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1 Lecture of January 9

The first six weeks of the course will be concerned with Enumerative Combinatorics, also
referred to as Enumeration, Combinatorial Analysis or, simply, Counting. This subject con-
cerns the basic question of determining the number of elements in a finite set of mathematical
objects.

Let [n] = {1, . . ., n}, for each n ≥ 1, and [0] denote the empty set. A permutation of [n] is
an ordered list of the elements of [n], each element appearing once in the list. For example,
there are 6 permutations of [3], namely 123, 132, 213, 231, 312, 321. When n = 0, we
say that there is a single permutation, which happens to be an empty list. We begin by
answering a basic counting question: how many permutations are there of [n] ? The answer,
given below, can be compactly expressed using factorial notation. For each nonnegative
integer n, define n!, by 0! = 1, and

n! =

n∏

i=1

i, for n = 1, 2, . . ..

We say “n factorial” for n!.

Example 1.1 The number of permutations of [n] is n!, for n = 0, 1, . . ..

Proof. For n = 0, the result is true by the conventions above. For n ≥ 0, each permutation
of [n] is of the form a1a2. . .an, where a1, a2, . . ., an are distinct elements of [n]. There are
therefore n choices for a1. No matter what choice is made for a1, there are then n−1 choices
for a2, since a2 cannot equal a1. In fact, iteratively choosing aj+1, since a1, . . ., aj are all
different, then aj+1 must be chosen from the remaining n−j elements, for j = 0, 1, . . ., n−1,
and so the number of choices for the permutation a1a2. . .an is

∏n−1
j=0 (n− j) = n!, giving the

result.

A k-subset of [n] is a subset of [n] of size k, for k = 0, 1, . . ., n (when k = 0, the empty
set is such a subset, for any n ≥ 0). For example, there are 6 2-subsets of [4], namely {1, 2},
{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. We now consider another basic counting question: how
many k-subsets are there of [n] ? The answer, given below, can be compactly expressed
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using binomial coefficient notation. For nonnegative integers n and k = 0, 1, . . ., n, define(
n

k

)
by (

n

k

)
=

n!

k!(n− k)!

We say “n choose k” for
(

n

k

)
. Note that we immediately have the symmetry result

(
n

k

)
=

(
n

n− k

)
.

Example 1.2 The number of k-subsets of [n] is
(

n

k

)
, for n = 0, 1, . . ., and k = 0, 1, . . ., n.

Proof. Let x be the number of k-subsets of [n]. We determine x indirectly, by counting the
permutations of [n]. For any permutation a1. . .an and any fixed k = 0, . . ., n, the elements
in a1, . . ., ak form a k-subset of [n], call it α. Then the elements in ak+1, . . ., an form the
complement, α, of α with respect to [n]. For example, with n = 7 and k = 3, for the
permutation 5247316 we have α = {2, 4, 5} and α = {1, 3, 6, 7}. For each fixed α, there are
k! choices of a1. . .ak, since it is a permutation of α, and (n− k)! choices of ak+1. . .an, since
it is a permutation of α. Since there are x choices of α, we conclude that the number of
permutations of [n] is equal to

k! (n− k)! x

But this is also equal to n!, and we have proved that x =
(

n

k

)
.

The binomial coefficients provide the answer to many counting questions. One method of
proof is to find a 1:1 correspondence between the objects being counted and an appropriate
set of subsets. We give two examples of this.

Example 1.3 Prove that the number of k-subsets of [n] with no consecutive pairs of elements
is
(

n−k+1
k

)
.

Proof. Let A be the set of k-subsets of [n] with no consecutive pairs of elements, and let
B be the set of k-subsets of [n − k + 1]. For example, with n = 7 and k = 3, we have

A = {135, 136, 137, 146, 147, 157, 246, 247, 257, 357},

B = {123, 124, 125, 134, 135, 145, 234, 235, 245, 345},
where we have written each of the subsets as an increasing list of its elements, with no
brace brackets. We know that |B| =

(
n−k+1

k

)
, so we establish the result by giving a 1:1

correspondence between A and B, since then we know that |A| = |B|. We claim that
f : B → A defined by

f(α) = 0 1. . .k − 1 + α,

is a 1:1 correspondence, where the addition above means that 0 is added to the first element
of α, 1 is added to the second element, and so on, until k − 1 is added to the last (and
biggest) element of α. We leave the proof that f is 1 : 1 as an exercise.

In the second example, we consider lattice paths, which are paths on the integer lattice
in two dimensions, with steps either North by one unit (“N”) or East by one unit (“E”).
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Example 1.4 Prove that the number of lattice paths from (0, 0) to (m,n) is equal to
(

m+n

n

)
,

or
(

m+n

m

)
.

Proof. Each lattice path from (0, 0) to (m,n) contains exactly m+n steps, with n up and
m right. Therefore we can represent them uniquely as an ordered list s1. . .sm+n, in which
si = N for n choices of i, and si = E for the remaining m choices of i. Let α denote the set
of all i for which si = N . Then α is an n-subset of [n + m], and this is a 1:1 correspondence.
The result follows, since there are

(
m+n

n

)
choices of α.

For example, there are
(
5
2

)
paths from (0, 0) to (3, 2), given by NNEEE,NENEE,

NEENE,NEEEN,ENNEE,ENENE, ENEEN,EENNE,EENEN,EEENN .

When m = n = 0, we say that there is exactly one path, with no steps, which agrees in
this case with the value of the binomial coefficient in Example 1.4.

From Example 1.4 with m = n, we know that there are
(
2n

n

)
lattice paths from (0, 0)

to (n, n). We are now going to consider the number cn, n = 0, 1, . . . of these paths that
never go below the line y = x. These paths are called Catalan paths. For example, we
have c3 = 5, since the Catalan paths with n = 3 are given by NNNEEE,NNENEE,
NNEENE,NENNEE,NENENE.

We are going to prove that

cn =
1

n + 1

(
2n

n

)
, n = 0, 1, . . ..

These numbers are called Catalan numbers.

2 Lecture of January 11

Let Pn, n ≥ 0, be the set of lattice paths from (0, 0) to (n, n), represented as a string of
N ’s and E’s (which are the steps of the path) Let P ′

n, n ≥ 0, be the set of lattice paths
from (0,−1) to (n, n), starting with N . Then each path in P ′

n has n+ 1 N ’s and n E’s, and
|Pn| = |P ′

n|.
The length of a path π = π1. . .πm is |π| = m, equal to the number of steps in π. We let

∆0(π) = −1, and ∆i(π) equal the number of N ’s in the first i steps of π minus the number
of E’s in the first i steps of π, minus 1, for i = 1, . . ., m. For π ∈ P ′

n, we have ∆2n+1(π) = 0.
The following result is easy to verify.

Proposition 2.1 Suppose π = αβ ∈ P ′
n, where |α| = k, |β| = j, where k, j ≥ 0 (and of

course |π| = k + j = 2n + 1). Let ω = βα (called a cyclic rearrangement of π), where
∆k(π) = m. Then ∆i(ω) = ∆i+k(π)−m− 1, for i = 0, . . ., j, and ∆i(ω) = ∆i−j(π)−m, for
i = j + 1, . . ., 2n+ 1.

Now let Cn be the set of paths in Pn which never go below the line y = x. Consider
π ∈ P ′

n, and let M be the minimum value of ∆i(π), for i = 0, . . ., 2n + 1. Let L be the
maximum value of i such that ∆i(π) = M . Then clearly M ≤ −1, and 0 ≤ L ≤ 2n,
since ∆0(π) = −1, and ∆2n+1(π) = 0. Let π = αβ, where |α| = L, and ω = βα. Then
Proposition 2.1 proves immediately that ∆0(ω) = −1, and ∆i(ω) ≥ 0, for i = 1, . . ., 2n+ 1.
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But this means that ω = Nψ, where ψ ∈ Cn. For π ∈ P ′
n, this proves that ω is the unique

path among the n + 1 cyclic rearrangements of π starting with N , with ω = Nψ, ψ ∈ Cn.
But there are n+ 1 distinct cyclic rearrangements of any path in P ′

n, so we conclude that

|Cn| =
1

n + 1

(
2n

n

)
, n = 0, 1, . . ..

3 Lecture of January 14

The proof that we’ll consider carefully here involves a recurrence for the sequence {cn}n≥0,
and the generating series

C(x) =
∑

n≥0

cnx
n

for this sequence, where cn = |Cn|, n ≥ 0.

Example 3.1 The sequence {cn}n≥0 satisfies the recurrence

cn =

n−1∑

k=0

ck cn−k−1, n = 1, 2, . . ., (1)

with initial condition c0 = 1.

Proof. For n ≥ 1, let π be a Catalan path from (0, 0) to (n, n). Then the first step in π
must be up. Now, π must end on the line y = x, and consider the first time after the initial
up-step that π returns to the line y = x, which must be with a right-step. Then we can
write π = Nπ1Eπ2, where π1 and π2 are Catalan paths with a total of 2n − 2 steps, taken
together. Thus if π1 has 2k steps, then there are ck choices for π1, and cn−k−1 choices for π2.
The result follows by summing over k = 0, . . ., n− 1.

Note that the recurrence in Example 3.1, together with the initial condition, uniquely
generates the sequence {cn}n≥0. For example, we have c0 = 1 from the initial condition, then
successively compute from the recurrence:

c1 = c20 = 1,

c2 = c0 c1 + c1 c0 = 2,

c3 = c0 c2 + c21 + c2 c0 = 5.

We now solve the recurrence (1). The first step is to show that the generating series C(x)
satisfies a simple equation.

Example 3.2 The generating series C(x) satisfies the quadratic equation

xC(x)2 − C(x) + 1 = 0.

4



Proof. Multiply (1) by xn and sum for n ≥ 1, to obtain

∑

n≥1

cnx
n =

∑

n≥1

n−1∑

k=0

ckcn−k−1x
n.

On the LHS of this equation we have C(x) − c0 = C(x) − 1, and on the RHS we change
variables of summation from k, n to k, j, where j = n− k − 1. Then n = k + j + 1, and the
summation range becomes j ≥ 0, k ≥ 0, so we have the equation

C(x) − 1 =
∑

j≥0

∑

k≥0

ckcjx
k+j+1 = xC(x)2,

giving the result.
Solving the quadratic equation for C(x), we obtain

C(x) =
1 ±

√
1 − 4x

2x
. (2)

In order to deal with the square root in this expression, we use the Binomial Theorem, which
says that for all real a and |x| < 1, we have

(1 + x)a = 1 +
∑

k≥1

a(a− 1). . .(a− k + 1)

k!
xk. (3)

This is a Maclaurin series, that you will have encountered in MATH 148. We often write

a(a− 1). . .(a− k + 1)

k!
=

(
a

k

)
,

and call this the binomial coefficient, even when a is not a positive integer.
Applying the Binomial Theorem, we have

(1 − 4x)
1
2 = 1 +

∑

k≥1

( 1
2

k

)
(−4)kxk,

where

(
1
2

k

)
(−4)k =

1
2
−1
2

−3
2
. . .−(2k−3)

2

k!
(−1)k 2k 2k

= −1 · 3 · · · (2k − 3)

k!
2k

= −2
1 · 3 · · · (2k − 3)

k!

2 · 4 · · · (2k − 2)

(k − 1)!

= −2

k

(
2k − 2

k − 1

)
,
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and so, from (2) we obtain

C(x) =
1

2x
±
(

1

2x
− 1

x

∑

k≥1

1

k

(
2k − 2

k − 1

)
xk

)
.

Now, in “±”, we cannot select the “+” since this would mean that C(x) has the term x−1

with negative exponent (and also that all other coefficients would be negative). Therefore,
we must select “−”, and thus have

C(x) =
∑

k≥1

1

k

(
2k − 2

k − 1

)
xk−1 =

∑

n≥0

1

n+ 1

(
2n

n

)
xn,

from which we conclude that cn = 1
n+1

(
2n

n

)
, n ≥ 0.

4 Lecture of January 16

Now we shall consider a different approach to generating series. Let C be the set of all
Catalan paths from (0, 0) to any point on the line y = x. For any path π in C, let wt(π)
denote the number of up-steps in π. Then the generating series for C with respect to the
weight function wt, in variable x, is given by

ΦC(x) =
∑

π∈C

xwt(π).

In general, a weight function on a set is any function whose values are restricted to
nonnegative integers. The generating series above is defined for any weight function on any
set, as long as the sets {π ∈ C : wt(π) = n} are finite for all nonnegative integer choices of
n.

Let ψ denote the construction that we carried out in the proof of Example 3.1 – that is
suppose that ψ(π) = (π1, π2), where π ∈ C \ {ε}. Then it is easy to easy to see that

ψ : C \ {ε} → C × C : π 7→ (π1, π2)

is a bijection, and moreover that wt(π) = wt(π1) + wt(π2) + 1. Here we use the notation
C×C, for ordered pairs of elements of C. In general, for sets A and B, we define the Cartesian
product to be the set of ordered pairs

A×B = {(a, b) : a ∈ A, b ∈ B}.

From the bijection ψ, we deduce that
∑

π∈C\{ε}

xwt(π) =
∑

(π1,π2)∈C×C

xwt(π1)+wt(π2)+1

Continuing, we obtain

x1
∑

π1∈C

xwt(π1)
∑

π2∈C

xwt(π2) = xΦC(x)
2.
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But we also have
∑

π∈C\{ε}

xwt(π) =
∑

π∈C

xwt(π) − 1

= ΦC(x) − 1,

and we conclude that
ΦC(x) − 1 = xΦC(x)

2.

Note that this is the same quadratic equation as for C(x) a lecture or two ago. This is no
accident, since actually ΦC(x) = C(x). To see this, we have

ΦC(x) =
∑

n≥0

xn
∑

π∈C,
wt(π)=n

1 =
∑

n≥0

|{π ∈ C : wt(π) = n}|xn = C(x),

as required.

Now we give a general instance of this way of thinking. For any set A, with weight
function ω : A → {0, 1, . . .}, we define

ΦA(x) =
∑

a∈A

xω(a)

to be the generating series for A with respect to weight function ω, in variable x. We denote
the coefficient of xn in ΦA(x) by

[xn]ΦA(x), n = 0, 1, . . .

We treat “[xn]” as an operator, acting on the left. In terms of this coefficient notation, we
have the following fundamental result for enumerative significance of a generating series.

Proposition 4.1 If A is a set, with weight function ω : A → {0, 1, . . .}, then the number of
a ∈ A with ω(a) = n is equal to

[xn]ΦA(x), n = 0, 1, . . .

Proof. We have
ΦA(x) =

∑

a∈A

xω(a),

and the result follows immediately.

The most important rule for generating series is the Product Rule.

Theorem 4.2 If A,B,A×B have weight functions ω1, ω2, ω, respectively, and the condition

ω((a, b)) = ω1(a) + ω2(b) + c

holds for all (a, b) ∈ A× B, then

ΦA×B(x) = xcΦA(x)ΦB(x).
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Proof. We have

ΦA×B(x) =
∑

(a,b)∈A×B

xω((a,b))

=
∑

a∈A

∑

b∈B

xω1(a)+ω2(b)+c

= xc
∑

a∈A

xω1(a)
∑

b∈B

xω2(b),

and the result follows.

For sets A1, . . .,Ak, and fixed positive integer k, the product rule extends easily to sets
of k-tuples

A1 × . . .×Ak = {(a1, . . ., ak) : a1 ∈ A1, . . ., ak ∈ Ak}.

Theorem 4.3 (Product Rule for k-tuples) If A1, . . .,Ak,A1× . . .×Ak have weight functions
ω1, . . ., ωk, ω, respectively, and the condition

ω((a1, . . ., ak)) = ω1(a1) + . . .+ ωk(ak) + c

holds for all (a1, . . ., ak) ∈ A1 × . . .×Ak, then

ΦA1×...×Ak
(x) = xcΦA1

(x). . .ΦAk
(x).

Example 4.4 Find the number of solutions to t1 + . . . + tk = n, where t1, . . ., tk are non-
negative integers.

SOLUTION. Let S = A1 × . . . × Ak, where Ai = {0, 1, 2, . . .}, for i = 1, . . ., k. For
(a1, . . ., ak) ∈ S, let ω((a1, . . ., ak)) = a1 + . . . + ak. Then the answer to this problem is
precisely the number of elements in S with weight function value equal to n, which is equal
to

[xn]ΦS(x).

Now note that ω((a1, . . ., ak)) = τ(a1) + . . .+ τ(ak), where τ is the identity function, so the
product rule for k-tuples gives

ΦS(x) = ΦA1
(x). . .ΦAk

(x) = Φ{0,1,2,...}(x)
k,

where
Φ{0,1,2,...}(x) =

∑

i∈{0,1,2,...}

xi = 1 + x1 + x2 + . . .,

since the weight function is the identity. Thus the answer is given by

[xn](1 + x1 + x2 + . . .)k = [xn]
(
(1 − x)−1

)k
= [xn](1 − x)−k,

by summing the geometric series.
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5 Lecture of January 18

But

[xn](1 − x)−k =

(
n+ k − 1

n

)
,

from the negative binomial theorem, given below, and the Example is finished.

We now consider the negative binomial theorem, the binomial theorem in the case that
the exponent a is a negative integer. If m is a positive integer, then we have

(1 − x)−m = 1 +
∑

i≥1

(−m
i

)
(−1)ixi,

where
(−m

i

)
(−1)i =

−m(−m − 1). . .(−m− i+ 1)

i!
(−1)i

=
m(m+ 1). . .(m+ i− 1)

i!

=

(
m+ i− 1

i

)
=

(
m+ i− 1

m− 1

)
,

so we have, for any positive integer m,

(1 − x)−m =
∑

i≥0

(
m+ i− 1

i

)
xi =

∑

i≥0

(
m+ i− 1

m− 1

)
xi. (4)

As a generalization of Example 4.4, we have the following result. The proof is omitted,
since it is identical to the proof given in Example 4.4.

Lemma 5.1 The number of solutions to t1 + . . . + tk = n, where ti ∈ Ai, i = 1, . . ., k, for
given subsets of the nonnegative integers Ai, is given by

[xn]

k∏

i=1

ΦAi
(x),

where ΦAi
(x) =

∑
j∈Ai

xj.

For example, from this result we deduce that the number of solutions to t1 + . . .+ tk = n,
for positive integers ti, i = 1, . . ., k, is equal to

[xn]
(
x+ x2 + . . .

)k
= [xn]

(
x(1 − x)−1

)k
= [xn]xk(1 − x)−k

= [xn]
∑

i≥0

(
k + i− 1

k − 1

)
xk+i =

(
n− 1

k − 1

)
,

where we have used the geometric series for the first equality, and the value i = n − k for
the last equality.
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Of course, this problem can be solved without generating series, using various more
elementary methods, such as set bijections. For example, we can note that if t1+ . . .+tk = n,
where t1, . . ., tk are positive integers, then {t1, t1 + t2, . . ., t1 + . . .+ tk−1} is a (k − 1)-subset
of {1, . . ., n − 1}. Moreover, if {α1, . . ., αk−1}, with 1 ≤ α1 < . . . < αk−1 ≤ n − 1, is a
(k− 1)-subset of {1, . . ., n− 1}, then (α1, α2 −α1, . . ., αk−1 −αk−2, n− αk−1) is a solution to
the equation t1 + . . .+ tk = n. It is straightforward then to check that we have a bijection,
which proves that the number of solutions in this case is

(
n−1
k−1

)
.

