
PMATH 145 - Introduction to Number Theory

1 Greatest Common Divisor
Lecture 1 Wed 09/06

Number theory is in some sense about the interplay between addition and multiplication. The
theorems tend to be very innocent looking but the proofs tend to involve every branch of pure mathematics.
For example, Fermat’s Last Theorem states that the equation xn +yn = zn has no nonzero integers solutions
when n ≥ 3. The proof by Wiles and Taylor almost 30 years ago uses techniques from geometry, topology,
analysis and algebraic number theory. Some examples of innocent looking but unsolved conjectures include
Landau’s four problems about primes:

• (Goldbach) Every even integer at least 4 is a sum of two primes.

• (Twin prime) There are infinitely many primes p such that p+ 2 is prime.

• (Legendre) For any positive integer n, there is a prime between n2 and (n+ 1)2.

• (Bunyakovsky) There are infinitely many integers n such that n2 + 1 is prime.

The motivating problem for the first three quarters of this course will be the following result of Dirichlet.

Theorem 1.1 Suppose a and m are coprime integers. Then there are infinitely many integers k such that
mk + a is a prime.

We will give proofs of this result for various values of a and m and in the process discuss many
abstract ideas in mathematics. You will encounter these ideas again in PMATH 347, 348, 440, 441.

In the beginning, there was nothing. Then god said, let there be 1. There is not much one can do
with just 1, so addition was added. We can then define 2 as 1 + 1 and then 3 = 1 + 2. We now have two
choices for the next number, as 1 + 3 or as 2 + 2. Note that

1 + 3 = 1 + (1 + 2), 2 + 2 = (1 + 1) + 2.

By requiring that addition is associative, we have that these two numbers are equal and we call it 4.
Continuing forever gives the set of natural numbers

N = {1, 2, 3, . . .}.

We may view the addition n+m as adding 1 to n a total of m times.
In order to reverse the process of addition, we need a number that adds 1 to give 1. This number

is called 0. Continuing lowering the numbers gives the usual subtraction and expands our set of numbers to
the set of integers

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

Another familiar operation now appears. We can define multiplication n×m as adding n to 0 a total of m
times if m ≥ 0 and as adding −n to 0 a total of −m times if m < 0. The set Z along with +,−,×, 0, 1 with
the usual laws of arithmetic is a commutative ring.
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In order to reverse the process of multiplication, namely division, the set of rational numbers

Q = {a
b

: a, b ∈ Z, b ̸= 0}

naturally appears. This process in general is called taking the field of fractions. The next set up is the set
R of real numbers, which is the completion of Q. In other words, one can think of real numbers as limits of
sequences of rational numbers that should converge. For example, the sequence 3, 3.1, 3.14, 3.141, 3.1415, . . .
should converge and its limit is π. The sequence 1,−1, 1,−1, . . . shouldn’t converge because it keeps fluc-
tuating. “Should converge” roughly means that if you go far out enough, any two terms are close enough.
The precise terminology is Cauchy sequence, which you will learn in MATH 147. Note here we say two
numbers a, b are close if the absolute value |a − b| is small. There are other absolute values that people
consider in number theory using prime factorizations, leading to other completions Qp of Q.

Finally the set R is not “complete” in the algebraic sense. There are polynomial equations with
coefficients in R that don’t have solutions. For example x2 + 1 = 0 has no solutions in R. Adding, or more
precisely adjoining,

√
−1 to R, gives the set C of complex numbers. The quadratic formula then allows us to

solve quadratic equations in C. It is only until the 16th century when people wanted to solve cubic equations
that we finally sat down to understand how complex numbers work. Around 1800, the Fundamental theorem
of Algebra was proved, which states that every non-constant polynomial equation with coefficients in C has
a solution in C. We say C is algebraically closed.

At this point, our number system is complete in both analytic and algebraic senses. This is also the
reason why you don’t hear “breaking news: mathematicians discovered new numbers”. If we start relaxing
the laws of arithmetic, we get the Quarternions where multiplication isn’t commutative, or Octonions where
multiplication also isn’t associative.

Proposition 1.2 The set N is well-ordered. In other words, every non-empty subset has a smallest element.

Proof: Let S be a non-empty subset of N. Let n ∈ S be an element. Let T = {x ∈ S : x ≤ n}. Then T is a
non-empty finite set and thus has a smallest element n0. For any x ∈ S, if x > n, then x > n ≥ n0; if x ≤ n,
then x ∈ T and so x ≥ n0. Therefore, n0 is the smallest element of S. 2

Corollary 1.3 The set N ∪ {0} is well-ordered.

Corollary 1.4 (Induction) For any n ∈ N, let P (n) be a statement such that the following are true:

1. P (1) is true,

2. (P (1) ∧ · · · ∧ P (n− 1))⇒ P (n) is true for all integers n ≥ 2.

Then P (n) is true for all n ∈ N.

Proof: Let S be the set of natural numbers n such that P (n) is false. If S is empty, then we are done.
Suppose for a contradiction that S is non-empty. Let m ∈ S be its smallest element. Since P (1) is true, we
know that m ̸= 1 and so m ≥ 2. Since m is the smallest element of S, we know that P (1), . . . , P (m− 1) are
all true, but then by property 2, we have P (m) is true. Contradiction. 2

Remark: There are variant forms where multiple base cases are needed or where the starting point is > 1.

Proposition 1.5 (Division algorithm) Let a, b be integers such that a > 0. Then there exists integers q, r
such that

b = aq + r, 0 ≤ r < a.

Proof: Consider the set S = {b− ak : k ∈ Z, b− ak ≥ 0}. By taking k = −|b|, we have since a ≥ 1,

b− ka = b+ |b|a ≥ b+ |b| ≥ 0.
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Hence S ⊆ N ∪ {0} is non-empty. Let r ∈ S be its smallest element. Then r = b − ak for some k ∈ Z and
r ≥ 0. Let q = k so that b = aq+ r. It remains to prove that r < a. Suppose for a contradiction that r ≥ a.
Then r− a ≥ 0 and r− a = b− ak− a = b− a(k+ 1) ∈ S. However, r− a < r contradicting the minimality
of r. 2

Remark: The integers q, r are unique and are called the quotient and remainder when b is divided by a.
We also have the division algorithm for negative a. In general, we have

∃q, r ∈ Z, b = aq + r and 0 ≤ r < |a|.

Suppose we are given two integers a, b not both 0. Suppose WLOG that a ̸= 0. Consider

S = {ax+ by : x, y ∈ Z, ax+ by > 0}.

If a > 0, then a = a(1) ∈ S. If a < 0, then −a = a(−1) ∈ S. Hence S is non-empty. Let d be the smallest
element of S. Write d = ax0 + by0 for some x0, y0 ∈ Z.

Lemma 1.6 The number d divides every element of the form ax + by where x, y ∈ Z. In particular, d | a
and d | b.

