ADMM for the SDP relaxation of the QAP *

Danilo Elias Oliveira ${ }^{\dagger} \quad$ Henry Wolkowicz ${ }^{\ddagger} \quad$ Yangyang Xu ${ }^{\S}$

December 15, 2015

Abstract

The semidefinite programming SDP relaxation has proven to be extremely strong for many hard discrete optimization problems. This is in particular true for the quadratic assignment problem QAP, arguably one of the hardest NP-hard discrete optimization problems. There are several difficulties that arise in efficiently solving the $\mathbf{S D P}$ relaxation, e.g., increased dimension; inefficiency of the current primaldual interior point solvers in terms of both time and accuracy; and difficulty and high expense in adding cutting plane constraints.

We propose using the alternating direction method of multipliers ADMM to solve the SDP relaxation. This first order approach allows for inexpensive iterations, a method of cheaply obtaining low rank solutions, as well a trivial way of adding cutting plane inequalities. When compared to current approaches and current best available bounds we obtain remarkable robustness, efficiency and improved bounds.

Keywords: Quadratic assignment problem, semidefinite programming relaxation, alternating direction method of moments, large scale.

Classification code: $90 \mathrm{C} 22,90 \mathrm{~B} 80,90 \mathrm{C} 46,90-08$

Contents

1 Introduction 2

2 A New Derivation for the SDP Relaxation 2
3 A New ADMM Algorithm for the SDP Relaxation 5
3.1 Lower bound . 6
3.2 Feasible solution of QAP . 7
3.3 Low-rank solution . 8
3.4 Different choices for V, \widehat{V}. 8

4 Numerical experiments 9
5 Concluding Remarks 10
Index 10

[^0]
List of Tables

1 QAP Instances I and II. Requested tolerance $1 e-5$.

1 Introduction

The quadratic assignment problem ($\mathbf{Q A P}$), in the trace formulation is

$$
\begin{equation*}
p_{X}^{*}:=\min _{X \in \Pi_{n}}\langle A X B-2 C, X\rangle, \tag{1.1}
\end{equation*}
$$

where $A, B \in \mathbb{S}^{n}$ are real symmetric $n \times n$ matrices, C is a real $n \times n$ matrix, $\langle\cdot, \cdot\rangle$ denotes the trace inner product, $\langle Y, X\rangle=\operatorname{trace} Y X^{\top}$, and Π_{n} denotes the set of $n \times n$ permutation matrices. A typical objective of the QAP is to assign n facilities to n locations while minimizing total cost. The assignment cost is the sum of costs using the flows in $A_{i j}$ between a pair of facilities i, j multiplied by the distance in $B_{s t}$ between their assigned locations s, t and adding on the location costs of a facility i in a position s given in $C_{i s}$.

It is well known that the QAP is an NP-hard problem and that problems with size as moderate as $n=30$ still remain difficult to solve. Solution techniques rely on calculating efficient lower bounds. An important tool for finding lower bounds is the work in [13] that provides a semidefinite programmming (SDP), relaxation of (1.1). The methods of choice for SDP are based on a primal-dual interior-point, p - $d i$ p, approach. These methods cannot solve large problems, have difficulty in obtaining high accuracy solutions and cannot properly exploit sparsity. Moreover, it is very expensive to add on nonnegativity and cutting plane constraints. The current state for finding bounds and solving QAP is given in e.g., $[1,2,4,7,9]$.

In this paper we study an alternating direction method of multipliers (ADMM), for solving the SDP relaxation of the QAP. We compare this with the best known results given in [9] and with the best known bounds found at SDPLIB [5]. and with a p-d i-p methods based on the so-called HKM direction. We see that the ADMM method is significantly faster and obtains high accuracy solutions. In addition there are advantages in obtaining low rank SDP solutions that provide better feasible approximations for the QAP for upper bounds. Finally, it is trivial to add nonnegativity and rounding constraints while iterating so as to obtain significantly stronger bounds and also maintain sparsity during the iterations.

We note that previous success for ADMM for SDP in presented in [12]. A detailed survey article for ADMM can be found in [3].

2 A New Derivation for the SDP Relaxation

We start the derivation from the following equivalent quadratically constrained quadratic problem

$$
\begin{array}{ll}
\min _{X} & \langle A X B-2 C, X\rangle \\
\text { s.t. } & X_{i j} X_{i k}=0, X_{j i} X_{k i}=0, \forall i, \forall j \neq k, \\
& X_{i j}^{2}-X_{i j}=0, \forall i, j, \tag{2.1}\\
& \sum_{i=1}^{n} X_{i j}^{2}-1=0, \forall j, \sum_{j=1}^{n} X_{i j}^{2}-1=0, \forall i .
\end{array}
$$

Remark 2.1. Note that the quadratic orthogonality constraints $X^{\top} X=I, X X^{\top}=I$, and the linear row and column sum constraints $X e=e, X^{\top} e=e$ can all be linearly represented using linear combinations of those in (2.1).

In addition, the first set of constraints, the elementwise orthogonality of the row and columns of X, are referred to as the gangster constraints. They are particularly strong constraints and enable many of the other constraints to be redundant. In fact, after the facial reduction done below, many of these constraints also become redundant. (See the definition of the index set J below.)

The Lagrangian for (2.1) is

$$
\begin{aligned}
\mathcal{L}_{0}(X, U, V, W, u, v)= & \langle A X B-2 C, X\rangle+\sum_{i=1}^{n} \sum_{j \neq k} U_{j k}^{(i)} X_{i j} X_{i k}+\sum_{i=1}^{n} \sum_{j \neq k} V_{j k}^{(i)} X_{j i} X_{k i}+\sum_{i, j} W_{i j}\left(X_{i j}^{2}-X_{i j}\right) \\
& +\sum_{j=1}^{n} u_{j}\left(\sum_{i=1}^{n} X_{i j}^{2}-1\right)+\sum_{i=1}^{n} v_{i}\left(\sum_{j=1}^{n} X_{i j}^{2}-1\right)
\end{aligned}
$$

The dual problem is a maximization of the dual functional d_{0},

$$
\begin{equation*}
\max d_{0}(U, V, W, u, v):=\min _{X} \mathcal{L}_{0}(X, U, V, W, u, v) \tag{2.2}
\end{equation*}
$$

