = 0, ∀i, j, (2.1)
n∑
i=1

X2
ij − 1 = 0, ∀j,

n∑
j=1

X2
ij − 1 = 0, ∀i.

Remark 2.1. Note that the quadratic orthogonality constraints X>X = I, XX> = I, and the linear row55

and column sum constraints Xe = e, X>e = e can all be linearly represented using linear combinations of56

those in (2.1).57

In addition, the first set of constraints, the elementwise orthogonality of the row and columns of X, are58

referred to as the gangster constraints. They are particularly strong constraints and enable many of the other59

constraints to be redundant. In fact, after the facial reduction done below, many of these constraints also60

become redundant. (See the definition of the index set J below.)61

2

http://anjos.mgi.polymtl.ca/qaplib/

The Lagrangian for (2.1) is

L0(X,U, V,W, u, v) =〈AXB − 2C,X〉+

n∑
i=1

∑
j 6=k

U
(i)
jk XijXik +

n∑
i=1

∑
j 6=k

V
(i)
jk XjiXki +

∑
i,j

Wij(X
2
ij −Xij)

+

n∑
j=1

uj

(
n∑
i=1

X2
ij − 1

)
+

n∑
i=1

vi

 n∑
j=1

X2
ij − 1

 .

The dual problem is a maximization of the dual functional d0,62

max d0(U, V,W, u, v) := min
X
L0(X,U, V,W, u, v). (2.2)

To simplify the dual problem, we homogenize the X terms in L0 by multiplying a unit scalar x0 to degree-1

terms and adding the single constraint x2
0 = 1 to the Lagrangian. We let

L1(X,x0, U, V,W,w0, u, v) =〈AXB − 2x0C,X〉+

n∑
i=1

∑
j 6=k

U
(i)
jk XijXik +

n∑
i=1

∑
j 6=k

V
(i)
jk XjiXki +

∑
i,j

Wij(X
2
ij − x0Xij)

+

n∑
j=1

uj

(
n∑
i=1

X2
ij − 1

)
+

n∑
i=1

vi

 n∑
j=1

X2
ij − 1

+ w0(x2
0 − 1).

This homogenization technique is the same as that in [13]. The new dual problem is63

max d1(U, V,W,w0, u, v) := min
X,x0

L1(X,x0, U, V,W,w0, u, v). (2.3)

Note that d1 ≤ d0. Hence, our relaxation still yields a lower bound to (2.1). In fact, the relaxations give

the same lower bound. This follows from strong duality of the trust region subproblem as shown in [13].

Let x = vec(X), y = [x0;x], and w = vec(W), where x,w is the vectorization, columnwise, of X and W ,

respectively. Then

L1(X,x0, U, V,W,w0, u, v) = y> [LQ + B1(U) + B2(V) + Arrow(w,w0) +K1(u) +K2(v)] y − e>(u+ v)− w0,

where

K1(u) = blkdiag(0, u⊗ I), K2(v) = blkdiag(0, I ⊗ v),

Arrow(w,w0) =

[
w0 − 1

2w
>

− 1
2w Diag(w)

]
and

B1(U) = blkdiag(0, Ũ), B2(V) = blkdiag(0, Ṽ).

Here, Ũ and Ṽ are n× n block matrices. Ũ has zero diagonal blocks and the (j, k)-th off-diagonal block to

be the diagonal matrix Diag(U
(1)
jk , . . . , U

(n)
jk) for all j 6= k, and Ṽ has zero off-diagonal blocks and the i-th

diagonal block to be

0 V

(i)
12 · · · V

(i)
1n

V
(i)
21 0 · · · V

(i)
2n

...
...

. . .
...

V
(i)
n1 V

(i)
n2 · · · 0

. Hence, the dual problem (2.3) is

max − e>(u+ v)− w0 (2.4)

s.t. LQ + B1(U) + B2(V) + Arrow(w,w0) +K1(u) +K2(v) � 0.

