Chapter 5 - Calculus Begins (Finally!)

3 main topics

- **Limits** (What does \(f(x) \) do as \(x \) approaches a certain value?)
- **Continuity** (Is \(f(x) \) well-behaved or does it jump around?)
- **Derivatives** (How "steep" is \(f(x) \) at a point \(x \)?)

§5.1 - Limits

Consider the following 4 functions:

![Graphs of f₁(x), f₂(x), f₃(x), f₄(x)]

Note: \(f₁ \) and \(f₃ \) are defined at \(x = 1 \), while \(f₂ \) and \(f₄ \) are not.

Nevertheless, we can still talk about the behaviour of each function as \(x \) gets infinitely close to 1!

As \(x \to 1 \)...

- \(f₁(x) \) approaches 2
- \(f₂(x) \) approaches 2
- \(f₃(x) \) approaches 2 if \(x \) comes from the left
- \(f₄(x) \) approaches \(-\infty\) if \(x \) comes from the right
If \(f(x) \) approaches a finite number \(L \) as \(x \) gets infinitely close to \(a \) but not equal to \(a \), we say

"the limit as \(x \) approaches \(a \) of \(f(x) \) is \(L \)."

and write \(\lim_{x \to a} f(x) = L \)

Note: \(L \) must be the same if \(x \) comes from the right or the left!

These limits are denoted by

\[
\begin{align*}
\lim_{x \to a^-} f(x) & \quad (x \to a \text{ from left}) \\
\lim_{x \to a^+} f(x) & \quad (x \to a \text{ from right})
\end{align*}
\]

If \(f(x) \) does not approach a finite value, or if the left/right limits are different, we say

"the limit as \(x \) approaches \(a \) of \(f(x) \) does not exist" (DNE).

Ex: Let \(f_1, f_2, f_3, f_4 \) be as before.

- \(\lim_{x \to 1^-} f_1(x) = 2 \)
- \(\lim_{x \to 1^+} f_2(x) = 2 \)
- \(\lim_{x \to 1^-} f_3(x) = 2 \) while \(\lim_{x \to 1^+} f_3(x) = -2 \) \(\neq \lim_{x \to 1^-} f_3(x) \) DNE
- \(\lim_{x \to 1} f_4(x) \) DNE \((f(x) \to -\infty \ldots \text{NOT FINITE!}) \)
Example:
\[f(x) = \begin{cases}
 x + 1 & \text{if } x \neq 2 \\
 0 & \text{if } x = 2
\end{cases} \]

Then \(f(2) = 0 \) but \(\lim_{x \to 2} f(x) = 3 \).

(we care about what happens near \(x = 2 \), not at \(x = 2 \))

Example:
\[f(x) = \begin{cases}
 -x & \text{if } x < 0 \\
 x^2 & \text{if } 0 \leq x < 1 \\
 2 & \text{if } x \geq 1
\end{cases} \]

Then \(\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -x = 0 \) \quad \& \quad \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 = 0 \)

\(\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} x^2 = 0 \) \quad \text{equal, so } \lim_{x \to 0} f(x) = 0. \)

But \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x^2 = 1 \) \quad \text{not equal, so } \lim_{x \to 1} f(x) \text{ DNE.} \)

\(\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 2 = 2 \)

We also consider limits at \(\pm \infty \), which correspond to horizontal asymptotes of \(f(x) \).

Example:
\[\lim_{x \to \infty} \frac{1}{x} = 0 \] (denominator becomes huge, so fraction becomes tiny!)

\[\lim_{x \to -\infty} \frac{1}{x} = 0 \] \quad \text{We'll use these facts often.}
Limit Rules.

Suppose \(\lim_{x \to a} f(x) = F \) and \(\lim_{x \to a} g(x) = G \).

1. \(\lim_{x \to a} f(x) \pm g(x) = F \pm G \)

2. \(\lim_{x \to a} f(x) \cdot g(x) = F \cdot G \)

3. \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{F}{G} \) (provided \(G \neq 0 \))

4. \(\lim_{x \to a} c \cdot f(x) = c \cdot F \)

5. \(\lim_{x \to a} (f(x))^k = F^k \) (provided limit exists)

6. \(\lim_{x \to a} b^{f(x)} = b^F \) (\(b > 0 \))

7. \(\lim_{x \to a} \log_b(f(x)) = \log_b(F) \) (\(F > 0 \))

8. \(\lim_{x \to a} \sin(f(x)) = \sin(F) \)

\(\lim_{x \to a} \cos(f(x)) = \cos(F) \),

i.e., just plug in \(a \)

Remark: Rules 1., 4., and 5. imply that \(\lim_{x \to a} f(x) = f(a) \) when \(f(x) \) is a polynomial!

Ex: \(\lim_{x \to 1} x^2 - 2x + 1 = (1)^2 - 2(1) + 1 = 0 \)

\(\lim_{x \to 0} \sqrt{x^2 + 3} = \sqrt{(0)^2 + 3} = \sqrt{3} \)

\(\lim_{x \to \pi/2} \cos(2x) = \cos(2(\pi/2)) = \cos(\pi) = -1 \)
Ex: \(\lim_{x \to 0} e^{x+1} - \ln (\sin(x) + 1) = e^{0+1} - \ln (\sin(0) + 1) = e - \ln (1) = e \)

But of course the story doesn't end here...