To simplify the dual problem, we homogenize the X terms in \mathcal{L}_{0} by multiplying a unit scalar x_{0} to degree- 1 terms and adding the single constraint $x_{0}^{2}=1$ to the Lagrangian. We let

$$
\begin{aligned}
\mathcal{L}_{1}\left(X, x_{0}, U, V, W, w_{0}, u, v\right)= & \left\langle A X B-2 x_{0} C, X\right\rangle+\sum_{i=1}^{n} \sum_{j \neq k} U_{j k}^{(i)} X_{i j} X_{i k}+\sum_{i=1}^{n} \sum_{j \neq k} V_{j k}^{(i)} X_{j i} X_{k i}+\sum_{i, j} W_{i j}\left(X_{i j}^{2}-x_{0} X_{i j}\right) \\
& +\sum_{j=1}^{n} u_{j}\left(\sum_{i=1}^{n} X_{i j}^{2}-1\right)+\sum_{i=1}^{n} v_{i}\left(\sum_{j=1}^{n} X_{i j}^{2}-1\right)+w_{0}\left(x_{0}^{2}-1\right) .
\end{aligned}
$$

${ }_{63}$ This homogenization technique is the same as that in [13]. The new dual problem is

$$
\begin{equation*}
\max d_{1}\left(U, V, W, w_{0}, u, v\right):=\min _{X, x_{0}} \mathcal{L}_{1}\left(X, x_{0}, U, V, W, w_{0}, u, v\right) \tag{2.3}
\end{equation*}
$$

Note that $d_{1} \leq d_{0}$. Hence, our relaxation still yields a lower bound to (2.1). In fact, the relaxations give the same lower bound. This follows from strong duality of the trust region subproblem as shown in [13]. Let $x=\operatorname{vec}(X), y=\left[x_{0} ; x\right]$, and $w=\operatorname{vec}(W)$, where x, w is the vectorization, columnwise, of X and W, respectively. Then
$\mathcal{L}_{1}\left(X, x_{0}, U, V, W, w_{0}, u, v\right)=y^{\top}\left[L_{Q}+\mathcal{B}_{1}(U)+\mathcal{B}_{2}(V)+\operatorname{Arrow}\left(w, w_{0}\right)+\mathcal{K}_{1}(u)+\mathcal{K}_{2}(v)\right] y-e^{\top}(u+v)-w_{0}$,
where

$$
\begin{aligned}
& \mathcal{K}_{1}(u)=\operatorname{blkdiag}(0, u \otimes I), \quad \mathcal{K}_{2}(v)=\operatorname{blkdiag}(0, I \otimes v), \\
& \operatorname{Arrow}\left(w, w_{0}\right)=\left[\begin{array}{cc}
w_{0} & -\frac{1}{2} w^{\top} \\
-\frac{1}{2} w & \operatorname{Diag}(w)
\end{array}\right]
\end{aligned}
$$

and

$$
\mathcal{B}_{1}(U)=\operatorname{blkdiag}(0, \tilde{U}), \quad \mathcal{B}_{2}(V)=\operatorname{blkdiag}(0, \tilde{V})
$$

Here, \tilde{U} and \tilde{V} are $n \times n$ block matrices. \tilde{U} has zero diagonal blocks and the (j, k)-th off-diagonal block to be the diagonal matrix $\operatorname{Diag}\left(U_{j k}^{(1)}, \ldots, U_{j k}^{(n)}\right)$ for all $j \neq k$, and \tilde{V} has zero off-diagonal blocks and the i-th $\begin{aligned} & \text { diagonal block to be } {\left[\begin{array}{cccc}0 & V_{12}^{(i)} & \ldots & V_{1 n}^{(i)} \\ V_{21}^{(i)} & 0 & \cdots & V_{2 n}^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ V_{n 1}^{(i)} & V_{n 2}^{(i)} & \cdots & 0\end{array}\right] . \text { Hence, the dual problem (2.3) is } } \\ & \max -e^{\top}(u+v)-w_{0} \\ & \text { s.t. } L_{Q}+\mathcal{B}_{1}(U)+\mathcal{B}_{2}(V)+\operatorname{Arrow}\left(w, w_{0}\right)+\mathcal{K}_{1}(u)+\mathcal{K}_{2}(v) \succeq 0 .\end{aligned}$

Taking the dual of (2.4), we have the SDP relaxation of (2.1):

$$
\begin{array}{ll}
\min & \left\langle L_{Q}, Y\right\rangle \\
\text { s.t. } & \mathcal{G}_{J}(Y)=E_{00}, \operatorname{diag}(\bar{Y})=y_{0} \tag{2.5}\\
& \operatorname{trace}\left(\tilde{Y}_{i i}\right)=1, \forall i, \sum_{i=1}^{n} \tilde{Y}_{i i}=I \\
& Y \succeq 0
\end{array}
$$

The index set J and the gangster operator \mathcal{G}_{J} are defined properly below in Definition 2.1. (By abuse of notation this is done after the facial reduction which results in a smaller J.)

Remark 2.2. If one more feasible quadratic constraint $q(X)$ can be added to (2.1) and $q(X)$ cannot be linearly represented by those in (2.1), the relaxation following the same derivation as above can be tighter. We conjecture that no more such $q(X)$ exists, and thus (2.5) is the tightest among all Lagrange dual relaxation from a quadratically constrained program like (2.1). However, this does not mean that more linear inequality constraints cannot be added, i.e., linear cuts.

Theorem 2.1 ([13]). The matrix Y is feasible for (2.5) if, and only if, it is feasible for (3.1).
As above, let $x=\operatorname{vec} X \in \mathbb{R}^{n^{2}}$ be the vectorization of X by column. Y is the original matrix variable of the $\mathbf{S D P}$ relaxation before the facial reduction. It can be motivated from the lifting $Y=\binom{1}{\operatorname{vec} X}\binom{1}{\operatorname{vec} X}^{\top}$.

The SDP relaxation of QAP presented in [13] uses facial reduction to guarantee strict feasibility. The SDP obtained is

$$
\begin{array}{cl}
p_{R}^{*}:=\min _{R} & \left\langle L_{Q}, \hat{V} R \hat{V}^{\top}\right\rangle \\
\text { s.t. } & \mathcal{G}_{J}\left(\hat{V} R \hat{V}^{\top}\right)=E_{00} \tag{2.7}\\
& R \succeq 0
\end{array}
$$

where the so-called gangster operator, \mathcal{G}_{J}, fixes all elements indexed by J and zeroes out all others,

$$
L_{Q}=\left[\begin{array}{cc}
0 & -\operatorname{vec}(C)^{\top} \tag{2.8}\\
-\operatorname{vec}(C) & B \otimes A
\end{array}\right], \quad \hat{V}=\left[\begin{array}{cc}
1 & 0 \\
\frac{1}{n} e & V \otimes V
\end{array}\right]
$$

with e being the vector of all ones, of appropriate dimension and $V \in \mathbb{R}^{n \times(n-1)}$ being a basis matrix of the orthogonal complement of e, e.g., $V=\left[\begin{array}{c}I_{n-1} \\ -e\end{array}\right]$. We let $Y=\hat{V} R \hat{V}^{\top} \in \mathbb{S}^{n^{2}+1}$.