3

Taking the dual of (2.4), we have the SDP relaxation of (2.1):

min 〈LQ, Y 〉
s.t. GJ(Y) = E00, diag(Ȳ) = y0, (2.5)

trace(Ỹii) = 1, ∀i,
n∑
i=1

Ỹii = I,

Y � 0,

where Ỹij is an n× n matrix for each (i, j), and we have assumed the block structure64

Y =

[
y00 y>0
y0 Ȳ

]
; Ȳ made of n× n block matrices Ỹ = (Ỹij). (2.6)

The index set J and the gangster operator GJ are defined properly below in Definition 2.1. (By abuse of65

notation this is done after the facial reduction which results in a smaller J .)66

Remark 2.2. If one more feasible quadratic constraint q(X) can be added to (2.1) and q(X) cannot be67

linearly represented by those in (2.1), the relaxation following the same derivation as above can be tighter.68

We conjecture that no more such q(X) exists, and thus (2.5) is the tightest among all Lagrange dual relaxation69

from a quadratically constrained program like (2.1). However, this does not mean that more linear inequality70

constraints cannot be added, i.e., linear cuts.71

Theorem 2.1 ([13]). The matrix Y is feasible for (2.5) if, and only if, it is feasible for (3.1).72

As above, let x = vecX ∈ Rn2

be the vectorization of X by column. Y is the original matrix variable of73

the SDP relaxation before the facial reduction. It can be motivated from the lifting Y =

(
1

vecX

)(
1

vecX

)>
.74

The SDP relaxation of QAP presented in [13] uses facial reduction to guarantee strict feasibility. The75

SDP obtained is76

p∗R := minR 〈LQ, V̂ RV̂ >〉
s.t. GJ(V̂ RV̂ >) = E00

R � 0,

(2.7)

where the so-called gangster operator, GJ , fixes all elements indexed by J and zeroes out all others,77

LQ =

[
0 −vec(C)>

−vec(C) B ⊗A

]
, V̂ =

[
1 0
1
ne V ⊗ V

]
(2.8)

with e being the vector of all ones, of appropriate dimension and V ∈ Rn×(n−1) being a basis matrix of the78

orthogonal complement of e, e.g., V =

[
In−1

−e

]
. We let Y = V̂ RV̂ > ∈ Sn2+1.79

Lemma 2.1 ([13]). The matrix R̂ defined by80

R̂ :=

[
1 0

0 1
n2(n−1) (nIn−1 − En−1)⊗ (nIn−1 − En−1)

]
∈ S(n−1)2+1

++

is (strictly) feasible for (2.7).81

Definition 2.1. The gangster operator GJ : Sn2+1 → Sn2+1 and is defined by82

GJ(Y)ij =

{
Yij if (i, j) ∈ J or (j, i) ∈ J
0 otherwise

4

By abuse of notation, we let the same symbol denote the projection onto R|J|. We get the two equivalent83

primal constraints:84

GJ(V̂ RV̂ >) = E00 ∈ Sn
2+1; GJ(V̂ RV̂ >) = GJ(E00) ∈ R|J|.

Therefore, the dual variable for the first form is Y ∈ Sn2+1. However, the dual variable for the second form85

is y ∈ R|J| with the adjoint now yielding Y = G∗J(y) ∈ Sn2+1 obtained by symmetrization and filling in the86

missing elements with zeros.87

The gangster index set, J is defined to be (00) union the set of of indices i < j in the matrix Ȳ in (2.6)88

corresponding to:89

1. the off-diagonal elements in the n diagonal blocks;90

2. the diagonal elements in the off-diagonal blocks except for the last column of off-diagonal blocks and91

also not the (n−2), (n−1) off-diagonal block. (These latter off-diagonal block constraints are redundant92

after the facial reduction.)93

We note that the gangster operator is self-adjoint, G∗J = GJ . Therefore, the dual of (2.7) can be written94

as the following.95

d∗Y := max
Y

〈E00, Y 〉 (= Y00)

s.t. V̂ >GJ(Y)V̂ � V̂ >LQV̂
(2.9)

Again by abuse of notation, using the same symbol twice, we get the two equivalent dual constraints:96

V̂ >GJ(Y)V̂ � V̂ >LQV̂ ; V̂ >G∗J(y)V̂ � V̂ >LQV̂ .