Proof: Let c = ax1 + by1 be an arbitrary element with x1, y1 ∈ Z. Suppose for a contradiction that d ∤ c.
Applying the division algorithm gives q, r ∈ Z such that c = dq + r with 0 ≤ r < d. The assumption that
d ∤ c implies that r ̸= 0. So r > 0. Now

r = c− dq = ax1 + by1 − (ax0 + by0)q = a(x1 − x0q) + b(y1 − y0q).

Since r > 0, we have r ∈ S, but this contradicts the minimality of d. 2

Lemma 1.7 Any common divisor of a, b divides d. In other words, d = gcd(a, b) is the greatest common
divisor of a and b.

Proof: If e | a and e | b, then e | ax0 + by0. So e | d. 2

We define gcd(0, 0) = 0 so that gcd(0, a) = |a| for any a ∈ Z.

Corollary 1.8 (Bezout’s Lemma) Let a, b be integers. Then there exist integers x, y such that gcd(a, b) =
ax+ by.

Corollary 1.9 Let a, b be integers. Then there exist integers x, y such that ax + by = 1 if and only if
gcd(a, b) = 1. We say a and b are coprime.

Proof: (⇐) follows immediately from Bezout’s lemma. For (⇒), we have 1 ∈ S and so is its smallest
element, implying that gcd(a, b) = 1. 2

Example: (Easiest IMO problem 1959P1) Prove that for any integer n,

gcd(14n+ 3, 21n+ 4) = 1.

Follows immediately from
3(14n+ 3) + (−2)(21n+ 4) = 1.

Lecture 2 Fri 09/08

Proposition 1.10 Let a, b, c be integers such that gcd(a, c) = 1. Then gcd(c, ab) = gcd(c, b). In particular,

c | ab⇐⇒ gcd(c, ab) = c⇐⇒ gcd(c, b) = c⇐⇒ c | b.
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Proof: We note that it suffices to prove that

(a) gcd(c, b) = cx+ aby for some x, y ∈ Z,

(b) gcd(c, ab) = cx+ by for some x, y ∈ Z.

Indeed, they would imply that gcd(c, ab) | gcd(c, b), and gcd(c, b) | gcd(c, ab), and so gcd(c, ab) = gcd(c, b)
because they are both non-negative.

Statement (b) is obvious. We know gcd(c, ab) = cx0 + aby0 for some x0, y0 ∈ Z. So x = x0 and
y = by0 do the job. For statement (a), we have

gcd(c, b) = cx1 + by1

1 = cx2 + ay2

for some integers x1, y1, x2, y2. Multiply them to get

gcd(c, b) = c(cx1x2 + ax1y2 + bx2y1) + ab(y1y2).

We take x = cx1x2 + ax1y2 + bx2y1 and y = y1y2. 2

We can similarly prove that the greatest common divisor gcd(a, b, c) of three integers a, b, c (that are
not all 0) is the smallest positive integer of the form ax+ by + cz. Exercise: prove that

gcd(a, b, c) = gcd(a, gcd(b, c)).

Last time, we give an interpretation of gcd(a, b) as the smallest positive integer that can be written
as an integer combination of a and b. For computational purposes, this is pretty useless.

Proposition 1.11 Let a, b, q be integers. Then gcd(a, b) = gcd(a, b− aq).

Proof: As we saw last time, to prove gcd(a, b) = gcd(c, d), it suffices to prove gcd(a, b) = cx+ dy for some
x, y ∈ Z and gcd(c, d) = ax+ by for some x, y ∈ Z. This is obvious in this case. 2

Euclidean algorithm: By swapping a and b, we may assume |b| ≥ |a|. If |b| = |a| or if |a| = 0, then
gcd(a, b) = |b|. Suppose |b| > |a| > 0. Then there is a very natural choice of q, namely the quotient when b is
divided by a, in which case b− aq equals the remainder, which is less than |a|. We then repeat this process.

Note that the above formula holds without requiring q to be the remainder when b is divided by a.
For example,

gcd(14n+ 3, 21n+ 4) = gcd(14n+ 3, 21n+ 4− (14n+ 3)) = gcd(14n+ 3, 7n+ 1)

and
gcd(14n+ 3, 7n+ 1) = gcd(14n+ 3− (7n+ 1)2, 7n+ 1) = gcd(1, 7n+ 1) = 1.

Example: How many elements does the following set have?

S = {gcd(506− n2, 506− (n+ 1)2) : n ∈ Z}.

We have

gcd(506− n2, 506− (n+ 1)2) = gcd(506− n2, 506− n2 − 2n− 1) = gcd(506− n2, 2n+ 1).

Note that gcd(2, 2n+ 1) = 1 since 2n+ 1 is not divisible by 2. Hence, we have

gcd(506− n2, 2n+ 1) = gcd(2(506− n2), 2n+ 1)
= gcd(1012− 2n2 + (2n+ 1)n, 2n+ 1)
= gcd(1012 + n, 2n+ 1)
= gcd(1012 + n, (2n+ 1)− 2(1012 + n))
= gcd(1012 + n, 2023).
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Now gcd(1012 + n, 2023) is a non-negative divisor of 2023. Conversely, given any non-negative divisor d of
2023, by taking n = d− 1012, we have gcd(1012 + n, 2023) = gcd(d, 2023) = d. In other words, S is the set
of positive divisors of 2023. The prime factorization of 2023 is 7× 172. Hence 2023 has 6 positive divisors:

1, 17, 172, 7, 7× 17, 7× 172.

Exercises
1.1 Prove that the set Z with the usual order is not well-ordered.

1.2 Prove that the set Q≥0 of non-negative rational numbers with the usual order is not well-ordered.

1.3 Prove that that any finite subset of R with the usual order is well-ordered.

1.4 (Uniqueness of division algorithm) Given integers a, b such that a ̸= 0, prove that the integers q, r such
that b = aq + r and 0 ≤ r < |a| are unique.

1.5 Prove that if a, b, c ∈ Z such that a | c and b | c and gcd(a, b) = 1, then ab | c.

1.6 Given a, b, c ∈ Z that not all 0, let gcd(a, b, c) be the smallest positive integer of the form ax+ by + cz.
Prove that gcd(a, b, c) = gcd(a, gcd(b, c)).

1.7 Let a, b, c, d be nonzero integers such that ad− bc = ± gcd(a, c). Prove that gcd(an+ b, cn+ d) = 1 for
every integer n.

1.8 Find an example for a, b, c, d ∈ Z such that gcd(an + b, cn + d) = 1 for every integer n but ad − bc ̸=
± gcd(a, c).

2 Prime factorization
A prime is an integer p > 1 such that its only positive divisors of 1 and p. For any integer a,

gcd(p, a) =
{

1 if p ∤ a,
p if p | a.

Proposition 2.1 (Euclid’s Lemma) Let p be a prime. Then for any integers a, b, if p | ab, then p | a or
p | b.