Lemma 2.1 ([13]). The matrix \hat{R} defined by

$$
\hat{R}:=\left[\begin{array}{c|c}
1 & 0 \\
\hline 0 & \frac{1}{n^{2}(n-1)}\left(n I_{n-1}-E_{n-1}\right) \otimes\left(n I_{n-1}-E_{n-1}\right)
\end{array}\right] \in \mathbb{S}_{++}^{(n-1)^{2}+1}
$$

is (strictly) feasible for (2.7).
Definition 2.1. The gangster operator $\mathcal{G}_{J}: \mathbb{S}^{n^{2}+1} \rightarrow \mathbb{S}^{n^{2}+1}$ and is defined by

$$
\mathcal{G}_{J}(Y)_{i j}=\left\{\begin{array}{cc}
Y_{i j} & \text { if }(i, j) \in J \text { or }(j, i) \in J \\
0 & \text { otherwise }
\end{array}\right.
$$

By abuse of notation, we let the same symbol denote the projection onto $\mathbb{R}^{|J|}$. We get the two equivalent primal constraints:

$$
\mathcal{G}_{J}\left(\hat{V} R \hat{V}^{\top}\right)=E_{00} \in \mathbb{S}^{n^{2}+1} ; \quad \mathcal{G}_{J}\left(\hat{V} R \hat{V}^{\top}\right)=\mathcal{G}_{J}\left(E_{00}\right) \in \mathbb{R}^{|J|}
$$

Therefore, the dual variable for the first form is $Y \in \mathbb{S}^{n^{2}+1}$. However, the dual variable for the second form is $y \in \mathbb{R}^{|J|}$ with the adjoint now yielding $Y=\mathcal{G}_{J}^{*}(y) \in \mathbb{S}^{n^{2}+1}$ obtained by symmetrization and filling in the missing elements with zeros.

The gangster index set, J is defined to be (00) union the set of of indices $i<j$ in the matrix \bar{Y} in (2.6) corresponding to:

1. the off-diagonal elements in the n diagonal blocks;
2. the diagonal elements in the off-diagonal blocks except for the last column of off-diagonal blocks and also not the $(n-2),(n-1)$ off-diagonal block. (These latter off-diagonal block constraints are redundant after the facial reduction.)

We note that the gangster operator is self-adjoint, $\mathcal{G}_{J}^{*}=\mathcal{G}_{J}$. Therefore, the dual of (2.7) can be written as the following.

$$
\begin{array}{rlr}
d_{Y}^{*}:=\max _{Y} & \left\langle E_{00}, Y\right\rangle & \left(=Y_{00}\right) \tag{2.9}\\
& \text { s.t. } & \hat{V}^{\top} \mathcal{G}_{J}(Y) \hat{V} \preceq \hat{V}^{\top} L_{Q} \hat{V}
\end{array}
$$

Again by abuse of notation, using the same symbol twice, we get the two equivalent dual constraints:

$$
\hat{V}^{\top} \mathcal{G}_{J}(Y) \hat{V} \preceq \hat{V}^{\top} L_{Q} \hat{V} ; \quad \quad \hat{V}^{\top} \mathcal{G}_{J}^{*}(y) \hat{V} \preceq \hat{V}^{\top} L_{Q} \hat{V}
$$

As above, the dual variable for the first form is $Y \in \mathbb{S}^{n^{2}+1}$ and for the second form is $y \in \mathbb{R}^{|J|}$. We have used \mathcal{G}^{*} for the second form to emphasize that only the first form is self-adjoint.
Lemma 2.2 ([13]). The matrices \hat{Y}, \hat{Z}, with $M>0$ sufficiently large, defined by

$$
\hat{Y}:=M\left[\begin{array}{c|c}
n & 0 \\
\hline 0 & I_{n} \otimes\left(I_{n}-E_{n}\right)
\end{array}\right] \in \mathbb{S}_{++}^{(n-1)^{2}+1}, \quad \hat{Z}:=\hat{V}^{\top} L_{Q} \hat{V}-\hat{V}^{\top} \mathcal{G}_{J}(\hat{Y}) \hat{V} \in \mathbb{S}_{++}^{(n-1)^{2}+1}
$$

and are (strictly) feasible for (2.9).

3 A New ADMM Algorithm for the SDP Relaxation

We can write (2.7) equivalently as

$$
\begin{equation*}
\min _{R, Y}\left\langle L_{Q}, Y\right\rangle, \text { s.t. } \mathcal{G}_{J}(Y)=E_{00}, Y=\hat{V} R \hat{V}^{\top}, R \succeq 0 \tag{3.1}
\end{equation*}
$$

The augmented Lagrange of (3.1) is

$$
\begin{equation*}
\mathcal{L}_{A}(R, Y, Z)=\left\langle L_{Q}, Y\right\rangle+\left\langle Z, Y-\hat{V} R \hat{V}^{\top}\right\rangle+\frac{\beta}{2}\left\|Y-\hat{V} R \hat{V}^{\top}\right\|_{F}^{2} \tag{3.2}
\end{equation*}
$$

Recall that (R, Y, Z) are the primal reduced, primal, and dual variables respectively. We denote (R, Y, Z) as the current iterate. We let $\mathbb{S}_{+}^{r n}$ denote the matrices in \mathbb{S}_{+}^{n} with rank at most r. Our new algorithm is an application of the alternating direction method of multipliers ADMM, that uses the augmented Lagrangian in (3.2) and performs the following updates for $\left(R_{+}, Y_{+}, Z_{+}\right)$:

$$
\begin{align*}
& R_{+}=\underset{R \in \mathbb{S}_{+}^{r n}}{\arg \min } \mathcal{L}_{A}(R, Y, Z) \tag{3.3a}\\
& Y_{+}=\underset{Y \in \mathcal{P}_{i}}{\arg \min } \mathcal{L}_{A}\left(R_{+}, Y, Z\right) \tag{3.3b}\\
& Z_{+}=Z+\gamma \cdot \beta\left(Y_{+}-\hat{V} R_{+} \hat{V}^{\top}\right) \tag{3.3c}
\end{align*}
$$

where the simplest case for the polyhedral constraints \mathcal{P}_{i} is the linear manifold from the gangster constraints:

$$
\mathcal{P}_{1}=\left\{Y \in \mathbb{S}^{n^{2}+1}: \mathcal{G}_{J}(Y)=E_{00}\right\}
$$

