Chapter 8 - Integration

§ 8.1 - Antiderivatives

If we know \(f'(x) \), how can we find \(f(x) \)?

Definition: \(F(x) \) is an antiderivative of \(f(x) \) if
\[
F'(x) = f(x).
\]

Ex: An antiderivative of \(f(x) = 4x^3 \) is \(F(x) = x^4 \).

Why? Because \(F'(x) = (x^4)' = 4x^3 \)!

However, this is not the only antiderivative!

For instance, \(G(x) = x^4 + 2 \) and \(H(x) = x^4 - 1 \) are antiderivatives of \(f(x) = 4x^3 \) too.

In general ...

- If \(F(x) \) and \(G(x) \) are antiderivatives of \(f(x) \), then \(F(x) \) and \(G(x) \) differ by a constant.

Ex: \(F(x) = x^2 \), \(G(x) = x^2 + 1 \), and \(H(x) = x^2 - \pi \) are three antiderivatives of \(f(x) = 2x \).

The most general antiderivative of \(f(x) = 2x \) is
\[
F(x) = x^2 + C \quad (c \in \mathbb{R})
\]

This is called the **indefinite integral** of \(f(x) \).

Notation:
\[
\int f(x) \, dx = F(x) + C
\]

\(\int \) integral of \(f(x) \)

\(dx \) "with respect to \(x" \)
Just like for derivatives, we will now develop some techniques for finding antiderivatives!

Power Rule

If $n \neq -1$, then $\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$

If $n = -1$, then $\int \frac{1}{x} \, dx = \ln |x| + C$

(Why absolute value?? Well... $\frac{1}{x}$ is defined for all $x \neq 0$, but $\ln x$ is defined only for $x > 0$. We can allow $x < 0$ by taking absolute values.)

Addition, Subtraction, and Constants • Functions

$\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx$

$\int k \cdot f(x) \, dx = k \cdot \int f(x) \, dx \quad (k = \text{constant})$

Ex:

1. $\int 8x^7 \, dx = \frac{8x^8}{8} + C = x^8 + C$

2. $\int x^2 + 1 \, dx = \int x^2 \, dx + \int 1 \, dx = \frac{x^3}{3} + x + C$

3. $\int -x^6 + 3x^3 - x + \pi \, dx = \left[-\frac{x^7}{7} + \frac{3x^4}{4} - \frac{x^2}{2} + \pi x + C \right]$
Sometimes you may need to rewrite the function so that our rules can be used.

Ex:

1. \(\int (x^2 - 1)^2 \, dx = \int x^4 - 2x^2 + 1 \, dx\)

 \[= \frac{x^5}{5} - \frac{2x^3}{3} + x + C\]

2. \(\int \sqrt{x} + x^{2/3} \, dx = \int x^{1/2} + x^{2/3} \, dx\)

 \[= \frac{x^{3/2}}{3/2} + \frac{x^{5/3}}{5/3} + C\]

 \[= \frac{2x^{3/2}}{3} + \frac{3x^{5/3}}{5} + C\]

3. \(\int \frac{x^3 + x + 2}{x^2} \, dx = \int \frac{x^3}{x^2} + \frac{x}{x^2} + \frac{2}{x^2} \, dx\)

 \[= \int x + \frac{1}{x} + 2x^{-2} \, dx\]

 \[= \frac{x^2}{2} + \ln|x| + 2x^{-1} + C\]

 \[= \frac{x^2}{2} + \ln|x| - 2x^{-1} + C\]

Exponentials:

1. \(\int e^x \, dx = e^x + C\)

2. \(\int e^{kx} \, dx = \frac{e^{kx}}{k} + C\)

3. \(\int a^x \, dx = \frac{a^x}{\ln(a)} + C\)

4. \(\int a^{kx} \, dx = \frac{a^{kx}}{k \cdot \ln(a)} + C\)
Trig: 1. \[\int \sin x \, dx = -\cos x + C \]
2. \[\int \cos x \, dx = \sin x + C \]
3. \[\int \sec^2 x \, dx = \tan x + C \]
4. \[\int \csc^2 x \, dx = -\cot x + C \]

Ex:

1. \[\int \frac{\cos x - \frac{1}{x} + e^{3x}}{x} \, dx = \frac{\sin x - \ln|1| + e^{3x}}{3} + C \]

2. \[\int 10^x + \sin x - 7^{3x} \, dx = \frac{10^x - \cos x - 7^{3x}}{\ln(10) - 3\ln(7)} + C \]

Note: We can solve for \(C \) if we have extra info.

Ex: Find \(f(x) \) if \(f'(x) = 3x^2 + 2 \) and \(f(0) = 0 \).

Solution: \[\int 3x^2 + 2 \, dx = x^3 + 2x + C \]

So \(f(x) = x^3 + 2x + C \) for some \(C \in \mathbb{R} \).

\[f(0) = 0 \implies 0^3 + 2(0) + C = 0 \]

\[\implies C = 0 \]

So, \(f(x) = x^3 + 2x \)

Ex: Find \(f(x) \) if \(f'(x) = x - \sec^2 x \) and \(f(\pi) = 0 \).

Solution: \[\int x - \sec^2 x \, dx = \frac{x^2}{2} - \tan x + C \]

Using \(f(\pi) = 0 \), we get \(C = -\frac{\pi^2}{2} \), so \(f(x) = \frac{x^2}{2} - \tan x - \frac{\pi^2}{2} \).