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Abstract

We consider three parametric relaxations of the 0-1 quadratic pro-
gramming problem. These relaxations are to: quadratic maximization
over simple box constraints, quadratic maximization over the sphere,
and the maximum eigenvalue of a bordered matrix. When minimized
over the parameter, each of the relaxations provides an upper bound
on the original discrete problem. Moreover, these bounds are efficiently
computable. Our main result is that, surprisingly, all three bounds are
equal.
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1 INTRODUCTION

Consider the £1 quadratic programming problem
(P) p":=max ¢(z):=2'Qz + 'z, zc F:={-1,1}", (1.1)

where () is an n X n symmetric matrix and ¢ € R*. Any problem with
@Q nonsymmetric can be reduced to (P). Moreover, 0,1 quadratic program-
ming is equivalent to (P) via the transformation # = 2y — e, where y is a
(0,1)—vector and e is the vector of ones. These problems have many ap-
plications, in particular in combinatorial optimization. However, they are
NP-hard, see e.g. [9] pg 196, problem GT25, since (P) is equivalent to the
max-cut problem.

Various approaches have been used to solve or approximate +1 or 0,1
programming problems. One of the possible techniques is to relax problem
(P) to a tractable nonlinear continuous problem in order to obtain upper
bounds. This approach was used for graph partitioning problems in [7], and
the maximum stable set problem in [16]. More recently it has been applied
in e.g. [14, 25, 24, 5].

In this paper we study three different relaxations which yield three
bounds. We replace (P) by a relaxed problem:

(RP)  f(u) = maxq,(z) = 2*(Q — diag (u))z + u'e + c'z,

where ¢, is a parametrization of the quadratic function ¢ and is equivalent
to it on the feasible set F', e is the vector of ones, and K is a relaxation of
the feasible set F'. We then solve

B := minyr, f(u)
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Optimization, University of Waterloo, Report CORR 93-05; the Department of Civil En-
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to find the best bound over all values of the parameter u that yield a tractable
problem. In each case f(u) is a convex function and L is a convex set.
Therefore, finding the bound B can be done in polynomial time, see [19].
The relaxations are to:

- quadratic maximization over simple box constraints
- quadratic maximization over the sphere
- the maximum eigenvalue of a bordered matrix.

Our contribution is to show that, surprisingly, these three seemingly unre-
lated relaxations all yield the same bound.

In Section 2 we present the first bound B;, which is based on diagonal
shifting ) to obtain a tractable concave quadratic programming problem
with simple box constraints, i.e. the constraints are relaxed to —1 < z < 1.
In Section 3 we present bound B, which again involves a diagonal shift but
the £1 constraints are relaxed to a sphere constraint. These relaxations are
called trust region subproblems. We show that B; = B,. In Section 4 we
present bound B; which consists in minimizing the maximum eigenvalue of
an enlarged shifted matrix of dimension n+ 1. We show that B; = B, = Bs;.
We include a final relaxation of a quadratic programming problem with no
linear term and show that the bound obtained, By, again equals the previous
three bounds.

1.1 Preliminaries

We will use the following notations: diag(v) denotes the diagonal matrix
formed from the vector v and conversely, diag (M) is the vector of the di-
agonal elements of the matrix M; e is the vector of ones; the matrices
M; < M, (M; < M,) refers to the Loewner partial order, i.e. that M; — M,
is negative semidefinite (negative definite); similarly, v < w, (v < w) refers
to coordinatewise ordering of the vectors; conv (.§) is the convex hull of the
set S5 Amax(M) denotes the largest eigenvalue of a symmetric matrix M.
The space of symmetric matrices is considered with the trace inner product
< M,N >=trace M N.

For a convex function f : ®* — R, the vector ¢ € R" is a subgradi-
ent at the vector v if ¢'(y — v) < f(y) — f(v), Yy € R™. The set of all
subgradients is a convex, compact, set called the subdifferential, and is de-
noted by J0f(v). The directional derivative of f at v in the direction z is



(v 2) := limy o w The relationship between directional derivative

and subdifferential is given by

"(viz) = max ¢'z. 1.2
Ple52) = max ¢ (1.2

This means that f'(v;.) is a positively homogeneous, sublinear functional,
and it is the support function of 0 f(v). (For more details see e.g. [26].)

2 BOUND 1 - Convex Quadratic Programming
Consider the shifted function

¢ (z) := 2*(Q — diag (v))z + v'e + c'z, (2.1)
and the relaxed problem

(RP!) fi(v):= max g, (z). (2.2)

—-1<z<1
Then a bound for (P) is

B, := o_ain fi(v). (2.3)

We now present some properties for the bound B;.