We use this notation as we add additional simple polyhedral constraints. The second case is the polytope:

$$
\mathcal{P}_{2}=\mathcal{P}_{1} \cap\{0 \leq Y \leq 1\}
$$

Let \hat{V} be normalized such that $\hat{V}^{\top} \hat{V}=I$. Then if $r=n$, the R-subproblem can be explicitly solved by

$$
\begin{align*}
R_{+} & =\arg \min _{R \succeq 0}\left\langle Z, Y-\hat{V} R \hat{V}^{\top}\right\rangle+\frac{\beta}{2}\left\|Y-\hat{V} R \hat{V}^{\top}\right\|_{F}^{2} \\
& =\arg \min _{R \succeq 0}\left\|Y-\hat{V} R \hat{V}^{\top}+\frac{1}{\beta} Z\right\|_{F}^{2} \\
& =\arg \min _{R \succeq 0}\left\|R-\hat{V}^{\top}\left(Y+\frac{1}{\beta} Z\right) \hat{V}\right\|_{F}^{2} \tag{3.4}\\
& =\mathcal{P}_{\mathbb{S}_{+}}\left(\hat{V}^{\top}\left(Y+\frac{1}{\beta} Z\right) \hat{V}\right),
\end{align*}
$$

where \mathbb{S}_{+}denotes the $\mathbf{S D P}$ cone, and $\mathcal{P}_{\mathbb{S}_{+}}$is the projection to \mathbb{S}_{+}. For any symmetric matrix W, we have

$$
\mathcal{P}_{\mathbb{S}_{+}}(W)=U_{+} \Sigma_{+} U_{+}^{\top},
$$

where $\left(U_{+}, \Sigma_{+}\right)$contains the positive eigenpairs of W and $\left(U_{-}, \Sigma_{-}\right)$the negative eigenpairs.
If $i=1$ in (3.3b), the Y-subproblem also has closed-form solution:

$$
\begin{align*}
Y_{+} & =\underset{\mathcal{G}_{J}(Y)=E_{00}}{\arg \min }\left\langle L_{Q}, Y\right\rangle+\left\langle Z, Y-\hat{V} R_{+} \hat{V}^{\top}\right\rangle+\frac{\beta}{2}\left\|Y-\hat{V} R_{+} \hat{V}^{\top}\right\|_{F}^{2} \\
& =\underset{\mathcal{G}_{J}(Y)=E_{00}}{\arg \min }\left\|Y-\hat{V} R_{+} \hat{V}^{\top}+\frac{L_{Q}+Z}{\beta}\right\|_{F}^{2} \\
& =E_{00}+\mathcal{G}_{J^{c}}\left(\hat{V} R_{+} \hat{V}^{\top}-\frac{L_{Q}+Z}{\beta}\right) \tag{3.5}
\end{align*}
$$

The advantage of using ADMM is that its complexity only slightly increases while we add more constraints to (2.7) to tighten the SDP relaxation. If $0 \leq \hat{V} R \hat{V}^{\top} \leq 1$ is added in (2.7), then we have constraint $0 \leq Y \leq 1$ in (3.1) and reach to the problem

$$
\begin{equation*}
p_{R Y}^{*}:=\min _{R, Y}\left\langle L_{Q}, Y\right\rangle, \text { s.t. } \mathcal{G}_{J}(Y)=E_{00}, 0 \leq Y \leq 1, Y=\hat{V} R \hat{V}^{\top}, R \succeq 0 \tag{3.6}
\end{equation*}
$$

The ADMM for solving (3.6) has the same R-update and Z-update as those in (3.3), and the Y-update is changed to

$$
\begin{equation*}
Y_{+}=E_{00}+\min \left(1, \max \left(0, \mathcal{G}_{J^{c}}\left(\hat{V} R_{+} \hat{V}^{\top}-\frac{L_{Q}+Z}{\beta}\right)\right)\right) \tag{3.7}
\end{equation*}
$$

With nonnegativity constraint, the less-than-one constraint is redundant but makes the algorithm converge faster.

3.1 Lower bound

If we solve (2.7) or (3.1) exactly or to a very high accuracy, we get a lower bound of the original QAP. However, the problem size of (2.7) or (3.1) can be extremely large, and thus having an exact or highly accurate solution may take extremely long time. In the following, we provide an inexpensive way to get a lower bound from the output of our algorithm that solves (3.1) to a moderate accuracy. Let ($\left.R^{\text {out }}, Y^{\text {out }}, Z^{\text {out }}\right)$ be the output of the ADMM for (3.6).

Lemma 3.1. Let

$$
\mathcal{R}:=\{R \succeq 0\}, \quad \mathcal{Y}:=\left\{Y: \mathcal{G}_{J}(Y)=E_{00}, 0 \leq Y \leq 1\right\}, \quad \mathcal{Z}:=\left\{Z: \hat{V}^{\top} Z \hat{V} \preceq 0\right\} .
$$

Define the $\boldsymbol{A D M M}$ dual function

$$
g(Z):=\min _{Y \in \mathcal{Y}}\left\{\left\langle L_{Q}+Z, Y\right\rangle\right\} .
$$

Then the dual problem of $\boldsymbol{A D M M}(3.6)$ is defined as follows and satisfies weak duality.

$$
\begin{aligned}
d_{Z}^{*} & :=\max _{Z \in \mathcal{Z}} g(Z) \\
& \leq p_{R}^{*} .
\end{aligned}
$$

Proof. The dual problem of (3.6) can be derived as

$$
\begin{aligned}
d_{Z}^{*} & =\max _{Z} \min _{R \in \mathcal{R}, Y \in \mathcal{Y}}\left\langle L_{Q}, Y\right\rangle+\left\langle Z, Y-\hat{V} R \hat{V}^{\top}\right\rangle \\
& =\max _{Z} \min _{Y \in \mathcal{Y}}\left\langle L_{Q}, Y\right\rangle+\langle Z, Y\rangle+\min _{R \in \mathcal{R}}\left\langle Z,-\hat{V} R \hat{V}^{\top}\right\rangle \\
& =\max _{Z} \min _{Y \in \mathcal{Y}}\left\langle L_{Q}, Y\right\rangle+\langle Z, Y\rangle+\min _{R \in \mathcal{R}}\left\langle\hat{V}^{\top} Z \hat{V},-R\right\rangle \\
& =\max _{Z \in \mathcal{Z}} \min _{Y \in \mathcal{Y}}\left\langle L_{Q}+Z, Y\right\rangle, \\
& =\max _{Z \in \mathcal{Z}} g(Z)
\end{aligned}
$$

Weak duality follows in the usual way by exchanging the max and min.
For any $Z \in \mathcal{Z}$, we have $g(Z)$ is a lower bound of (3.6) and thus of the original QAP. We use the dual function value of the projection $g\left(\mathcal{P}_{\mathcal{Z}}\left(Z^{\text {out }}\right)\right)$ as the lower bound, and next we show how to get $\mathcal{P}_{\mathcal{Z}}(\tilde{Z})$ for any symmetric matrix \tilde{Z}.