Proof: Suppose p ∤ a. Then gcd(p, a) = 1. Then from p | ab, we get p | b. 2

The converse of Euclid’s Lemma is also true:

Proposition 2.2 Let n > 1 be an integer such that whenever n divides a product of integers, n must divide
one of the factors. Then n is a prime.

Proof: Let d | n be a positive divisor of n. Then n = de for some e ∈ Z. Since d, n > 0, we have e > 0 and
e | n. From n | de, we get n | d or n | e. If n | d, then along with d | n, we get d = n. If n | e, then along
with e | n, we get e = n and so d = 1. 2

Remark: The proof of EL⇒prime uses only division, whereas the proof of prime⇒EL requires the theory
of gcd. There are number systems in general where the notion of gcd doesn’t exist, or worse where unique
factorization doesn’t hold.

Theorem 2.3 (Fundamental Theorem of Arithmetic) Every positive integer can be written as a product of
primes, unique up to reordering.
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For any prime p and any integer n ̸= 0, we define νp(n) to be the largest integer k such that pk | n.
A commonly used notation is

pνp(n) || n.

Alternatively, νp(n) is the unique non-negative integer k such that

pk | n and p ∤
n

pk
.

We use the convention νp(0) =∞.

Proposition 2.4 Let p be any prime and let n,m nonzero integers. Then

νp(nm) = νp(n) + νp(m), νp(n+m) ≥ min{νp(n), νp(m)}.

If νp(n) ̸= νp(m), then
νp(n+m) = min{νp(n), νp(m)}.

Proof: Let k = νp(n) and ℓ = νp(m). From pk | n and pℓ | m, we have pk+ℓ | nm. From p ∤ n/pk and
p ∤ m/pℓ, we have p ∤ nm/pk+ℓ by the contrapositive of EL. Therefore, νp(nm) = k + ℓ.

Suppose WLOG that k ≤ ℓ. Then pk | pℓ and so pk | m. Since pk | n, we have pk | n + m. Thus
νp(n+m) ≥ k. Suppose k < ℓ. Then p | m/pk but p ∤ n/pk. Hence p ∤ (n+m)/pk. So νp(n+m) = k. 2

Lecture 3 Mon 09/11

It then follows by induction on ℓ that for any ℓ ∈ N and nonzero integers n1, . . . , nℓ, we have

νp(n1 · · ·nℓ) = νp(n1) + · · ·+ νp(nℓ).

Note that for primes p, q we have νp(q) = 0 for p ̸= q and νp(p) = 1. Hence, we have the following result.

Corollary 2.5 Let nq be non-negative integers for primes q such that all but finitely many of them are 0.
Then for any prime p,

νp

(∏
q

qnq

)
= np.

In particular, prime factorizations are unique. (Unless otherwise specified, a sum or product over an index
p or q is running only over primes p.)

We prove next the existence of prime factorization.

Theorem 2.6 Let n ∈ N. Then νp(n) = 0 for all but finitely many primes p and

n =
∏

p

pνp(n).

In particular, prime factorizations exist.

Proof: If p > n, then clearly p ∤ n and so νp(n) = 0. We prove the second statement by induction on n.
Suppose first that n = 1. Then νp(1) = 0 for all primes p and

∏
p p

0 = 1.
Suppose now n ≥ 2 and n = q is a prime. In this case,∏

p

pνp(q) = q1
∏
p ̸=q

p0 = q.
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Suppose now n ≥ 2 and n is not a prime. Let d be a positive divisor of n with 1 < d < n. Let
e = n/d. Then 1 < e < n. By induction, we have

d =
∏

p

pνp(d), e =
∏

p

pνp(e).

Multiplying them gives
n = de =

∏
p

pνp(d)+νp(e) =
∏

p

pνp(n)

since νp(d) + νp(e) = νp(de) = νp(n). 2

We can extend νp to all rational numbers by defining νp(a/b) = νp(a) − νp(b). The multiplicative
property of νp implies that if a/b = c/d, then ad = bc and so νp(a) + νp(d) = νp(b) + νp(c). In other words,

νp(a)− νp(b) = νp(c)− νp(d).

Hence νp(a/b) is independent on the choices of a and b.

Corollary 2.7 Let r ∈ Q be nonzero. Then r = ±
∏

p

pνp(r). Moreover,

1. r ∈ Z if and only if νp(r) ≥ 0 for all primes p;

2. r = ±1 if and only if νp(r) = 0 for all primes p.

Corollary 2.8 Let d, n be nonzero integers. Then d | n if and only if νp(d) ≤ νp(n) for all primes p.

Proof: We have d | n if and only if n/d ∈ Z if and only if νp(n/d) = νp(n)− νp(d) ≥ 0 for all primes p. 2

Corollary 2.9 Let n be a nonzero integer. Then the number of positive divisors of n is∏
p

(1 + νp(n)).

Proof: Any positive divisor d is uniquely determined by νp(d) for all primes p. There are 1 + νp(n) possible
values for νp(d) in order for νp(d) ≤ νp(n). 2

Corollary 2.10 Let n,m be nonzero integers. Then for any prime p,

νp(gcd(n,m)) = min{νp(n), νp(m)}.

Proof: Since gcd(n,m) divides n and m, we see that for any prime p, νp(gcd(n,m)) ≤ νp(n) and also
≤ νp(m). Hence νp(gcd(n,m)) ≤ min{νp(n), νp(m)}. For the other inequality, let dp = min{νp(n), νp(m)}.
Note that dp = 0 for p > max{n,m}. We let d =

∏
p p

dp . From dp ≤ νp(n) for all p, we get d | n and
similarly d | m. Hence d | gcd(n,m) and so dp ≤ νp(gcd(n,m)) for all primes p. 2

Similarly for nonzero integers x, y, z, we have

νp(gcd(x, y, z)) = min{νp(x), νp(y), νp(z)}.

A related concept is the least common multiple lcm(m,n) of two integers m,n, or of multiple integers.
One easily checks that

νp(lcm(n,m)) = max{νp(n), νp(m)}.
Since

min{a, b}+ max{a, b} = a+ b,

we get
gcd(n,m)lcm(n,m) = nm.

7



Exercises
2.1 Prove Proposition 1.10 using νp: Let a, b, c be integers such that gcd(a, c) = 1. Then gcd(c, ab) = gcd(c, b)

2.2 Prove Exercise 1.5 using νp: If a, b, c ∈ Z such that a | c and b | c and gcd(a, b) = 1, then ab | c.

2.3 Let k ∈ N. Prove that n ∈ N is a perfect k-th power (that is, n = mk for some m ∈ N) if and only if
k | νp(n) for any prime p.

2.4 Prove that if x, y ∈ N are coprime and k ∈ N such that xy is a perfect k-th power, then x and y are both
perfect k-th powers.

2.5 Prove that the equation x2 = 2y2 has no non-zero integer solutions. This implies that
√

2 is irrational.