Lemma 2.1 1. B; is an upper bound for (P), i.e.

/.L* S B]_.

2. The function f, is convezx and finite valued, with subdifferential

Ofilv) =conv{z=(1-2}) e R :z2=(z;,) e R, -1 <z <1, fi(v) = ¢,(2)}.

[\

4
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3. The bound B is attained for some v € R™ such that A,q,(Q —diag (v)) =
0.

B]_ = inf
Q—diag(v)<0

fi(v).



Proof: 1. For each v, z'diag(v)z = v'e on the feasible set F. Therefore,
¢,(z) = go(2) = ¢(z) on F. This implies f;(v) is an upper bound for (P),
for each v.

2. For each fixed @, the function g,(z) is linear in v. Therefore f;(v)
is the maximum of a set of linear functions. This implies that f, is convex
in v. Moreover, compactness and continuity imply that f, is finite valued,
which further implies that f; is continuous and subdifferentiable. In [4] (See
also pg 26 in [8] or pg 188 in [6].) it is shown that at any point v and any
direction z, the directional derivative of f; exists and is a support function
given by

fll(v7z) = ztvqu(m)‘

max
{—1§z§1,f1('v):q1,(z)}

The relationship between directional derivative and subdifferential, see (1.2),
yields the desired subdifferential formula,i.e. f](v;z)is the support function
of the convex hull of gradients Vg,(z), at optimal points z, thus defining
the set 0fi(v) in (2.4).

3. Note that g,(z) = go(2) + >, v;(1 — 2?) so that

v > w implies g,(2) > g,(z), V-1<az <1

Therefore
v > w implies fi(v) > fi(w). (2.5)

So, if B; = fi(v), then we can decrease v until we lose negative definiteness.
Similarly, if B; = inf; f(v\?)), then we can assume that the sequence v") is
bounded above by e.g. €’|Q|e + €'|c|, where | | replaces all the elements by
their absolute values, and bounded below by diag (Q). This sequence must
have a convergent subsequence and we can apply the previous argument to
a cluster point to again get ) — diag(v) singular.

4. This follows from continuity and attainment.

O

For every v, the function ¢,(z) = 2*(Q — diag (v))z 4 v’e + c*z yields the
same values on the feasible set F'. Therefore, we can replace go(2) in (P) with
a concave function by restricting @ — diag (v) < 0. We then have a tractable
problem to solve. In fact, these problems can be solved in polynomial time,
see e.g. [15]. Efficient numerical algorithms for these problems are described
in e.g. [2].

The Lagrangian for (2.3) is

Li(v,A):= fi(v) + trace A(Q — diag(v)),



where A is a symmetric, positive semidefinite Lagrange multiplier matrix.
The Slater constraint qualification holds for (2.3), i.e. there exists v such
that Q — diag(v) < 0. Therefore, B; = fi(v) if and only if the following
optimality conditions hold for some A, see e.g. [17]:

0 € 0fi(v) — diag(A) (stationarity)
trace A(Q — diag(v)) =0 (complementary slackness) (2.6)
A=A">0 (multiplier sign).

Bound B, was first considered in Kérner [14] for constrained problems. In a
weaker form, which corresponds to setting v = Apax(Q)e, where Ap., denotes
the largest eigenvalue, it was proposed by Hammer and Rubin [11].

3 BOUND 2 - Optimization Over Sphere

Now, for u*e = 0, we again consider the shifted function

¢.(y) := ¥"(Q — diag (u))y + u'e + c'y, (3.1)

and the second relaxed problem

(RP?)  fi(u):= max gq,(y)- (3.2)

llyl|?=n

Now a bound for (P) is
B, := IPiE}) fo(u) = min fo(u). (3.3)

We can restrict u’e = 0, since we can always replace u by u— 3}, *ie without
changing the values of ¢, in (RP?). Note that (RP?) is not linearly con-
strained. These quadratically constrained problems are called trust region
subproblems and are also tractable and can be solved in polynomial time,
see [31]. This can also be seen from the fact that there is a dual problem
to (RP?) that minimizes a convex function over an interval, see [29]. These
trust region subproblems can be classified into: the easy case if the Hes-
sian of the Lagrangian (see below) is positive definite; and the hard case
otherwise. (For the theory and efficient algorithms, see e.g. [10, 28, 18].)
We now present some properties for the bound B,.

Lemma 3.1 1. B, is an upper bound for (P), i.e.