Let \hat{V}_{\perp} be the orthonormal basis of the null space of \hat{V}. Then $\bar{V}=\left(\hat{V}, \hat{V}_{\perp}\right)$ is an orthogonal matrix. Let $\bar{V}^{\top} Z \bar{V}=W=\left[\begin{array}{ll}W_{11} & W_{12} \\ W_{21} & W_{22}\end{array}\right]$, and we have

$$
\hat{V}^{\top} Z \hat{V} \preceq 0 \Leftrightarrow \hat{V}^{\top} Z \hat{V}=\hat{V}^{\top} \bar{V} W \bar{V}^{\top} \hat{V}=W_{11} \preceq 0 .
$$

Hence,

$$
\begin{aligned}
\mathcal{P}_{\mathcal{Z}}(\tilde{Z}) & =\underset{Z \in \mathcal{Z}}{\arg \min }\|Z-\tilde{Z}\|_{F}^{2} \\
& =\underset{W_{11} \leq 0}{\arg \min }\left\|\bar{V} W \bar{V}^{\top}-\tilde{Z}\right\|_{F}^{2} \\
& =\underset{W_{11} \leq 0}{\arg \min }\left\|W-\bar{V}^{\top} \tilde{Z} \bar{V}\right\|_{F}^{2} \\
& =\left[\begin{array}{cc}
\mathcal{P}_{\mathbb{S}}-\left(\tilde{W}_{11}\right) & \tilde{W}_{12} \\
\tilde{W}_{21} & \tilde{W}_{22}
\end{array}\right],
\end{aligned}
$$

where \mathbb{S}_{-}denotes the negative semidefinite cone, and we have assumed $\bar{V}^{\top} \tilde{Z} \bar{V}=\left[\begin{array}{ll}\tilde{W}_{11} & \tilde{W}_{12} \\ \tilde{W}_{21} & \tilde{W}_{22}\end{array}\right]$. Note that $\mathcal{P}_{\mathbb{S}_{-}}\left(W_{11}\right)=-\mathcal{P}_{\mathbb{S}_{+}}\left(-W_{11}\right)$.

3.2 Feasible solution of QAP

Let ($R^{\text {out }}, Y^{\text {out }}, Z^{\text {out }}$) be the output of the ADMM for (3.6). Assume the largest eigenvalue and the corresponding eigenvector of Y are λ and v. We let $X^{\text {out }}$ be the matrix reshaped from the second through the last elements of the first column of $\lambda v v^{\top}$. Then we solve the linear program

$$
\begin{equation*}
\max _{X}\left\langle X^{\text {out }}, X\right\rangle \text {, s.t. } X e=e, X^{\top} e=e, X \geq 0 \tag{3.8}
\end{equation*}
$$

by simplex method that gives a basic optimal solution, i.e., a permutation matrix.

3.3 Low-rank solution

Instead of finding a feasible solution through (3.8), we can directly get one by restricting R to a rank-one matrix, i.e., $\operatorname{rank}(R)=1$ and $R \in \mathbb{S}_{+}$. With this constraint, the R-update can be modified to

$$
\begin{equation*}
R_{+}=\mathcal{P}_{\mathbb{S}_{+} \cap \mathcal{R}_{1}}\left(\hat{V}^{\top}\left(Y+\frac{Z}{\beta}\right) \hat{V}\right) \tag{3.9}
\end{equation*}
$$

where $\mathcal{R}_{1}=\{R: \operatorname{rank}(R)=1\}$ denotes the set of rank-one matrices. For a symmetric matrix W with largest eigenvalue $\lambda>0$ and corresponding eigenvector w, we have

$$
\mathcal{P}_{\mathbb{S}_{+} \cap \mathcal{R}_{1}}=\lambda w w^{\top} .
$$

3.4 Different choices for V, \widehat{V}

The matrix \widehat{V} is essential in the steps of the algorithm, see e.g., (3.4). A sparse \widehat{V} helps in the projection if one is using a sparse eigenvalue code. We have compared several. One is based on applying a QR algorithm to the original simple V from the definition of \hat{V} in (2.8). The other two are based on the approach in [10] and we present the most successful here. The orthogonal V we use is

$$
\left.V=\left[\begin{array}{c}
\left.\left[\begin{array}{c}
{\left[\begin{array}{c}
\left\lfloor\frac{n}{2}\right\rfloor
\end{array}\right.} \\
0_{\left(n-2\left\lfloor\frac{n}{2}\right\rfloor\right)} \otimes\left\lfloor\frac{1}{\sqrt{2}}\right\rfloor
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right] \\
{\left[\begin{array}{c}
{\left[\begin{array}{c}
\left\lfloor\frac{n}{4}\right\rfloor
\end{array}\right.} \\
0_{\left(n-4\left\lfloor\frac{n}{4}\right\rfloor\right),\left\lfloor\frac{n}{4}\right\rfloor}
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right]}
\end{array}\right][\ldots][\widehat{V}]\right]_{n \times n-1}
$$

i.e., the block matrix consisting of t blocks formed from Kronecker products along with one block \widehat{V} to complete the appropriate size so that $V^{\top} V=I_{n-1}, V^{\top} e=0$. We take advantage of the 0,1 structure of the Kronecker blocks and delay the scaling for the normalization till the end. The main work in the low rank projection part of the algorithm is to evaluate one (or a few) eigenvalues of $W=\widehat{V}^{\top}\left(Y+\frac{1}{\beta} Z\right) \hat{V}$ to obtain the update R_{+}.

$$
Y+\frac{1}{\beta} Z=\left[\begin{array}{cc}
\rho & w^{\top} \\
w & \bar{W}
\end{array}\right]
$$

We let

$$
K:=V \otimes V, \quad \alpha=1 / \sqrt{2}, \quad v=\frac{1}{\sqrt{2} n} e, \quad x=\binom{x_{1}}{\bar{x}} .
$$

