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Abstract

We consider three parametric relaxations of the ��� quadratic pro�

gramming problem� These relaxations are to� quadratic maximization

over simple box constraints� quadratic maximization over the sphere�

and the maximum eigenvalue of a bordered matrix� When minimized

over the parameter� each of the relaxations provides an upper bound

on the original discrete problem� Moreover� these bounds are e�ciently

computable� Our main result is that� surprisingly� all three bounds are

equal�
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� INTRODUCTION

Consider the �� quadratic programming problem

�P 
 �� �� max q�x
 �� xtQx� ctx� x � F �� f��� �gn� ����


where Q is an n � n symmetric matrix and c � �n� Any problem with
Q nonsymmetric can be reduced to �P
� Moreover� ��� quadratic program�
ming is equivalent to �P
 via the transformation x � �y � e� where y is a
��� �
�vector and e is the vector of ones� These problems have many ap�
plications� in particular in combinatorial optimization� However� they are
NP�hard� see e�g� ��� pg ���� problem GT�	� since �P
 is equivalent to the
max�cut problem�

Various approaches have been used to solve or approximate �� or ���
programming problems� One of the possible techniques is to relax problem
�P
 to a tractable nonlinear continuous problem in order to obtain upper
bounds� This approach was used for graph partitioning problems in ���� and
the maximum stable set problem in ����� More recently it has been applied
in e�g� ���� �	� ��� 	��

In this paper we study three di�erent relaxations which yield three
bounds� We replace �P
 by a relaxed problem�

�RP 
 f�u
 � max
x�K

qu�x
 � xt�Q� diag �u

x� ute� ctx�

where qu is a parametrization of the quadratic function q and is equivalent
to it on the feasible set F � e is the vector of ones� and K is a relaxation of
the feasible set F � We then solve

B ��minu�Lf�u


�The authors would like to thank DIMACS Center at Rutgers University for their

support� This report is issued simultaneously at� the Department of Combinatorics and

Optimization� University of Waterloo� Report CORR ����	
 the Department of Civil En�

gineering and Operations Research� Princeton University� Report SOR ���	
 and DIMACS

Center� Rutgers University� Report ������

�



to �nd the best bound over all values of the parameter u that yield a tractable
problem� In each case f�u
 is a convex function and L is a convex set�
Therefore� �nding the bound B can be done in polynomial time� see �����
The relaxations are to�

� quadratic maximization over simple box constraints

� quadratic maximization over the sphere

� the maximum eigenvalue of a bordered matrix�

Our contribution is to show that� surprisingly� these three seemingly unre�
lated relaxations all yield the same bound�

In Section � we present the �rst bound B�� which is based on diagonal
shifting Q to obtain a tractable concave quadratic programming problem
with simple box constraints� i�e� the constraints are relaxed to �� � x � ��
In Section � we present bound B� which again involves a diagonal shift but
the �� constraints are relaxed to a sphere constraint� These relaxations are
called trust region subproblems� We show that B� � B�� In Section � we
present bound B� which consists in minimizing the maximum eigenvalue of
an enlarged shifted matrix of dimension n��� We show that B� � B� � B��
We include a �nal relaxation of a quadratic programming problem with no
linear term and show that the bound obtained� B�� again equals the previous
three bounds�

��� Preliminaries

We will use the following notations� diag �v
 denotes the diagonal matrix
formed from the vector v and conversely� diag �M
 is the vector of the di�
agonal elements of the matrix M 
 e is the vector of ones
 the matrices
M� �M� �M� � M�
 refers to the Loewner partial order� i�e� that M��M�

is negative semide�nite �negative de�nite

 similarly� v � w� �v � w
 refers
to coordinatewise ordering of the vectors
 conv �S
 is the convex hull of the
set S
 �max�M
 denotes the largest eigenvalue of a symmetric matrix M �
The space of symmetric matrices is considered with the trace inner product
� M�N �� traceMN�

For a convex function f � �n � �� the vector � � �n is a subgradi�
ent at the vector v if �t�y � v
 � f�y
 � f�v
� �y � �n� The set of all
subgradients is a convex� compact� set called the subdi�erential� and is de�
noted by 	f�v
� The directional derivative of f at v in the direction z is

�



f ��v
 z
 �� limt��
f�v�tz��f�v�

t
� The relationship between directional derivative

and subdi�erential is given by

f ��v
 z
 � max
���f�v�

�tz� ����


This means that f ��v
 �
 is a positively homogeneous� sublinear functional�
and it is the support function of 	f�v
� �For more details see e�g� �����


� BOUND � � Convex Quadratic Programming

Consider the shifted function

qv�x
 �� xt�Q� diag �v

x� vte� ctx� ����


and the relaxed problem

�RP �
v 
 f��v
 �� max

���x��
qv�x
� ����


Then a bound for �P
 is

B� �� min
Q�diag �v���

f��v
� ����


We now present some properties for the bound B��

Lemma ��� �� B� is an upper bound for �P�� i�e�

�� � B��

�� The function f� is convex and �nite valued� with subdi�erential

	f��v
 � conv fz � ���x�i 
 � �n � x � �xi
 � �n� �� � x � �� f��v
 � qv�x
g�
����


	� The bound B� is attained for some v � �n such that �max�Q�diag �v

 �
��


�

B� � inf
Q�diag �v���

f��v
�

�



Proof� �� For each v� xtdiag �v
x � vte on the feasible set F � Therefore�
qv�x
 � q��x
 � q�x
 on F � This implies f��v
 is an upper bound for �P
�
for each v�

�� For each �xed x� the function qv�x
 is linear in v� Therefore f��v

is the maximum of a set of linear functions� This implies that f� is convex
in v� Moreover� compactness and continuity imply that f� is �nite valued�
which further implies that f� is continuous and subdi�erentiable� In ��� �See
also pg �� in ��� or pg ��� in ����
 it is shown that at any point v and any
direction z� the directional derivative of f� exists and is a support function
given by

f ���v
 z
 � max
f���x���f��v�	qv�x�g

ztrvqv�x
�

The relationship between directional derivative and subdi�erential� see ����
�
yields the desired subdi�erential formula� i�e� f ���v
 z
 is the support function
of the convex hull of gradients rqv�x
� at optimal points x� thus de�ning
the set 	f��v
 in ����
�

�� Note that qv�x
 � q��x
 �
P

i vi��� x�i 
 so that

v 	 w implies qv�x
 	 qw�x
� � � � � x � ��

Therefore
v 	 w implies f��v
 	 f��w
� ���	


So� if B� � f��v
� then we can decrease v until we lose negative de�niteness�
Similarly� if B� � infj f�v

�j�
� then we can assume that the sequence v�j� is
bounded above by e�g� etjQje� etjcj� where j j replaces all the elements by
their absolute values� and bounded below by diag �Q
� This sequence must
have a convergent subsequence and we can apply the previous argument to
a cluster point to again get Q� diag �v
 singular�

�� This follows from continuity and attainment�
�

For every v� the function qv�x
 � xt�Q�diag �v

x� vte� ctx yields the
same values on the feasible set F � Therefore� we can replace q��x
 in �P
 with
a concave function by restricting Q�diag �v
 � ��We then have a tractable
problem to solve� In fact� these problems can be solved in polynomial time�
see e�g� ��	�� E�cient numerical algorithms for these problems are described
in e�g� ����

The Lagrangian for ����
 is

L��v��
 �� f��v
 � trace��Q� diag �v

�

	



where � is a symmetric� positive semide�nite Lagrange multiplier matrix�
The Slater constraint quali�cation holds for ����
� i�e� there exists v such
that Q � diag �v
 � �� Therefore� B� � f��v
 if and only if the following
optimality conditions hold for some �� see e�g� �����

� � 	f��v
� diag ��
 �stationarity

trace��Q� diag �v

 � � �complementary slackness


� � �t 	 � �multiplier sign
�
����


Bound B� was �rst considered in K�orner ���� for constrained problems� In a
weaker form� which corresponds to setting v � �max�Q
e� where �max denotes
the largest eigenvalue� it was proposed by Hammer and Rubin �����

� BOUND � � Optimization Over Sphere

Now� for ute � �� we again consider the shifted function

qu�y
 �� yt�Q� diag �u

y � ute� cty� ����


and the second relaxed problem

�RP �
u
 f��u
 �� max

jjyjj�	n
qu�y
� ����


Now a bound for �P
 is

B� �� min
ute	�

f��u
 � min
u

f��u
� ����


We can restrict ute � �� since we can always replace u by u�Pi
ui
n
e without

changing the values of qu in �RP �
u
� Note that �RP �

u
 is not linearly con�
strained� These quadratically constrained problems are called trust region
subproblems and are also tractable and can be solved in polynomial time�
see ����� This can also be seen from the fact that there is a dual problem
to �RP �

u
 that minimizes a convex function over an interval� see ����� These
trust region subproblems can be classi�ed into� the easy case if the Hes�
sian of the Lagrangian �see below
 is positive de�nite
 and the hard case
otherwise� �For the theory and e�cient algorithms� see e�g� ���� ��� ����


We now present some properties for the bound B��

Lemma ��� �� B� is an upper bound for �P�� i�e�

�� � B��

�



�� The function f� is convex and �nite valued� with subdi�erential

	f��u
 � convfz � ���y�i 
 � �n � y � �yi
 � �n� jjyjj� � n� f��u
 � qv�y
g�
	� The bound B� is attained for some u � �n� Moreover� if B� � ���

then the hard case holds for �RP �
u
�

Proof� The statements follow similarly to the results in Lemma ���� Attain�
ment for the hard case follows from the fact that the optimum for �RP �

u

cannot be unique if f��u
 � B�� �See the proof of Theorem ��� below for
details�


�

Proposition ��� If Q is diagonal� then

B� � B� � ���

Proof� If Q � diag �q
 for some q � �n� then we can set the optimum of
�P
 as yi � �� coinciding with the sign of the corresponding component of
the linear term ci� We can now �nd the unique solution of the system of
equations

qi � ui � � � �jcij� �i�
with

P
i ui � �� i�e� � � �

n
�
P

i jcij�
P

i qi
 and ui � jcij�qi��� i � �� 
 
 
n���
These equations show that the exact solution of �P
 also solves �RP �

u
 and
�RP �

u��e
�
�

Theorem ��� The bound B� � B��

Proof� Fix u with ute � � and set yu so that jjyujj� � n and f��u
 � qu�yu
�
Then the optimality conditions for �RP �

u
� see e�g� ���� ���� imply that there
exists � such that

Q� diag �u
� �I � �� ��Q� diag �u
� �I
yu � �c� ����


i�e� the Hessian of the Lagrangian is negative semide�nite and yu is a sta�
tionary point of the Lagrangian� Therefore� yu is a global unconstrained
maximum for the Lagrangian� We get

f��u
 � qu�yu

� maxy qu�y
 � ��n� jjyjj�

� maxy q�u��e��y

	 max����y��� q�u��e��y

� f��u� �e

	 B��

���	


�



where we have used the facts�
P

i ui � � implies �n �
P

i�ui � �

 and
Q� diag �u
� �I � � to bound B�� This shows that B� 	 B��

Now suppose that B� � f��u
� Then by de�nition of B� and convexity
of f�� we conclude that � � 	f��u
 � 
e� for some Lagrange multiplier

 � �� Therefore� there exists z � �zi
 � 	f��u
� with zi � 
� �i� The
subdi�erential of f� consists of the convex hull of vectors with components
�� � y�i 
� for optimal solutions y � �yi
 of �RP �

u
� see Lemma ���� By
Caratheodory�s Theorem� see e�g� ����� for elements in the convex hull we
need only consider k � n� � optimal solutions y�j�� Therefore�

y ��
kX

j	�

�jy
�j�� �j � ��

kX
j	�

�j � ��

is the corresponding convex combination of optimal solutions for the com�
ponents of the subdi�erential zi � 
 �

Pk

j	� �j�� � �y
�j�
i 
�
� Now let Y be

the n�k matrix with components �y�j�i 
� � be the n�k matrix with squared
components ��y�j�i 
�
 and let � � ��j
 � �k� Then �t�te � n�te � n and this
equals et�� � ��� 

ete � ��� 

n� i�e� 
 � �� Now let �s �� �

p
�j
 � �k

and for �xed i� zsi �� �
p
�jy

�j�
i 
 � �k� Then� the positivity of � and the

Cauchy�Schwartz inequality implies that jyij � Pk

j	� �j jy�j�i j � ��s
tjzsi j �qPk

j	� �j�y
�j�
i 
� � �� since 
 � �� Therefore� the components of y must

satisfy jyij � �� Moreover� the conditions for equality in Cauchy�Schwartz
now yield

jyij � � with equality i� jy�j�i j � � �j� ����


In fact� yi � � implies that y�j�i � � �j� �Similarly for yi � ���
 Now each
vector y�j� satis�es ����
 and so the convex combination y � Y � satis�es
����
 as well� Therefore� y solves the maximization problem in ���	
 with
the inequality� max����y��� q�u��e��y
 � �n� and it also solves the one in the
line above the inequality� maxy q�u��e��y
� �n� Therefore� equality holds in
���	
 except perhaps at the end we might have � B�� So we have shown
that

B� � f��u
 implies f��u
 � f��u� �e
� ����


Now let v �� u� �e and Qv �� Q� diag �v
� From the optimality of the
columns of Y � we know that

Qv�Y � yet
 � �� ����


De�ne the vectors p�j� �� y�j��y� i�e� the columns of the matrix P �� Y �yet�
Now de�ne the symmetric positive semide�nite Lagrange multiplier matrix

