§4.3 - Growth and Decay

Many real life processes follow an exponential growth/decay model:

\[A(t) = A_0 e^{k \cdot t} \]

- \(A(t) \) = amount of substance at time \(t \).
- \(A_0 \) = initial amount (amount at time \(t = 0 \)).
- \(k \) = constant (\(k > 0 \) for exp growth, \(k < 0 \) for exp. decay).

Typical problem:
- Find \(k \) given some initial data
- Use \(k \) to find amount of substance at some other time.

Ex [Population Growth]: A rabbit colony starts with 100 rabbits. After 3 years, it has 900 rabbits. How many will it have after 6 years?

Solution: We are given \(A_0 = 100 \), \(A(3) = 900 \).

Our model is

\[A(t) = 100 e^{k \cdot t} \]

To find \(A(6) \), we should first determine \(k \) by using \(A(3) = 900 \).

\[A(3) = 900 \Rightarrow 900 = 100 e^{3k} \]
\[9 = e^{3k} \]
\[\ln(9) = \ln(e^{3k}) = 3k \] (\(\ln \) both sides)
\[k = \frac{\ln(9)}{3} \]

The model is

\[A(t) = 100 e^{\frac{\ln(9)}{3} \cdot t} \]
Thus, \[A(6) = 100 e^{\frac{\ln(9)}{3} \cdot 6} = 100 e^{2 \cdot \ln(9)} = 100 e^{\ln(9^2)} = 100 \cdot 9^2 = \frac{8100}{700} \text{ rabbits (wow!)} \]

[Radioactive Decay]: A radioactive isotope has a half-life of 10 years. How much of this substance will be left after 23 years?

Solution: What is \(A_0 \)?

We'll say \(A_0 = 100 \) (percent), so \(A(10) = 50 \) (after 10 years, only half is left!)

Our model is \(A(t) = 100 e^{k \cdot t} \).

Using \(A(10) = 50 \), we can solve for \(k \):

\[
\begin{align*}
A(10) = 50 & \Rightarrow 50 = 100 e^{k \cdot 10} \\
& \Rightarrow 1 = e^{10k} \\
& \Rightarrow \ln(\frac{1}{2}) = \ln(e^{10k}) = 10k \quad (\ln \text{ both sides})
\end{align*}
\]

So, \(k = \frac{\ln(\frac{1}{2})}{10} \).

Our model is \(A(t) = 100 e^{\frac{\ln(\frac{1}{2})}{10} \cdot t} \).

This means that \(A(23) = 100 e^{\frac{\ln(\frac{1}{2})}{10} \cdot 23} \approx 20.31 \)

Thus, \(\approx 20.31\% \) of the substance is left after 23 years.
A slightly different example: the amount of chemical that will dissolve in a solution increases exponentially as temperature increases!

Ex [Chemical Dissolution]: At 0°C, 1000g of chemical dissolves in a solution. At 10°C, 1100g dissolves. At what temperature will 1500g dissolve?

Solution: We are given \[
\begin{align*}
A_0 &= 1000 \\
A(10) &= 1100
\end{align*}
\]

Our model is $A(t) = 1000 e^{kt}$ (now, $t =$ temperature).

We'll solve for K using $A(10) = 1100$.

$$A(10) = 1100 \Rightarrow 1100 = 1000 e^{k \cdot 10}$$

$$\Rightarrow \frac{11}{10} = e^{10k}$$

$$\Rightarrow \ln \left(\frac{11}{10} \right) = \ln(e^{10k}) = 10k$$

So $k = \frac{\ln \left(\frac{11}{10} \right)}{10}$

Our model is $A(t) = 1000 e^{\frac{\ln \left(\frac{11}{10} \right)}{10} \cdot t}$.

We would like to know t such that $A(t) = 1500$.

Solve for t: \[
1500 = 1000 e^{\frac{\ln \left(\frac{11}{10} \right)}{10} \cdot t}
\]

$$\Rightarrow \frac{3}{2} = e^{\frac{\ln \left(\frac{11}{10} \right)}{10} \cdot t}$$

$$\Rightarrow \ln \left(\frac{3}{2} \right) = \frac{\ln \left(\frac{11}{10} \right)}{10} \cdot t \Rightarrow t = \frac{10 \ln \left(\frac{3}{2} \right)}{\ln \left(\frac{11}{10} \right)} \approx 42.5^\circ C$$