However, when we modify such problems even in a simple way, they can become very
complicated to deal with by elementary means, yet the generating series methodology handles
them straightforwardly, using perhaps more binomial expansions. Consider the following
example.

Example 5.2 Find the number of solutions to t1 + . . .+ tk = n, where t1, . . ., tk are positive
integers not equal to 3.

SOLUTION. From Lemma 5.1, with Ai = {1, 2, 4, 5, . . .}, for i = 1, . . ., k, the answer is given
by

[xn]

(
x

1 − x
− x3

)k

= [xn]

k∑

i=0

(
k

i

)(
x

1 − x

)k−i

(−x3)i

= [xn]
k∑

i=0

(
k

i

)
(−1)ixk+2i(1 − x)−(k−i)

Continuing with our solution, from the negative binomial theorem we obtain

[xn]

k∑

i=0

∑

j≥0

(
k

i

)
(−1)i

(
k − i+ j − 1

j

)
xk+2i+j =

∑

i

∑

j

(
k

i

)
(−1)i

(
k − i+ j − 1

j

)
,

where the double sum on the righthandside is over all j ≥ 0, 0 ≤ i ≤ k, subject to the
restriction that k + 2i + j = n. Thus we can replace j by n − k − 2i, and write this as a
single sum

∑

i

(
k

i

)
(−1)i

(
n− 3i− 1

k − i− 1

)
,

where this sum ranges from 0 to min{k, ⌊n−k
2
⌋}. We have used the floor function ⌊x⌋, for

the real number x, whose value is the greatest integer not greater than x. The inequality
i ≤ ⌊n−k

2
⌋ arises because j ≥ 0, which implies that n−k−2i ≥ 0. The lower index k−i−1 in

the last binomial coefficient arises from the identity
(

a+b

a

)
=
(

a+b

b

)
, for nonnegative integers

a, b.

6 Lecture of January 21

Let’s write the summation above explicitly, to obtain
(
n− 1

k − 1

)
−
(
k

1

)(
n− 4

k − 2

)
+

(
k

2

)(
n− 7

k − 3

)
− . . ..
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An elementary way of deriving this is to note that the first term,
(

n−1
k−1

)
, is the total number

of solutions in positive integers. Then, for the second term, we have
(

n−4
k−2

)
as the number of

solutions for which tj = 3 for any fixed j (since, with j = k, we have t1 + . . .+ tk−1 + 3 = n,
so t1 + . . .+ tk−1 = n− 3). But there are

(
k

1

)
= k choices for j. For the third term, we have(

n−7
k−3

)
as the number of solutions for which tj = tm = 3 for any fixed j < m (since, with

j = k − 1, m = k, we have t1 + . . .+ tk−2 + 3 + 3 = n, so t1 + . . .+ tk−2 = n− 6). But there
are

(
k

2

)
choices for j,m. All terms arise in this way, giving the answer required.

Example 6.1 Find the number of solutions to t1 + . . .+ tk = n, where t1, . . ., tk are positive
integers less than or equal to 6 (this arises as the number of ways of getting n as the sum of
k rolls of a die).

SOLUTION. From Lemma 5.1, with Ai = {1, 2, . . ., 6}, for i = 1, . . ., k, the answer is given
by

[xn]
(
x+ x2 + . . .+ x6

)k
= [xn]

(
x− x7

1 − x

)k

= [xn]xk(1 − x6)k(1 − x)−k

= [xn]

k∑

i=0

∑

j≥0

(
k

i

)
(−1)i

(
k + j − 1

j

)
xk+6i+j

=
∑

i

∑

j

(
k

i

)
(−1)i

(
k + j − 1

j

)
,

where the double sum on the righthandside is over all j ≥ 0, 0 ≤ i ≤ k, subject to the
restriction that k + 6i + j = n. For the first equality above, we have evaluated a finite
geometric sum. The general formula is

a + ax+ . . .+ axn−1 =
a− axn

1 − x
,

where it is often convenient to notice that axn is equal to axn−1 · x, which can be regarded
as the “next ” term in the geometric sum if it were to extend to infinity.

Another general formula that has been used in the last two examples is the Binomial
theorem for nonnegative integer exponent, which gives

(A +B)k =
k∑

i=0

(
k

i

)
AiBk−i =

k∑

i=0

(
k

i

)
Ak−iBi.

We now consider compositions of a integer. For positive integers n, k, a composition of n
with k parts is a k-tuple (c1, . . ., ck) of positive integers such that c1 + . . .+ ck = n. We call
c1, . . ., ck the parts of the composition. In addition, by convention, we also say that there is
single (empty) composition of 0, with 0 parts, and denote this composition by ε.

Now note that a composition of n with k parts is precisely a solution to the equation
t1 + . . . + tk = n in the positive integers, and that this is bijective, so the number of
compositions of n with k parts is given by

(
n−1
k−1

)
, from the first example following Lemma 5.1
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above. Then, summing over all choices of k, for n ≥ 1, we obtain that the number of
compositions of n is given by

n∑

k=1

(
n− 1

k − 1

)
=

n−1∑

i=0

(
n− 1

i

)
1i = (1 + 1)n−1 = 2n−1,

from the Binomial Theorem (or, combinatorially, by counting the subsets of an (n− 1)-set).
We now take a direct generating series approach, by considering the set of all compositions

(i.e., any k, any n) in which the parts are restricted to a subset A of the positive integers
N . Then this set of compositions is given by

S = {ε} ∪ A ∪ A2 ∪ . . ..

Note that the sets on the RHS above are pairwise disjoint (i.e., every element of S is contained
in exactly one of the sets on the RHS). To emphasize that all sets in the union are disjoint,
we write

S = {ε} ·∪ A ·∪ A2
·∪ . . .,

and refer to “
·∪ ” as “disjoint union”. Now define a weight function for S, by

wt((c1, . . ., ck)) = c1 + . . .+ ck,

for any k ≥ 0 (when k = 0, the element of S is ε, consistent with the convention that the
empty sum above is 0). Then the compositions of n with parts in A are precisely the elements
of S of weight n, so our basic enumerative result for generating series implies immediately
that the number of compositions of n is

[xn]ΦS(x).

To deal with the disjoint union in S, we use the following result, the Sum Rule.

Theorem 6.2 For any weight function defined on A ·∪ B, we have

Φ
A

·
∪ B

(x) = ΦA(x) + ΦB(x),

(where, on the RHS above, the weight function is simply the restriction of the weight function
to the subsets A, B, respectively.)

Proof.

LHS =
∑

c∈A
·
∪ B

xwt(c) =
∑

a∈A

xwt(a) +
∑

b∈B

xwt(b) = RHS.

Applying the Sum Rule to S, we obtain

ΦS(x) =
∑

k≥0

ΦAk(x). (5)

12



Note that, in order to extend the Sum Rule to the infinite disjoint union in S, we need to
ensure that the elements of any fixed weight in S will only appear in a finite number of sets
in the disjoint union. But this is immediate, since elements of weight n can only appear in
the sets Ak with k ≤ n. Now note that, for (c1, . . ., ck) ∈ S, we have

wt((c1, . . ., ck)) = τ(c1) + . . .+ τ(ck),

where τ is the identity function, so we can apply the Product Rule to (5), to obtain, using
the geometric series,

ΦS(x) =
∑

k≥0

(ΦA(x))k =
1

1 − ΦA(x)
. (6)

7 Lecture of January 23

As a first example of (6), consider the total number of compositions of n. Here we have
A = N , and ΦN (x) =

∑
n≥1 x

n = x
1−x

, so the total number of compositions of n is given by

[xn]
1

1 − x
1−x

= [xn]
1 − x

1 − 2x
= [xn]

(
1 +

x

1 − 2x

)
= [xn]

(
1 +

∑

i≥0

2ixi+1

)
,

and this gives 2n−1 for n ≥ 1 (since we choose i+ 1 = n), and 1 for n = 0 (which checks our
first solution above).

For a second example of (6), for n ≥ 0 let an be the number of compositions of n in which
no part is equal to 3. In this case, we have A = {1, 2, 4, 5, . . .} = N\{3}, so ΦA(x) = x

1−x
−x3,

and we obtain ∑

n≥0

anx
n =

1

1 −
(

x
1−x

− x3
) =

1 − x

1 − 2x+ x3 − x4
.

This could be expanded in powers of x to get an explicit formula for an. For example, the
first step in obtaining such an expansion is to use a geometric series, giving

∑

n≥0

anx
n = (1 − x)

∑

k≥0

(2x− x3 + x4)k.

However, instead of giving an explicit formula for an, we are going to obtain a recurrence
equation. Multiplying on both sides by the denominator 1 − 2x+ x3 − x4, we obtain

(
1 − 2x+ x3 − x4

)∑

n≥0

anx
n = 1 − x+ 0 x2 + . . .,

an equality of two power series in x. But this means that the coefficient of each power of x
on the LHS must equal the coefficient of the corresponding power of x on the RHS, and this
gives us a system of equations for {an}n≥0, as follows:

[x0] : a0 = 1,

[x1] : a1 − 2a0 = −1, which gives a1 = 1,

13



[x2] : a2 − 2a1 = 0, which gives a2 = 2,

[x3] : a3 − 2a2 + a0 = 0, which gives a3 = 3,

[xm] : am − 2am−1 + am−3 − am−4 = 0, for m ≥ 4.

This gives us the recurrence equation

am = 2am−1 − am−3 + am−4, m ≥ 4, (7)

with initial conditions a0 = a1 = 1, a2 = 2, a3 = 3. This is called a linear recurrence with
constant coefficients, because am is determined by a linear function of am−1, am−2, . . ., and
the coefficients in this linear function are constants (i.e., not functions of m).

Note that the initial conditions could also be obtained by elementary counting: we have
ai = the number of compositions of i in which 3 is never a part, so a0 = a1 = 1, a2 = 2
(equal to the total number of compositions of i in each case, since no part can be equal to
3 in a composition of i when i < 3). Also a3 = 3, since the compositions in this case are
(1, 1, 1), (1, 2), (2, 1).

We are now going to give an alternative proof of recurrence equation (7), by giving a
direct bijection between appropriate sets of compositions.

We begin with something easier, by considering the recurrence

cm = 2cm−1, m ≥ 1, (8)

where cm is equal to the number of compositions ofm. Define Cm to be the set of compositions
of m, for m ≥ 0. Also, define Cm,i to be the set of compositions of m in which the last part

is equal to i, for m, i ≥ 1, and let C′
m =

·∪ i≥2Cm,i, m ≥ 1. Then we clearly have

Cm = Cm,1

·∪ C′
m, m ≥ 1. (9)

Now we give two combinatorial bijections. The first is

Cm,1
∼= Cm−1, m ≥ 1,

which simply says that if the last part (which equals 1) is removed from a composition in
Cm,1, then we obtain a composition in Cm−1, and that this is bijective. The second bijection
is

C′
m
∼= Cm−1, m ≥ 1,

which says that if we subtract one from the last part (which equals 2 or more) of a composition
in C′

m, then we obtain a composition in Cm−1, and that this is bijective. But |Cm| = cm, m ≥ 0,
so the first bijection above gives |Cm,1| = cm−1, m ≥ 1, and the second bijection above gives
|C′

m| = cm−1, m ≥ 1, and now (8) follows immediately from (9).
For (7), define Am, for m ≥ 0, to be the set of compositions of m in which no part is

equal to 3, and let Am,i, for m, i ≥ 1, be the set of compositions in Am in which the last part

is equal to i. Also, let A′
m = Am,2

·∪ Am,4

·∪ Am,5

·∪ . . ., m ≥ 1. Then we immediately have

Am = Am,1

·∪ A′
m, m ≥ 1, (10)
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Again we give two combinatorial bijections. The first is identical as for all compositions;
it is

Am,i
∼= Am−i, m ≥ i,

which simply says that if the last part (equal to i) is removed from a composition in Am,i,
then we obtain a composition in Am−i, and that this is bijective. The second bijection is
more complicated than for all compositions; it is

A′
m \ Am,4

∼= Am−1 \ Am−1,2, m ≥ 2,

which says that if we subtract one from the last part of a composition on the LHS, then we
obtain a composition on the RHS, and that this is bijective. But |Am| = am, m ≥ 0, so (10)
gives

am = |Am,1| + |A′
m|, m ≥ 1,

and (7) follows immediately from the two bijections.

Before moving on to our next topic, we record the general result that gives a linear
recurrence equation with constant coefficients for the sequence of coefficients in any rational
function (ratio of polynomials).

Lemma 7.1 Suppose that
∑

i≥0

cix
i =

P (x)

1 +
∑k

j=1 qjx
j
,

where P (x) is a polynomial of degree less than k. Then

cm +

k∑

j=1

qjcm−j = 0, m ≥ k,

with initial conditions determined by the coefficients of P (x).

8 Lecture of January 25

As is often done in mathematics, we will now introduce some notation that allows compact
expression for sets of combinatorial objects. We represent compositions in string notation,
as strings (ordered lists) of the parts (simply by removing parentheses and commas). We
then use the notation

D∗ = {ε} ∪ D ∪ D2 ∪ D3 ∪ . . .,
for any set of strings D. Thus, the set of all compositions corresponds to the case D = N ,
and the set of compositions with no parts equal to 3 corresponds to the case B = (N \{3})∗.
Here we use the notation

AB = {ab : a ∈ A, b ∈ B},
for sets of strings A, B. For strings a, b, we call ab the concatenation product; this product has
an identity element, the empty string ε, and it is associative. However, it is not commutative,
and in general and the only string with a multiplicative inverse is ε.
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We now consider partitions of an integer. For positive integers n, k, a partition of n with
k parts is a string a1. . .ak of positive integers, weakly ordered with a1 ≤ . . . ≤ ak, and such
that a1 + . . .+ ak = n. We call a1, . . ., ak the parts of the partition, and we also have a single
empty partition of 0, with 0 parts, denoted by ε. Let pn be the number of partitions of n.
Then we have p0 = 1, p1 = 1 (partition 1), p2 = 2 (partitions 11 and 2), p3 = 3 (partitions
3, 12 and 111). Let P be the set of all partitions (i.e., any n, any k). Now define a weight
function for P, by

wt(a1. . .ak) = a1 + . . .+ ak,

for any k ≥ 0. The the partitions of n are precisely the elements of P of weight n, so
our basic enumerative result for generating series implies immediately that the number of
partitions of n is

pn = [xn]ΦP(x).

But, using string notation, we have

P = {1}∗{2}∗{3}∗. . .,

and using the product and sum rules, we obtain

ΦP(x) =
∏

m≥1

Φ{m}∗(x) =
∏

m≥1

1

1 − xm
.

In general, it is not easy to obtain a compact formula for the coefficients in this infinite
product, and indeed, there is no nice formula for pn, the number of partitions of n. However,
we can still obtain difficult facts about various sets of partitions from their generating series.

Consider the set D, consisting of partitions with distinct parts, and the set O, consisting
of partitions with odd parts. Let dn be the number of partitions of n in D, and on be the
number of partitions of n in O, n ≥ 0. Then, using string notation, we have

D = {ε, 1}{ε, 2}{ε, 3}. . ., O = {1}∗{3}∗{5}∗. . .,

so we have, from the product and sum rules,

∑

n≥0

dnx
n = ΦD(x) =

∏

m≥1

(1 + xm),

and ∑

n≥0

onx
n = ΦO(x) =

∏

j≥1

1

1 − x2j−1
.

But, we then obtain

ΦD(x) =
∏

m≥1

1 − x2m

1 − xm
=

∏
i≥1(1 − x2i)

∏
m≥1(1 − xm)

= ΦO(x),

and we conclude that dn = on, for each n ≥ 0. Since our derivation of this result relies
on cancellations in infinite products forms of generating series, we shall now describe a
completely elementary bijection that gives an alternative proof of this result (to help give
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some confidence in the generating series methods). First, to illustrate the result itself,
consider the case n = 6. Then, in D, the partitions of 6 are given by 6, 15, 24, 123, and, in
O, the partitions of 6 are given by 15, 33, 1113, 111111, so here we have d6 = 4 = o6. As
another example, consider n = 11, where, in D, the partitions of 11 are given by

11, 1 10, 2 9, 3 8, 4 7, 5 6, 1 2 8, 1 3 7, 1 4 6, 2 3 6, 2 4 5, 1 2 3 5,

and, in O, the partitions of 11 are given by

11, 1 1 9, 1 1 1 1 7, 1 3 7, 1 5 5, 3 3 5, 1 1 1 3 5, 1 1 1 1 1 1 5,

1 1 3 3 3, 1 1 1 1 1 3 3, 1 1 1 1 1 1 1 1 3, 1 1 1 1 1 1 1 1 1 1 1,

so here we have d11 = 12 = o11. Now, for the bijection: we describe a mapping ψ : D → O
that is weight-preserving. For a partition δ ∈ D, consider each part d in δ. Write d = 2a b,
where a is a nonnegative integer, and b is an odd positive integer. Then create 2a parts in
ψ(δ), each equal to b, and repeat this for all parts d in δ. This mapping is weight-preserving,
since if δ is a partition of n, then ψ(δ) is also a partition of n. For example, we have

ψ(2 3 8 12 14 21) = 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 7 7 21,

where both are partitions of 60.
Now, ψ is actually a bijection, since it is easy to describe its inverse: consider an arbitrary

partition θ ∈ O. For each odd part b that appears in θ, let Nb ≥ 1 be the number of times
that b appears as a part. Now write Nb as a sum of distinct nonnegative powers of 2 (this is
unique, since binary representations of positive integers are unique), say as

Nb =

mb∑

i=1

2ab,i

Then the parts that appear in ψ−1(θ) are 2ab,ib, for i = 1, . . ., mb. For example,

ψ−1(3 3 3 3 3 3 7 7 7) = 6 7 12 14,

since N3 = 6 = 21 + 22, and N7 = 3 = 20 + 21.
The above bijective proof relies on the uniqueness of binary representations, a well known

fact that we now prove using generating series and partitions. Let B be the set of partitions
with distinct parts, that are all nonnegative powers of 2, and let bn be the number of partitions
of n in B. Now,

B = {ε, 1}{ε, 2}{ε, 4}{ε, 8}. . .,
and bn is exactly the number of binary representations of n, so we have

∑

n≥0

bnx
n = ΦB(x) =

∏

m≥0

(1 + x2m

)

=
∏

m≥0

1 − x2m+1

1 − x2m

=
1

1 − x
=
∑

n≥0

xn,

so we conclude that bn = 1 for each n ≥ 0, and we have completed a generating series proof
of the uniqueness of binary representations.
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9 Lecture of January 28

We now consider the set A of k-subsets {α1, . . ., αk} of {1, . . ., n}, with the convention that
α1 < . . . < αk. Now define d1 = α1, d2 = α2 − α1, . . ., dk = αk − αk−1, dk+1 = n − αk.
Note that d1 ≥ 1, . . ., dk ≥ 1, dk+1 ≥ 0, and that d1 + . . . + dk+1 = n. In fact, let B
be the set of (k + 1)-tuples (d1, . . ., dk+1), such that d1 ≥ 1, . . ., dk ≥ 1, dk+1 ≥ 0, and
d1 + . . . + dk+1 = n. Then the above mapping from A to B is a bijection, since we can
invert it by αi = d1 + . . .+ di, i = 1, . . ., k. We call this the difference-partial sum bijection.
Now, clearly we have |A| =

(
n

k

)
, and as an exercise, we also determine |B|, to check that

these are equal. First note that B consists of the elements of N kN0 of weight n, where N0

consists of the nonnegative integers, and the weight of a (k + 1)-tuple (d1, . . ., dk+1) is equal
to d1 + . . .+ dk+1. Then, as in our earlier work on the number of solutions to equations, we
use the product rule to obtain

|B| = [xn]ΦN kN0
(x)

= [xn](x1 + x2 + . . .)k(1 + x1 + x2 + . . .)