As above, the dual variable for the first form is Y ∈ Sn2+1 and for the second form is y ∈ R|J|. We have97

used G∗ for the second form to emphasize that only the first form is self-adjoint.98

Lemma 2.2 ([13]). The matrices Ŷ ,Ẑ, with M > 0 sufficiently large, defined by99

Ŷ := M

[
n 0

0 In ⊗ (In − En)

]
∈ S(n−1)2+1

++ , Ẑ := V̂ >LQV̂ − V̂ >GJ(Ŷ)V̂ ∈ S(n−1)2+1
++ .

and are (strictly) feasible for (2.9).100

3 A New ADMM Algorithm for the SDP Relaxation101

We can write (2.7) equivalently as102

min
R,Y
〈LQ, Y 〉, s.t. GJ(Y) = E00, Y = V̂ RV̂ >, R � 0. (3.1)

The augmented Lagrange of (3.1) is103

LA(R, Y, Z) = 〈LQ, Y 〉+ 〈Z, Y − V̂ RV̂ >〉+
β

2
‖Y − V̂ RV̂ >‖2F . (3.2)

Recall that (R, Y, Z) are the primal reduced, primal, and dual variables respectively. We denote (R, Y, Z)

as the current iterate. We let Srn+ denote the matrices in Sn+ with rank at most r. Our new algorithm is an

application of the alternating direction method of multipliers ADMM, that uses the augmented Lagrangian

in (3.2) and performs the following updates for (R+, Y+, Z+):

R+ = arg min
R∈Srn+

LA(R, Y, Z), (3.3a)

Y+ = arg min
Y ∈Pi

LA(R+, Y, Z), (3.3b)

Z+ =Z + γ · β(Y+ − V̂ R+V̂
>), (3.3c)

5

where the simplest case for the polyhedral constraints Pi is the linear manifold from the gangster constraints:104

P1 = {Y ∈ Sn
2+1 : GJ(Y) = E00}

We use this notation as we add additional simple polyhedral constraints. The second case is the polytope:105

P2 = P1 ∩ {0 ≤ Y ≤ 1}.

Let V̂ be normalized such that V̂ >V̂ = I. Then if r = n, the R-subproblem can be explicitly solved by106

R+ = arg minR�0〈Z, Y − V̂ RV̂ >〉+ β
2 ‖Y − V̂ RV̂

>‖2F
= arg minR�0

∥∥∥Y − V̂ RV̂ > + 1
βZ
∥∥∥2

F

= arg minR�0

∥∥∥R− V̂ >(Y + 1
βZ
)
V̂
∥∥∥2

F

= PS+

(
V̂ >
(
Y + 1

βZ
)
V̂
)
,

(3.4)

where S+ denotes the SDP cone, and PS+ is the projection to S+. For any symmetric matrix W , we have

PS+(W) = U+Σ+U
>
+ ,

where (U+,Σ+) contains the positive eigenpairs of W and (U−,Σ−) the negative eigenpairs.107

If i = 1 in (3.3b), the Y -subproblem also has closed-form solution:

Y+ = arg min
GJ (Y)=E00

〈LQ, Y 〉+ 〈Z, Y − V̂ R+V̂
>〉+

β

2
‖Y − V̂ R+V̂

>‖2F

= arg min
GJ (Y)=E00

∥∥∥∥Y − V̂ R+V̂
> +

LQ + Z

β

∥∥∥∥2

F

=E00 + GJc

(
V̂ R+V̂

> − LQ + Z

β

)
(3.5)

The advantage of using ADMM is that its complexity only slightly increases while we add more con-108

straints to (2.7) to tighten the SDP relaxation. If 0 ≤ V̂ RV̂ > ≤ 1 is added in (2.7), then we have constraint109

0 ≤ Y ≤ 1 in (3.1) and reach to the problem110

p∗RY := min
R,Y
〈LQ, Y 〉, s.t. GJ(Y) = E00, 0 ≤ Y ≤ 1, Y = V̂ RV̂ >, R � 0. (3.6)

The ADMM for solving (3.6) has the same R-update and Z-update as those in (3.3), and the Y -update is111

changed to112

Y+ = E00 + min

(
1, max

(
0, GJc

(
V̂ R+V̂

> − LQ + Z

β

)))
. (3.7)