The structure for \widehat{V} in (2.8) means that we can evaluate the product for $W x$ as

$$
\begin{aligned}
{\left[\begin{array}{cc}
\alpha & 0 \\
v & K
\end{array}\right]^{\top}\left[\begin{array}{cc}
\rho & w^{\top} \\
w & \bar{W}
\end{array}\right]\left[\begin{array}{cc}
\alpha & 0 \\
v & K
\end{array}\right] x } & =\left[\begin{array}{cc}
\alpha & 0 \\
v & K
\end{array}\right]^{\top}\left[\begin{array}{cc}
\rho & w^{\top} \\
w & \bar{W}
\end{array}\right]\binom{\alpha x_{1}}{x_{1} v+K \bar{x}} \\
& =\left[\begin{array}{cc}
\alpha & v^{\top} \\
0 & K^{\top}
\end{array}\right]\binom{\rho \alpha x_{1}+w^{\top}\left(x_{1} v+K \bar{x}\right)}{\alpha x_{1} w+\bar{W}\left(x_{1} v+K \bar{x}\right)} \\
& =\binom{\rho \alpha^{2} x_{1}+\alpha w^{\top}\left(x_{1} v+K \bar{x}\right)+v^{\top}\left(\alpha x_{1} w+\bar{W}\left(x_{1} v+K \bar{x}\right)\right)}{K^{\top}\left(\alpha x_{1} w+\bar{W}\left(x_{1} v+K \bar{x}\right)\right)} \\
& =\binom{\rho \alpha^{2} x_{1}+\left(\alpha w^{\top}+v^{\top} \bar{W}\right)\left(x_{1} v+K \bar{x}\right)+v^{\top}\left(\alpha x_{1} w\right)}{K^{\top}\left(\alpha x_{1} w+\bar{W}\left(x_{1} v+K \bar{x}\right)\right)} .
\end{aligned}
$$

We emphasize that $V \otimes V=(\bar{V} \otimes \bar{V}) /(D \otimes D)$, where \bar{V} denotes the unscaled V, D is the diagonal matrix of scale factors to obtain the orthogonality in V, and / denotes the MATLAB division on the right, multiplication by the inverse on the right. Therefore, we can evaluate

$$
K^{\top} \bar{W} K=(V \otimes V)^{\top} \bar{W}(V \otimes V)=(\bar{V} \otimes \bar{V})^{\top}[(D \otimes D) \backslash \bar{W} /(D \otimes D)](\bar{V} \otimes \bar{V})
$$

4 Numerical experiments

We illustrate our results in Table 1 on the forty five QAP instances I and II, see [5, 6, 9]. The optimal solutions are in column 1 and current best known lower bounds from [9] are in column 3 marked bundle. The p-d i-p lower bound is given in the column marked $H K M-F R$. (The code failed to find a lower bound on several problems marked -1111.) These bounds were obtained using the facially reduced SDP relaxation and exploiting the low rank (one and two) of the constraints. We used SDPT3 [11]. ${ }^{1}$

Our ADMM lower bound follows in column 4. We see that it is at least as good as the current best known bounds in every instance. The percent improvement is given in column 7. We then present the best upper bounds from our heuristics in column 5 . This allows us to calculate the percentage gap in column 6 . The CPU seconds are then given in the last columns $8-9$ for the high and low rank approaches, respectively. The last two columns are the ratios of CPU times. Column 10 is the ratio of CPU times for the 5 decimal and 12 decimal tolerance for the high rank approach. All the ratios for the low rank approach are approximately 1 and not included. The quality of the bounds did not change for these two tolerances. However, we consider it of interest to show that the higher tolerance can be obtained.

The last column 11 is the ratio of CPU times for the 12 decimal tolerance of the high rank approach in column 8 with the CPU times for 9 decimal tolerance for the HKM approach. We emphasize that the lower bounds for the HKM approach were significantly weaker.

We used MATLAB version 8.6.0.267246 (R2015b) on a PC Dell Optiplex 9020 64-bit, with 16 Gig, running Windows 7.

We heuristically set $\gamma=1.618$ and $\beta=\frac{n}{3}$ in ADMM. We used two different tolerances $1 e-12,1 e-5$. Solving the SDP to the higher accuracy did not improve the bounds. However, it is interesting that the ADMM approach was able to solve the SDP relaxations to such high accuracy, something the p-d i-p approach has great difficulty with. We provide the CPU times for both accuracies. Our times are significantly lower than those reported in [4, 9], e.g., from 10 hours to less than an hour.

We emphasize that we have improved bounds for all the SDP instances and have provably found exact solutions six of the instances Had12,14,16,18, Rou12, Tai12a. This is due to the ability to add all the nonnegativity constraints and rounding numbers to 0,1 with essentially zero extra computational cost. In addition, the rounding appears to improve the upper bounds as well. This was the case for both using tolerance of 12 or only 5 decimals in the ADMM algorithm.