2.6 Prove that the equation 2x = 3y has no positive integer solutions. This implies that log2 3 is irrational.

2.7 Let p be a prime. Define |r|p for any nonzero r ∈ Q by |r|p = p−νp(r) and define |0|p = 0. Then for any
r, s ∈ Q, prove that

(a) |rs|p = |r|p|s|p,
(b) |r + s|p ≤ max{|r|p, |s|p} ≤ |r|p + |s|p.

In other words, |.|p behaves similar to the usual absolute value, and is called the p-adic absolute value.

2.8 Prove that the equation x3 = 2y3 + 4z3 has no non-zero integer solutions.

3 Prime counting function
The number

Ln = lcm(1, 2, . . . , n)

is closely related to the prime counting function. Let p be any prime. Let k be a nonnegative integer such
that pk ≤ n < pk+1. Then no integer from 1 to n is divisible by pk+1 and pk ≤ n with νp(pk) = k. In other
words

νp(Ln) = max{νp(1), . . . , νp(n)} = k =
⌊

logn
log p

⌋
,

which is also the number of integers from 1 to n that are powers of p. We define the von Mangoldt function

Λ(m) =
{

log p if m is a positive power of a prime p
0 otherwise.

Then
logLn =

∑
p≤n

⌊
logn
log p

⌋
log p =

∑
m≤n

Λ(m) =: ψ(n),

is the Chebyshev’s ψ-function.

Theorem 3.1 (Prime number theorem) We have

lim
x→∞

ψ(x)
x

= 1.

As a consequence, we have Ln ∼ en.

Lecture 4 Wed 09/13
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You might be more familiar with the Prime number theorem stated in terms of the prime counting
function π(x) which counts the number of primes less than or equal to x. From the trivial bound⌊

logn
log p

⌋
≤ logn

log p ,

we see that ψ(n) ≤ π(n) logn.

Theorem 3.2 The Prime number theorem is equivalent to

lim
x→∞

π(x)
x/ log x = 1.

The other inequality needs a bit of estimate. See below for a proof of the equivalence of Theorems 3.1 and
3.2.

You will also prove in HW2 a lower bound for Ln of the form

Ln ≥ 2n

for n ≥ 7, which will then give a lower bound for π(x) of the form C1x/ log x for some constant C1 > 0. We
will prove next that

Ln ≤ 4n−1

which gives an upper bound of π(x) of the form C2x/ log x for some constant C2 > 0.

Exercises
3.1 For any n ∈ N, we use the notation

∑
d|n

to denote a sum over the positive divisors of n. Prove that

∑
d|n

Λ(d) = logn.

3.2 Compute L126/L120 and L145/L135.

This following subsection is only for personal entertainment and will not be covered in class or the exam.

A very sketchy sketch of the proof of the prime number theorem
We prove first the following comparison between ψ(x) and π(x):

π(x)
x/ log x

(
1− log log x+ log log log x

log x

)
− 1

log log x ≤
ψ(x)
x
≤ π(x)
x/ log x.

Then by taking limit as x→∞, we have the equivalence of Theorems 3.1 and 3.2 by the Squeeze Theorem.
The upper bound was already proved. For the lower bound, let

θ1(x) =
∑

x/(log x·log log x)≤p≤x

log p ≤ ψ(x).

We can now bound θ1(x) from below by

θ1(x) ≥
∑

x/(log x·log log x)≤p≤x

log( x

log x log log x )

=
∑
p≤x

log( x

log x log log x )−
∑

p<x/(log x·log log x)

log( x

log x log log x )

≥ π(x)(log x− log log x− log log log x)− x

log x log log x log x

= π(x) log x
(

1− log log x+ log log log x
log x

)
− x

log log x.
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Dividing by x gives the desired lower bound.
We now give a sketch for the proof of Theorem 3.1. We define the Riemann-zeta function

ζ(s) =
∞∑

n=1

1
ns
,

which a priori is only defined for s > 1. For example,

ζ(2) =
∞∑

n=1

1
n2 = π2

6 , ζ(4) =
∞∑

n=1

1
n4 = π4

90 .

The value of ζ at an even positive integer n is some rational multiple of πn. It is known that ζ(3) is
irrational and that infinitely many of the ζ(2k + 1) are irrational. They are of course all conjectured to be
transcendental.

Using prime factorization, we have the factorization

ζ(s) =
∏

p

(
1 + 1

ps
+ 1
p2s

+ · · ·
)

=
∏

p

1
1− p−s

.

Note that if there were only finitely many primes, then this product is a finite product and thus always exist.
However, ζ(1) is the harmonic series which diverges. This is Euler’s proof of the infinitude of primes.

We take the logarithmic derivative of ζ(s) to get

d

ds
log ζ(s) = −

∑
p

d

ds
log(1− p−s) = −

∑
p

p−s log p
1− p−s

= −
∑

p

log p
(

1
ps

+ 1
p2s

+ · · ·
)
.

In other words, we see the von Mangoldt function popping up:

−ζ
′(s)
ζ(s) =

∑
n

Λ(n)
ns

.

There is a somewhat reasonable way to define ζ(s) for 0 < s < 1. We note that

2−sζ(s) =
∞∑

n=1

1
(2n)s

=
∑

n even

1
ns

=
∞∑

n=1

1 + (−1)n

2
1
ns

= 1
2

( ∞∑
n=1

1
ns

+
∞∑

n=1

(−1)n

ns

)
.

So
ζ(s) = 1

1− 21−s

∞∑
n=1

(−1)n+1

ns

and the alternating series converges for s > 0. To connect the two regions s > 1 and 0 < s < 1, we go to the
complex world! The exponential ns is defined as

ns = es ln n = eRe(s) ln n+iIm(s) ln n = nRe(s)(cos(Im(s) lnn) + i sin(Im(s) lnn).

Theorem 3.3 The function ζ(s) is analytic for Re(s) > 1. It has a simple pole at s = 1 with residue 1 and
admits a (unique) analytic continuation to all s ∈ C\{1}. Moreover,

ψ(x) = x− log(2π)−
∑

ζ(ρ)=0

xρ

ρ
.

Here:

10



1. analytic means differentiable in the complex world. It turns out that being differentiable implies being
infinitely differentiable.

2. simple pole at s = 1 with residue 1 means that for s near 1, ζ(s) ∼ 1
s−1 .

3. analytic continuation means that there is a function L that is analytic on C\{1} such that L(s) =
ζ(s) for Re(s) > 1. (The meme where 1 + 2 + · · · = −1/12 is the statement that L(−1) = −1/12.
Another notable value is L(0) = −1/2.)

4. ζ has trivial zeroes at the negative even integers and the contribution from them is
∞∑

n=1

1
2nx2n

= 1
2 log(1− x−2).

All other zeroes of ζ, called nontrivial zeroes, lie in the critical strip where 0 ≤ Re(s) ≤ 1 and are
symmetric under s 7→ 1− s.

Theorem 3.1 then follows from the following result on the zeroes of the zeta function.

Theorem 3.4 If ζ(β + it) = 0 where 1/2 ≤ β ≤ 1, then

β ≤ 1− 1
71 log(|t|+ 2) .