= [xn]

(
x

1 − x

)k
1

1 − x

= [xn−k](1 − x)−k−1

=

(
n− k + k + 1 − 1

n− k

)
=

(
n

n− k

)
=

(
n

k

)
,

as we expect. How can this be useful ? Consider a modification of this problem.

Example 9.1 Determine the number of k-subsets {α1, . . ., αk} of {1, . . ., n}, such that αi ≡
i( mod 3), i = 1, . . ., k (where we have α1 < . . . < αk).

SOLUTION. Let N1,3 denote the set {1, 4, 7, . . .} of positive integers congruent to 1( mod 3).
Then, applying the difference-partial sum bijection, the required number is equal to the
number of (k + 1)-tuples in N k

1,3N0 of weight n, and by the product rule this equals

[xn](x1+x4+x7+ . . .)k(1+x1+x2+ . . .) = [xn]

(
x

1 − x3

)k
1

1 − x
= [xn−k](1−x3)−k(1−x)−1.

If we write (1 − x)−1 as (1 + x+ x2)(1 − x3)−1, then the answer becomes

[xn−k](1 + x+ x2)(1 − x3)−k−1 =

(
k + 1 + ⌊n−k

3
⌋ − 1

⌊n−k
3
⌋

)
=

(
k + ⌊n−k

3
⌋

k

)
.

Now consider a further modification, in which the subset does not have fixed size.

Example 9.2 Determine the number of subsets {α1, . . ., αk} of {1, . . ., n}, such that αi ≡ i(
mod 3), i = 1, . . ., k (where we have α1 < . . . < αk), where k is not fixed, and can be any
nonegative integer.
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SOLUTION. Here, applying the difference-partial sum bijection, the required number is
equal to the number of elements of N ∗

1,3N0 of weight n, and by the sum and product rules
this equals

[xn]ΦN ∗
1,3N0

(x) = [xn]
ΦN0

(x)

1 − ΦN1,3
(x)

= [xn]
1

1−x

1 − x
1−x3

= [xn]
1 + x+ x2

1 − x− x3
,

for n ≥ 0.

10 Lecture of January 30

We are now going to consider strings more formally. Initially, the alphabet will be {0, 1}. A
{0, 1}-string is a finite, ordered list of 0’s and 1’s, for example a = 10011 and b = 0001. We
have the concatenation product, for example ab = 100110001 and ba = 000110011, and the
empty string ε is the identity element for this multiplication, so εa = a = aε for all strings
a. (This multiplication is closed and associative, with identity, but it is not commutative,
and in general there is no inverse. Such an algebraic system is called a monoid.) The length
of a string is the number of symbols in it, so length(0010)=4, and length(ε)=0, for example.
If A and B are sets of strings, then we define

AB = {ab : a ∈ A, b ∈ B}, A∗ = {ε} ∪ A ∪ AA ∪AAA∪ . . .,

and we usually write powers with exponent notation, e.g., AAA = A3. Note the use of
set notation above. Consider A = {0, 00}, B = {1, 11}, C = {ε, 0}. Then we have AB =
{01, 011, 001, 0011}, but we have AC = {0, 00, 000}, since in AC, the same string 00 is formed
in two ways. We say that the elements of AB are uniquely created, and that the elements of
AC are not uniquely created.

For an arbitrary set of {0, 1}-strings A, consider the generating series

ΦA(x) =
∑

a∈A

xlength(a).

Then we have the following results.

Theorem 10.1 (a) If the elements of AB are uniquely created, then ΦAB(x) = ΦA(x)ΦB(x).
(b) If the elements of A∗ are uniquely created, then ΦA∗(x) = (1 − ΦA(x))−1.

The proofs are omitted, since they are simply the translation of the sum and product rules
for the weight function “length”, and using the fact that length(ab)= length(a)+ length(b)
for all strings a and b. Note in (b) that since elements of A∗ are uniquely created, then the
unions in A∗ are all disjoint, so we can use the sum rule.

As a first example, we determine the number of {0, 1}-strings of length n, for each n ≥ 0.
Clearly this number is 2n, since there are 2 choices in each of the n positions. Using the
generating series method, we have that this number is the number of elements in {0, 1}∗ of
weight n, and that the elements of {0, 1}∗ are uniquely created, so it is equal to

[xn]Φ{0,1}∗(x) = [xn]
(
1 − Φ{0,1}(x)

)−1
= [xn](1 − 2x)−1 = 2n, n ≥ 0,
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from Theorem 10.1, agreeing with our answer above.
As a second example, let S be the set of {0, 1}-strings in which there is no substring

“111”, and find the number of elements of S of length n, n ≥ 0.
Now, by considering the 0’s, we have

S = {0, 10, 110}⋆{ε, 1, 11},

and the elements of S are uniquely created in this decomposition, so we conclude that the
number of strings in S of length n is equal to

[xn]
Φ{ε,1,11}(x)

1 − Φ{0,10,110}(x)
= [xn]

1 + x+ x2

1 − x− x2 − x3
, n ≥ 0,

from Theorem 10.1.
The decomposition of S above is a special case of the 0-decomposition for the set of all

{0, 1}-strings, given by

{0, 1}∗ = ({1}∗{0})∗ {1}∗ = {1}∗ ({0}{1}∗)∗ ,

where the strings in {0, 1}∗ are uniquely created in this decomposition. To prove this, simply
note that every string in {0, 1}∗ has k 0’s for some unique nonnegative integer k, and that
these separate k + 1 possibly empty strings consisting entirely of 1’s, ordered from left to
right.

Of course, by interchanging 0’s and 1’s, we obtain the 1-decomposition for the set of all
{0, 1}-strings, given by

{0, 1}∗ = ({0}∗{1})∗ {0}∗ = {0}∗ ({1}{0}∗)∗ ,

where the strings in {0, 1}∗ are uniquely created in this decomposition.

As a third example, let T be the set of {0, 1}-strings in which there is no substring “000”
or “111”, and find the number of elements of T of length n, n ≥ 0.

In this case, we have

T = {ε, 1, 11} ({0, 00}{1, 11})∗ {ε, 0, 00},

and the elements of T are uniquely created in this decomposition, so we conclude that the
number of strings in T of length n is equal to

[xn]
(1 + x+ x2)2

1 − (x+ x2)
= [xn]

1 + x+ x2

1 − x− x2
, n ≥ 0,

from Theorem 10.1.
Some useful terminology for dealing with strings is block. A block in a {0, 1}-string is a

maximal nonempty substring consisting entirely of 0’s or of 1’s. For example, the blocks of
0011101100 are 00, 111, 0, 11, 00.
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11 Lecture of February 4

The second decomposition for S above is a special case of the block decomposition, which for
all strings in {0, 1}∗ gives

{0, 1}∗ = {1}∗ ({0}{0}∗{1}{1}∗)∗ {0}∗ = {1}∗ (({0}∗ \ {ε}) ({1}∗ \ {ε}))∗ {0}∗.
Again, the elements of {0, 1}∗ are uniquely created, and the proof of this is straightforward.
Of course, we can interchange the 0’s and 1’s in such decompositions, as required.

Now we introduce additional complexity, by using more than one weight function, and
generating series in more than one variable. Suppose that we have m weight functions
ω1, . . ., ωm, defined on a set A (we’ll assume that m is finite for now, but m need not be
finite, as we shall see later). Then we define the generating series in m variables x1, . . ., xm,
for A with respect to these weight functions by

ΦA(x1, . . ., xm) =
∑

a∈A

x
ω1(a)
1 . . .xωm(a)

m .

The Sum Rule for generating series in m variables says that for any weight functions defined

on A ·∪ B, we have

Φ
A

·
∪ B

(x1, . . ., xm) = ΦA(x1, . . ., xm) + ΦB(x1, . . ., xm),

and the proof is exactly the same as for the case m = 1, since it simply uses the fact that
∑

b∈A
·
∪ B

=
∑

b∈A

+
∑

b∈B

,

independently of the summand. For the product rule for pairwise Cartesian Products, we
suppose that there are m weight functions defined for each of A, B and A × B; for A let
these weight functions be ω1i, i = 1, . . ., m, for B they are ω2i, i = 1, . . ., m, and for A× B
they are ω3i, i = 1, . . ., m. If the condition

ω3i((a, b)) = ω1i(a) + ω2i(b)

holds for all i = 1, . . ., m and all (a, b) ∈ A× B, then

ΦA×B(x1, . . ., xm) = ΦA(x1, . . ., xm)ΦB(x1, . . ., xm).

The proof of this follows the proof for the case m = 1, as given below:

ΦA×B(x1, . . ., xm) =
∑

(a,b)∈A×B

m∏

i=1

x
ω3i((a,b))
i

=
∑

a∈A

∑

b∈B

m∏

i=1

x
ω1i(a)+ω2i(b)
i

=
∑

a∈A

(
m∏

i=1

x
ω1i(a)
i

)
∑

b∈B

(
m∏

i=1

x
ω2i(b)
i

)

= ΦA(x1, . . ., xm)ΦB(x1, . . ., xm),
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as required. The extension of the product rule to k-tuples for an arbitrary k ≥ 2 is straight-
forward.

Now, as an example, let cn,k be the number of {0, 1}-strings of length n, with k occurrences
of “00” as a block, and let

C(x, y) =
∑

n≥0

∑

k≥0

cn,ky
kxn.

Define the weight function ω(a) to equal the number of occurrences of “00” as a block in the
string a. Then it is straightforward that C(x, y) = Φ{0,1}∗(x, y), where

Φ{0,1}∗(x, y) =
∑

a∈{0,1}∗

xlength(a)yω(a).

To determine this generating series, we consider the 1-decomposition

{0, 1}∗ = ({0}∗{1})∗ {0}∗.
Now it is straightforward to determine this generating series from the 1-decomposition, using
the sum and product rules for generating series in more than one variable. We have

{0, 1}∗ = ({ε, 0, 00, 000, . . .}{1})∗ {ε, 0, 00, 000, . . .},
and thus obtain

C(x, y) =
1 + x+ yx2 + x3 + . . .

1 − x(1 + x+ yx2 + x3 + . . .)

=
1

1−x
+ (y − 1)x2

1 − x
(

1
1−x

+ (y − 1)x2
)

=
1 + (y − 1)x2(1 − x)

1 − 2x− (y − 1)x3(1 − x)
.

In general, we do not obtain nice closed formulas for coefficients with many parameters
like cn,k, in a many variable generating series like C(x, y). However, there are other ways in
which additional parameters might enter a counting question, like averaging. For example,
define µn, n ≥ 0, to be the average number number of occurrences of “00” as a block
among all {0, 1}-strings of length n. For this “average”, we consider all {0, 1}-strings to be
equiprobable. Then we immediately have

µn =
Nn

Dn

,

where
Nn =

∑

k≥0

k cn,k, Dn =
∑

k≥0

cn,k.

For example, when n = 5, we have c5,i = 0, for i ≥ 3; c5,2 = 1, for the string 00100;
c5,1 = 10, for the strings 00111, 00101, 00110, 10010, 10011 and their reverse; and finally
c5,0 = 32 − 10 − 1 = 21, since there are 25 = 32 strings of length 5. Then we have

µ5 =
0 · 21 + 1 · 10 + 2 · 1

32
= 12

32
= 3

8

in this case.
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12 Lecture of February 8

How do we determine µn for arbitrary n ? We can evaluate Nn and Dn from the generating
series C(x, y), by observing that

C(x, 1) =
∑

n≥0

∑

k≥0

cn,kx
n,

(
∂

∂y
C(x, y)

)∣∣∣∣
y=1

=
∑

n≥0

∑

k≥0

k cn,kx
n,

and hence we obtain

Dn = [xn]C(x, 1), Nn = [xn]

(
∂

∂y
C(x, y)

)∣∣∣∣
y=1

.

Applying this to the example given, we have

C(x, 1) =
1

1 − 2x
=
∑

i≥0

2ixi,

giving
Dn = [xn]C(x, 1) = 2n, n ≥ 0.

For Nn, we use the quotient rule for differentiating in y, which says

(
f

g

)′

=
f ′g − fg′

g2
,

to obtain
(
∂

∂y
C(x, y)

)∣∣∣∣
y=1

=
x2(1 − x)(1 − 2x) + x3(1 − x)

(1 − 2x)2

=
x2(1 − x)2

(1 − 2x)2
=

x2

1 − 2x
+

x4

(1 − 2x)2

=
∑

i≥0

2ixi+2 +
∑

j≥0

(j + 1)2jxj+4,

where for the last summation over j, we have used the negative binomial theorem

(1 − y)−2 =
∑

j≥0

(
2 + j − 1

j

)
yj =

∑

j≥0

(
j + 1

j

)
yj =

∑

j≥0

(j + 1)yj.

Thus we have Nn = 0, for n = 0, 1, Nn = 2n−2, for n = 2, 3, and Nn = 2n−2 + (n− 3)2n−4 =
(n+ 1)2n−4, for n ≥ 4. Finally, dividing by Dn, we have

µn = 0, n = 0, 1, µn = 1
4
, n = 2, 3, µn =

n+ 1

16
, n ≥ 4.

Note that when n = 5, this formula gives µ5 = 6
16

= 3
8
, in agreement with the data above.

Now we shall consider substrings that are to be avoided.

23



Example 12.1 Determine the number of {0, 1}-strings of length n, with no occurrences of
“0001111” as a substring.

SOLUTION. Let S be the set of {0, 1}-strings with no occurrences of “0001111” as a sub-
string. Then from the block decomposition we obtain

S = {1}∗ ({0}{0}∗{1}{1}∗ \ {0}∗{0001111}{1}∗)∗ {0}∗,

so the generating series for S with respect to length is

ΦS(x) =
1

1 − x

1

1 −
(

x
1−x

x
1−x

− x7

(1−x)2

) 1

1 − x

=
1

1 − 2x+ x7
,

and the number of strings in S of length n is equal to the coefficient of xn in ΦS(x), n ≥ 0.

So far, as in the above example, we have used generating series in the following, direct
way: we wish to enumerate a set S, and decompose S into other sets, using the set operations
of disjoint union and Cartesian product, where the generating series for these other sets are
known. However, it is often advantageous to proceed more indirectly, as in the following
example.

Example 12.2 Determine the number of {0, 1}-strings of length n, with no occurrences of
“0101111” as a substring.

SOLUTION. Let A be the set of {0, 1}-strings with no occurrences of “0101111” as a sub-
string. Then from the 1-decomposition, but with the string 0101111 playing the role of “1”,
we obtain the decomposition

{0, 1}∗ = A ({0101111}A)∗ , (11)

and claim that the elements of {0, 1}∗ are uniquely created in this decomposition.
To justify our claim for (11) above, let α = 0101111. Note there are no nonempty strings

β, γ with length(β) = length(γ) and length(β) < length(α), for which αβ = γα (check this
for the 6 choices of β = 0, 01, 010, 0101, 01011, 010111). This means that the occurrences
of α in any {0, 1}-string s cannot overlap (i.e., no symbol in the string can be contained in
more than one occurrence of α). Thus we can write

s = s0αs1α. . .αsk,

for some unique k ≥ 0, where s0, s1, . . ., sk are unique strings in A.
It is straightforward to obtain the generating series for A from (11), by considering the

generating series for both sides with respect to length. This gives

1

1 − 2x
=

ΦA(x)

1 − x7ΦA(x)
,
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and, crossmultiplying and solving for ΦA(x), we obtain

1 − x7ΦA(x) = (1 − 2x)ΦA(x)

(1 − 2x+ x7)ΦA(x) = 1

ΦA(x) =
1

1 − 2x+ x7
.

Note that this indirect method would also give the result of Example 12.1 immediately.

13 Lecture of February 11

Now we consider the generating series

A(x, y) =
∑

s∈{0,1}∗

xlength(s)yω(s),

where ω(s) is equal to the number of of occurrences of “0101111” as a substring in s. An
expression for A(x, y) now follows from (11), by considering the generating series for both
sides with respect to length, and with respect to weight function ω, giving

A(x, y) =
ΦA(x)

1 − yx7ΦA(x)
=

1
1−2x+x7

1 − yx7

1−2x+x7

=
1

1 − 2x− (y − 1)x7
.

Now consider strings on the alphabet {1, . . ., n}, for fixed positive integer n. For a string
b in S = {1, . . ., n}∗, define the weight function ωi(b) to be the number of i’s that occur in
b, for i = 1, . . ., n. Then, for a set of strings B ⊆ S, define the generating series

ΦB(x1, . . ., xn) =
∑

b∈B

x
ω1(b)
1 . . .xωn(b)

n .

Now, of course

ΦS(x1, . . ., xn) =
∑

k1,...,kn≥0

ck1,...,kn
xk1

1 . . .x
kn

n ,

where ck1,...,kn
is the number of strings with k1 1’s, ... ,kn n’s.

Now, determining ΦS(x1, . . ., xn) using the sum and product rules, we obtain

ΦS(x1, . . ., xn) =
1

1 − Φ{1,...,n}(x1, . . ., xn)
=

1

1 − (x1 + . . .+ xn)
.

Expanding this series, we use the geometric series to get

ΦS(x1, . . ., xn) =
∑

m≥0

(x1 + . . .+ xn)m =
∑

m≥0

∑

k1,...,kn≥0

k1+...+kn=m

m!

k1!. . .kn!
xk1

1 . . .x
kn

n ,

where the last equality follows from the multinomial theorem. (It is easily proved by applying
the binomial theorem to expand (x1 + (x2 + . . .+ xn))m, then repeating.) This implies that
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the number of strings in {1, . . ., n} with ki i’s, for i = 1, . . ., n, where k1, . . ., kn ≥ 0 and
k1 + . . .+ kn = m, is given by

m!

k1!. . .kn!
, (12)

which is usually referred to as the multinomial coefficient. Of course, it is easy to check
that (12) is the correct cardinality for this set of strings, as follows: there are m positions
in the string (say they’re called 1, . . ., m). There are

(
m

k1

)
ways to choose positions for the

1’s. Then, for i = 2, . . ., n, suppose that positions have been chosen for the 1’s, ... , i− 1’s;
independently of which set of k1 + · · · + ki−1 positions has been chosen for these, there are(

m−k1−···−ki−1

ki

)
ways to choose positions for the i’s. Thus the total number of ways of choosing

positions for all symbols is (with convention that k0 = 0)

n∏

i=1

(
m− k1 − · · · − ki−1

ki

)
=

n∏

i=1

(m− k1 − · · · − ki−1)!

ki!(m− k1 − · · · − ki)!
=

m!

k1!. . .kn!
,

in agreement with (12).