[^1]| | $\begin{gathered} 1 . \\ \text { opt } \\ \text { value } \end{gathered}$ | $\begin{gathered} 2 . \\ \text { Bundle [9] } \\ \text { LowBnd } \end{gathered}$ | $\begin{gathered} 3 . \\ \text { HKM-FR } \\ \text { LowBnd } \end{gathered}$ | 4.
 ADMM
 LowBnd | $\begin{gathered} 5 . \\ \text { feas } \\ \text { UpBnd } \end{gathered}$ | 6.
 ADMM \%gap | 7. ADMM vs Bundle \%Impr LowBnd | $\begin{gathered} \hline 8 \text { Tol5 } \\ \text { cpusec } \\ \text { HighRk } \end{gathered}$ | 9 Tol5 cpusec LowRk | $\begin{gathered} \hline 10 \text { Tol12/5 } \\ \text { cpuratio } \\ \text { HighRk } \\ \hline \end{gathered}$ | 11 HKM cpuratio Tol 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Esc16a | 68 | 59 | 50 | 64 | 72 | 11.76 | 7.35 | $2.30 \mathrm{e}+01$ | 4.02 | 4.14 | 9.37 |
| Esc16b | 292 | 288 | 276 | 290 | 300 | 3.42 | 0.68 | $3.87 \mathrm{e}+00$ | 4.55 | 2.15 | 8.08 |
| Esc16c | 160 | 142 | 132 | 154 | 188 | 21.25 | 7.50 | $1.09 \mathrm{e}+01$ | 8.09 | 4.53 | 4.88 |
| Esc16d | 16 | 8 | -12 | 13 | 18 | 31.25 | 31.25 | $2.14 \mathrm{e}+01$ | 3.69 | 4.87 | 10.22 |
| Esc16e | 28 | 23 | 13 | 27 | 32 | 17.86 | 14.29 | $3.02 \mathrm{e}+01$ | 4.29 | 4.80 | 8.79 |
| Esc16g | 26 | 20 | 11 | 25 | 28 | 11.54 | 19.23 | $4.24 \mathrm{e}+01$ | 4.27 | 2.72 | 8.63 |
| Esc16h | 996 | 970 | 909 | 977 | 996 | 1.91 | 0.70 | $4.91 \mathrm{e}+00$ | 3.53 | 2.33 | 10.60 |
| Esc16i | 14 | 9 | -21 | 12 | 14 | 14.29 | 21.43 | $1.37 \mathrm{e}+02$ | 4.30 | 2.39 | 8.76 |
| Esc16j | 8 | 7 | -4 | 8 | 14 | 75.00 | 12.50 | $8.95 \mathrm{e}+01$ | 4.80 | 3.83 | 7.93 |
| Had12 | 1652 | 1643 | 1641 | 1652 | 1652 | 0.00 | 0.54 | $1.02 \mathrm{e}+01$ | 1.08 | 1.06 | 5.91 |
| Had14 | 2724 | 2715 | 2709 | 2724 | 2724 | 0.00 | 0.33 | $3.23 \mathrm{e}+01$ | 1.69 | 1.19 | 10.46 |
| Had16 | 3720 | 3699 | 3678 | 3720 | 3720 | 0.00 | 0.56 | $1.75 \mathrm{e}+02$ | 3.15 | 1.04 | 12.51 |
| Had18 | 5358 | 5317 | 5287 | 5358 | 5358 | 0.00 | 0.77 | $4.49 \mathrm{e}+02$ | 6.00 | 2.22 | 13.28 |
| Had20 | 6922 | 6885 | 6848 | 6922 | 6930 | 0.12 | 0.53 | $3.85 \mathrm{e}+02$ | 12.15 | 4.20 | 14.53 |
| Kra30a | 149936 | 136059 | -1111 | 143576 | 169708 | 17.43 | 5.01 | $5.88 \mathrm{e}+03$ | 149.32 | 2.22 | 1111.11 |
| Kra30b | 91420 | 81156 | -1111 | 87858 | 105740 | 19.56 | 7.33 | $4.36 \mathrm{e}+03$ | 170.57 | 3.01 | 1111.11 |
| Kra32 | 88700 | 79659 | -1111 | 85775 | 103790 | 20.31 | 6.90 | $3.57 \mathrm{e}+03$ | 200.26 | 4.28 | 1111.11 |
| Nug12 | 578 | 557 | 530 | 568 | 632 | 11.07 | 1.90 | $2.60 \mathrm{e}+01$ | 1.04 | 6.61 | 5.93 |
| Nug14 | 1014 | 992 | 960 | 1011 | 1022 | 1.08 | 1.87 | $7.15 \mathrm{e}+01$ | 1.87 | 5.06 | 8.43 |
| Nug15 | 1150 | 1122 | 1071 | 1141 | 1306 | 14.35 | 1.65 | $9.10 \mathrm{e}+01$ | 3.31 | 5.90 | 7.79 |
| Nug16a | 1610 | 1570 | 1528 | 1600 | 1610 | 0.62 | 1.86 | $1.81 \mathrm{e}+02$ | 3.06 | 3.28 | 12.24 |
| Nug16b | 1240 | 1188 | 1139 | 1219 | 1356 | 11.05 | 2.50 | $9.35 \mathrm{e}+01$ | 3.19 | 6.23 | 11.83 |
| Nug17 | 1732 | 1669 | 1622 | 1708 | 1756 | 2.77 | 2.25 | $2.31 \mathrm{e}+02$ | 4.34 | 3.63 | 13.13 |
| Nug18 | 1930 | 1852 | 1802 | 1894 | 2160 | 13.78 | 2.18 | $4.16 \mathrm{e}+02$ | 5.47 | 2.43 | 15.23 |
| Nug20 | 2570 | 2451 | 2386 | 2507 | 2784 | 10.78 | 2.18 | $4.76 \mathrm{e}+02$ | 11.56 | 3.75 | 14.35 |
| Nug21 | 2438 | 2323 | 2386 | 2382 | 2706 | 13.29 | 2.42 | $1.41 \mathrm{e}+03$ | 15.32 | 1.68 | 14.95 |
| Nug22 | 3596 | 3440 | 3396 | 3529 | 3940 | 11.43 | 2.47 | $2.07 \mathrm{e}+03$ | 21.82 | 1.39 | 13.90 |
| Nug24 | 3488 | 3310 | -1111 | 3402 | 3794 | 11.24 | 2.64 | $1.20 \mathrm{e}+03$ | 29.64 | 3.29 | 1111.11 |
| Nug25 | 3744 | 3535 | -1111 | 3626 | 4060 | 11.59 | 2.43 | $3.12 \mathrm{e}+03$ | 39.23 | 1.65 | 1111.11 |
| Nug27 | 5234 | 4965 | -1111 | 5130 | 5822 | 13.22 | 3.15 | $5.11 \mathrm{e}+03$ | 78.18 | 1.58 | 1111.11 |
| Nug28 | 5166 | 4901 | -1111 | 5026 | 5730 | 13.63 | 2.42 | $4.11 \mathrm{e}+03$ | 83.38 | 2.17 | 1111.11 |
| Nug30 | 6124 | 5803 | -1111 | 5950 | 6676 | 11.85 | 2.40 | $7.36 \mathrm{e}+03$ | 133.38 | 1.76 | 1111.11 |
| Rou12 | 235528 | 223680 | 221161 | 235528 | 235528 | 0.00 | 5.03 | $2.76 \mathrm{e}+01$ | 0.93 | 0.98 | 6.90 |
| Rou15 | 354210 | 333287 | 323235 | 350217 | 367782 | 4.96 | 4.78 | $3.12 \mathrm{e}+01$ | 2.70 | 8.68 | 9.46 |
| Rou20 | 725522 | 663833 | 642856 | 695181 | 765390 | 9.68 | 4.32 | $1.67 \mathrm{e}+02$ | 10.31 | 10.90 | 16.08 |
| Scr12 | 31410 | 29321 | 23973 | 31410 | 38806 | 23.55 | 6.65 | $4.40 \mathrm{e}+00$ | 1.17 | 2.40 | 5.79 |
| Scr15 | 51140 | 48836 | 42204 | 51140 | 58304 | 14.01 | 4.51 | $1.38 \mathrm{e}+01$ | 2.41 | 1.84 | 10.75 |
| Scr20 | 110030 | 94998 | 83302 | 106803 | 138474 | 28.78 | 10.73 | $1.53 \mathrm{e}+03$ | 9.61 | 1.15 | 17.96 |
| Tai12a | 224416 | 222784 | 215637 | 224416 | 224416 | 0.00 | 0.73 | $1.79 \mathrm{e}+00$ | 0.90 | 1.04 | 6.70 |
| Tai15a | 388214 | 364761 | 349586 | 377101 | 412760 | 9.19 | 3.18 | $2.74 \mathrm{e}+01$ | 2.35 | 14.69 | 10.34 |
| Tai17a | 491812 | 451317 | 441294 | 476525 | 546366 | 14.20 | 5.13 | $6.50 \mathrm{e}+01$ | 4.52 | 7.31 | 12.04 |
| Tai20a | 703482 | 637300 | 619092 | 671675 | 750450 | 11.20 | 4.89 | $1.28 \mathrm{e}+02$ | 10.10 | 14.32 | 15.85 |
| Tai25a | 1167256 | 1041337 | 1096657 | 1096657 | 1271696 | 15.00 | 4.74 | $3.09 \mathrm{e}+02$ | 38.48 | 5.58 | 1111.11 |
| Tai30a | 1818146 | 1652186 | -1111 | 1706871 | 1942086 | 12.94 | 3.01 | $1.25 \mathrm{e}+03$ | 142.55 | 10.51 | 1111.11 |
| Tho30 | 88900 | 77647 | -1111 | 86838 | 102760 | 17.91 | 10.34 | $2.83 \mathrm{e}+03$ | 164.86 | 4.74 | 1111.11 |

Table 1: QAP Instances I and II. Requested tolerance $1 e-5$.