/.L* S Bz.



2. The function f, is convezx and finite valued, with subdifferential
0fx(u) = conv{z = (1-¢}) € X" :y = () € ®", [lylI* = n, folu) = ¢ (y)}-

3. The bound B, is attained for some u € R™. Moreover, if By > u*,
then the hard case holds for (RP?).

Proof: The statements follow similarly to the results in Lemma 2.1. Attain-
ment for the hard case follows from the fact that the optimum for (RP?)
cannot be unique if f,(u) = B,. (See the proof of Theorem 3.1 below for

details.)
a

Proposition 3.1 If Q is diagonal, then
B]_ = B2 = /.L*.

Proof: If Q = diag(gq) for some ¢ € R*, then we can set the optimum of
(P) as y; = £1 coinciding with the sign of the corresponding component of
the linear term ¢;. We can now find the unique solution of the system of
equations
q; — U; — A= —|Ci|, VZ,
with Y, u; = 0,ie. A = 2(3; e[+, @) and w; = |e;[+gi—A, i =1,---n—1.
These equations show that the exact solution of (P) also solves (RP?) and
(RP1}+Ae )
O

Theorem 3.1 The bound B, = B,.

Proof: Fix u with u’e = 0 and set y, so that ||y,||* = n and fa(v) = ¢u(yu)-
Then the optimality conditions for (RP?), see e.g. [10, 28], imply that there
exists A such that

Q — diag(u) — AI <0, 2(Q — diag(u) — M)y, = —c¢, (3.4)

i.e. the Hessian of the Lagrangian is negative semidefinite and y, is a sta-
tionary point of the Lagrangian. Therefore, y, is a global unconstrained
maximum for the Lagrangian. We get

fo(u)

u(Yu)

max, ¢, (y) + A(n — [[y][?)

maxy, q(u+>\e)(y) (35)
max(_1<y<1) Gutre)(¥)

fi(u+ Ae)

Bla
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where we have used the facts: >, u;, = 0 implies An = Y ,(u; + A); and
Q — diag(u) — AI < 0 to bound B;. This shows that B, > B;.

Now suppose that B, = fo(u). Then by definition of B, and convexity
of f», we conclude that 0 € Jf,(u) — ae, for some Lagrange multiplier
a € R. Therefore, there exists z = (z;) € 0fa(u), with z, = a, Vi. The
subdifferential of f, consists of the convex hull of vectors with components
(1 — y?), for optimal solutions y = (y;) of (RP?), see Lemma 3.1. By
Caratheodory’s Theorem, see e.g. [26], for elements in the convex hull we
need only consider k£ < n + 1 optimal solutions y). Therefore,

k k
Y= ZGjy(J), g, > 0, ZGJ» =1,
7j=1 7j=1

is the corresponding convex combination of optimal solutions for the com-

ponents of the subdifferential z; = a = Ele 6;(1 - (¥9)?). Now let Y be
the n X k matrix with components (y,(j)), ® be the n x k matrix with squared
components ((y"))?) and let 6 = (6,) € R*. Then §*®’e = nf'e = n and this
equals e!®9 = (1 — a)e’e = (1 — a)n, i.e. @ = 0. Now let §° := (1/6;) € R*
and for fixed 7, z} := (\/Zyl(])) € R*. Then, the positivity of § and the
Cauchy-Schwartz inequality implies that |y;| < Ele 0j|yl(j)| = (0°)Yz] <

Ele 0j(y,(j))2 = 1, since @« = 0. Therefore, the components of y must
satisfy |y;| < 1. Moreover, the conditions for equality in Cauchy-Schwartz
now yield

lyi| <1 with equality iff [y = 1 Vj. (3.6)

In fact, y; = 1 implies that yl(j) = 1 Vj. (Similarly for y; = —1.) Now each
vector y(/) satisfies (3.4) and so the convex combination y = Y6 satisfies
(3.4) as well. Therefore, y solves the maximization problem in (3.5) with
the inequality, max_1<y<1) gu+are)(¥) + An, and it also solves the one in the
line above the inequality, max, giu1xe)(y) + An. Therefore, equality holds in
(3.5) except perhaps at the end we might have > B;. So we have shown
that
B, = fo(u) implies fo(u) = fi(u + Ae). (3.7)
Now let v := u+ Ae and @, := @ — diag(v). From the optimality of the
columns of Y, we know that

Q.(Y —ye') = 0. (3.8)

Define the vectors pl¥) := y(/)—y, i.e. the columns of the matrix P := ¥ —yet.
Now define the symmetric positive semidefinite Lagrange multiplier matrix



A =3 0,p9)(pl))e. Since Q,pY9) = 0, Vj, by (3.8), we see that Q, A = 0, i.e.
complementary slackness holds in (2.6) for (2.3). Moreover, the stationarity
conditions in (2.6) hold as well, i.e. the diagonal elements of A satisfy

Ay = Ejoj(yi — ¥:)
225 05( -

by the facts that y = Y0 and 0 = e. Therefore, we have satisfied the
optimality conditions for finding B, i.e. we now have B; = fi(v) = fa(u) =
B..