Now let D be the set of strings (called “Smirnov” strings) on the alphabet {1, . . ., n} in
which adjacent elements are always distinct (for example, 1342532413253435251 is in D, but
134255324132 is not, because of the substring “55”). Consider an arbitrary string s ∈ S.
Suppose that, for all i = 1, . . ., n, we replace each block of i’s in s by a single i. Then clearly
we obtain a unique string d ∈ D by this operation. Moreover, if we reverse this construction,
then we uniquely create the strings in S if we replace each element i, i = 1, . . . , n, by a block
of i’s of any positive length, in all possible ways.

The block replacement construction above gives

ΦS(x1, . . ., xn) = ΦD(x1 + x2
1 + . . ., . . ., xn + x2

n + . . .) = ΦD(
x1

1 − x1
, . . .,

xn

1 − xn

).

Now let yi = xi/(1 − xi), for i = 1, . . ., n. Then crossmultiplying by 1 − xi and solving for
xi, we obtain xi = yi/(1 + yi), for i = 1, . . ., n. This then gives

ΦD(y1, . . ., yn) = ΦS(
y1

1 + y1
, . . .,

yn

1 + yn

) =
1

1 − y1

1+y1
− . . .− yn

1+yn

,

which is the required generating series. For a consistency check on this series, note that if
y1 = . . . = yn = z, then we obtain

ΦD(z, . . ., z) =
1

1 − nz
1+z

=
1 + z

1 + z − nz

= 1 +
nz

1 − (n− 1)z
= 1 +

∑

k≥1

n(n− 1)k−1zk,

which simply states the obvious fact that the number of strings in D of length k is n(n−1)k−1,
for k ≥ 1.
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Another feature of the above series ΦD(y1, . . ., yn) is that it works non-commutatively.
For example, expanding, we have

1

1 − y1

1+y1
− . . .− yn

1+yn

= 1 +
∑

k≥1

(
y1

1 + y1
+ . . .+

yn

1 + yn

)k

= 1 +
∑

k≥1

(
y1 − y2

1 + y3
1 − . . .+ yn − y2

n + y3
n − . . .

)k
.

Now the terms of total degree 1 in the yi’s are

y1 + . . .+ yn,

which checks with the fact that the strings of length 1 in D are 1, . . ., n. The terms of total
degree 2 in the yi’s are

(y1 + . . .+ yn)(y1 + . . .+ yn) − y2
1 − . . .− y2

n =
∑

1≤i,j≤n

i6=j

yiyj,

which correctly produces the strings of length 2 in D.

For more direct decompositions for strings on the alphabet {1, . . ., n}, for n an arbitrary
positive integer, note that the 1-decomposition extends easily, to

{1, . . ., n}∗ = {2, . . ., n}∗ ({1}{2, . . ., n}∗)∗ ,

and the block decomposition also extends easily, to

{1, . . ., n}∗ = {2, . . ., n}∗ ({1}{1}∗ ({2, . . ., n}∗ \ {ε}))∗ {1}∗.

14 Lecture of February 13

There are many examples of non-commutative results in combinatorics. For example, sup-
pose that in products involving x and y we use the rule yx = qxy, where q commutes with
both x and y. Then the binomial theorem becomes

(x+ y)n =
n∑

k=0

(
n

k

)

q

xkyn−k, (13)

where (
n

k

)

q

=

∏n

j=1(1 − qj)
∏k

j=1(1 − qj)
∏n−k

j=1 (1 − qj)
.

The polynomial
(

n

k

)
q

is often called the q-binomial coefficient, or Gaussian coefficient. An-

other interpretation of the expansion (13) is that
(
n

k

)

q

=
∑

π∈Pk,n−k

qarea(π),
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where Pk,n−k is the set of lattice paths from (0, 0) to (k, n−k), and area(π) is the area under
the path π. From a completely different point of view, in which q is a power of a prime,

(
n

k

)
q

is equal to the number of k-dimensional subspaces of an n-dimensional vector space over
GF(q) (the finite field with q elements).

The series that we have been using are formal power series, not the power series of real
variables that have been studied in calculus courses. A formal power series is given by
A(x) =

∑
i≥0 aix

i, where ai = [xi]A(x), the coefficient of xi, is a complex number, for i ≥ 0.
The basic rule for A(x) is that ai is determined finitely for each finite i. Let B(x) =

∑
i≥0 bix

i.
Then A(x) = B(x) if and only if ai = bi for all i ≥ 0, and we define sum and product by

A(x) +B(x) =
∑

i≥0

(ai + bi)x
i, A(x)B(x) =

∑

i≥0

(
i∑

j=0

ajbi−j

)
xi,

and a special case of product is the scalar product cA(x) =
∑

i≥0(c ai)x
i, for a complex

number c. We write A(0) = a0, and unless A is a polynomial, this is the only “evaluation”
we allow. If b0 = 0, then we define the composition

A(B(x)) =
∑

i≥0

aiB(x)i =
∑

n≥0

∑

i≥0,j1,...,ji≥1

j1+...+ji=n

aibj1 . . .bji
xn,

and note that the summations above are finite.
Now suppose A(0) = 1. Then if B(x) is a multiplicative inverse of A(x), we have (since

multiplication of complex numbers is commutative, so is multiplication of A(x) with B(x),
so there is no difference between a left-inverse and a right-inverse)

∑
i≥0 aix

i
∑

j≥0 bjx
j = 1,

and equating coefficients of xn on both sides, for n ≥ 0, we obtain

b0 = 1

a1b0 + b1 = 0

a2b0 + a1b1 + b2 = 0,

where the nth equation is anb0+an−1b1+. . .+b0 = 0, n ≥ 1. But this gives b0 = 1, and allows
us to determine bn uniquely in terms of b0, . . ., bn−1, for each n ≥ 1, so, by induction on n,
B(x) is unique. Applying this process to obtain the multiplicative inverse of A(x) = 1 − x,
we obtain bn = 1, n ≥ 0, by induction on n, or (1 − x)−1 =

∑
i≥0 x

i. But substitution into
this, for an arbitrary A(x) with A(0) = 1, gives

A(x)−1 = (1 − (1 −A(x)))−1 = 1 +
∑

i≥1

(1 −A(x))i ,

which is therefore the unique multiplicative inverse of A(x).

We define differentiation and integration operators by

d

dx
A(x) =

∑

i≥1

iaix
i−1, IxA(x) =

∑

i≥0

ai

i+ 1
xi+1.

Now note that we have uniqueness for solution of differential equations: if d
dx
A(x) = d

dx
B(x)

and A(0) = B(0), then A(x) = B(x).
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15 Lecture of February 15

Now

d

dx
(A(x) +B(x)) =

∑

i≥1

i(ai + bi)x
i−1 =

∑

i≥1

iaix
i−1 +

∑

i≥1

ibix
i−1 =

d

dx
A(x) +

d

dx
B(x),

so this differentiation operator satisfies the sum rule, and

d

dx
(A(x)B(x)) =

∑

i≥1

i∑

j=0

iajbi−jx
i−1

=
∑

i≥1

i∑

j=0

(j + i− j)ajbi−jx
i−1

=

(
d

dx
A(x)

)
B(x) + A(x)

(
d

dx
B(x)

)
,

and differentiation satisfies the product rule. Induction on n then gives d
dx
B(x)n = nB(x)n−1 d

dx
B(x)

for positive integers n, which allows us to prove the chain rule:

d

dx
A(B(x)) = A′(B(x))

d

dx
B(x).

We now define three special series

ε(x) =
∑

n≥0

1

n!
xn, λ(x) =

∑

n≥1

1

n
xn, Ba(x) =

∑

n≥0

a(a− 1). . .(a− n+ 1)

n!
xn,

where a is a complex number parameter in Ba(x). Our object is to show that ε(x), λ(x), Ba(x)
have the properties of the familiar functions ex, ln(1 − x)−1, (1 + x)a, respectively. (Except
that we will NOT be able to consider, for example, ε(ε(x)), since it uses composition with
a series with constant term 1.) First, note that d

dx
ε(x) = ε(x). Then, for example, we can

prove that ε(x)ε(−x) = 1, since ε(x)ε(−x) has constant term ε(0)ε(−0) = 1, and

d

dx
(ε(x)ε(−x)) = ε(x)ε(−x) − ε(x)ε(−x) = 0,

where we have used the product rule and chain rule. The result follows by the uniqueness of
solution of differential equations ( since 1 also has constant term 1 and derivative 0). Also,
we have d

dx
λ(x) =

∑
n≥0 x

n = (1 − x)−1, so

d

dx
(λ(1 − ε(−x))) = (ε(−x))−1 ε(−x) = 1,

by the chain rule, and λ(1 − ε(−0)) = 0, and we conclude that λ(1 − ε(−x)) = x, by
uniqueness of solution of differential equations. (The series 1 − ε(−x) has constant term 0,
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so the composition λ(1 − ε(−x)) is valid.) Similarly, we prove that ε(λ(x)) = (1 − x)−1,
using ε(λ(0)) = 1, and

d

dx
((1 − x)ε(λ(x))) = −ε(λ(x)) + (1 − x)ε(λ(x))(1 − x)−1 = 0,

using the product rule and chain rule. For the series Ba(x), we have d
dx
Ba(x) = aBa−1(x),

and we omit further details of these computations.
Now, it is easy to verify that there are no zero divisors for formal power series, and this

fact allows us to establish that nth roots are unique, at least with given constant term, as
follows. Suppose A(0) = B(0) = 1, and A(x)n = B(x)n, for some positive integer n. Then
we have

0 = A(x)n −B(x)n = (A(x) −B(x))(A(x)n−1 + A(x)n−2B(x) + . . .+B(x)n−1).

Now the constant term in the second factor is A(0)n−1 + A(0)n−2B(0) + . . . + B(0)n−1 =
n 6= 0, so we conclude that A(x) − B(x) = 0, since there are no zero divisors, which gives
A(x) = B(x), as required. But we can determine the nth root of A(x) with A(0) = 1 by
substitution in the binomial series Ba(x), to obtain

A(x)
1
n = (1 + (A(x) − 1))

1
n = 1 +

∑

i≥1

1
n
( 1

n
− 1). . .( 1

n
− i+ 1)

i!
(A(x) − 1)i ,

which is therefore the unique nth root with constant term 1.

We introduce trigonometric series by defining

sin(x) = x− x3

3!
+
x5

5!
− . . ., cos(x) = 1 − x2

2!
+
x4

4!
− . . .,

and then proving the properties of these series from properties of the series ε(x) = ex, by

sin(x) =
eix − e−ix

2i
, cos(x) =

eix + e−ix

2
,

so, for example, we have

sin(x)2 + cos(x)2 =

(
eix − e−ix

2i

)2

+

(
eix + e−ix

2

)2

= 1
4

(
−(e2ix − 2 + e−2ix) + (e2ix + 2 + e−2ix)

)
= 1.

Then, noting that cos(x) has constant term 1, so it is invertible, we define

tan(x) =
sin(x)

cos(x)
= x+

x3

3
+

2x5

15
+ . . . = x+

2x3

3!
+

16x5

5!
+ . . .,

sec(x) =
1

cos(x)
= 1 +

x2

2
+

5x4

24
+ . . . = 1 +

x2

2!
+

5x4

4!
+ . . ..
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Finally, we are going to show that the sequences 1, 2, 16, . . . and 1, 1, 5, . . ., which are the
coefficients in tan(x) and sec(x), scaled by the factorial, count some interesting combinatorial
objects.

Let a2k+1, for k ≥ 0, denote the number of permutations σ1. . .σ2k+1 of {1, . . ., 2k + 1},
for which σ1 < σ2 > σ3 < . . . < σ2k > σ2k+1. Similarly, let b2k, for k ≥ 0, denote the number
of permutations σ1. . .σ2k of {1, . . ., 2k}, for which σ1 < σ2 > σ3 < . . . > σ2k−1 < σ2k. These
permutations are called alternating permutations. For example, a1 = 1 (the permutation
here is 1), a3 = 2 (the permutations are 132, 231), b0 = 1 (the empty permutation ε), b2 = 1
(the permutation 12), and b4 = 5 (the permutations 1423, 2413, 3412, 1324, 2314). To
obtain a recurrence equation for these numbers, first consider an alternating permutation on
{1, . . ., 2k + 1}, where k ≥ 1. Then we have σ2i+2 = 2k + 1 for some unique i = 0, . . ., k − 1.
In this case, σ1. . .σ2i+1 is an alternating permutation on some (2i+1)-subset α of {1, . . ., 2k},
and σ2i+3. . .σ2k+1 is an alternating permutation on {1, . . ., 2k} \ α. Then there are

(
2k

2i+1

)

choices for α, and for each such α, a2i+1 choices for σ1. . .σ2i+1, and a2k−2i−1 choices for
σ2i+3. . .σ2k+1. Moreover, this is bijective, and we conclude that

a2k+1 =
k−1∑

i=0

(
2k

2i+ 1

)
a2i+1a2k−2i−1, k ≥ 1, (14)

with initial condition a1 = 1. Similarly, we obtain

b2k =
k−1∑

i=0

(
2k

2i+ 1

)
a2i+1b2k−2i−2 k ≥ 1, (15)

with initial condition b0 = 1. Now let

A(x) =
∑

k≥0

a2k+1
x2k+1

(2k + 1)!
, B(x) =

∑

k≥0

b2k

x2k

(2k)!
,

which are called the exponential generating series for the sequences {a2k+1}k≥0, {b2k}k≥0,

respectively. Now, multiply both sides of (14) by x2k

(2k)!
, and sum for k ≥ 1, to obtain

∑

k≥1

a2k+1
x2k

(2k)!
=
∑

k≥1

k−1∑

i=0

a2i+1

(2i+ 1)!

a2k−2i−1

(2k − 2i− 1)!
x2k.

Then change indices in the double summation from i, k to i, j, where j = k − 1 − i. This
gives ranges of summation i ≥ 0 and j ≥ 0, and we have 2k = 2(i+ j + 1) = 2i+ 1 + 2j+ 1,
so the above equation becomes

∑

k≥1

a2k+1
x2k

(2k)!
=
∑

i≥0

a2i+1

(2i+ 1)!
x2i+1

∑

j≥0

a2j+1

(2j + 1)!
x2j+1.

Translating this in terms of A(x), we obtain

d

dx
(A(x) − a1x) = A(x)2,
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so
d

dx
A(x) = 1 + A(x)2.

(In CO 330, exponential generating series are considered in greater detail. There we give
a product rule that allows us to write down the above differential equation immediately,
avoiding all the details of summation indices, etc.) To solve this differential equation, divide
both sides by 1 + A(x)2 (this has constant term 1, so it is invertible), and integrate with
respect to x, to obtain

arctan(A(x)) = x+ c,

where we determine from the initial condition A(0) = 0 that c = 0, and conclude that
A(x) = tan(x).

Similarly, from (15), multiplying by x2k

(2k)!
, and summing for k ≥ 1, we obtain

d

dx
B(x) = A(x)B(x).

To solve this differential equation, divide both sides by B(x) (this has constant term 1, so it
is invertible), and integrate with respect to x, to obtain

ln(B(x)) = ln(sec(x)) + c,

where we determine from the initial condition B(0) = 1 that c = 0, and conclude that
B(x) = sec(x).

There are many other types of generating series used for various types of applications.
For this reason, the generating series

∑
n≥0 anx

n that we have used in MATH 249 is often
referred to as the ordinary generating series for the sequence {an}n≥0. For example, in
number theoretic applications, the Dirichlet generating series

∑
n≥1 an n

−s is often used
(here s is the variable). The significance of each choice of generating series is usually to be
found in their product. For example, we have

∑

i≥0

aix
i
∑

j≥0

bjx
j =

∑

n≥0



∑

i,j≥0
i+j=n

aibj


xn,

∑

i≥0

ai

xi

i!

∑

j≥0

bj
xj

j!
=
∑

n≥0



∑

i,j≥0
i+j=n

(
n

i

)
aibj



xn

n!
,

∑

i≥1

ai i
−s
∑

j≥1

bj j
−s =

∑

n≥1



∑

i,j≥1
i·j=n

aibj


n−s.

As an extra, the following example gives the general solution technique for the enumer-
ation of strings excluding arbitrary substrings (that may overlap with themselves).

32



Example Find the number of {0, 1}-strings of length n, with no occurrences of 01101 as a
substring.

To solve this, we create a combinatorial set using “marking”. Let T be the set of {0, 1}-
strings with some subset of occurrences of 01101 as a substring marked (in any example,
this is shown by circling the marked substrings). In this case, the circled occurrences are not
necessarily disjoint – the connected components of interlocked circled substrings are elements
of the countable set whose first three elements are illustrated in Figure 1. We call this set
the set of clusters. For s ∈ T , let length(s) equal the length of the underlying string, and

0  1  1  0  1 ,                    0  1  1  0  1  1  0  1 ,                   0  1  1  0  1  1  0  1  1  0  1 ,         .   .   .

Figure 1: The set of clusters for 01101.

let circ(s) equal the number of circled substrings. Then define

Ψ(x, u) =
∑

s∈T

xlength(s)ucirc(s).

Clearly we have
T = {{0, 1} ∪ C}⋆,

where C is the set of clusters, and the circled occurrences of the substring 01101 are as
illustrated in Figure 1. Thus we have C = {01101}{101}⋆, and

Ψ(x, u) =
1

1 − 2x− C(x, u)
,

where C(x, u), the cluster generating function, is given by

C(x, u) =
ux5

1 − ux3
.

But, we also have

Ψ(x, u) =
∑

a∈{0,1}∗

xlength(a)(1 + u)ω(a),

where ω(a) is the number of times that 01101 appears as a substring in a. Thus the required
number is given by

[xn]Ψ(x,−1) = [xn]
1

1 − 2x− C(x,−1)
= [xn]

1

1 − 2x+ x5

1+x3

.

(For k occurrences of 01101 as a substring, we use [xnuk]Ψ(x, u− 1).)
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16 Lecture of February 25

Now, we begin the study of graphs. A graph G consists of a finite, nonempty set, denoted
V (G), together with a set, denoted E(G), of unordered pairs of distinct elements of V (G).
The elements of V (G) are called vertices of G, and the elements of E(G) are called edges of
G.

For example, one particular graph is given by

V (G) = {1, 2, 3, 4}, E(G) = {{1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4}}.

We say that vertex 1 and edge {1, 2} are incident; we say that vertex 1 and vertex 2 are
joined, adjacent or neighbours (and that vertex 2 is not adjacent to vertex 3). The degree of a
vertex v, denoted by deg(v), is the number of edges with which v is incident, so here we have
deg(1)=deg(4)=3, and deg(2)=deg(3)=2. The graph G is drawn on the left of Figure 2. In

G G H

1 2

34

1

4

2 3

a

b

c

d

Figure 2: The graphs G and H .

this drawing we have represented the vertices as black circles, and drawn a curve between two
circles if the corresponding vertices are adjacent (in general, these curves do not need to be
straight lines). Another drawing of G is given in the middle of Figure 2. Note that, despite
the similarity of this drawing of G, and the graph H displayed to the right of G, graphs G
and H are NOT the same graphs, since they have different vertex-sets. One relationship
between G and H that emphasizes the similarity of these drawings is to consider the function
f from V (G) to V (H), specified by f(1) = a, f(2) = d, f(3) = b, f(4) = c. Then if vertex
i is relabelled by f(i), for all i ∈ V (G), we obtain precisely graph H . In general, pairs of
graphs like G and H are said to be isomorphic, and such a relabelling function f is called
an isomorphism. These are defined precisely as follows:

We say that graph G is isomorphic to graph H is there is a bijection f : V (G) → V (H)
that preserves adjacency (which means that for all unordered pairs u, v of vertices in G, u, v
are adjacent in G if and only if f(u), f(v) are adjacent in H . such a bijection f is called an
isomorphism from G to H . Note that if f is an isomorphism from G to H , then f−1 is an
isomorphism from H to G, so we usually use the language symmetrically, as in “ graphs G
and H are isomorphic”.