�



� �
P
�jp

�j��p�j�
t� Since Qup
�j� � �� �j� by ����
� we see that Qu� � �� i�e�

complementary slackness holds in ����
 for ����
� Moreover� the stationarity
conditions in ����
 hold as well� i�e� the diagonal elements of � satisfy

�ii �
P

j �j�y
�j�
i � yi


�

�
P

j �j�y
�j�
i 
� � y�i

� �� y�i �

by the facts that y � Y � and �� � e� Therefore� we have satis�ed the
optimality conditions for �nding B�� i�e� we now have B� � f��v
 � f��u
 �
B��

�

Corollary ��� B� � f��u
� with Lagrange multiplier � for �RP �
u
 if and

only if B� � f��u
 � f��u� �e
 � B��

Proof� The results follow directly from the proof of the Theorem� In
particular� see ����
�

�

Example ��� We now illustrate that equality holds in Theorem 	�� and

see how the various subgradients are calculated� Let Q �

�
�� ��p

���p
�

��
�

�
and

c � �

� p
�p
�
�

�
in �P�� Set Y �

�
�
p
� �p

�

�
q

�
�

�
	 with squared components of Y

in � �

�
� �

�

� �
�

�
� Then the columns of Y satisfy the stationarity condition

for optimality of �RP �
u
 with u � � and Lagrange multiplier � � �� i�e�

�QY � �cet� Moreover� Q is negative semide�nite and �te � �e which
implies that the columns of Y are optimal solutions of �RP �

u
� Now let
� � ��

�
�
�

t� Then �� � e which means that we have found a subgradient in

	f��u
 with equal components� i�e� u � � yields the minimum for f�� �See
the proof of Theorem 	����

Now set y � Y � �

�
�
p
�

�q
�
�

�
� Then the components satisfy jyij � ��

Moreover� �Qy � �c� Therefore� y is an optimal solution for �RP �
� 
 and� by

Corollary 	��� f���
 � f���
� Now choose the Lagrange multiplier matrix for

B� in ���	� to be � � �



�
� �p�

�p� �

�
� Then we see that complementary

�



slackness holds� i�e� � 	 �� trace ���Q � diag �u

 � �� Moreover� the
diagonal of � equals the subgradient with components �� � y�i 
� i�e� the
bound B� is attained at u � ��

If the problem �P
 is without the linear term� i�e� c � �� bound B�

becomes much simpler� We have

B� � min
ute	�

n�max�Q� diag�u

� ����


For Q � L� the Laplacian matrix of a graph� ����
 provides an upper bound
on the max�cut problem � see �	�� We will show in the next section that every
problem �P
 can be reduced to the form without a linear term by increasing
the size of the matrix� and moreover� the transformation does not change
the relaxed bounds�

� BOUND � � Minimize �max

Given Q and c� de�ne the �n � �
 � �n � �
�matrix Qc by adding a �� th

row and column� so that

qc�� � �
qc�i � qci� �

�
�
ci for i � �

qcij � qij for i� j � ��

i�e�

Qc ��

�
� �

�
ct

�
�
c Q

�
�

In order to have analogous functions qcu�y
 and f��u
 as in the previous cases�
let us introduce

qcu�y
 �� yt�Qc � diag �u

y � ute� ����


and the equivalent relaxed problem

�RP �
u
 f��u
 �� max

jjyjj�	n��
qcu�y
 � �n��
�max�Q

c�diag �u

�ute� ����


Just as for f�� we can restrict ute � �� Now a bound for �P
 is

B� �� min
ute	�

f��u
 � min
u

f��u
� ����


We now present some properties for the bound B��

��



Lemma 	�� �� B� is an upper bound for �P�� i�e�

�� � B��

�� The function f� is convex and �nite valued� with subdi�erential

	f��u
 � convfz � ���y�i 
 � �n�� � y � eigenspace of �max�Q
c�diag �u
� jjyjj� � n��g�

	� The bound B� is attained for some u � �n��� Moreover� if B� � ���
then the eigenspace corresponding to �max�Q

c�diag �u

 has dimension
� � for �RP �

u
�


� B� � minetu	��n� �
�max�Q
c � diag �u

�

Proof� The proof follows similarly as that for Lemma ���� as this relaxation
is a trust region subproblem with no linear term�

�

Theorem 	�� The bounds B� � B� � B��

Proof� If we restrict the �rst component of y in ����
 to be �� then we get
a value for f�� i�e� this shows that B� 	 B��

To show the reverse inequality� suppose that u is given with ute � � and
x solves �RP �

u
� i�e� f��u
 � qu�x
� Therefore� the stationarity conditions
and negative semide�niteness conditions hold with Lagrange multiplier ��

see ����
� Let Qu �� Q � diag �u
� t �� �� �
�c

tx� D�t
 ��

�
t �

�
ct

�
�c Qu

�
� and

y �� �
n��

�� x
t� Then � is an eigenvalue of D�t
 with eigenvector y� since
�Qu��I
x � ��

�c�Moreover� the optimality conditions Qu��I � � implies
� 	 �max�Qu
� Therefore� by the interlacing theorem for eigenvalues� e�g�
����� � � �max�D�t

� This implies that

�� t

n � �
�
n�� �

�
ctx

n� �

is the largest eigenvalue of the shifted matrix

D�t
� t

n � �
I � Qc � diag �uc
�

thereby de�ning the n�� dimensional vector uc ��

�
n

n��
t

u� t

n��
e

�
� Therefore

f��u
c
 � n�� �

�
ctx�

��



To complete the proof of the theorem� we need only show that this also
equals f��u
� By the stationarity condition for �RP �

u
� we can substitute
�Qu� �I
x � ��

�
c and see that the objective value f��u
 � qu�x
� ��xtx�

n
 � �n� �
�c

tx�
�

Similar relations between trust region subproblems and eigenvalue prob�
lems are presented in ���� ���� The problem ����
 is equivalent to minimizing
the maximum eigenvalue of a matrix� These type of problems are treated
in e�g� ���� ���� where e�cient algorithms are presented as well as optimal�
ity conditions� The above theorem shows that these problems can also be
treated using e�cient trust region subproblem algorithms�

We can now combine the above equivalences between the three given
bounds with a fourth bound to get�

Corollary 	�� Suppose that f��v
 �� max���x�� qcv�x
 and

B� �� min
Qc�diag �v���

f��v
�

Then
B� � B� � B� � B��

Proof� Problem B� corresponds to B� just as B� corresponds to B�� There�
fore the result follows from Theorems ��� and ����

�

� CONCLUSION

In this paper we considered three di�erent relaxations of the �� quadratic
programmingproblem and showed that all three� surprisingly� yield the same
bound� Thus� our results provide a theoretical framework to alternatively
use and combine di�erent computational methods to get the bounds B� �
B� � B�� At present� it seems that the eigenvalue bound B� might be the
one most e�ciently computable� However� there is a lot of ongoing research
to improve algorithms for all three problems used in our relaxations�

Bound B� corresponds to applying parametric programming to a quadratic
programming problem with simple or box constraints� E�cient algorithms
for this problem are given in e�g� ���� These correspond to trust region type
algorithms over the box or in�nity norm rather than ��norm� Bound B� cor�
responds to applying parametric programming to trust region subproblems

��



with the ��norm� E�cient algorithms are given in ���� ���� where the sub�
problems are solved to near optimality in typically ��� iterations� There is
ongoing recent research to develop more e�cient algorithm in particular for
large problems� Finally B� corresponds to minimizing the maximum eigen�
value� Theory and e�cient algorithms for this problem are surveyed in �����
In fact� the theory shows that these algorithms have quadratic convergence
properties� which is surprising for possibly nondi�erentiable problems� An
interior point algorithm to compute B� was given in �����

There are several interesting questions that our equivalences raise� e�g�
which is the most e�cient way to solve the various problems� In partic�
ular� we see that we can solve min�max eigenvalue problems by applying
known trust region subproblem algorithms or even quadratic programming
combined with some subdi�erential calculus like a bundle trust subgradient
approach� see e�g� ����� Another question is to study the performance of
the relaxations in the presence of additional constraints� Problem �P
 is an
unconstrained �� quadratic programming problem� However� many combi�
natorial optimization problems naturally lead to constrained �� quadratic
programming problems� From this point of view� the quadratic program�
ming bound B� seems to be the most tractable� since it immediately allows
adding additional linear constraints� However� one may add certain con�
straints to the other bounds� For example� in ���� an eigenvalue relaxation
with additional polyhedral constraints is considered for the graph bisection
problem�

Since the bounds B� � B� � B� are introduced in order to approximate
the original discrete problem �P
� it is important to study the connection be�
tween the original combinatorial problem and its relaxation� This has been
done in e�g� ���� for the stable set problem� in Boppana ��� for the graph
bisection problem� and �	� for the max�cut problem� The quality of the ap�
proximation may vary with di�erent combinatorial optimization problems�
However� in general� it seems that the nonlinear relaxations provide better
bounds more often than the linear ones�
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