These results are enough to conclude that ψ(x) ∼ x. Theorem 3.4 has been improved to

β ≤ 1− 1
57.54(log |t|)2/3(log log |t|)1/3 .

The Riemann hypothesis predicts that β = 1/2.

4 Binomial coefficients
Our goal now is to prove that

Ln = lcm(1, 2, . . . , n) ≤ 4n−1

without using the prime number theorem. This implies Erdös’ bound∏
p≤n

p ≤ 4n−1.

Recall the binomial coefficients(
n

r

)
= n!
r!(n− r)! = n(n− 1) · · · (n− r + 1)

r!

for 0 ≤ r ≤ n. We define it to be 0 if r < 0 or if r > n. They have combinatoric interpretations as the
number of ways to pick r objects from a collect of n objects. Some well-known identities include:

1. Binomial Theorem: (a+ b)n =
n∑

r=0

(
n

r

)
arbn−r.

2. Hypergeometric Identity:
(
n

m

)
=

n∑
r=0

(
a

r

)(
n− a
m− r

)
. When a = 1, we have Pascal’s Identity

(
n

m

)
=(

n− 1
m− 1

)
+
(
n− 1
m

)
.

11



Pascal’s identity (or the above combinatorial interpretation) can be used to prove that the binomial coeffi-
cients are all integers. Alternatively, we can use Legendre’s formula:

Proposition 4.1 For any prime p and any positive integer n,

νp(n!) =
∞∑

k=1

⌊
n

pk

⌋
=
⌊
n

p

⌋
+
⌊
n

p2

⌋
+
⌊
n

p3

⌋
+ · · ·

Proof: For any k ∈ N, let u(k) denote the number of integers from 1 to n that are multiplies of pk. Then
u(k)− u(k + 1) is the number of integers from 1 to n with νp = k. Then

νp(n!) = (u(1)− u(2)) + 2(u(2)− u(3)) + 3(u(3)− u(4)) + · · · = u(1) + u(2) + u(3) + · · · .

We are done because u(k) = ⌊n/pk⌋. 2

Lemma 4.2 Let a,m, n ∈ N with m < n. Let na,ma be the remainders when n,m are divided by a. Then

⌊n
a

⌋
−
⌊m
a

⌋
−
⌊
n−m
a

⌋
=
{

1 if na < ma,

0 if na ≥ ma.

Proof: We have ⌊n
a

⌋
= n− na

a
,

⌊m
a

⌋
= m−ma

a

and
n−m
a

= n− na

a
− m−ma

a
+ na −ma

a
=
⌊n
a

⌋
−
⌊m
a

⌋
+ na −ma

a
.

Since na,ma are remainders, we know that −1 < (na −ma)/a < 1. If na ≥ ma, then (na −ma)/a ∈ [0, 1)
and so ⌊

n−m
a

⌋
=
⌊n
a

⌋
−
⌊m
a

⌋
.

If na < ma, then (na −ma)/a ∈ (−1, 0) and so⌊
n−m
a

⌋
=
⌊n
a

⌋
−
⌊m
a

⌋
− 1.

Hence we are done. 2

Corollary 4.3 Suppose p is a prime and n is a positive integer. Let k be an integer such that pk ≤ n < pk+1.
Then for any integer m = 0, . . . , n, we have

0 ≤ νp

((
n

m

))
≤ k and p ∤

(
n

pk

)
.

Proof: By Legendre’s formula, we have

νp

((
n

m

))
=

k∑
j=1

(⌊
n

pj

⌋
−
⌊
m

pj

⌋
−
⌊
n−m
pj

⌋)
.

By Lemma 4.2, every term in the above sum is at most 1. Moreover, if m = pk, then the remainder of m
when divided by pj for any j = 1, . . . , k is 0, and so each term is 0. 2

12



Corollary 4.4 Suppose p is a prime and m < n are positive integers. Suppose n = pk for some positive
integer k. Then

νp

((
n

m

))
= k − νp(m) > 0.

Proof: The remainder when n is divided by a power pa of p is 0 for all a = 1, . . . , k. So νp

((
n
m

))
is the

number of these a such that pa ∤ m. 2

Lecture 5 Fri 09/15

The aim of this section is to prove Ln ≤ 4n−1 giving an upper bound for the product of primes, which will
then allow us to prove Bertrand’s postulate that there is always a prime in (n, 2n]. We begin with some
basic bounds on the binomial coefficients

(2n+1
n

)
and

(2n
n

)
: for n ∈ N, we have

4n

n+ 1 <

(
2n+ 1
n

)
< 4n,

4n

2n+ 1 <

(
2n
n

)
< 4n.

They follow from

22n+1 =
2n+1∑
r=0

(
2n+ 1
r

)
, 22n =

2n∑
r=0

(
2n
r

)
and that

(2n+1
n

)
=
(2n+1

n+1
)

is the largest binomial coefficient of the form
(2n+1

r

)
, and

(2n
n

)
is the largest

binomial coefficient of the form
(2n

r

)
. From the Stirling’s approximation

n! ∼
√

2πn
(n
e

)n

,

we can get the more precise estimate (
2n
n

)
∼ 4n

√
πn

.

One may view the above as an “archimedean” estimate for these binomial coefficients. In our applications
below, we will be making “p-adic” estimates for them. Fun fact: 10! seconds is exactly 6 weeks.

Theorem 4.5 For any n ∈ N, we have Ln ≤ 4n−1.

Proof: We prove it by induction on n. When n = 1, we have L1 = 1 = 41−1. Suppose now n ≥ 2. Suppose
first n = 2k is even. Then k ≤ n − 1 so k | Ln−1 and we have Ln ≤ 2Ln−1 ≤ 2 · 4n−2 < 4n−1. Hence, it
remains to consider the case where n = 2k + 1 is odd, where k ≥ 1. We prove that

L2k+1 | Lk+1

(
2k + 1
k

)
which then implies

L2k+1 ≤ Lk+1

(
2k + 1
k

)
≤ 4k · 4k ≤ 42k.

by induction.
Let p be any prime. It suffices to prove that

νp(L2k+1)− νp(Lk+1) ≤ νp

((2k + 1
k

))
.

Let r be the unique non-negative integer such that pr ≤ k+ 1 < pr+1. Then νp(Lk+1) = r. If pr ≤ 2k+ 1 <
pr+1, then we also have νp(L2k+1) = r and there is nothing to prove. Suppose now pr+1 ≤ 2k + 1 < pr+2.
Then νp(L2k+1) = r + 1 so we need to prove that νp(

(2k+1
k

)
) ≥ 1. Note that⌊

k

pr+1

⌋
= 0,

⌊
k + 1
pr+1

⌋
= 0,

⌊
2k + 1
pr+1

⌋
= 1.

13



Hence
νp

((2k + 1
k

))
≥
⌊

2k + 1
pr+1

⌋
−
⌊
k + 1
pr+1

⌋
−
⌊

k

pr+1

⌋
≥ 1.