Our first result about graphs is the “handshake theorem”.
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Theorem 16.1 ∑

v∈V (G)

deg(v) = 2 |E(G)|

PROOF. Count the (vertex, edge) pairs that are incident. There are deg(v) such pairs for
each vertex v, giving the lefthandside, and there are two such pairs for each edge, giving the
righthandside.

Now, we define a class of graphs. For each n ≥ 0, the n-cube Qn is the graph whose
vertices are the {0, 1}-strings of length n, and two strings are adjacent if they differ in exactly
one position. For example, The 0-cube Q0 has a single vertex, the empty string ε, and no
edges. The graphs Qn, for n = 1, 2, 3, are given in Figure 3. Clearly there are p = 2n vertices
in Qn. How many edges q are there ? (We often use parameters p and q in this way, as
generically denoting the numbers of vertices and edges in a graph.) Now, every vertex in Qn

has degree n, since there are n positions that can be changed (from 0 to 1, or from 1 to 0).
Thus, we have ∑

v∈V (Qn)

deg(v) =
∑

v∈V (Qn)

n = n · p = n2n,

and from the handshake theorem this is equal to 2q, so we conclude that q = n2n−1.

In general, a graph in which all vertices have the same degree is called a regular graph.
If in particular this degree is always k, then we also may say that the graph is k-regular (so
Qn is n-regular, n ≥ 0).

Q Q Q321

0

1

00 01

10 11

000 010

110100

001 011

101 111

Figure 3: The cubes Qn, for n = 1, 2, 3.

As another example of a parameterized family of graphs, fix nonnegative integers n,m, k.
Define a graph to have vertices that are the m-subsets of a fixed n-set, and two m-subsets
are adjacent if their intersection has cardinality k. For example, in the case n = 5, m = 2,
k = 0, this graph is called the Petersen graph, and is given in Figure 4, as H .

Are any of the graphs G1, G2, G3 also given in Figure 4 isomorphic to H ? Clearly G1

is not isomorphic to H , since G1 and H have different numbers of vertices. Also, G2 is not
isomorphic to H , since G2 has two triangles (on vertices 2, 3, 4, and on vertices 7, 8, 9), but
H has no triangles (since the vertices of such a triangle would have to consist, together, of
six distinct elements of {1, 2, 3, 4, 5} – impossible !). However, G3 is isomorphic to H , with
isomorphism f given by f(a) = 12, f(b) = 34, f(c) = 15, f(d) = 23, f(e) = 14, f(f) = 25,
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12

34

1523

45 35

24

13 25
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H

G1

G3 G2

a b

cd

1 2 3

4

5

6
78

9
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a

b

c

d

ef

g

h

i

j

Figure 4: The Petersen graph H

f(g) = 13, f(h) = 24, f(i) = 35, f(j) = 45. Of course, this isomorphism needs to be
checked: for example, vertex a is adjacent to vertices b, i, j in G3, and indeed f(a) = 12 is
adjacent to vertices f(b) = 34, f(i) = 35, f(j) = 45 in H .

17 Lecture of February 27

An isomorphism from a graph to itself is called an automorphism of the graph. If f is
an automorphism of graph G, then for all pairs of distinct vertices u, v ∈ V (G), we have
{u, v} ∈ E(G) if and only if {f(u), f(v)} ∈ E(G). But f is a bijection on V (G), so setting
u′ = f(u) and v′ = f(v), we have {u′, v′} ∈ E(G) if and only if {f−1(u′), f−1(v′)} ∈ E(G),
and we conclude that f−1 is also an automorphism of G. The identity function on V (G)
is always an automorphism of G. Define the product f · g of two automorphisms f, g by
(f · g)(v) = f(g(v)), for v ∈ V (G). Then, with this product, the set of all automorphisms
of a graph form a group, called the automorphism group of the graph, with the identity
function as the identity element of this group. This group is a subgroup of the set of all p!
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bijections on V (G) (where |V (G)| = p). Among other consequences, this implies that the
number of automorphisms of a graph divides p!. For example, how many automorphisms
does the graph G in Figure 5 have ? The answer is 2, with the identity function giving one

G

1

2

3

45

Figure 5: The graph G.

automorphism, and the function f(1) = 3, f(2) = 2, f(3) = 1, f(4) = 5, f(5) = 4 giving the
other. (It is straightforward to check that f is an automorphism. To prove that there are
no other automorphisms, note that vertices 1 and 3 have degree 3, but vertices 2, 4, 5 have
degree 2, so every automorphism must map 1, 3 to 1, 3 only, in either order; once this order
is given, then 2, 4, 5 are mapped to 2, 4, 5 in one way only.)

What is the largest number of automorphisms that a graph on p vertices can have ? The
answer is p!, for either the complete graph Kp on p vertices, in which every pair of vertices
is adjacent, or the empty graph Z, with no edges. For p = 5, these are given in Figure 6.

K5 Z

Figure 6: Graphs on 5 vertices with 5! automorphisms.

The relationship between K5 and Z above is generalized by defining the complement of
a graph. The complement G̃ of a graph G is the graph with vertex set V (G), and whose
edges are the unordered pairs of vertices that are NOT in E(G). For example, in Figure 6,

K̃5 = Z, and Z̃ = K5. Now, in general, G̃ and G have exactly the same automorphisms (this
is easy to prove, since a pair of vertices is adjacent in G if and only if it is not adjacent in
G̃). One use of this result is to count automorphisms for a graph whose complement is much
easier to handle. For example, consider the graph G given in Figure 7. The complement of
G is H , given beside G in Figure 7. But it is easy to see that H has exactly 6 · 4 · 2 = 48
automorphisms, since 1 can be mapped to any of the 6 vertices, but then 3 must be mapped
to the vertex that is adjacent to the image of 1; then 2 can be mapped to any of the 4
remaining vertices, but then 5 must be mapped to the vertex that is adjacent to the image
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1
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Figure 7: A graph G, and its complement H .

of 2; finally 4 can be mapped to any of the 2 remaining vertices, but then 6 must be mapped
to the vertex that is adjacent to the image of 4.

A graph G is vertex transitive if, for every pair u, v of vertices in G, there exists an
automorphism f such that f(u) = v. (Note: In general, the choice of f will depend on
u, v.) A graph G is edge transitive if, for every pair {u, v}, {x, y} of edges in G, there exists
an automorphism f such that either f(u) = x, f(v) = y or f(u) = y, f(v) = x. It follows
immediately that a vertex transitive graph must be regular. Does vertex transitivity imply
edge transitivity or vice-versa ? Consider the graphs in Figure 8. Note that graphs G1 and

G1

G2

G3
G4

Figure 8: The graphs Gi, i = 1, . . ., 4.

G2 are both regular, but neither are vertex transitive. For G1, no automorphism can map
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any vertex on the triangle to any vertex on the square. For G2, there are precisely two
triangles, at the top and bottom, so no automorphism can map any of the 6 vertices on
these triangles to any of the two remaining vertices.

Now, graph G3 is edge transitive, but not vertex transitive (also, G3 is not regular). We
write G3 as K4,3, since it has a complete set of edges between the 4-set of vertices at the top
and the 3-set of vertices at the bottom.

Finally, graph G4 is vertex transitive, but it is not edge transitive, since the three hori-
zontal edges are not contained in any triangle.

18 Lecture of February 29

A subgraph H of a graph G is a graph whose vertex set is a nonempty subset of V (G), and
edge set is a subset of the edges of G joining two vertices in V (H). A spanning subgraph H
of G has V (H) = V (G). An induced subgraph of G has vertex set that is a nonempty subset
of V (G), and edge set consisting of all the edges of G joining two vertices in V (H).

A walk in a graph G is a sequence v0e1v1. . .envn, n ≥ 0, in which v0, v1, . . ., vn are vertices
of G, and e1, . . ., en are edges of G, with ei = {vi−1, vi} for i = 1, . . ., n. This walk is from
v0 to vn, and has length n. Note that we can reverse a walk, so that vnen. . .v1e1v0 is then a
walk from vn to v0, and we therefore often speak of a walk between a pair of vertices. A path
is a walk in which the vertices are distinct.

Note that if there is a walk from vertex u to vertex v in a graph G, then there is a path
from u to v in G, by the following argument: let the vertices on the walk be v0v1. . .vn, where
v0 = u, vn = v. Then if no vertex appears more than once, it is a path, and we are done.
Otherwise, there exists i < j with vi = vj , and in this case, v0v1. . .vivj+1. . .vn is a shorter
walk from u to v. Continue until we have a path (n is finite, and G has a finite number of
vertices, edges, so this is a finite procedure.)

Now, given a graph G, define the relation PG on V (G) by uPGv if there is a path in G
from u to v.

Theorem 18.1 For any graph G, PG is an equivalence relation.

PROOF. The relation is reflexive, since v is a path of length 0 from v to v, for all v ∈ V (G)
(so we have vPGv). The relation is symmetric, since if v0v1. . .vn is a path from u = v0 to
v = vn, then vn. . .v1v0 is a path from v = vn to u = v0, for all u, v ∈ V (G) (so we have uPGv
implies vPGu). The relation is transitive, since if there is a path x0. . .xn from u to v in G
(with u = x0, v = xn), and there is a path y0. . .ym from v to w in G (with v = y0, w = ym),
then x0. . .xny1. . .ym is a walk from u to w in G, but the result above then implies that there
is a path from u to w ( so we have uPGv and vPGw implies uPGw).

Of course, an equivalence relation partitions the set on which it is defined into equivalence
classes (which means that uPGv if and only if u and v are in the same equivalence class).
We define a graph G to be connected if PG has a single equivalence class. In general, the
induced subgraph whose vertex set is an equivalence class is called a (connected) component
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of G, so a connected graph has a single component. (Another definition of component is
that it is a maximal connected subgraph.) For example, the graph G in Figure 9 has two
components, one containing vertices {1, . . ., 8}, and the other containing vertices {9, 10}.

1

2

3

4

5

6

7
8 9 10

G

Figure 9: A graph G with two components.

For an edge e in a graph G, we define G− e to be the spanning subgraph of G, with all
edges of G except for e. An edge e in a connected graph G is defined to be a bridge if G− e
is not connected. If G is not connected, then an edge e in G is said to be bridge if e is a
bridge of some component of G. For example, the bridges in the graph G of Figure 9 are
{1, 4}, {7, 8}, and {9, 10}.

19 Lecture of March 3

If e = {x, y} is a bridge in connected G, how many components does G − e have ? The
answer is that G − e always has exactly two components, one containing x, and the other
containing y. To prove this, let Vx be the set of vertices in the same component of G− e as
x. Let z be any vertex in V (G) that is not in Vx (there must be at least one such z, since
G− e is not connected). Consider a path v0. . .vn in G from x = v0 to z = vn (there is such a
path since G is connected). Now this path must contain edge e, since there is no path from
x to z in G − e, and since a path contains no repeated vertices, we must have v0 = x and
v1 = y. Therefore, v1. . .vn is a path from y = v1 to z = vn in G− e, which implies that z is
in the same component of G− e as y for any such z. This means that the vertices not in Vx

are all contained in a second component, which contains y.

Example 19.1 Prove that there can be no bridge in a 4-regular graph.

PROOF. If there is such a bridge e = {x, y}, then letGx be the component ofG−e containing
x (and not y, by the above result). Now, all vertices in Gx have degree 4, except for vertex x,
which has degree 3. But this contradicts the handshake theorem, which says that Gx must
have an even number of vertices of odd degree, so we conclude that G has no bridge.

For n ≥ 3, a cycle (often called an n-cycle) in a graph G is a set of n distinct vertices
{v1, . . ., vn} and n distinct edges {{v1, v2}, . . .{vn−1, vn}, {vn, v1}}. For example, vertices
{1, 2, 3} and edges {{1, 2}, {2, 3}, {3, 1}}, form a 3-cycle (or triangle) in the graph G in
Figure 9. Cycles give another, powerful, way of characterizing bridges: an edge e in a graph
G is a bridge if and only if e is NOT contained in any cycle of G. To prove this, simply note
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that a cycle containing edge e = {x, y} consists of edge {x, y}, together with a path from
x to y in G − e, in which case e is not a bridge. For example, this characterization can be
checked for the three bridges in the graph G in Figure 9.

We begin with another lemma about cycles. Suppose that there are two different paths
between some pair of distinct vertices in a graph G. Then G must contain a cycle. To prove
this suppose the paths are P1 = u0. . .um, and P2 = v0. . .vn, where u0 = v0, and um = vn. Let
i ≥ 0 be the smallest value for which ui+1 6= vi+1 (so u0 = v0, . . ., ui = vi). There must be
such an i, since the paths are different. Let j be the smallest value, with j > i, for which uj

is contained in P2, and suppose that uj = vk. There must be such a j, since um is contained
in P2. Then uiui+1. . .ujvk−1. . .vi+1 is a cycle in G, proving the result.

A tree is a connected graph with no cycles. Since it is connected, a tree must contain at
least one path between every pair of vertices, but the above result implies that there cannot
be more than one path between any pair of vertices (otherwise, we would have a cycle). Thus
we conclude that there is a unique path between every pair of vertices in a tree. Also, since
no edge in a tree is contained in a cycle, our cycle characterization of bridges implies that
in a tree, every edge is a bridge.

Every tree on p vertices has q = p − 1 edges, for p ≥ 1. We prove this by (strong)
induction on p. For the base case, there is only one tree for p = 1, which has 0 edges (this
is connected, with no cycles), so the result is true for p = 1. For the induction hypothesis,
with p > 1, assume that the result holds for values smaller than p, and consider an arbitrary
tree T on p vertices. Now T has at least one edge (otherwise, it is not connected, since it
would have p > 1 components). Remove an arbitrary edge e = {x, y} from T . We have
proved above that e is a bridge, so T − e has two components, with one containing vertex x,
and the other containing vertex y. There can be no cycles in T − e, since T has no cycles,
so both components of T − e are trees. Let T1 be the component of T − e containing x, and
T2 be the component containing y. Let pi be the number of vertices in Ti, for i = 1, 2. Then
we have p1, p2 ≥ 1, and p1 + p2 = p, so p1, p2 ≤ p− 1, and we can thus apply the induction
hypothesis to determine that the number of edges in Ti is pi − 1, for i = 1, 2. Then the
number of edges in T is given by

(p1 − 1) + (p2 − 1) + 1 = p1 + p2 − 1 = p− 1,

and we have proved that the result is true for T . The result has now been established for all
p ≥ 1, by mathematical induction.

A spanning tree of a graph is a spanning subgraph that is a tree.

Theorem 19.2 A graph G is connected if and only if it has a spanning tree T .

PROOF. If G has a spanning tree T , then T contains a unique path between every pair of
vertices, and all such paths are contained in G, implying that G is connected.

For the converse, suppose that G is connected. If G has no cycle, then G is itself a tree,
and so has a spanning tree. Otherwise, if G has a cycle, remove an arbitrary edge e on any
cycle of G. Now, from the cycle characterization of bridges, e is not a bridge, so G − e is
a spanning subgraph of G that is connected, and has one fewer edge than G. Repeat this
finite process, until there is no cycle, to obtain a spanning tree of G.
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20 Lecture of March 5

We now consider various types of spanning subgraphs of a graph G with p vertices and q
edges. The total number of spanning subgraphs is 2q, since these correspond exactly to
subsets of the q edges (every spanning subgraph contains all of the p vertices). How many
of these spanning subgraphs have an even number of edges ? If q ≥ 1, the answer is 2q−1.
For one proof, use the identity

∑

i even

(
q

i

)
=
∑

i odd

(
q

i

)
= 2q−1,

which follows immediately from the binomial expansion of 0 = (1− 1)q. For a second proof,
set aside an arbitrary edge e, and consider any subset α of the remaining edges. We claim
that there is a unique spanning subgraph with an even number of edges corresponding to α:
if |α| is even, then α is the edge set of one of these spanning subgraphs; if |α| is odd, then
α ∪ {e} is the edge set of one of these spanning subgraphs, and this is a bijection.

An even graph is a graph in which every vertex has even degree (where 0 is included).
An even spanning subgraph is a spanning subgraph which is even. For example, consider the
graph G with p = 6 vertices and q = 8 edges given in Figure 10. There are 8 even spanning

1 2

3
4 5

6G

Figure 10: A graph G together with even spanning subgraphs.
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subgraphs of G, also given in Figure 10, below G itself.
For any field F and positive integer q, the set Fq, consisting of q-tuples of elements of F, is a

vector space of dimension q. This vector space is also given by span{(1, 0, . . ., 0), (0, 1, 0, . . ., 0),
. . ., (0, . . ., 0, 1)}, where 0 and 1 are the additive identity and multiplicative identity in the
field, respectively. In this course, we consider the field Z2 = {0, 1} of integers modulo 2.

Consider a graph G with q edges, where we index the edges e1, . . ., eq in an arbitrary,
but fixed, way. The incidence vector of a spanning subgraph of G is a {0, 1} q-tuple, with
1 in entry i if ei is contained in the subgraph, and 0 otherwise, for each i = 1, . . ., q. Using
incidence vectors, we associate a unique element of Zq

2 with each spanning subgraph of G.
The 0-vector (0, . . ., 0) is the incidence vector of the spanning subgraph with no edges, and we
denote this graph by Z. Now, to understand what the vector space operations on incidence
vectors mean for the underlying spanning subgraphs themselves: for scalar multiples of a
spanning subgraph H , we have 1H = H , since scalar multiplication of the incidence vector
by 1 doesn’t change any of the entries; we also have 0H = Z, since scalar multiplication of
the incidence vector by 0 makes all of the entries 0. For spanning subgraphs H1, H2, the
sum H1 + H2 is the spanning subgraph whose edge set is the symmetric difference of the
edge sets of H1 and H2 – i.e., it has all the edges that are contained in exactly one of H1 and
H2, which exactly mimics the sums in Z2 that are carried out in each entry. Thus we refer
to the set of spanning subgraphs of a graph as the edge space of the graph.

We now consider two subspaces of the edge space.

Theorem 20.1 For any graph G with q edges, the set of spanning subgraphs with an even
number of edges is a (q − 1)-dimensional subspace of the edge space of G (the vector space
of spanning subgraphs).

SOLUTION. The set of incidence vectors vt = (v1, . . ., vq)
t (regarding them as column

vectors) for these spanning subgraphs is exactly the null space of the 1 × q matrix A =
(1 1 . . .1). We recall from linear algebra, that this is always a vector space over the same
field as the entries of A. (PROOF: If A is m × n, then its null space consists of all n × 1
vectors x such that Ax = 0, where 0 is m×1. Thus the null space contains 0n×1, and is thus
nonempty. It is closed under scalar multiplication by the field element c, since for x in the
null space we have

Acx = cAx = c 0 = 0.

The null space is also closed under vector addition, since for x, y in the null space, we have

A(x+ y) = Ax+ Ay = 0 + 0 = 0.

Thus the null space of A is a subspace of Fn (as column vectors), and is thus a vector space
over F.)