O

Corollary 3.1 B, = f,(u), with Lagrange multiplier X for (RP2) if and
only if By = fa(u) = fi(u + Ae) = By.

Proof. The results follow directly from the proof of the Theorem. In
particular, see (3.7).
O

Example 3.1 We now illustrate that equality holds in Theorem 3.1 and
_9 =
l and

[

see how the various subgradients are calculated. Let QQ =

c:4(\/£2§) in (P). SetY =

3

=2
Ve

|
@lLS

1

] with squared components of Y

e

1
m P = 3 3 |- Then the columns of Y satisfy the stationarity condition
2
for optimality of (RP2) with u = 0 and Lagrange multiplier A = 0, i.e.
2QY = —ce'. Moreover, @ is negative semidefinite and ®'e = 2e which

implies that the columns of Y are optimal solutions of (RPZ2). Now let

0 = (3 2)*. Then ®0 = e which means that we have found a subgradient in

0 fa(u) with equal components, i.e. u = 0 yields the minimum for f,. (See
the proof of Theorem 3.1.)
2v2

Now sety = Y0 = ( % ) . Then the components satisfy |y;| < 1.

3
Moreover, 2Qy = —c. Therefore, y is an optimal solution for (RPy) and, by

Corollary 3.1, f1(0) = f2(0). Now choose the Lagrange multiplier matriz for

1 V3

B in (2.3) to be A = 1 3 3 l . Then we see that complementary



slackness holds, 1.e. A > 0, trace(A(Q — diag(u)) = 0. Moreover, the
diagonal of A equals the subgradient with components (1 — y?), i.e. the
bound B, is attained at u = 0.

If the problem (P) is without the linear term, i.e. ¢ = 0, bound B,
becomes much simpler. We have

B; = IPI_I}) n)‘max(Q - dzag(u)) (39)

For @ = L, the Laplacian matrix of a graph, (3.9) provides an upper bound
on the max-cut problem , see [5]. We will show in the next section that every
problem (P) can be reduced to the form without a linear term by increasing
the size of the matrix, and moreover, the transformation does not change
the relaxed bounds.

4 BOUND 3 - Minimize )\

Given @ and ¢, define the (n + 1) X (n 4 1)-matrix Q¢ by adding a 0 — th

row and column, so that

%0 =10
g5 = 4o = %ci forz>0
4 = Gj for 7,7 > 0,

i.e.
c._ | O %ct
=[5 %]

In order to have analogous functions ¢;(y) and fs(«) as in the previous cases,
let us introduce

C(y) := v (Q° — diag (u))y + u'e, (4.1)

and the equivalent relaxed problem

(RP2)  fa(u):= max ¢ (y) = (n+ 1)An..(Q° — diag (u)) +u'e. (4.2)

llyl|?=n+1

Just as for f,, we can restrict u‘e = 0. Now a bound for (P) is
B; := Ifli_l}) f3(v) = min f3(u). (4.3)
We now present some properties for the bound Bj.

10



Lemma 4.1 1. Bj is an upper bound for (P), i.e.
/.L* S B3.

2. The function fs is convezr and finite valued, with subdifferential
Ofs(u) = conv{z = (1-y2) € R**' : y € eigenspace of Anax(Q°—diag (u), ||y||> = n+1}.

3. The bound Bj is attained for some u € R**'. Moreover, if Bs > u*,
then the eigenspace corresponding to Aya,(Q°—diag (u)) has dimension

> 1 for (RP?).
4. By = miney—o(n + 1) Anax(Q° — diag (u)).

Proof: The proof follows similarly as that for Lemma 3.1, as this relaxation

is a trust region subproblem with no linear term.
O

Theorem 4.1 The bounds B, = B, = B;.

Proof. If we restrict the first component of y in (4.2) to be 1, then we get
a value for f,, i.e. this shows that B; > B.,.