Finally we note that
2k + 1 < 2(k + 1) < 2pr+1 ≤ pr+2.

Hence, it is not possible for 2k + 1 ≥ pr+2. 2

Let’s now consider the binomial coefficient
(

2n
n

)
. For any positive integer a, write (2n)a and na

for the remainders as last time. We note that if na < a/2, then (2n)a = 2(na) ≥ na; and if na ≥ a/2, then
(2n)a = 2(na)− a < na. Hence ⌊

2n
a

⌋
− 2

⌊n
a

⌋
=
{

1 if na ≥ a/2,
0 if na < a/2.

Corollary 4.6 For any positive integer n, we have n+1 |
(

2n
n

)
. The quotients 1

n+ 1

(
2n
n

)
are the Catalan

numbers.

Proof: One can prove this directly by checking that
1

n+ 1

(
2n
n

)
=
(

2n
n

)
−
(

2n
n+ 1

)
∈ Z.

Alternatively, suppose νp(n + 1) = k. Then for any a = p, p2, . . . , pk, we have na = a − 1 ≥ a/2. So
νp(
(2n

n

)
) ≥ k. 2

Corollary 4.7 Let n ≥ 3 and let p be a prime such that 2n/3 < p ≤ 2n. Then

νp

((
2n
n

))
=
{

1 if n < p ≤ 2n
0 if 2n/3 < p ≤ n

Proof: The statement for n < p ≤ 2n is obvious because ⌊2n/p⌋ = 1 and ⌊n/p⌋ = 0. Suppose now
2n/3 < p ≤ n. Then n− p < 3p/2− p = p/2. So ⌊ 2n

p ⌋ − 2⌊n
p ⌋ = 0. Now p2 > 4n2/9 ≥ 2n for n ≥ 5. When

n = 4, we have 8/3 < p ≤ 4 and so p = 3 and p2 > 2n. When n = 3, we have 2 < p ≤ 3 and so p = 3 and
p2 > 2n. 2

For primes p ≤ 2n/3, we have the “trivial” bound

νp

((
2n
n

))
≤ log 2n

log p .

Note for
√

2n < p ≤ 2n/3, we have

νp

((
2n
n

))
≤ log 2n

log p < 2 =⇒ νp

((
2n
n

))
= 1.

Combining these, we find that
4n

2n+ 1 ≤
(

2n
n

)
≤

∏
p≤

√
2n

plog 2n/ log p ·
∏

√
2n<p≤2n/3

p ·
∏

n<p≤2n

p ≤ (2n)
√

2n · 42n/3−1 · (2n)π(n,2n)

where π(n, 2n) denotes the number of primes in (n, 2n]. Taking log, we get

π(n, 2n) ≥ (n/3 + 1) log 4− log(2n+ 1)
log 2n −

√
2n ≥ C n

logn
for some positive constant C > 0 when n is sufficiently large.

14



Theorem 4.8 (Bertrand’s postulate) For any positive integer n, there is a prime p ∈ (n, 2n].

Proof: The above lower bound is positive for n ≥ 459. We can verify the result directly for small n using
the primes 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631. 2

Exercises
4.1 Prove that for any non-negative integers r, n,

k∑
r=0

(
n+ r

r

)
=
(
n+ k + 1

k

)
.

4.2 Prove that for every prime p, there exists a positive integer n, an integer a = 0, 1 and an integer
b = 0, 1, . . . , n− 1 such that p = n2 + an+ b.

4.3 How many 0’s does the number 40! ends in?
Can you figure out what the last nonzero digit of 40! is?

4.4 Prove that for any n ∈ N, we have that ν2(n!) = n−#1’s in the binary representation of n.

4.5 Prove that for any n ∈ N and any prime p, we have νp(n!) < n/(p− 1).

4.6 Prove that for any n ∈ N, if n |
(

n
m

)
for all m = 1, . . . , n− 1, then n is a prime.

4.7 According to the Prime number theorem, we know that Ln ∼ en. Prove (without using the PNT) that
for any α > 0, we have Ln ≥ 4n−α for n sufficiently large (depending on α).

4.8 Use Exercise 4.5 to conclude that ∑
p

log p
p− 1 →∞.

With a little bit more effort, one can prove that∑
p≤n

log p
p

= logn+O(1).

In other words, there exists an absolute constant C > 0 such that for any n ∈ N,∣∣∣∣∣∣
∑
p≤n

log p
p
− logn

∣∣∣∣∣∣ ≤ C.
Lecture 6 Mon 09/18

5 Euclid’s proof of the infinitude of primes
Before all of these fancy results on the prime counting function, the very first proof of the infinitude of primes
was due to Euclid. Here is another way to think about the proof. The key ideas are as follows:

(a) Every integer n ≥ 2 has a prime divisor.

(b) Construct an infinite sequence of pairwise coprime integers at least 2.

15



The sequence constructed from Euclid’s proof is a1 = 2 and

an+1 = a1a2 · · · an + 1, for n ≥ 1.

Then for i < j, we have ai | a1a2 · · · aj−1 and so gcd(ai, aj) = gcd(ai, 1) = 1.
Alternatively, if we take a1 odd and use an+1 = a1 · · · an+2, we also have gcd(ai, aj) = gcd(ai, 2) = 1

since each ai is odd.

Proposition 5.1 The sequence defined by F0 = 3 and

Fn+1 = F0F1 · · ·Fn + 2, for n ≥ 0

is the sequence of Fermat numbers Fn = 22n + 1.

Proof: It suffices to prove that Fn = 22n + 1 satisfies the recursion formula. This follows easily from
induction along with Fn+1 − 1 = (Fn − 1)2. 2

There is a more general result on the infinitude of primes satisfying congruence conditions. Recall
that a ≡ b (mod m) means that m | a−b, or equivalently that a and b have the same remainder when divided
by m. Since numbers congruent to a mod m form an arithmetic progression, this result is also referred to
as the infinitude of primes in arithmetic progressions. It marks the beginning of modern analytic number
theory.

Theorem 5.2 (Dirichlet) Let a,m be coprime positive integers. Then there are infinitely many primes p ≡ a
(mod m).

We now know (Siegel-Walfisz) that there are an equal number of them, asymptotically, over all
possible congruence classes. More precisely, if p ≡ a (mod m), then gcd(p,m) = gcd(a,m). If p is prime large
enough to not divide m, then gcd(p,m) = 1. The number of integers a = 1, . . . ,m such that gcd(a,m) = 1
is ϕ(m), the Euler-ϕ (or the Euler-Totient) function of m. Then

lim
x→∞

# primes p ≤ x, p ≡ a (mod m)
x/ log x = 1

ϕ(m) .

We can give an Euclid’s type proof for this result in some special cases.

Primes of the form 4k + 3
We modify the key idea of Euclid’s proof to:

(a) Every integer n ≥ 2 of the form 4k + 3 has a prime divisor of the form 4k + 3.

