MATH 135, W20, Sections 001/002, Zack Cramer

THIS WEEK AT A GLANCE

Week 2: Lectures 5-8. §3.1-3.4

Goals:

1. Prove/disprove statements of the form $\forall x \in S, P(x) \quad \exists x \in S, P(x)$
2. Prove/disprove implications
3. State and prove some new results on integer divisibility.

Proving $\forall x \in S, P(x)$

→ Let x be an arbitrary element of S.

→ Verify $P(x)$

→ Since x was arbitrary, $P(x)$ holds for all $x \in S$.
Never assume what you are trying to prove, and use lots of English words. Your proof should read like a story.

It is sometimes helpful to split your proof into cases (e.g. \(\forall x \in \mathbb{R}, |x-3|+2|x+2| \geq 5 \)). Be sure your cases cover all possible values in the domain!

Proving \(\exists x \in S, P(x) \)

To prove \(\exists x \in S, P(x) \), you only need to exhibit a single \(x \) in the domain satisfying \(P(x) \). If you think you’ve found such an \(x \), ALWAYS verify that it does indeed satisfy \(P(x) \). Watch out for extraneous solutions!

(e.g., \(\exists k \in \mathbb{Z}, \ln(19k+5) = \ln(k^2-15) \).)
For statements with multiple quantifiers, unpack the statement from left to right and prove accordingly.

(e.g. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^3 - y^3 = 1$)

Disproving $\forall x \in S, P(x)$ or $\exists x \in S, P(x)$

To disprove $\forall x \in S, P(x)$, prove its negation $\exists x \in S, \neg P(x)$

To disprove $\exists x \in S, P(x)$, prove its negation $\forall x \in S, \neg P(x)$

Proving Implications

To prove an implication $A \Rightarrow B$ directly,

- Assume the hypothesis is true
- Deduce the conclusion
Divisibility of Integers

Definition: An integer \(n \) is said to be

(a) **even** if there exists an integer \(K \) such that \(n = 2K \).

(b) **odd** if there exists an integer \(M \) such that \(n = 2M + 1 \).

More generally...

Definition: Given integers \(M \) and \(n \), we say that \(M \) **divides** \(n \) (and write \(M \mid n \)) if there is an integer \(K \) such that \(n = MK \).

Proposition (Transitivity of Divisibility (TD)): For all integers \(a, b, c \), if \(a \mid b \) and \(b \mid c \), then \(a \mid c \).

Proposition (Divisibility of Integer Combinations (DIC)): For all integers \(a, b, c \), if \(a \mid b \) and \(a \mid c \), then for all integers...
\[x \text{ and } y, \ a \mid (bx + cy) \]

(e.g. since \(5 \mid 10 \) and \(5 \mid 15 \), DIC states that for all integers \(x \) and \(y \), \(5 \mid (10x + 15y) \).)

Note: The converse to DIC is also true! Its proof is cool because the hypothesis is of the form \(\forall x \in S, P(x) \). In this case we can pick specific values from the domain to help us deduce the conclusion.