Since the matrix A has rank 1, then the null space has dimension q−1 (rank plus nullity
equals number of columns). As in our linear algebra courses, we determine the null space by
considering the linear equation

v1 + v2 + . . .+ vq = 0,
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and setting v2, . . ., vq as arbitrary parameters in Z2. Thus we have v1 = −v2 − . . . − vq =
v2 + . . .+ vq, so the null space is given by

{(v2 + . . .+ vq, v2, . . ., vq)
t : v2, . . ., vq ∈ Z2}

= span{(1, 1, 0, . . ., 0)t, (1, 0, 1, 0, . . ., 0)t, . . .(1, 0, . . ., 0, 1)t},
where, of course, these q − 1 vectors are linearly independent. Note that the first entry in
these vectors acts as a parity check.

We could also establish the above result more directly, instead of recognizing the set as
the null space of a particular matrix A, by proving that the set is a nonempty subset of the
edge space that is closed under scalar multiplication and vector addition. Indeed, we use this
method of proof for the following result, concerning the second subspace of the edge space.

Theorem 20.2 For any graph G with q edges, the set C(G) of even spanning subgraphs is
a subspace of the edge space of G.

SOLUTION. The set C(G) contains the subgraph Z, with no edges, since this subgraph has
degree 0 at every vertex. Then for H ∈ C(G), we have 0H = Z ∈ C(G), and 1H = H ∈
C(G), so C(G) is closed under scalar multiplication. Now, for H1, H2 ∈ C(G), we consider
H1 +H2: for an arbitrary vertex v ∈ G, suppose that v has degree 2k in H1, and degree 2m
in H2, and that exactly n of the edges incident with v in H1 are also contained in H2; then
the degree of vertex v in H1 +H2 is given by 2k + 2m− 2n, which is even, and we conclude
that H1 + H2 ∈ C(G), so C(G) is closed under addition. Thus C(G) is a subspace, giving
the result.

To determine the dimension of the subspace C(G), we consider first the case in which G
is connected. Since G is connected, it must have a spanning tree, so let T be an arbitrary,
but fixed spanning tree of G. We refer to the edges of G that are contained in T as tree
edges, and the edges of G that are not contained in T as nontree edges.

For H1, H2 ∈ C(G), suppose that H1, H2 have exactly the same sets of nontree edges.
Then all edges of H1 +H2 are tree edges, so all components of H1 +H2 are trees (contained
in T ).

21 Lecture of March 7

In a tree on p ≥ 2 vertices, there must be at least two vertices of degree 1. To prove this,
consider a longest path u0. . .um in the tree. Since p ≥ 2, we must have m ≥ 1, since every
edge would give a path of length 1, and a graph on p vertices and 0 edges has p components
(and thus is not connected for p ≥ 2). Now, u0 is adjacent to u1. If u0 is adjacent to uj for
any j ≥ 2, then u0. . .uj is a cycle in the tree, which is impossible. If u0 is adjacent to v for
any vertex v in the tree that is not contained in the longest path, then vu0. . .um is a path in
the tree that is longer than the longest path, which is impossible. Therefore, u0 is adjacent
only to vertex u1 in the tree, and so has degree 1. The same argument proves that um has
degree 1, so we have constructed two vertices of degree 1, proving the result.
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Thus, returning to the argument at the end of the previous class, if any of the components
of H1+H2 has two or more vertices, then it must have at least two vertices of degree 1, which
would contradict the fact that H1 +H2 ∈ C(G). Thus we conclude that every component of
H1 +H2 is a single vertex, so H1 +H2 = Z, or equivalently, H1 = H2. Thus we have proved
that no two elements of C(G) have exactly the same set of nontree edges.

Suppose that G has p vertices. Then T has p − 1 edges, so there are exactly q − p + 1
nontree edges, and we conclude that

|C(G)| ≤ 2q−p+1,

or, equivalently, that dimension of C(G) is less than or equal to q − p+ 1.
Now suppose that e = {u, v} is a nontree edge of G. Then T contains a unique path

between vertices u and v, so T +e (which is the tree T , with edge e added) contains a unique
cycle, formed by the path between u and v in T , together with edge e. We call this the
fundamental cycle of e, and denote it by Ce. Index the edges of G so that the nontree edges
are given by e1, . . ., eq−p+1.

Theorem 21.1 The fundamental cycles {Ce1
, . . ., Ceq−p+1

} form a linearly independent set
in C(G).

PROOF. The 0 vector or additive identity in C(G) is Z. Now consider which scalars
a1, . . ., aq−p+1 in Z2 satisfy the equation

a1Ce1
+ . . .+ aq−p+1Ceq−p+1

= Z.

For each i = 1, . . ., q − p + 1, if ai = 1, then the spanning subgraph on the lefthandside
contains edge ei, since ei is contained in Cei

, but ei is not contained in Cej
for any j 6= i.

Since ei is not contained in Z, we conclude that ai = 0, for i = 1, . . ., q − p + 1. This gives
the result.

Now, if dimC(G) = k, then we have a basis {H1, . . ., Hk} for C(G), and the elements of
C(G) are then created uniquely in span{H1, . . ., Hk}. This implies that |C(G)| = 2k. In the
above result, we have constructed a linearly independent set in C(G) of size q− p+1, which
implies that dimC(G) ≥ q − p+ 1, and so we conclude that

|C(G)| ≥ 2q−p+1.

From the two inequalities, we then get |C(G)| = 2q−p+1, so dimC(G) = q − p + 1, and the
linearly independent set {Ce1

, . . ., Ceq−p+1
} of fundamental cycles is a basis for C(G).

For H ∈ C(G), with H 6= Z, what is the minimum number of edges in H ? The answer
is 3, since H must contain a cycle (otherwise, if H has no cycles, then all components of
H are trees, and if any such component has an edge, it must have at least two vertices of
degree 1, which is odd; but H 6= Z must have at least one edge, so it contains a cycle).
In terms of incidence vectors, this means that the incidence vector for H differs from the
incidence vector for Z in at least 3 positions. Now consider H1, H2 ∈ C(G), H1 6= H2.
Then, from arithmetic in Z2 (1 + 1 = 0 + 0 = 0, 1 + 0 = 0 + 1 = 1), we know that the
incidence vectors for H1 and H2 differ in a position exactly when the incidence vector for

45



H1 + H2 has a 1 in that position. This implies that the number of positions in which the
incidence vectors for H1 and H2 differ, is equal to the number of 1’s in the incidence vector
for H1 + H2. But H1 + H2 ∈ C(G), so the incidence vector for H1 + H2 contains at least
three 1’s, and therefore the incidence vectors for H1 and H2 differ in at least 3 positions for
all H1, H2 ∈ C(G), H1 6= H2.

For example, consider Figure 11, in which the graph G from Figure 10 appears, with the
edges of a spanning tree T drawn as thick lines, the nontree edges as thin lines. For this
graph, we have q = 8, p = 6, and the edges are indexed as marked in Figure 11. The spanning

G

e
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1

e
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e
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e
7

e
8

Figure 11: A graph G and spanning tree T .

subgraphs in C(G) are given in Figure 10. With this indexing of edges, the incidence vectors
of these spanning subgraphs are given as the rows of the following array.

e1 e2 e3 e4 e5 e6 e7 e8
1 0 0 1 1 0 0 0
0 1 0 0 1 1 0 0
1 1 0 1 0 1 0 0
0 0 1 0 0 0 1 1
1 1 1 1 0 1 1 1
0 1 1 0 1 1 1 1
1 0 1 1 1 0 1 1
0 0 0 0 0 0 0 0

Note that, indeed, every pair of distinct rows differs in at least three positions.

22 Lecture of March 10

The incidence vectors of C(G) are said to form a binary (q, q− p+ 1, 3)-code, since they are
binary vectors of length q forming a vector space of dimension q−p+1, in which the vectors
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differ pairwise in at least 3 positions. If every cycle in G has length at least equal to t, then
we get a (q, q− p+ 1, t)-code, since the vectors differ in at least t positions in this case. The
importance of the pairwise difference in positions is that if information is encoded in terms
of the vectors in the code, then errors in transmission/reception can be detected (if there
are fewer than t errors), and even corrected (if there are at most (t − 1)/2 errors). Coding
theory is studied in CO 331.

Let Nm,n, n ≥ m, denote the number of m× n {0, 1}-matrices of rank m. Then we have
N1,n = 2n−1, since a row consisting entirely of 0’s is the only way to avoid rank 1. Similarly,
Nm,n = (2n − 2m−1)Nm−1,n, since the first m− 1 rows must be linearly independent (to give
rank m − 1), and then row m cannot be any of the 2m−1 linear combinations of the first
m− 1 rows. We conclude that

Nm,n =
m−1∏

k=0

(2n − 2k).

For example, this allows us to determine the probability that an n × n {0, 1}-matrix is
nonsingular (over Z2), given by

∏n−1
k=0(2

n − 2k)

2(n2)
=

n∏

j=1

(1 − 2−j).

It is straightforward to determine the number of m-dimensional subspaces of a vector space
of dimension n over Z2, since it is given by the ratio

Nm,n

Nm,m

=
(2n − 1)(2n−1 − 1) · · · (2n−m+1 − 1)

(2n − 1)(2m−1 − 1) · · · (21 − 1)
=

(
n

m

)

2

,

where
(

n

k

)
q

is the Gaussian coefficient, defined near the beginning of the Lecture of February

13 (following (13)).

We now consider a spanning tree algorithm that, among other consequences, will allow
us to find the shortest cycle in a graph.

Algorithm: Input a graph G, on p vertices. Initially, let subgraph D of G consist of an
arbitrary vertex, denoted r, of G, with pr(r) = ∅. At every stage, find an edge {u, v} of G,
with u ∈ D, and v /∈ D; add vertex v and edge {u, v} to D, with pr(v) = u. Stop when
there is no such edge.

Claim: At termination, if D has p vertices, then it is a spanning tree of G. Otherwise, if D
has fewer than p vertices, then G is not connected (so it has no spanning tree).

PROOF. Initially, D has no edge and a single vertex, and at every stage we add one edge and
one vertex, so at stage k, D has k − 1 edges and k vertices. Also, initially D is connected,
and at every stage we add an edge from a new vertex, v, to an existing vertex, u. Thus, by
induction on the number of stages, D is always connected. But a connected graph with k
vertices and k − 1 edges must have a spanning tree (from Theorem 19.2), which must have
all k − 1 edges, and thus D is a tree at every stage. The first part of the claim, that D is a
spanning tree of G if it has p vertices, follows immediately.
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For the second part of the claim, suppose that D has fewer than p vertices at termination,
but that G is connected. Then we have a vertex x of G, not in D. Consider a path v0. . .vn

in G, from r = v0 (where r is the initial vertex of D), to x = vn. (Such a path exists, since
G is connected.) Now, we have v0 ∈ D, vn /∈ D, so there exists vi ∈ D, vi+1 /∈ D, for some
i = 0, . . ., n − 1. But the algorithm stopped because there is no edge such as {vi, vi+1}, so
we have a contradiction, and conclude that G cannot be connected. This proves the second
part of the claim.

23 Lecture of March 12

We call D a search tree, since the “pr” (for pointer, parent, predecessor) function allows us
to find paths in D (and therefore in G): apply pr repeatedly to a vertex until we get r, to
obtain a path from that vertex to the root vertex of D. If we apply pr exactly k times to do
this, then we say that the vertex is at level k in D.

For breadth first search, we apply the algorithm above, but choose an edge {u, v}, with
u ∈ D, v /∈ D, for which u joined D first among all such edges. For depth first search, we
apply the algorithm above, but choose an edge {u, v}, with u ∈ D, v /∈ D, for which u joined
D last among all such edges. We begin by proving the primary property of Breadth First
Search.

Theorem 23.1 In a Breadth First Search tree, the nontree edges join vertices that are at
most one level apart in the tree.

PROOF. We first prove that the vertices join the tree in weakly increasing order by level,
using induction on the number of vertices in the tree. As base cases, the result is true if
there are one or two vertices in the tree, since the first two vertices have levels 0 and 1,
respectively. For the induction hypothesis, assume that the result holds for k vertices in the
tree, for some k ≥ 2, and denote these vertices, in order of joining the tree, as v1, . . ., vk

(so the induction hypothesis is that level(v1) ≤ . . . ≤ level(vk)). Now consider the k + 1st
vertex to join the tree, vk+1. Suppose pr(vk+1) = vi and pr(vk) = vj . Then we must have
j ≤ i, and the induction hypothesis gives level(vj) ≤ level(vi), so we obtain

level(vk) = level(vj) + 1 ≤ level(vi) + 1 = level(vk+1),

and we have proved that the result holds for k + 1 vertices in the tree. Therefore the result
is true by mathematical induction.

Now suppose that the vertices in the Breadth First Search tree, in order of joining the
tree, are v1, . . ., vm. Suppose that there is a nontree edge joining vi to vj , where i < j. Then
we have pr(vj) = vk, where k < i, since otherwise, if k > i, we would have had pr(vj) = vi.
This gives

level(vj) = level(vk) + 1 ≤ level(vi) + 1,

from the result above, and so we have proved that the nontree edge {vi, vj} joins vertices at
most one level apart.
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One consequence of the primary property of Breadth First Search is for length of shortest
paths: The length of the shortest path between vertices u and v in a connected graph G is
equal to level(v) in any Breadth First Search tree of G rooted at u. (Or, equivalently, to
level(u) in any Breadth First Search tree of G rooted at v.) The proof is immediate, since
there is a path of the given length, using tree edges only, and there can be no shorter path,
since it would require an edge that joins vertices two or more levels apart.

Another consequence is for parity of cycles. Note that if a nontree edge joins two vertices
at the same level in a Breadth First Search tree, then the fundamental cycle for that edge
must have odd length (if the vertices are at the same level, k, and the paths from these
vertices to the root first meet at a vertex at level m, then the path between these vertices
in the tree has length 2(k −m), and together with the nontree edge, the fundamental cycle
thus has length 2(k − m) + 1). If a nontree edge joins vertices one level apart, then the
fundamental cycle for that edge must have even length (if the vertices are at levels k and
k + 1, and the paths from these vertices to the root first meet at a vertex at level m, then
the path between these vertices in the tree has length (k −m) + (k + 1 −m), and together
with the nontree edge, the fundamental cycle thus has length 2(k + 1 −m)).

A graph G is said to be bipartite if V (G) can be partitioned into two nonempty subsets
A,B, so that every edge of G joins a vertex of A to a vertex of B.

Theorem 23.2 A graph is bipartite if and only if it has no odd cycles.

PROOF. Consider a cycle v1, v2, . . ., vk in a bipartite graph. Then, without loss of generality,
suppose v1 ∈ A (otherwise, we can interchange the sets A and B). This forces v2 ∈ B
(because of edge {v1, v2}), and then we have v3 ∈ A. Continuing, we can prove by induction
that vm ∈ A for m odd, and vm ∈ B for m even. But we also have vk ∈ B, because of edge
{vk, v1}, and thus conclude that k must be even. Thus we have proved that if G is bipartite,
then it has no odd cycles.

For the converse, suppose that G has no odd cycles. Then if we carry out Breadth First
Search on every component of G, we will never find a nontree edge joining vertices at the
same level (otherwise, we would have an odd cycle, from the discussion above, which is
impossible, from the first part of this result). But this means that the graph is bipartite,
with bipartition given by A, the vertices at even levels in these trees, and B, the vertices at
odd levels.

24 Lecture of March 14

Define the girth of a graph to be the length of the shortest cycle in the graph. If the graph
has no cycles, then we define its girth to be ∞. By considering Breadth First Search, we are
able to prove the following result.

Theorem 24.1 For k ≥ 2, a k-regular graph of girth 5 has at least k2 + 1 vertices.

PROOF. Carry out Breadth First Search on the graph, with root vertex an arbitrary vertex
v. Then the k vertices adjacent to v, call them u1, . . ., uk, all join the tree at level 1, in
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that order. There can be no edges between ui and uj for any i 6= j, since otherwise uiujv
would be a 3-cycle in the graph, which is impossible since the girth is 5. Thus the k − 1
vertices other than v that are adjacent to u1, call them w11, . . ., w1 k−1, all join the tree at
level 2, with a pointer to u1. But u2 cannot be adjacent to any w1j , since otherwise u2w1ju1v
would be a 4-cycle, which is impossible since the girth is 5. By a similar argument, for every
i = 1, . . ., k, we establish that the k − 1 vertices other than v that are adjacent to ui, call
them wi1, . . ., wi k−1, all join the tree at level 2, with a pointer to ui. But this means that
the tree already has 1 + k + k(k − 1) = k2 + 1 vertices, all of which are in the graph, and
the result follows.

For which values of k ≥ 2 is there a k-regular graph of girth 5 that exactly achieves this
bound of k2 + 1 vertices ? The answer is only k = 2, 3, 7 and (possibly) 57. I say “possibly”
because it is still an open research problem as to whether such a graph exists – such a graph
is referred to as the “Moore graph”. The proof of the impossibility of other values for k is
given below:

Let A be the adjacency matrix for such a graph. That is, call the vertices v1, . . . , vn, in
some arbitrary way, and then A is n × n, where n = k2 + 1, with (i, j)-entry equal to 1 if
vertex vi is adjacent to vertex vj . Clearly A is a symmetric 0, 1 matrix with diagonal entries
equal to 0.

Theorem 24.2 Let In be the n × n identity matrix, and Jn be the n × n matrix with all
entries equal to 1. Then for n = k2 + 1 and A given above, we have

A2 = (k − 1)In + Jn −A.

PROOF. The (i, j)-entry of A2 is given by

(
A2
)

i,j
=

n∑

m=1

Ai,mAm,j,

where Ai,j is the (i, j)-entry of A. Then, for i = j, we have

(
A2
)

i,i
=

n∑

m=1

Ai,m = k,

for all i = 1, . . . , n, since every vertex vi has degree k. For vi adjacent to vj, we have
(A2)i,j = 0, since if Ai,m = Am,j = 1 for any m, then vivjvm would be a 3-cycle in the
graph, which is a contradiction. Finally, we treat the remaining case, that i 6= j and vi is
not adjacent to vj . In this case, consider a Breadth First Search tree rooted at vi. Then vj

appears at level 2 in the tree, and pr(vj) = vℓ for some unique vℓ at level 1 in the tree, which
means that Ai,ℓAℓ,j = 1. But there is no other vm with Ai,mAm,j = 1, since this would imply
that vivℓvjvm would be a 4-cycle in the graph, which is a contradiction. Thus, in this case
we have (A2)i,j = 1. The result follows, since the matrix on the right hand side has entries
k, 0, 1 in precisely the correct positions.