With nonnegativity constraint, the less-than-one constraint is redundant but makes the algorithm converge113

faster.114

3.1 Lower bound115

If we solve (2.7) or (3.1) exactly or to a very high accuracy, we get a lower bound of the original QAP.116

However, the problem size of (2.7) or (3.1) can be extremely large, and thus having an exact or highly117

accurate solution may take extremely long time. In the following, we provide an inexpensive way to get a118

lower bound from the output of our algorithm that solves (3.1) to a moderate accuracy. Let (Rout, Y out, Zout)119

be the output of the ADMM for (3.6).120

6

Lemma 3.1. Let121

R := {R � 0}, Y := {Y : GJ(Y) = E00, 0 ≤ Y ≤ 1}, Z := {Z : V̂ >ZV̂ � 0}.

Define the ADMM dual function122

g(Z) := min
Y ∈Y
{〈LQ + Z, Y 〉}.

Then the dual problem of ADMM (3.6) is defined as follows and satisfies weak duality.123

d∗Z := max
Z∈Z

g(Z)

≤ p∗R.

Proof. The dual problem of (3.6) can be derived as

d∗Z := max
Z

min
R∈R,Y ∈Y

〈LQ, Y 〉+ 〈Z, Y − V̂ RV̂ >〉

= max
Z

min
Y ∈Y
〈LQ, Y 〉+ 〈Z, Y 〉+ min

R∈R
〈Z,−V̂ RV̂ >〉

= max
Z

min
Y ∈Y
〈LQ, Y 〉+ 〈Z, Y 〉+ min

R∈R
〈V̂ >ZV̂ ,−R〉

= max
Z∈Z

min
Y ∈Y
〈LQ + Z, Y 〉,

= max
Z∈Z

g(Z)

Weak duality follows in the usual way by exchanging the max and min.124

For any Z ∈ Z, we have g(Z) is a lower bound of (3.6) and thus of the original QAP. We use the dual125

function value of the projection g
(
PZ(Zout)

)
as the lower bound, and next we show how to get PZ(Z̃) for126

any symmetric matrix Z̃.127

Let V̂⊥ be the orthonormal basis of the null space of V̂ . Then V̄ = (V̂ , V̂⊥) is an orthogonal matrix. Let

V̄ >ZV̄ = W =

[
W11 W12

W21 W22

]
, and we have

V̂ >ZV̂ � 0⇔ V̂ >ZV̂ = V̂ >V̄ W V̄ >V̂ = W11 � 0.

Hence,

PZ(Z̃) = arg min
Z∈Z

‖Z − Z̃‖2F

= arg min
W11�0

‖V̄ W V̄ > − Z̃‖2F

= arg min
W11�0

‖W − V̄ >Z̃V̄ ‖2F

=

[
PS−(W̃11) W̃12

W̃21 W̃22

]
,

where S− denotes the negative semidefinite cone, and we have assumed V̄ >Z̃V̄ =

[
W̃11 W̃12

W̃21 W̃22

]
. Note that128

PS−(W11) = −PS+(−W11).129

3.2 Feasible solution of QAP130

Let (Rout, Y out, Zout) be the output of the ADMM for (3.6). Assume the largest eigenvalue and the corre-131

sponding eigenvector of Y are λ and v. We let Xout be the matrix reshaped from the second through the132

last elements of the first column of λvv>. Then we solve the linear program133

max
X
〈Xout, X〉, s.t. Xe = e, X>e = e, X ≥ 0 (3.8)

by simplex method that gives a basic optimal solution, i.e., a permutation matrix.134

7

3.3 Low-rank solution135

Instead of finding a feasible solution through (3.8), we can directly get one by restricting R to a rank-one136

matrix, i.e., rank(R) = 1 and R ∈ S+. With this constraint, the R-update can be modified to137

R+ = PS+∩R1

(
V̂ >
(
Y +

Z

β

)
V̂

)
, (3.9)

where R1 = {R : rank(R) = 1} denotes the set of rank-one matrices. For a symmetric matrix W with largest

eigenvalue λ > 0 and corresponding eigenvector w, we have

PS+∩R1
= λww>.