(b) Construct an infinite sequence of pairwise coprime integers at least 2 that are of the form 4k + 3.

Property (a) follows because products of numbers of the form 4k+ 1 are still of the form 4k+ 1. In terms of
congruences, we can say that if a ≡ 1 (mod 4) and b ≡ 1 (mod 4), then ab ≡ 1 (mod 4). Hence a number
of the form 4k+ 3 has a prime divisor that is not of the form 4k+ 1. Since it can’t be divisible by 2, primes
of the form 4k + 3 are the only possibilities left. For the sequence in (b), we take a1 = 7 and

an+1 = 4(a1 · · · an) + 3.

Then similar to before, for i < j,

gcd(ai, aj) = gcd(ai, 3) = gcd(a1 · · · ai−1, 3) = 1

by induction.
The same idea also works for primes of the form 3k + 2 and primes of the form 6k + 5 because

ϕ(3) = ϕ(6) = 2 so that if not all the prime divisors are of the form 3k + 1 (resp. 6k + 1), and it is not
divisible by 3 (resp. 2 or 3), then it has a prime divisor of the form 3k + 2 (resp. 6k + 5).
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Primes of the form 4k + 1
This is a bit trickier. Let p be an odd prime. We consider the congruence equation

x2 ≡ −1 (mod p).

Suppose it has a solution x = a. Then clearly p ∤ a for if otherwise, we would have a2 ≡ 0. So by Fermat’s
little Theorem,

ap−1 ≡ 1 (mod p).
On the other hand,

ap−1 = (a2)(p−1)/2 ≡ (−1)(p−1)/2 (mod p).
Since p is an odd prime, we see that

1 ≡ (−1)(p−1)/2 (mod p) ⇒ 1 = (−1)(p−1)/2 ⇒ p ≡ 1 (mod 4).

In other words, if p is an odd prime divisor of an integer of the form n2 + 1, then p is of the form 4k+ 1. By
taking 4n2 + 1 instead, we remove the possibility of p = 2. So we have:

(a) Every integer n ≥ 2 of the form 4n2 + 1 has a prime divisor of the form 4k + 1.

(b) Construct an infinite sequence of pairwise coprime integers at least 2 that are of the form 4k2 + 1.

To construct our sequence, we take a1 = 5 and

an+1 = 4(a1 · · · an)2 + 1.

The crucial idea here is that if a2 ≡ −1 (mod p), then

a4 ≡ 1 (mod p)

but
a3 ≡ −a ̸≡ 1 (mod p), a2 ≡ −1 ̸≡ 1 (mod p), a ̸≡ 1 (mod p).

We define the order of an integer n mod m, where gcd(n,m) = 1, denoted om(n), to be the smallest positive
integer d such that nd ≡ 1 (mod m). Note that it is not obvious a priori that there exists a positive integer
d such that nd ≡ 1 (mod m), but one can prove using the Pigeonhole principle that such a d ≤ ϕ(m) exists
by considering n, n2, . . . , nϕ(m) (mod m). Here we have op(a) = 4. Then from Fermat’s little theorem, we
know that p− 1 is an exponent that gives 1 mod p when p is a prime. It is then natural to expect that the
smallest exponent op(a) to divide p− 1, which would give us p ≡ 1 (mod 4).

Proposition 5.3 Let a,m be coprime integers. Suppose n ∈ N with an ≡ 1 (mod m). Then om(a) | n. In
particular, when m = p is a prime, by Fermat’s little theorem, op(a) | p− 1.

Proof: Note that om(a) ≤ n. Apply the division algorithm to get integers s, t such that n = om(a)s + t
where 0 ≤ t < om(a) and s ≥ 0. Then

at ≡ at(aom(a))s = at+om(a)s = an ≡ 1 (mod m).

Hence it follows from the minimality of om(a) that t = 0. Therefore, om(a) | n. 2

Remark: The generalization of Fermat’s little theorem to arbitrary positive integers is

aϕ(m) ≡ 1 (mod m)

for any integer a coprime to m. So we have in general, om(a) | ϕ(m). Note that ϕ(m) ≤ m− 1 with equality
if and only if m is a prime.

Lecture 7 Wed 09/20
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Primes of the form qk + 1 where q is a prime
Suppose now a is an integer such that aq ≡ 1 (mod p) and a ̸≡ 1 (mod p). Then op(a) | q and op(a) ̸= 1.
So op(a) = q and q | p− 1. In terms of division, we have

p | aq − 1, p ∤ a− 1.

So p divides the quotient aq−1 + aq−2 + · · ·+ 1. We define the q-th cyclotomic polynomial to be

Φq(x) = xq − 1
x− 1 = xq−1 + xq−2 + · · ·+ 1.

Proposition 5.4 Let q be an odd prime. If p is a prime divisor of Φq(n) for some integer n, then p ≡ 1
(mod q) or p = q.

Proof: Since Φq(n) | nq − 1, we have p | nq − 1. So op(n) | q. If op(n) = 1, then n ≡ 1 (mod p) and

Φq(n) ≡ 1q−1 + · · ·+ 1 ≡ q (mod p),

which implies that p | q and so p = q. If op(n) = q, then we have p ≡ 1 (mod q). 2

We can remove the possibility of p = q by taking Φq(qn) = 1 + q(. . .). Then we take the sequence
a1 = Φq(q) and

an+1 = Φq(qa1a2 · · · an).

This gives infinitely many primes of the form qk + 1.

Exercises
5.1 Use the polynomial n2 + 4, and a small modification, to prove that there are infinitely many primes of

the form 8k + 5.

5.2 Let h(x) is a polynomial with integer coefficients with h(0) = 1. Prove that the sequence defined by
a1 = 1 and ai+1 = h(a1a2 · · · ai) for i ≥ 1, consists of pairwise coprime integers.

5.3 Let h(x) = ax + b where a, b are coprime integers. Prove that the sequence defined by a1 = 1 and
ai+1 = h(a1a2 · · · ai) for i ≥ 1, consists of pairwise coprime integers.

5.4 Prove that there does not exist a non-constant polynomial h(x) with integer coefficients such that h(n)
is a prime for all integers n.

5.5 Prove that 22n − 1 has at least n+ 1 distinct prime divisors.

5.6 Prove that ϕ(m) is even for any integer m ≥ 3. (Note that ϕ(1) = ϕ(2) = 1.)

5.7 Let m be a positive integer. Prove that there exists some real number C > 0 such that ϕ(m) ≥ Cm

logm.