Now, let 1n be the n× 1 vector of 1’s. Then the fact that

A1n = k1n
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follows immediately from the fact that the graph is k-regular. Thus A has 1n as an eigen-
vector, with k as the corresponding eigenvalue. Now consider another eigenvector x, with
corresponding eigenvalue λ. Then the fact that A is real and symmetric implies that x and
1n are orthogonal (they correspond to distinct eigenvalues). But this implies that Jnx = 0n,
the n× 1 vector of 0’s. Thus from Theorem 24.2, we have

λ2x = A2x = ((k − 1)In + Jn − A)x = (k − 1)x + 0n − λx,

which implies that (λ2 + λ+ 1 − k)x = 0n, and thus that

λ2 + λ+ 1 − k = 0,

since x 6= 0n. The roots of this quadratic are −1
2
± D

2
, where D =

√
4k − 3. Thus A has

eigenvalues λ0 = k, λ1 = −1
2
+ D

2
, λ2 = −1

2
− D

2
, and we let m0, m1, m2 be the corresponding

algebraic multiplicities. Of course, we have m0 +m1 +m2 = n. To obtain two other linear
equations for m0, m1, m2, use the fact that A is real symmetric, so it is diagonalizable.
Thus we have A = PΛP−1, where Λ is a diagonal matrix with diagonal entries λ0, λ1, λ2,
with multiplicities m0, m1, m2, respectively. Thus we obtain Aℓ = PΛℓP−1 for any positive
integer ℓ (prove this, say, by induction on ℓ). Now for the trace of a square matrix (the
sum of diagonal entries) we have traceBC = traceCB, where B is s × t and C is t × s
(for a proof, consider

∑s

i=1

∑t

j=1Bi,jCj,i =
∑t

j=1

∑s

i=1Cj,iBi,j.) This gives traceAℓ = trace

ΛℓP−1P = traceΛℓ, so ℓ = 1, 2 give us the equations m0λ0 + m1λ1 + m2λ2 = trace A, and
m0λ

2
0 + m1λ

2
1 + m2λ

2
2 = trace A2. Now, A has all diagonal entries equal to 0, so trace

A = 0, and from the proof of Theorem 24.2 above, A2 has diagonal entries all equal to k, so
traceA2 = kn. Putting these together, we have the linear system

m0 +m1 +m2 = n

λ0m0 + λ1m1 + λ2m2 = 0

λ2
0m0 + λ2

1m1 + λ2
2m2 = nk

for m0, m1, m2. But this system has determinant (λ2 − λ1)(λ2 − λ0)(λ1 − λ0) 6= 0 (called the
Vandermonde determinant), and so has a unique solution, given by

m0 = 1, m1 = 1
2
k

(
k +

k − 2

D

)
, m2 = 1

2
k

(
k − k − 2

D

)
.

(To check this, you will need the facts that λ0 = k, n = k2 + 1, λ1λ2 = 1− k, λ1 + λ2 = −1,
and λ2

i = −λi + k − 1, for i = 1, 2.)
The proof concludes by using the fact that m1, m2 are nonnegative integers. There are

two cases. Case 1: If 4k− 3 is not a perfect square, then D is irrational, which implies that
m1 (and m2) are irrational unless k(k − 2) = 0. But k ≥ 2, so in this case we have k = 2
only. Case 2: If 4k − 3 is a perfect square, then we have k = 1

4
(D2 + 3), which gives

m1 = 1
8
(D2 + 3)

(
1
4
(D2 + 3) +

1
4
(D2 − 5)

D

)
,

and when we multiply this equation by 32D and rearrange slightly, we obtain

32Dm1 −D(D2 + 3)2 −D4 + 2D2 = −15.
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But D and m1 are integers, and every term on the left in this expression is divisible by D,
so we conclude that D divides 15. Thus possible values of D are 1, 3, 5, 15, which correspond
to the values 1, 3, 7, 57 for k. We have ruled out k = 1 (such a graph has no cycles, so has
girth ∞), so by combining the two cases, we have possible values for k as 2, 3, 7, 57. For
k = 2, 3, 7 such a graph is known to exist, and is unique up to automorphism – for k = 2
this is the 5-cycle, for k = 3 this is the Petersen graph (seen when we introduced graph
isomorphisms), and for k = 7 this is called the Hoffman-Singleton graph. As stated above,
it is still unknown whether such a graph exists for k = 57 (it would have 3250 vertices and
92625 edges).

25 Lecture of March 17

Now we change topics, and consider planarity in graphs. A graph is called planar if it can
be drawn in the plane so that edges do not intersect (except at vertices). Such a drawing
is called a planar embedding of the graph. For example, the 3-cube is planar, with a planar
embedding given in Figure 12. A planar embedding partitions the plane into connected

000

010 110

100

001 101

011 111

Figure 12: A planar embedding of the 3-cube.

regions called faces; one of these regions, called the outer face, is unbounded. For example,
the planar embedding G given in Figure 13 has 3 faces, identified as f1, f2, f3 in the diagram.
The outer face is f3. The vertices and edges incident with a face are called the boundary of
the face. In a connected graph, if we traverse the boundary of a face in a fixed direction (e.g.,
clockwise), starting at any vertex incident with that face, then we encounter an alternating
sequence of vertices and edges, which is a closed walk in the graph. This is called a boundary
walk of the face. The number of edges in a boundary walk of a face is called the degree of the
face. Note that a bridge of a planar embedding is incident with one face, and is contained
in a boundary walk of that face twice, once for each side. Thus a bridge contributes 2 to
the degree of the face with which it is incident. Otherwise, an edge that is not a bridge
(and therefore must appear on a cycle) is incident with 2 different faces, and is contained in
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f1

f2
f3 f2

f1
f3

Figure 13: Two planar embeddings with 3 faces.

the boundary walks of both faces. For example, in Figure 13, for G we have deg(f1) = 3,
deg(f2) = 6, deg(f3) = 9. In a planar embedding that is not connected, the boundary of
some faces are the disjoint union of several boundary walks, and the degree of such a face
is the number of edges contained in all boundary walks in the boundary. For example, in
Figure 13, for H we have deg(f1) = 3 and deg(f3) = 4, and the boundary of f2 consists
of two disjoint boundary walks, giving deg(f2) = 3 + 4 = 7. We use s generically for the
number of faces in a planar embedding. For face degrees, we have the following analogue of
the handshake theorem.

Theorem 25.1 In a planar embedding with faces f1, . . ., fs, we have

s∑

i=1

deg(fi) = 2q.

PROOF. Each bridge contributes 2 to the degree of a single face, and each edge on a cycle
contributes 1 to the degree of two different faces, and the result follows.

The next result gives Euler’s Formula, which proves that all planar embeddings of a given
planar graph have the same number of faces.

Theorem 25.2 For a planar embedding with p vertices, q edges, s faces, and c components,
we have

p− q + s = 1 + c.

PROOF. For each fixed p ≥ 1, we prove this by induction on q ≥ 0, in the form p−q+s−c = 1.
The base case is q = 0, for which we have s = 1 and c = p, and thus

p− q + s− c = p− 0 + 1 − p = 1,

so the result is true in the base case.
The induction hypothesis is to assume that the result holds for all planar embeddings with

q = k edges, for some k ≥ 0. Now, consider an arbitrary planar embedding, P , with q = k+1
edges. Let p, s, c denote the numbers of vertices, faces, components in P , respectively. Let
e be any edge of P , and let P ′ = P − e. Suppose that p′, q′, s′, c′ denote the numbers of
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vertices, edges, faces, components in P ′, respectively. There are two cases. If e is a bridge
of P , then we have p = p′, q = q′ + 1, s = s′, and c = c′ − 1, giving

p− q + s− c = p′ − (q′ + 1) + s′ − (c′ − 1) = p′ − q′ + s′ − c′,

and the result holds for this case by the induction hypothesis. Otherwise, if e is not a bridge,
then we have p = p′, q = q′ + 1, s = s′ + 1, and c = c′, giving

p− q + s− c = p′ − (q′ + 1) + (s′ + 1) − c′ = p′ − q′ + s′ − c′,

and the result holds for this case also, again by the induction hypothesis. Therefore, the
result is true by mathematical induction.

26 Lecture of March 19

Our first application of Euler’s Formula is to put an upper bound on the number of edges
in a planar embedding.

Theorem 26.1 If each face in a planar embedding with p vertices and q edges has degree at
least d⋆, then

(d⋆ − 2)q ≤ d⋆(p− 2).

PROOF. Summing the face degrees, we get 2q ≥ sd⋆. But from Euler’s Formula, we have
p− q + s ≥ 2, or s ≥ 2 − p + q, so

2q ≥ d⋆s ≥ d⋆(2 − p + q).

Now, rearrange the inequality 2q ≥ d⋆(2 − p+ q), to get the result.

Next we state a lemma about face boundaries.

Lemma 26.2 In a planar embedding with at least one cycle, the boundary of every face
contains the edges of a cycle.

These results allow us to prove that a number of graphs are nonplanar.

Theorem 26.3 K5, K3,3, the 4-cube and the Petersen graph are all nonplanar.

PROOF. For K5, the complete graph on 5 vertices, we have p = 5, q = 10, and there
are (many) cycles in K5. Since every cycle must contain at least 3 edges then, from the
Lemma above, if K5 has a planar embedding, every face must have degree at least 3. Then,
Theorem 26.1 must hold with p = 5, q = 10, and d⋆ = 3. But we have

(d⋆ − 2)q = q = 10 > 9 = 3(p− 2) = d⋆(p− 2),

so the inequality of Theorem 26.1 does not hold, and we conclude (by the contrapositive)
that K5 has no planar embedding. This means that K5 is not planar.
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For K3,3, we have p = 6, q = 9, and there are (many) cycles. Also, K3,3 is bipartite, so it
has no odd cycles, and thus no 3-cycles. Therefore every cycle in K3,3 must contain at least
d⋆ = 4 edges, so Theorem 26.1 must hold with the given values of p, q, d⋆. But we have

(d⋆ − 2)q = 2q = 18 > 16 = 4(p− 2) = d⋆(p− 2),

so the inequality of Theorem 26.1 does not hold, and we conclude that K3,3 is not planar.
For the 4-cube, we have p = 24 = 16, q = 4 · 23 = 32, and there are (many) cycles. Also,

all n-cubes are bipartite (every edge joins a vertex with an even number of 1’s to a vertex
with an odd number of 1’s), so we can use d∗ = 4, and Theorem 26.1 must hold with the
given values of p, q, d⋆. But we have

(d⋆ − 2)q = 2q = 64 > 56 = 4(p− 2) = d⋆(p− 2),

so the inequality of Theorem 26.1 does not hold, and we conclude that K3,3 is not planar.
Note that this inequality also allows us to deduce that there is no set of 3 edges that can be
removed from the 4-cube to give a planar subgraph (since we would have 58 > 56 for such
a graph).

For the Petersen graph, we have p = 10, q = 15, and there are (many) cycles. Also, there
are no 3-cycles, nor 4-cycles (it has girth 5). Thus every cycle must contain at least d⋆ = 5
edges, so Theorem 26.1 must hold with the given values of p, q, d⋆. But we have

(d⋆ − 2)q = 3q = 45 > 40 = 5(p− 2) = d⋆(p− 2),

so the inequality of Theorem 26.1 does not hold, and we conclude that the Petersen graph
is not planar.

It is important to note that Theorem 26.1 is not if and only if. To prove that the converse
doesn’t always hold, consider the graph in Figure 14. This graph is clearly nonplanar, since

G

Figure 14: A nonplanar graph G.

it has K5 as a subgraph. Also, this graph has 3-cycles, so we have p = 6, q = 11, d⋆ = 3,
and thus

(d⋆ − 2)q = q = 11 ≤ 12 = 3(p− 2) = d⋆(p− 2).

This shows that the inequality of Theorem 26.1 can hold for a nonplanar graph.

We conclude this section on nonplanarity with a useful inequality.
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Theorem 26.4 If a graph with p ≥ 3 vertices and q edges has a planar embedding, then
q ≤ 3p− 6.

PROOF. There are two cases. If the graph has a cycle, then the cycle must contain at
least 3 edges, and so we can apply Theorem 26.1 with d⋆ = 3, giving the result in this case.
Otherwise, if the graph has no cycle, then the number of edges is at most that of a tree
(which has q = p− 1 edges), so we have

q ≤ p− 1 ≤ p− 1 + (2p− 5) = 3p− 6,

since 2p− 5 ≥ 0 for p ≥ 3, giving the result in this case also.

An edge-subdivision of a graph G is obtained by replacing each edge of G by a path with a
nonnegative number of internal vertices, where each edge of G is treated independently. For
example, in Figure 15, we give a graph G, together with one of its edge-subdivisions H . Now,

G H

Figure 15: A graph G and an edge-subdivision H .

clearly, an edge-subdivision of a graph is planar if and only if the graph is planar. Therefore,
if a graph has a subgraph that is an edge-subdivision of a nonplanar graph, then the graph
is nonplanar. The following result, which we do not prove, is Kuratowski’s Theorem. In view
of the above statement, the surprising part of this result is the “only if”.

Theorem 26.5 A graph is nonplanar if and only if it has a subgraph that is an edge-
subdivision of K5 or K3,3.

To illustrate this result, consider the Petersen graph, which we have previously proved to
be nonplanar. Kuratowski’s Theorem implies that the Petersen graph must have a subgraph
that is an edge-subdivision of K5 or K3,3. In Figure 16, we give the Petersen graph. If the
middle vertex (drawn as an unfilled circle) and its three incident edges (drawn as dotted
lines) are removed, then the result is a subgraph that is an edge subdivision of K3,3. (To see
this, consider K3,3 as a 6-cycle with three pairwise crossing chords.)
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Figure 16: The Petersen graph and a subgraph.

27 Lecture of March 24

We can also consider embeddings of graphs, without edges crossing, in surfaces other than
the sphere (equivalent to the plane for embeddings of finite graphs). For example, the torus
is a sphere with a handle. The complete graph K5 is not embeddable on the sphere, but
can be embedded on the torus, as given in Figure 17. The meaning of the matching arrows
on the top and bottom is that these segments are identified (like rolling up the diagram

Figure 17: An embedding of K5 on the torus.

horizontally, into a cylinder), and the matching arrows on the left and right is that these
segments also are identified (to turn the cylinder into a “donut” shape).

In fact we can embed K7 on the torus, as well as K4,4 and the Petersen graph. Suitable
embeddings are given in Figure 18. (Note that on of the vertices of K7 is represented by
four copies, one in each corner of the diagram.)
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K7 K4,4

Petersen graph

Figure 18: Embeddings on the torus for K7, K4,4, and the Petersen graph.
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The embedding in Figure 17 has faces, just as for embeddings on the sphere, with bound-
ary walks that can be obtained in the same way. For example, there are 5 faces for the
embedding in Figure 17, four of degree 3, and one of degree 8. Of course, the sum of face
degrees is equal to 2q, for example, here we have 3 + 3 + 3 + 3 + 8 = 20 = 2 · 10. The
embedding in Figure 17 is called a 2-cell embedding, meaning that all the faces are homeo-
morphic to discs. In a similar way, we can consider embeddings on Tg, the surface obtained
by adding g handles to the sphere. We say that Tg has genus g, and a 2-cell embedding on
Tg partitions the surface into s faces. For any nonnegative integer g, there is an extension
of Euler’s formula, giving

p− q + s = 2 − 2g

for embeddings of connected graphs. For example, for the embedding of K5 in Figure 17, we
have p = 5, q = 10, and s = 5, so p− q + s = 0 = 2 − 2g, with g = 1.

There is also a Kuratowski-style theorem for Tg: it is known that there is a finite list of
graphs such that a graph can be embedded on Tg if and only if it does not have a subgraph
that is an edge-subdivision of some graph on the list. However, even for g = 1, such a list is
not known precisely, but it is known is that it must contain at least 1000 graphs. The surfaces
Tg are called orientable surfaces. We can also consider 2-cell embeddings on nonorientable
surfaces, like the projective plane, or the Klein bottle. There is a Kuratowski-style theorem
for these, too; again there is always a finite list. The simplest case is for the projective plane,
where there is a known list of 103 graphs.

Now, we showed in Figure 18 that the complete graph K7 can be embedded on the torus.
We now consider whether Kn can be embedded on the torus for any larger n, and then which
complete graphs can be embedded on Tg for each g ≥ 1. Let

Mg =
7 +

√
1 + 48g

2
, Ng = ⌊Mg⌋.

This gives, for example, N0 = 4, N1 = 7, N2 = 8. In 1974, Ringel and Youngs proved that
KNg

has a 2-cell embedding in Tg, for g ≥ 0. On the other hand, we have the following
result.

Theorem 27.1 If a connected graph G has a 2-cell embedding on Tg, then G must have a
vertex of degree less than or equal to Ng − 1, for g ≥ 1.

28 Lecture of March 26

PROOF. From Euler’s formula, we have p − q + s = 2 − 2g, and from the sum of face
degrees, we have 2q ≥ 3s. Also, Mg is the solution to a quadratic equation, and we have
Mg(Mg − 7) = 12g − 12. Now, to arrive at a contradiction, suppose otherwise, that every
vertex of G has degree greater than Ng −1, or equivalently, greater than Mg −1. Then, from
the sum of vertex degrees, we have 2q > (Mg − 1)p. Also, we have p > Mg. Then, putting
these results together, we obtain

2− 2g = p− q+ s ≤ p− q+ 2
3
q = p− 1

3
q < p−Mg − 1

6
p =

7 −Mg

6
p ≤ 7 −Mg

6
Mg = 2− 2g,
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giving the contradiction (for the last inequality, note that Mg ≥ 7, since g ≥ 1). The result
follows.

Comparing the above result with the embeddings of Ringel and Youngs, we see that their
construction is best possible: if g ≥ 1, Kn cannot be embedded on Tg for any n > Ng, since
every vertex of Kn has degree n− 1 > Ng − 1.

Moreover, for g = 0, we have already proved that K5 is not planar, so Ringel and Youngs’
construction is also best possible for g = 0.

We now give the analogue of Theorem 27.1 for the case g = 0.

Theorem 28.1 In every planar graph, there is a vertex of degree at most 5.

PROOF. Suppose otherwise, that we have a planar graph G in which every vertex has degree
at least 6. Then, considering the sum of vertex degrees, we have 2q ≥ 6p, or q ≥ 3p. But
this contradicts Theorem 26.4, and the result follows.

Now, in order to discuss the four colour theorem, we consider colouring the vertices of a
graph. A k-colouring of a graph G is a function f : V (G) → {1, . . ., k}, with the property
that f(u) 6= f(v) if u and v are adjacent. The elements of {1, . . ., k} are referred to as
colours. If a graph has a k-colouring f , then we say that it is k-colourable, and refer to f(v)
as the colour of vertex v. For example, a 3-colouring of a graph H is given in Figure 19,
where the number beside each vertex indicates its colour. Of course, a vertex with p vertices

H

1

3

2

2

1

3

2

2

Figure 19: A 3-colouring of a graph H .

is always p-colourable, by assigning a different colour to every vertex. The complete graph
Kp is not k-colourable for any k < p, since every pair of vertices is adjacent, and so must
have a different colour. A graph is bipartite if and only if it is 2-colourable, with colour 1
for the vertices in A, and colour 2 for vertices in B.

Theorem 28.2 Every connected graph with a 2-cell embedding on Tg is Ng-colourable for
g ≥ 1, and is 6-colourable for g = 0.

PROOF. The proof is by strong induction on g ≥ 0, p ≥ 1. For base cases, using the fact
that every graph on n vertices is n-colourable (use a different colour for each vertex), we
note that the result is true for g = 0, p ≤ 6, and g ≥ 1, p ≤ Ng.
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For the induction hypothesis, assume that the result is true for g < m, p ≥ 1 and for
g = m, p ≤ k, where m ≥ 0, and k ≥ 6 if m = 0, or k ≥ Nm if m ≥ 1. Now consider
an arbitrary connected embedding G on Tm with k + 1 vertices. Then Theorem 28.1 and
Theorem 27.1 imply that G has a vertex v of degree at most 5 if m = 0, or at most Ng − 1
if m ≥ 1. Then if we remove v and incident edges from G, we obtain a positive number of
components, each of which has at most k vertices (since the total number of vertices among
all components is k), and each of which can be embedded on Tn for some n ≤ m (the latter
is a topological property whose proof we don’t give here). Thus, each component can be
Nm-coloured by the induction hypothesis (and the fact that 6 ≤ N1 ≤ N2 ≤ . . .). But, the
Nm − 1 (or 5 if m = 0) neighbours of v cannot receive, together, more than Nm − 1 colours
(or 5 if m = 0), leaving a different colour for v in all cases, proving the result for G. The
result follows by mathematical induction.