5 Concluding Remarks

In this paper we have shown the efficiency of using the ADMM approach in solving the SDP relaxation of the QAP problem. In particular, we have shown that we can obtain high accuracy solutions of the SDP relaxation in less significantly less cost than current approaches. In addition, the SDP relaxation includes the nonnegativity constraints at essentially no extra cost. This results in both a fast solution and improved lower and upper bounds for the QAP.

In a forthcoming study we propose to include this in a branch and bound framework and implement it in a parallel programming approach, see e.g., [8]. In addition, we propose to test the possibility of using warm starts in the branching/bounding process and test it on the larger test sets such as used in e.g., [7].

Index

J, gangster index set, 5
\mathcal{G}_{J}, gangster operator, 4
vec, 3
$\hat{R}, 4$
$\hat{Y}, 5$
Z, 5
$\mathbb{S}_{+}^{r n}, 5$
$d_{Z}^{*}, 7$
$d_{Y}^{*}, 5$
e, ones vector, 4
$g(Z), 7$
$p_{R}^{*}, 4$
$p_{X}^{*}, 2$
$p_{R Y}^{*}, 6$
$\mathcal{P}_{1}=\left\{Y \in \mathbb{S}^{n^{2}+1}: \mathcal{G}_{J}(Y)=E_{00}\right\}, 6$
$\mathcal{P}_{2}=\mathcal{P}_{1} \cap\{0 \leq Y \leq 1\}, 6$
$\mathcal{R}:=\{R \succeq 0\}, 7$
$\mathcal{Y}:=\left\{Y: \mathcal{G}_{J}(Y)=E_{00}, 0 \leq Y \leq 1\right\}, 7$
$\mathcal{Z}:=\left\{Z: \hat{V}^{\top} Z \hat{V} \preceq 0\right\}, 7$
QAP, quadratic assignment problem, 2
SDP, semidefinite programmming, 2
alternating direction method of multipliers, 2, 5 augmented Lagrange, 5
dual function, 7
facial reduction, 4
gangster constraints, 2, 6
gangster index set, $J, 5$
gangster operator, $\mathcal{G}_{J}, 4$
lifting, 4
linear cuts, 4
ones, 4
optimal value ADMM relaxation, $p_{R Y}^{*}, 6$
optimal value $\mathbf{Q A P}, p_{X}^{*}, 2$
optimal value dual SDP relaxation, $d_{Y}^{*}, 5$
optimal value primal SDP relaxation, $p_{R}^{*}, 4$
primal-dual interior-point, p-d i-p, 2
quadratic assignment problem, 2
semidefinite programmming, 2
strictly feasible pair, $(\hat{R}, \hat{Y}, \hat{Z}), 4,5$
trace inner product, $\mathrm{h} A Y, X B=\operatorname{trace} Y X^{\top}, 2$

References

[1] K.M. Anstreicher. Recent advances in the solution of quadratic assignment problems. Math. Program., 97(1-2, Ser. B):27-42, 2003. ISMP, 2003 (Copenhagen).
[2] K.M. Anstreicher and N.W. Brixius. A new bound for the quadratic assignment problem based on convex quadratic programming. Math. Program., 89(3, Ser. A):341-357, 2001.
[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Machine Learning, 3(1):1-122, 2011.
[4] S. Burer and R.D.C. Monteiro. Local minima and convergence in low-rank semidefinite programming. Math. Program., 103(3, Ser. A):427-444, 2005.
[5] R.E. Burkard, S. Karisch, and F. Rendl. QAPLIB - a quadratic assignment problem library. European J. Oper. Res., 55:115-119, 1991. www.opt.math.tu-graz.ac.at/qaplib/.
[6] R.E. Burkard, S.E. Karisch, and F. Rendl. QAPLIB - a quadratic assignment problem library. J. Global Optim., 10(4):391-403, 1997.
[7] E. de Klerk and R. Sotirov. Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem. Math. Program., 122(2, Ser. A):225-246, 2010.
[8] R. Jain and P. Yao. A parallel approximation algorithm for positive semidefinite programming. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science-FOCS 2011, pages 463-471. IEEE Computer Soc., Los Alamitos, CA, 2011.
[9] F. Rendl and R. Sotirov. Bounds for the quadratic assignment problem using the bundle method. Math. Program., 109(2-3, Ser. B):505-524, 2007.
[10] H. Sun, N. Wang, T.K. Pong, and H. Wolkowicz. Eigenvalue, quadratic programming, and semidefinite programming bounds for a cut minimization problem. Comput. Optim. Appl., (accepted Aug. 2015):to appear, 2015. 32 pages, submitted.
[11] K.C. Toh, M.J. Todd, and R.H. Tütüncü. SDPT3-a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw., 11/12(1-4):545-581, 1999. Interior point methods.
[12] Z. Wen, D. Goldfarb, and W. Yin. Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Program. Comput., 2(3-4):203-230, 2010.
[13] Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relaxations for the quadratic assignment problem. J. Comb. Optim., 2(1):71-109, 1998. Semidefinite programming and interior-point approaches for combinatorial optimization problems (Fields Institute, Toronto, ON, 1996).

[^0]: *This work is partially supported by NSERC and AFOSR.
 ${ }^{\dagger}$ Dept. of Combinatorics and Optimization, University of Waterloo.
 \ddagger Dept. of Combinatorics and Optimization, University of Waterloo. Research supported by The Natural Sciences and Engineering Research Council of Canada and by AFOSR. Email: hwolkowicz@uwaterloo.ca
 §Institute for Mathematics and its Applications (IMA), University of Minnesota

[^1]: ${ }^{1}$ We do not include the times as they were much greater than for the ADMM approach, e.g., hours instead of minutes and a day instead of an hour.