3.4 Different choices for V, V̂138

The matrix V̂ is essential in the steps of the algorithm, see e.g., (3.4). A sparse V̂ helps in the projection if139

one is using a sparse eigenvalue code. We have compared several. One is based on applying a QR algorithm140

to the original simple V from the definition of V̂ in (2.8). The other two are based on the approach in [10]141

and we present the most successful here. The orthogonal V we use is142

V =

[
Ibn

2 c ⊗
1√
2

[
1

−1

]]
0(n−2bn

2 c),bn
2 c

Ibn
4 c ⊗

1
2

1

1

−1

−1

0(n−4bn
4 c),bn

4 c

[
. . .
] [
V̂
]

n×n−1

i.e., the block matrix consisting of t blocks formed from Kronecker products along with one block V̂ to143

complete the appropriate size so that V >V = In−1, V >e = 0. We take advantage of the 0, 1 structure of the144

Kronecker blocks and delay the scaling for the normalization till the end. The main work in the low rank145

projection part of the algorithm is to evaluate one (or a few) eigenvalues of W = V̂ >(Y + 1
βZ)V̂ to obtain146

the update R+.147

Y +
1

β
Z =

[
ρ w>

w W̄

]
.

We let148

K := V ⊗ V, α = 1/
√

2, v =
1√
2n
e, x =

(
x1

x̄

)
.

The structure for V̂ in (2.8) means that we can evaluate the product for Wx as149 [
α 0

v K

]> [
ρ w>

w W̄

] [
α 0

v K

]
x =

[
α 0

v K

]> [
ρ w>

w W̄

](
αx1

x1v +Kx̄

)
=

[
α v>

0 K>

](
ραx1 + w>(x1v +Kx̄)

αx1w + W̄ (x1v +Kx̄)

)
=

(
ρα2x1 + αw>(x1v +Kx̄) + v>

(
αx1w + W̄ (x1v +Kx̄)

)
K>

(
αx1w + W̄ (x1v +Kx̄)

))
=

(
ρα2x1 +

(
αw> + v>W̄

)
(x1v +Kx̄) + v> (αx1w)

K>
(
αx1w + W̄ (x1v +Kx̄)

))
.

We emphasize that V ⊗ V = (V̄ ⊗ V̄)/(D ⊗ D), where V̄ denotes the unscaled V , D is the diagonal150

matrix of scale factors to obtain the orthogonality in V , and / denotes the MATLAB division on the right,151

multiplication by the inverse on the right. Therefore, we can evaluate152

K>W̄K = (V ⊗ V)>W̄ (V ⊗ V) = (V̄ ⊗ V̄)>
[
(D ⊗D)\W̄/(D ⊗D)

]
(V̄ ⊗ V̄).

8

4 Numerical experiments153

We illustrate our results in Table 1 on the forty five QAP instances I and II, see [5, 6, 9]. The optimal154

solutions are in column 1 and current best known lower bounds from [9] are in column 3 marked bundle.155

The p-d i-p lower bound is given in the column marked HKM-FR. (The code failed to find a lower bound on156

several problems marked −1111.) These bounds were obtained using the facially reduced SDP relaxation157

and exploiting the low rank (one and two) of the constraints. We used SDPT3 [11].1158

Our ADMM lower bound follows in column 4. We see that it is at least as good as the current best159

known bounds in every instance. The percent improvement is given in column 7. We then present the best160

upper bounds from our heuristics in column 5. This allows us to calculate the percentage gap in column 6.161

The CPU seconds are then given in the last columns 8−9 for the high and low rank approaches, respectively.162

The last two columns are the ratios of CPU times. Column 10 is the ratio of CPU times for the 5 decimal and163

12 decimal tolerance for the high rank approach. All the ratios for the low rank approach are approximately164

1 and not included. The quality of the bounds did not change for these two tolerances. However, we consider165

it of interest to show that the higher tolerance can be obtained.166

The last column 11 is the ratio of CPU times for the 12 decimal tolerance of the high rank approach in167

column 8 with the CPU times for 9 decimal tolerance for the HKM approach. We emphasize that the lower168

bounds for the HKM approach were significantly weaker.169

We used MATLAB version 8.6.0.267246 (R2015b) on a PC Dell Optiplex 9020 64-bit, with 16 Gig,170

running Windows 7.171

We heuristically set γ = 1.618 and β = n
3 in ADMM. We used two different tolerances 1e− 12, 1e− 5.172