Ex: Find the limit if it exists.

1. \(\lim_{x \to 5} \frac{x^2 - 3x - 10}{x - 5} \)
2. \(\lim_{x \to \infty} \frac{3x^2 + 1}{5x^2 + 2x - 1} \)
3. \(\lim_{x \to -\infty} \frac{8x + 2}{2x^2 - 5} \)
4. \(\lim_{x \to \frac{\pi}{2}} \frac{\sin(2x)}{\cos x} \)
5. \(\lim_{x \to 25} \frac{\sqrt{x^2 - 5}}{x - 25} \)
6. \(\lim_{x \to 0} \frac{|x|}{x} \)

None of these limits can be evaluated by simply "plugging in \(a \)"... more work must be done.

Strategies for Finding Limits

Step 1: Can we evaluate the limit by plugging in \(a \)?

Does it have the form \(\# \cdot \infty \) (=\(\infty \)), \(\# \) (=\(0 \)),
or \(\# \) (=\(\pm \infty \)) ?

Step 2: Is it an indeterminate form?

(\(0/0, \; \pm \infty/\infty, \; 0^\infty, \; \infty^0, \; 1^\infty, \; 0 \cdot \infty, \; \infty - \infty \), etc.)
Try... • factoring and cancelling
• rationalizing denominator or numerator
• using trig. identities.
• checking left/right limits.
• factoring highest power of x in numerator and denominator.

Step 3: After each modification in Step 2, try to evaluate the limit again.

Okay! Let’s try (1) - (6) from previous example.

Solution:

1. \[\lim_{x \to 5} \frac{x^2 - 3x - 10}{x - 5} = \lim_{x \to 5} \frac{(x+2)(x-5)}{x-5} = \lim_{x \to 5} x + 2 = 7 \]

2. \[\lim_{x \to \infty} \frac{3x^2 + 1}{5x^2 + 2x - 1} = \lim_{x \to \infty} \frac{x^2 (3 + \frac{1}{x^2})}{x^2 (5 + \frac{2}{x} - \frac{1}{x^2})} = \lim_{x \to \infty} \frac{3 + \frac{1}{x^2}}{5 + \frac{2}{x} - \frac{1}{x^2}} = \frac{3 - 0}{5 + 0 - 0} = \frac{3}{5} \]

3. \[\lim_{x \to -\infty} \frac{8x + 2}{2x^2 - 5} = \lim_{x \to -\infty} \frac{x (8 + \frac{2}{x})}{x^2 (2 - \frac{5}{x^2})} = \lim_{x \to -\infty} \frac{1}{x} \left(\frac{8 + \frac{2}{x}}{2 - \frac{5}{x^2}} \right) \]

\[\text{Goes to 0} \quad \text{Goes to} \quad \frac{8 + 0}{2 - 0} = \frac{8}{2} = 4. \]

= 0
(4) \[
\lim_{x \to \pi/2} \frac{\sin(2x)}{\cos x} = \lim_{x \to \pi/2} \frac{2 \sin x \cdot \cos x}{\cos x} \\
= \lim_{x \to \pi/2} 2 \sin x \\
= 2 \cdot \sin(\pi/2) = 2
\]

(5) \[
\lim_{x \to 25} \frac{\sqrt{x - 5}}{x - 25} = \lim_{x \to 25} \frac{\sqrt{x - 5} \cdot \frac{\sqrt{x + 5}}{\sqrt{x + 5}}}{x - 25} \\
= \lim_{x \to 25} \frac{x - 25}{(x - 25)(\sqrt{x + 5})} \\
= \lim_{x \to 25} \frac{1}{\sqrt{x + 5}} \\
= \frac{1}{\sqrt{25 + 5}} = \frac{1}{10}
\]

(6). Recall that \(|x| = \begin{cases}
 x & \text{if } x \geq 0 \\
 -x & \text{if } x < 0
\end{cases} \)

For \(\lim_{x \to 0} \frac{|x|}{x} \), we'll check the left & right limits.

\[
\lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} -x = -1 \\
\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} x = 1
\]

Not equal, so \(\lim_{x \to 0} \frac{|x|}{x} \) DNE

The Squeeze Theorem

If \(f(x), g(x), h(x) \) are functions, and
\(f(x) \leq g(x) \leq h(x) \) around \(A \), and if
\(\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \),
then \(\lim_{x \to a} g(x) = L \).
Note: Good for limits involving $\sin x$ and $\cos x$, as $-1 \leq \sin x \leq 1$, $-1 \leq \cos x \leq 1$.

Ex: Find $\lim_{x \to \infty} \frac{\sin x}{x^2}$.

Solution: Since $-1 \leq \sin x \leq 1$, we have

\[-\frac{1}{x^2} \leq \frac{\sin x}{x^2} \leq \frac{1}{x^2}. \]

Thus, $\lim_{x \to \infty} -\frac{1}{x^2} \leq \lim_{x \to \infty} \frac{\sin x}{x^2} \leq \lim_{x \to \infty} \frac{1}{x^2} \Rightarrow 0 \leq \lim_{x \to \infty} \frac{\sin x}{x^2} \leq 0$.

$\Rightarrow \lim_{x \to \infty} \frac{\sin x}{x^2} = 0$ by the squeeze theorem.

Exercise: Find $\lim_{x \to 0} x^2 \sin \left(\frac{1}{x}\right)$.