To show the reverse inequality, suppose that u is given with u‘e = 0 and
z solves (RP?), i.e. f;(u) = gu(z). Therefore, the stationarity conditions
and negative semidefiniteness conditions hold with Lagrange multiplier A,

1.t
see (3.4). Let Q, := Q — diag(u), ¢t := A — ictz, D(t) := l ltc 22 , and
2 U
Y= n+1(1 z)'. Then X is an eigenvalue of D(t) with eigenvector y, since
(Qu—Alz = ——c Moreover, the optimality conditions @, — AI < 0 implies
A > Amax(Qu)- Therefore, by the interlacing theorem for eigenvalues, e.g.
[12], A = Apax(D(t)). This implies that

t _n)\—%cta:
n+l1  n+1

is the largest eigenvalue of the shifted matrix

D(t) - ?I Q° — diag (u°),

U - n+1

——1
thereby defining the n+1 dimensional vector u° := ( ”"‘1 ) . Therefore

1
fa(u) = nA — §ct:1:.

11



To complete the proof of the theorem, we need only show that this also
equals fo(u). By the stationarity condition for (RP2?), we can substitute
(Qu— }\I):L'lzt —2c and see that the objective value f,(u) = ¢u(z) — A(z'z —
n) = An — ;c'z.
O

Similar relations between trust region subproblems and eigenvalue prob-
lems are presented in [30, 23]. The problem (4.3) is equivalent to minimizing
the maximum eigenvalue of a matrix. These type of problems are treated
in e.g. [20, 21], where efficient algorithms are presented as well as optimal-
ity conditions. The above theorem shows that these problems can also be
treated using efficient trust region subproblem algorithms.

We can now combine the above equivalences between the three given
bounds with a fourth bound to get:

Corollary 4.1 Suppose that fi(v) := max_;<,<1 ¢;(z) and

B, := fa(v).

= min
Q°—diag (v)<0
Then
B1:B2:B3:B4.

Proof: Problem B, corresponds to Bs just as B; corresponds to B;. There-
fore the result follows from Theorems 3.1 and 4.1.
O

5 CONCLUSION

In this paper we considered three different relaxations of the +1 quadratic
programming problem and showed that all three, surprisingly, yield the same
bound. Thus, our results provide a theoretical framework to alternatively
use and combine different computational methods to get the bounds B; =
B, = Bjs. At present, it seems that the eigenvalue bound B; might be the
one most efficiently computable. However, there is a lot of ongoing research
to improve algorithms for all three problems used in our relaxations.
Bound B; corresponds to applying parametric programming to a quadratic

programming problem with simple or box constraints. Efficient algorithms
for this problem are given in e.g. [3]. These correspond to trust region type
algorithms over the box or infinity norm rather than 2-norm. Bound B, cor-
responds to applying parametric programming to trust region subproblems

12



with the 2-norm. Efficient algorithms are given in [10, 18], where the sub-
problems are solved to near optimality in typically 1-2 iterations. There is
ongoing recent research to develop more efficient algorithm in particular for
large problems. Finally Bj corresponds to minimizing the maximum eigen-
value. Theory and efficient algorithms for this problem are surveyed in [20].
In fact, the theory shows that these algorithms have quadratic convergence
properties, which is surprising for possibly nondifferentiable problems. An
interior point algorithm to compute B; was given in [13].

There are several interesting questions that our equivalences raise, e.g.
which is the most efficient way to solve the various problems. In partic-
ular, we see that we can solve min-max eigenvalue problems by applying
known trust region subproblem algorithms or even quadratic programming
combined with some subdifferential calculus like a bundle trust subgradient
approach, see e.g. [27]. Another question is to study the performance of
the relaxations in the presence of additional constraints. Problem (P) is an
unconstrained £1 quadratic programming problem. However, many combi-
natorial optimization problems naturally lead to constrained +1 quadratic
programming problems. From this point of view, the quadratic program-
ming bound B; seems to be the most tractable, since it immediately allows
adding additional linear constraints. However, one may add certain con-
straints to the other bounds. For example, in [22] an eigenvalue relaxation
with additional polyhedral constraints is considered for the graph bisection
problem.

Since the bounds B, = B, = Bj; are introduced in order to approximate
the original discrete problem (P), it is important to study the connection be-
tween the original combinatorial problem and its relaxation. This has been
done in e.g. [16] for the stable set problem, in Boppana [1] for the graph
bisection problem, and [5] for the max-cut problem. The quality of the ap-
proximation may vary with different combinatorial optimization problems.
However, in general, it seems that the nonlinear relaxations provide better
bounds more often than the linear ones.
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