Solving the SDP to the higher accuracy did not improve the bounds. However, it is interesting that the173

ADMM approach was able to solve the SDP relaxations to such high accuracy, something the p-d i-p174

approach has great difficulty with. We provide the CPU times for both accuracies. Our times are significantly175

lower than those reported in [4, 9], e.g., from 10 hours to less than an hour.176

We emphasize that we have improved bounds for all the SDP instances and have provably found exact177

solutions six of the instances Had12,14,16,18, Rou12, Tai12a. This is due to the ability to add all the178

nonnegativity constraints and rounding numbers to 0, 1 with essentially zero extra computational cost. In179

addition, the rounding appears to improve the upper bounds as well. This was the case for both using180

tolerance of 12 or only 5 decimals in the ADMM algorithm.181

1We do not include the times as they were much greater than for the ADMM approach, e.g., hours instead of minutes and

a day instead of an hour.

9

1. 2. 3. 4. 5. 6. 7. ADMM 8 Tol5 9 Tol5 10 Tol12/5 11 HKM

opt Bundle [9] HKM-FR ADMM feas ADMM vs Bundle cpusec cpusec cpuratio cpuratio

value LowBnd LowBnd LowBnd UpBnd %gap %Impr LowBnd HighRk LowRk HighRk Tol 9

Esc16a 68 59 50 64 72 11.76 7.35 2.30e+01 4.02 4.14 9.37

Esc16b 292 288 276 290 300 3.42 0.68 3.87e+00 4.55 2.15 8.08

Esc16c 160 142 132 154 188 21.25 7.50 1.09e+01 8.09 4.53 4.88

Esc16d 16 8 -12 13 18 31.25 31.25 2.14e+01 3.69 4.87 10.22

Esc16e 28 23 13 27 32 17.86 14.29 3.02e+01 4.29 4.80 8.79

Esc16g 26 20 11 25 28 11.54 19.23 4.24e+01 4.27 2.72 8.63

Esc16h 996 970 909 977 996 1.91 0.70 4.91e+00 3.53 2.33 10.60

Esc16i 14 9 -21 12 14 14.29 21.43 1.37e+02 4.30 2.39 8.76

Esc16j 8 7 -4 8 14 75.00 12.50 8.95e+01 4.80 3.83 7.93

Had12 1652 1643 1641 1652 1652 0.00 0.54 1.02e+01 1.08 1.06 5.91

Had14 2724 2715 2709 2724 2724 0.00 0.33 3.23e+01 1.69 1.19 10.46

Had16 3720 3699 3678 3720 3720 0.00 0.56 1.75e+02 3.15 1.04 12.51

Had18 5358 5317 5287 5358 5358 0.00 0.77 4.49e+02 6.00 2.22 13.28

Had20 6922 6885 6848 6922 6930 0.12 0.53 3.85e+02 12.15 4.20 14.53

Kra30a 149936 136059 -1111 143576 169708 17.43 5.01 5.88e+03 149.32 2.22 1111.11

Kra30b 91420 81156 -1111 87858 105740 19.56 7.33 4.36e+03 170.57 3.01 1111.11

Kra32 88700 79659 -1111 85775 103790 20.31 6.90 3.57e+03 200.26 4.28 1111.11

Nug12 578 557 530 568 632 11.07 1.90 2.60e+01 1.04 6.61 5.93

Nug14 1014 992 960 1011 1022 1.08 1.87 7.15e+01 1.87 5.06 8.43

Nug15 1150 1122 1071 1141 1306 14.35 1.65 9.10e+01 3.31 5.90 7.79

Nug16a 1610 1570 1528 1600 1610 0.62 1.86 1.81e+02 3.06 3.28 12.24