The above colouring theorem is best possible for g ≥ 1, as an immediate consequence
of Ringel and Youngs’ construction, since it is not possible to use fewer than Ng colours to
colour KNg

. However, for g = 0, the existence of an embedding of K4 on the plane, but not
of K5 means that the 6-colouring result for g = 0 might not be best possible, and perhaps 6
can be replaced by 5 or 4 for the best possible result. In fact, the correct answer is 4, and
this is the statement of the celebrated Four Colour Theorem.

29 Lecture of March 28

The statement of the above Theorem as applying to vertex colouring may seem strange,
since most popular accounts of the Four Colour Theorem refer to colouring the faces of a
planar embedding. However, we now show that colouring the vertices of a planar embedding
so that adjacent vertices are assigned different colours, is equivalent to colouring the faces
of a planar embedding so that faces with a common edge in their boundaries are assigned
different colours. To do this, we define the planar embedding G∗, called the dual of the
planar embedding G. There is one vertex of G∗ for each face of G, and we locate such a
vertex in the interior of the corresponding face. Two vertices of G∗ are adjacent when the
corresponding faces of G are incident with a common edge of G. In the embedding G∗, the
curve representing such an edge crosses the curve representing the corresponding edge in G.
For example, in Figure 20 we give a planar embedding G, with vertices as circles, and edges
as solid curves, and the planar embedding G∗, with vertices as boxes, and lines as dashed
curves. Note that G has p = 7 vertices, q = 10 edges, and s = 5 faces, where G∗ has p∗ = 5
vertices, q∗ = 10 edges, and s∗ = 7 faces. Also, here we have (G∗)∗ = G (actually, there
is some choice about where to embed the edges of G∗ that are embedded in the outer face
of G, and vice-versa; however, there is no choice if the embedding is in the surface of the
sphere). For any planar embedding G and its dual G∗, these relationships always hold; in
general, we have p = s∗, q = q∗, s = p∗, and (G∗)∗ = G. In particular, a vertex of degree
i in G becomes a face of degree i in G∗, and a face of degree i becomes a vertex of degree
i in G∗. Moreover, two vertices are adjacent in G exactly when the corresponding faces in
G∗ have a common edge in their boundaries. But this means that a vertex colouring of G
becomes a face colouring of G∗, which explains why the Four Colour Theorem is often stated
for colouring faces.
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Figure 20: A planar embedding and its dual.

However, there are some additional aspects that arise in considering the dual. Note in
Figure 20 that the bridge of G gives rise to a loop in G∗ (an edge that joins a vertex to
itself). Also, the vertex of degree 2 in G gives rise to a pair of edges between the same pair
of vertices in G∗ (this is called a multi-edge). Thus in taking the dual of a planar embedding,
we can create a graph that has loops and multiple edges (and is thus is no longer a simple
graph).

Now suppose that we have a planar embedding whose faces we wish to colour with k
colours, so that faces that meet at an edge (because that edge is incident with the faces)
have different colours. Suppose that this planar embedding has no vertices of degree 2 (they
can always be removed without changing the underlying regions that are to be coloured),
and no bridges (if there were a bridge, then the face of the planar embedding that is twice
incident with that bridge could not be coloured without violating the “different colour”
restriction). Then the dual of the planar embedding is a planar embedding without loops
or multiple edges, and a k-colouring of the vertices of the dual will correspond exactly to a
k-colouring of the faces of the original planar embedding.

We have proved above that every planar graph is k-colourable for k = 6. We now prove
the case k = 5. In the proof, we use a graph construction known as edge-contraction. If
{x, y} ∈ E(G), and z /∈ V (G), then define H to be a graph with V (H) = V (G)∪{z}\{x, y}.
The edges of G consist of all edges {a, b} of G with a, b ∈ V (G) \ {x, y}, together with all
{z, c} such that {x, c} or {y, c} (or both) is an edge of G, with c ∈ V (G) \ {x, y}. We say
that H has been obtained from G by edge-contraction of {x, y}. Note that if G is planar,
then every edge-contraction of G is planar, a fact that we shall not prove here. This is often
useful in the contrapositive: for example, we can obtain K5 from the Petersen graph by 5
edge-contractions (using the “spokes” that join the outer pentagon to the inner pentagonal
star), and thus conclude, from the nonplanarity of K5, that the Petersen graph is nonplanar.

Be careful with edge-contraction, however. It is not the case that every edge-contraction
of a nonplanar graph is nonplanar; for example, applying edge-contraction to any single edge
of K3,3 (which is of course nonplanar), we obtain a planar graph (it has 5 vertices and 8
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edges so it can’t possibly contain an edge-subdivision of K5 or K3,3 as a subgraph).

Theorem 29.1 Every planar graph is 5-colourable.

PROOF. Again, the proof is by induction on p, the number of vertices. As base cases, the
result holds for planar graphs with p ≤ 5, since every graph on at most 5 vertices is 5-
colourable. For the (strong) induction hypothesis, assume that every planar graph on p ≤ k
vertices is 5-colourable, where k ≥ 5. Consider a planar graph G on p = k+1 vertices. Then
Theorem 28.1 implies that G has a vertex of degree at most 5. There are two cases.

If G has a vertex v of degree at most 4, then G− v has k vertices, and we can apply the
induction hypothesis to obtain a 5-colouring of G− v. In G, v has at most 4 neighbours, so
in the 5-colouring of G− v, they are coloured, together, with at most 4 colours. This means
that there is a different colour available for v, to give a 5-colouring for G.

Otherwise, G has a vertex v of degree 5. Now, there must exist a pair a, b of neighbours
of v that are not adjacent (else, the graph would contain K5 as a subgraph, whose vertices
are the neighbours of v; but this is a contradiction, since the planar graph G cannot contain
any nonplanar subgraph). Now, let G′ be the graph obtained from G by edge-contraction
of {a, v} and {b, v}, where the new vertex of G′ is v′. Note that G′ is planar, since G is
planar. Also, G′ has k − 1 vertices, so we can apply the induction hypothesis to obtain a
5-colouring of G′. Now, we produce a 5-colouring of G: for all vertices of G except a, b, v, use
the colour assigned in the 5-colouring of G′; for vertices a, b, which are not adjacent, assign
the same colour, namely the colour assigned to v′ in the 5-colouring of G; now v has exactly
5 neighbours in G, and two of them have the same colour, so, together, they are coloured
with at most 4 colours. This means that there is a different colour available for v, and we
have successfully 5-coloured G.

Therefore, in both cases, G is 5-colourable, and the result follows by mathematical in-
duction.

The statement of the celebrated Four Colour Theorem is “Every planar graph is 4-
colourable.” The published proofs use induction on the number of vertices, and consist of
a case analysis based on a vertex v of small degree, just as in the above proof of the Five
Colour Theorem. However, there are many cases (in the first proof, over 2000; in the most
recent proof, about 600), and the constructions needed to produce a 4-colouring are often
very complicated (the original proof is perhaps especially well known because it incorporated
computer-aided manipulations to prove the cases).

30 Lecture of March 31

Now, we turn to matchings in a graph. A matching M in a graph G is a set of edges of
G with the property that no vertex of G is incident with more than one edge of M . For
example, M1 = {{1, 4}, {2, 6}} and M2 = {{1, 2}, {3, 4}, {5, 6}} are matchings of the graph
G given in Figure 21. The size of a matching is the number of edges in the matching, so we
write |M1| = 2 and |M2| = 3. The set of vertices incident with the edges of a matching M
are said to be saturated by the matching. For example, the set of vertices saturated by M1

is {1, 2, 4, 6}, and the set of vertices saturated by M2 is V (G). If G has p vertices, then no
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Figure 21: A graph G.

matching of G can saturate more than p vertices, so we have immediately the upper bound
|M | ≤ p/2 for the size of a matching M of G. If a matching M saturates all the vertices of
G (so |M | = p/2) then we say that M is a perfect matching of G.

A maximum matching of G is a matching of maximum possible size. Note that M1

above is a maximal matching of G, since it is not a proper subset of another matching (the
two vertices, 3, 5 that are not saturated by M1 are not adjacent), but it is not a maximum
matching, because M2 has bigger size than M1.

A cover C in a graph G is a set of vertices of G with the property that no edge of G is
incident with less than one vertex of C. For example, C1 = {1, 2, 3, 4} and C2 = {2, 4, 6} are
covers of the graph G given in Figure 21. The size of a cover is the number of vertices in
the cover. The reason that we introduce covers in a discussion of matchings is the following
result, which relates the size of matchings and covers.

Theorem 30.1 For every matching M and cover C of a graph G, we have |M | ≤ |C|.

PROOF. Consider an arbitrary matching M of G, and suppose that M contains edges
{u1, v1}, . . .{uk, vk}. Then every cover C of G must contain ui or vi or both, for each
i = 1, . . ., k. But the ui and vi are all different, so it follows that |C| ≥ k = |M |, and the
result follows.

As an immediate corollary, we obtain that, if M is a matching and C is a cover with
|M | = |C|, then M is a maximum matching, and C is a minimum cover (i.e., a matching of
maximum size in the graph, and a cover of minimum size in the graph). Is it always possible
to find a matching and a cover of equal size in every graph G ? The answer is “No” – in the
complete graph K3, every pair of edges is incident with a common vertex, so the maximum
size of a matching is 1; however, each vertex is incident with only two of the three edges, so
the minimum size of a cover is 2. Similarly, for any cycle of odd length 2m+1, the maximum
size of a matching is m, and the minimum size of a cover is m + 1. However, odd cycles
are the only thing that prevents the above equality, as given by the following result, called
König’s Theorem.
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Theorem 30.2 In a bipartite graph, the size of the maximum matching is equal to the size
of the minimum cover.

Before we prove König’s Theorem, we note that the converse is false: for example, the
graph G in Figure 21 is not bipartite (it has a number of 3-cycles), but it has a matching
M2 and a cover C2 of the same size. We also need to introduce more terminology. In
a graph G, with matching M , an alternating path is a path in which the edges alternate
between belonging to M , and not belonging to M . A path with no edges is permitted.
An augmenting path is an alternating path of positive length that starts and ends at an
unsaturated vertex. For example, for the graph G given in Figure 21, with matching given
by M1 = {{1, 4}, {2, 6}}, some of the alternating paths are given by 1, 12, 14, 126, 2614,
54126, 541623, and of these, 541623 is an augmenting path.

Theorem 30.3 If G has an augmenting path for a matching M , then M is not a maximum
matching of G.

PROOF. Since an augmenting path begins and ends at unsaturated vertices, and has positive
length, the first and last steps of the path do not belong to M (since an unsaturated vertex
of G is incident with no edge of M). Therefore, an augmenting path has odd length, and
contains k edges of M , and k + 1 edges not in M , for some k ≥ 0. Now, construct a new
matching M ′ as follows: M ′ consists of all edges of M not in the augmenting path, together
with all edges of the augmenting path not in M . Thus, to obtain M ′ from M , we replace k
edges by k+1 edges, and so we have |M ′| = |M |+1. The fact that M ′ is a matching follows
immediately, since the vertices on the augmenting path are incident with exactly one edge
of M ′, and the remaining vertices are incident with at most one edge of M ′, since M is a
matching. We have constructed a larger matching than M , giving the result.

In order to complete the terminology for a proof of König’s Theorem, consider a bipartite
graph G, with bipartition A, B, together with a matching M of G. The matching M doesn’t
need to be a maximum matching of G, and could even have no edges. Let X0 be the set
of unsaturated vertices in A. Let X be the set of vertices in A that are reachable by an
alternating path from a vertex in X0, and let Y be the set of vertices in B that are reachable
by an alternating path from a vertex in X0.
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Note that X0 ⊆ X, since alternating paths with no edges are permitted. Also, let U be the
set of unsaturated vertices in Y . For example, for the graph G in Figure 22, with sets A
and B as drawn, and matching M consisting of the thick edges, we have X0 = {3, 5}. Then
(say, by creating search trees rooted at vertices 3 and 5), we determine X = {1, 3, 4, 5} and
Y = {a, b, e, f}, and hence U = {b, e}. In order to clearly illustrate the results that come
next, we redraw the graph G of Figure 22, with the sets X and Y on the left, in Figure 23.
In general, we have a number of results for the sets X, Y, U .

Theorem 31.1 1. There is no edge of G joining a vertex of X to a vertex of B \ Y .

2. The set C = (A \X) ∪ Y is a cover of G.
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Figure 22: A bipartite graph G with a matching M .
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Figure 23: A redrawing of bipartite graph G with matching M .

3. There is no edge of M joining a vertex of Y to a vertex in A \X.

4. |M | = |C| − |U |.

5. If |U | > 0, then M is not a maximum matching of G; if |U | = 0, then M is a maximum
matching of G.

PROOF.

1. Suppose otherwise, to arrive at a contradiction. If there is a nonmatching edge of G
joining a vertex x of X to a vertex v of B \ Y , then there is an alternating path from
a vertex in X0 to x. But this alternating path, together with the nonmatching edge,
would give an alternating path from a vertex in X0 to v, implying v ∈ Y , which is a
contradiction. Otherwise, if there is an edge of M joining a vertex x of X to a vertex v
of B \ Y , then there is an alternating path from a vertex in X0 to x. But the last edge
in this path must be an edge of M joining a vertex y of Y to x, so x is incident with
two edges of M . This is a contradiction, since no vertex can be incident with more
than at one edge in a matching.
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2. This follows immediately from part 1 of this result, together with the fact that G is
bipartite.

3. Suppose otherwise, to arrive at a contradiction. If there is an edge of M joining a
vertex y of Y to a vertex v of A \X, then there is an alternating path from a vertex
in X0 to y. But this alternating path, together with the edge of M , would give an
alternating path from a vertex in X0 to v, implying v ∈ X, which is a contradiction.

4. From parts 1 and 3 of this result, if follows that the edges of M are of two types. Type
1 join a vertex of X to a vertex of Y , and type 2 join a vertex of A \X to a vertex of
B \ Y . The number of edges of type 1 is |Y | − |U |. The number of edges of type 2 is
|A \X|, and together these give

|M | = |Y | − |U | + |A \X| = |C| − |U |,

giving the result.

5. If u ∈ U , then there is an alternating path from a vertex in X0 to a vertex in U , and
thus this is an augmenting path. Theorem 30.3 then implies that M is not a maximum
matching. Otherwise, if |U | = 0, then part 4 of the result implies that |M | = |C|,
which means that M is a maximum matching, and C is a minimum cover, by the
corollary stated below Theorem 30.1.

For example, for the graph G and matching M in Figure 22, we have |U | > 0, and this
implies that M is not a maximum matching of G. Now, there is an augmenting path to
each vertex in U , for example, 5f4b is one of these. If we “switch” the matching and non-
matching edges on this path , as in the proof of Theorem 30.3, then we obtain the matching
M ′, indicated by the thick edges in Figure 24. For this matching, we have X0 = {3}, and

1 2 3 4 5 6

a b c d e f g

G

A

B

Figure 24: The bipartite graph G with matching M ′.

determine X = {1, 3, 5}, Y = {a, f}, so U = ∅. Since |U | = 0, we conclude that M ′ is a
maximum matching, and indeed can check that (A \X) ∪ Y = {2, 4, 6, a, f} is a cover of G,
of the same size as M ′.
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Proof of König’s Theorem: For the bipartite graph G, with bipartition A, B, find a
matching M (the empty matching will do; otherwise, for a bigger matching, you could
consider the edges in any order, and select them for the matching if they join two previously
unsaturated vertices). Then construct the sets X0, X, Y , U and C. There are two cases:
if |U | = 0, then M is a maximum matching, of the same size as the cover C; otherwise, if
|U | > 0, then find an augmenting path to a vertex in U , and apply the “switching” method
as in the proof of Theorem 30.3, to obtain a matching M ′ that is larger than M . Repeat this
for G and the new matching M ′. Since the matching increases in size at every stage, and no
matching can have more than p/2 edges (where p is the finite number of edges in G), this
must terminate finitely in the first case, with a matching and cover of the same size. This
finishes the proof of König’s Theorem.

As a corollary of König’s Theorem, we obtain the following result, which is called Hall’s
Theorem. For a set of vertices D, it uses N(D) for the union of the sets of neighbours of all
the vertices in D.

Theorem 31.2 In a bipartite graph with bipartition A, B, there is a matching that saturates
all vertices of A if and only |N(D)| ≥ |D|, for all D ⊆ A.
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PROOF. For the “only if”: suppose there is a matching that saturates all vertices of A. Then,
for any D ⊆ A, this matching saturates all vertices of D. But these |D| matching edges are
incident with |D| vertices of B, and all of these vertices belong to N(D), so |N(D)| ≥ |D|.

For the “if”: we’ll prove the contrapositive. Suppose there is no matching saturating all
vertices of A. Then, since the graph is bipartite, the size of a maximum matching is less
than |A|. Now, consider a minimum cover C, so König’s Theorem implies that |C| < |A|.
Let C be the complement of C in the vertex set of the graph. Partition the vertex set into
four disjoint sets: A ∩ C, A ∩ C, B ∩ C, B ∩ C. The fact that C is a cover implies that
there are no edges between A∩C and B ∩C, which in turn implies that N(A∩C) ⊆ B∩C.
Thus, we have

|N(A ∩ C)| ≤ |B ∩ C| = |C| − |A ∩ C| < |A| − |A ∩ C| = |A ∩ C|,

so for the set D = A ∩ C ⊆ A we have |N(D)| < |D|. The result follows.

We end with a problem about matchings.

Example 32.1 Prove that if the opposite corners of a standard 8×8 chessboard are removed,
then it is impossible to cover the remaining 62 squares with 31 1 × 2 dominoes.

SOLUTION. Of course, the usual proof is to analyze the number of black and white squares,
and we will do that here, but in a way that makes clear the connection to covers and
matchings of a graph. Consider the graph whose vertices are the 64 squares of the chessboard.
Two squares are adjacent if, together, they create a 1 × 2 domino (either vertically or
horizontally). Thus this graph has 4 vertices of degree 2 (the corner squares), 24 vertices of
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degree 3 (the squares on the outside, not on the corners), and 36 squares of degree 4 (the
squares on the inside of the board). A covering of the chessboard with 1 × 2 dominoes is
a perfect matching of the graph. Note that the graph is bipartite (with the sets A and B
given by the 32 black and 32 white squares, respectively).

When the opposite corners are removed, this problem asks us to find a perfect matching
of the graph with two vertices in the same class removed, so we must find a perfect matching
of a bipartite graph whose bipartite classes have 30 and 32 vertices. But the 30 vertices in
one class give a cover of the graph of size 30, and so Theorem 30.1 implies that no matching
has size greater than 30. Thus it is impossible to find a perfect matching (of size 62/2 = 31).
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