Nug16b 1240 1188 1139 1219 1356 11.05 2.50 9.35e+01 3.19 6.23 11.83

Nug17 1732 1669 1622 1708 1756 2.77 2.25 2.31e+02 4.34 3.63 13.13

Nug18 1930 1852 1802 1894 2160 13.78 2.18 4.16e+02 5.47 2.43 15.23

Nug20 2570 2451 2386 2507 2784 10.78 2.18 4.76e+02 11.56 3.75 14.35

Nug21 2438 2323 2386 2382 2706 13.29 2.42 1.41e+03 15.32 1.68 14.95

Nug22 3596 3440 3396 3529 3940 11.43 2.47 2.07e+03 21.82 1.39 13.90

Nug24 3488 3310 -1111 3402 3794 11.24 2.64 1.20e+03 29.64 3.29 1111.11

Nug25 3744 3535 -1111 3626 4060 11.59 2.43 3.12e+03 39.23 1.65 1111.11

Nug27 5234 4965 -1111 5130 5822 13.22 3.15 5.11e+03 78.18 1.58 1111.11

Nug28 5166 4901 -1111 5026 5730 13.63 2.42 4.11e+03 83.38 2.17 1111.11

Nug30 6124 5803 -1111 5950 6676 11.85 2.40 7.36e+03 133.38 1.76 1111.11

Rou12 235528 223680 221161 235528 235528 0.00 5.03 2.76e+01 0.93 0.98 6.90

Rou15 354210 333287 323235 350217 367782 4.96 4.78 3.12e+01 2.70 8.68 9.46

Rou20 725522 663833 642856 695181 765390 9.68 4.32 1.67e+02 10.31 10.90 16.08

Scr12 31410 29321 23973 31410 38806 23.55 6.65 4.40e+00 1.17 2.40 5.79

Scr15 51140 48836 42204 51140 58304 14.01 4.51 1.38e+01 2.41 1.84 10.75

Scr20 110030 94998 83302 106803 138474 28.78 10.73 1.53e+03 9.61 1.15 17.96

Tai12a 224416 222784 215637 224416 224416 0.00 0.73 1.79e+00 0.90 1.04 6.70

Tai15a 388214 364761 349586 377101 412760 9.19 3.18 2.74e+01 2.35 14.69 10.34

Tai17a 491812 451317 441294 476525 546366 14.20 5.13 6.50e+01 4.52 7.31 12.04

Tai20a 703482 637300 619092 671675 750450 11.20 4.89 1.28e+02 10.10 14.32 15.85

Tai25a 1167256 1041337 1096657 1096657 1271696 15.00 4.74 3.09e+02 38.48 5.58 1111.11

Tai30a 1818146 1652186 -1111 1706871 1942086 12.94 3.01 1.25e+03 142.55 10.51 1111.11

Tho30 88900 77647 -1111 86838 102760 17.91 10.34 2.83e+03 164.86 4.74 1111.11

Table 1: QAP Instances I and II. Requested tolerance 1e− 5.

5 Concluding Remarks182

In this paper we have shown the efficiency of using the ADMM approach in solving the SDP relaxation183

of the QAP problem. In particular, we have shown that we can obtain high accuracy solutions of the184

SDP relaxation in less significantly less cost than current approaches. In addition, the SDP relaxation185

includes the nonnegativity constraints at essentially no extra cost. This results in both a fast solution and186

improved lower and upper bounds for the QAP.187

In a forthcoming study we propose to include this in a branch and bound framework and implement it in188

a parallel programming approach, see e.g., [8]. In addition, we propose to test the possibility of using warm189

starts in the branching/bounding process and test it on the larger test sets such as used in e.g., [7].190

10

http://anjos.mgi.polymtl.ca/qaplib/

Index

J , gangster index set, 5191

GJ , gangster operator, 4192

vec, 3193

R̂, 4194

Ŷ , 5195

Ẑ, 5196

Srn+ , 5197

d∗Z , 7198

d∗Y , 5199

e, ones vector, 4200

g(Z), 7201

p∗R, 4202

p∗X , 2203

p∗RY , 6204

P1 = {Y ∈ Sn2+1 : GJ(Y) = E00}, 6205

P2 = P1 ∩ {0 ≤ Y ≤ 1}, 6206

R := {R � 0}, 7207

Y := {Y : GJ(Y) = E00, 0 ≤ Y ≤ 1}, 7208

Z := {Z : V̂ >ZV̂ � 0}, 7209

QAP, quadratic assignment problem, 2210

SDP, semidefinite programmming, 2211

alternating direction method of multipliers, 2, 5212

augmented Lagrange, 5213

dual function, 7214

facial reduction, 4215

gangster constraints, 2, 6216

gangster index set, J , 5217

gangster operator, GJ , 4218

lifting, 4219

linear cuts, 4220

ones, 4221

optimal value ADMM relaxation, p∗RY , 6222

optimal value QAP, p∗X , 2223

optimal value dual SDP relaxation, d∗Y , 5224

optimal value primal SDP relaxation, p∗R, 4225

primal-dual interior-point, p-d i-p, 2226

quadratic assignment problem, 2227

semidefinite programmming, 2228

strictly feasible pair, (R̂, Ŷ , Ẑ), 4, 5229

trace inner product, hAY,XB = traceY X>, 2230

11

References231

[1] K.M. Anstreicher. Recent advances in the solution of quadratic assignment problems. Math. Program.,232

97(1-2, Ser. B):27–42, 2003. ISMP, 2003 (Copenhagen).233

[2] K.M. Anstreicher and N.W. Brixius. A new bound for the quadratic assignment problem based on234

convex quadratic programming. Math. Program., 89(3, Ser. A):341–357, 2001.235

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning236

via the alternating direction method of multipliers. Found. Trends Machine Learning, 3(1):1–122, 2011.237

[4] S. Burer and R.D.C. Monteiro. Local minima and convergence in low-rank semidefinite programming.238

Math. Program., 103(3, Ser. A):427–444, 2005.239

[5] R.E. Burkard, S. Karisch, and F. Rendl. QAPLIB – a quadratic assignment problem library. European240

J. Oper. Res., 55:115–119, 1991. www.opt.math.tu-graz.ac.at/qaplib/.241

[6] R.E. Burkard, S.E. Karisch, and F. Rendl. QAPLIB—a quadratic assignment problem library. J. Global242

Optim., 10(4):391–403, 1997.243

[7] E. de Klerk and R. Sotirov. Exploiting group symmetry in semidefinite programming relaxations of the244

quadratic assignment problem. Math. Program., 122(2, Ser. A):225–246, 2010.245

[8] R. Jain and P. Yao. A parallel approximation algorithm for positive semidefinite programming. In 2011246

IEEE 52nd Annual Symposium on Foundations of Computer Science—FOCS 2011, pages 463–471.247

IEEE Computer Soc., Los Alamitos, CA, 2011.248

[9] F. Rendl and R. Sotirov. Bounds for the quadratic assignment problem using the bundle method. Math.249

Program., 109(2-3, Ser. B):505–524, 2007.250

[10] H. Sun, N. Wang, T.K. Pong, and H. Wolkowicz. Eigenvalue, quadratic programming, and semidefinite251

programming bounds for a cut minimization problem. Comput. Optim. Appl., (accepted Aug. 2015):to252

appear, 2015. 32 pages, submitted.253

[11] K.C. Toh, M.J. Todd, and R.H. Tütüncü. SDPT3—a MATLAB software package for semidefinite254

programming, version 1.3. Optim. Methods Softw., 11/12(1-4):545–581, 1999. Interior point methods.255

[12] Z. Wen, D. Goldfarb, and W. Yin. Alternating direction augmented Lagrangian methods for semidefinite256

programming. Math. Program. Comput., 2(3-4):203–230, 2010.257

[13] Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relaxations for the258

quadratic assignment problem. J. Comb. Optim., 2(1):71–109, 1998. Semidefinite programming and259

interior-point approaches for combinatorial optimization problems (Fields Institute, Toronto, ON, 1996).260

12

	Introduction
	A New Derivation for the SDPRelaxation
	A New ADMMAlgorithm for the SDPRelaxation
	Lower bound
	Feasible solution of QAP
	Low-rank solution
	Different choices for V,V"0362V

	Numerical experiments
	Concluding Remarks
	Index