5.8 Let q be a prime and n be an integer. Prove that if q | nq − 1, then q2 | nq − 1.

5.9 Prove that for any k ∈ N, we have o7k (2) = 3 · 7k−1.

5.10 Let q > 3 be a prime. Prove that there does not exist integers x, y such that xq−1 + · · ·+x+1 = yq−2−1.
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6 Primes of the form mk + 1 and Cyclotomic polynomials
Suppose now m is a positive integer, that is not necessarily a prime. It is still true that if op(a) = m, then
p ≡ 1 (mod m). The difficulty lies in finding the polynomial Φm(x) whose roots mod p have orders exactly
m, and not proper divisors of m. Let’s try some small values to see what they should be. When m = 6, we
should remove solutions to x2 − 1, as they have order dividing 2, and x3 − 1, as they have order dividing 3,
but

x6 − 1
(x2 − 1)(x3 − 1) = x6 − 1

x5 − x3 − x2 + 1
isn’t a polynomial. The problem is that when we remove the solutions to x2 − 1, we have already removed
the solution to x− 1, so we shouldn’t remove it again from x3 − 1. In other words, we should take

Φ6(x) = x6 − 1
(x2 − 1)

(
(x3 − 1)/(x− 1)

) = x3 + 1
x+ 1 = x2 − x+ 1.

What about something more complicated like Φ105(x)? Using the same “inclusion-exclusion sieve”, we should
take

Φ105(x) = (x105 − 1)(x3 − 1)(x5 − 1)(x7 − 1)
(x15 − 1)(x21 − 1)(x35 − 1)(x− 1) = x48 + · · · − 2x41 + · · ·+ 1.

It seems quite random that it is actually a polynomial. We need a better definition that is easier to work
with. One thing to note is that we seem to have forgotten about the prime p. So let’s forget it completely
and think in C.

What are the solutions to xm = 1 in C? They are given by ζk
m for k = 1, 2, . . . , q where ζm = e2πi/m

is the primitive m-th root of unity, as the smallest positive integer d such that ζd
m = 1 is m. We have the

factorization
xm − 1 =

m∏
k=1

(x− ζk
m).

Since we want the roots of our polynomial Φm(x) to have order m, we define the m-th cyclotomic poly-
nomial as

Φm(x) =
∏

1≤k≤m

o(ζk
m)=m

(x− ζk
m)

where o(ζk
m) is the smallest positive integer d such that (ζk

m)d = 1. We know

ζkd
m = 1⇔ m | kd⇔ m

gcd(m, k) |
k

gcd(m, k)d⇔
m

gcd(m, k) | d.

So o(ζk
m) = m/ gcd(m, k). Hence, it is m if and only if gcd(m, k) = 1. In other words, we have

Φm(x) =
∏

1≤k≤m
gcd(k,m)=1

(x− ζk
m).

The polynomial Φq(x) is monic with coefficients in C and has degree ϕ(q). Our next goal is to show that all
the coefficients of Φm(x) are integers, and that Φm(x) can be used to prove the infinitude of primes of the
form mk + 1.
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Proposition 6.1 Let m ∈ N. We have the factorization

xm − 1 =
∏
d|m

Φd(x).
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Proof: In the factorization of xm − 1, we can group the factors x− ζk
m by the order o(ζk

m). Since o(ζk
m) =

m/ gcd(m, k) is a positive divisor of m, we have

xm − 1 =
∏
d|m

∏
1≤k≤m

o(ζk
m)=d

(x− ζk
m).

Note that o(ζk
m) = d if and only if gcd(m, k) = m/d if and only if k = (m/d)j for some integer j with

gcd(m, (m/d)j) = m/d. Now

gcd(m, (m/d)j) = gcd((m/d)d, (m/d)j) = (m/d) gcd(d, j).

Hence o(ζk
m) = d if and only if k = (m/d)j for some integer j with gcd(d, j) = 1. The condition 1 ≤ k ≤ m

becomes 1 ≤ j ≤ d. Moreover, the complex number

ζk
m = e

2πi
m

m
d j = e

2πi
d j = ζd

j .

Therefore, the product ∏
1≤k≤m

o(ζk
m)=d

(x− ζk
m) =

∏
1≤j≤d

gcd(j,d)=1

(x− ζj
d) = Φd(x).

We are now done. 2

Corollary 6.2 Let m ∈ N. Then m =
∑
d|m

ϕ(d).

Corollary 6.3 Let m ∈ N. Then Φm(x) is a polynomial with integer coefficients. Moreover, Φ1(0) = −1
and Φm(0) = 1 for m ≥ 2.

Proof: We prove by induction on m. We have Φ1(x) = x− 1. Suppose now m ≥ 2. We know that

xm − 1 = Φm(x) · Φ1(x)
∏
d|m

1<d<m

Φd(x) = Φm(x) · (x− 1)
∏
d|m

1<d<m

Φd(x).

By induction, each of the Φd(x) for d < m is a monic polynomial with integer coefficient and so is their
product. Therefore, so is the quotient of xm − 1 by it. Also by induction, we have Φd(0) = 1 for 1 < d < m.
So setting x = 0 gives Φm(0) = 1. 2

Remark: There is a more direct proof of Φm(0) = 1 for m > 2. Let S be the set of integers 1 ≤ j < m/2
that are coprime to m. Then the set of integers m/2 < k ≤ m coprime to m are all of the form m − j for
some j ∈ S. If m/2 is an integer, then it is at least 2 and divides m, so it is not coprime to m. Now

Φm(0) =
∏
j∈S

(−ζj
m)(−ζm−j

m ) = 1.

Proposition 6.4 Let n ∈ N and let n > 1 be an integer coprime to m. Let a ∈ Z with n | Φm(a). Then
on(a) = m.

Proof: We write xm − 1 as F (x)Φm(x) where F (x) ∈ Z[x] is the product of Φd(x) over all positive integers
d | m with d < m. Then Φm(a) | am − 1 and we have n | am − 1. Hence on(a) | m. Suppose for a
contradiction that ℓ := on(a) < m. Then we have n | aℓ − 1. Since ℓ | q and ℓ < q, we know that any divisor
of ℓ is a divisor of q and is less than q. In other words,

F (x) =
∏
d|ℓ

Φd(x) ·
∏
d|m
d<m
d∤ℓ

Φd(x) = (xℓ − 1)G(x)
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for some G(x) ∈ Z[x]. We thus have the factorization

aq − 1 = (aℓ − 1)Φq(a)G(a).

Fix some prime p dividing n, which exists since n > 1. From p | n and n | Φm(a), we have p | Φm(a) and so

νp(am − 1) = νp(aℓ − 1) + νp(Φm(a)) + νp(G(a)) > νp(aℓ − 1).

Since ℓ | q, we write q = ℓk for some positive integer k. Then

aq − 1 = (aℓ − 1)((aℓ)k−1 + (aℓ)k−2 + · · ·+ 1).

Since n | aℓ − 1 and p | n, we have aℓ ≡ 1 (mod p) and so

(aℓ)k−1 + (aℓ)k−2 + · · ·+ 1 ≡ 1 + 1 + · · ·+ 1 = k (mod p).

Since gcd(n,m) = 1 and k | m and p | n, we have p ∤ k. This implies that νp(aq − 1) = νp(ad − 1).
Contradiction. 2

Corollary 6.5 Let n ∈ N. Suppose there exists a ∈ Z such that n | Φn−1(a), then n is a prime.

Proof: Since n is coprime to n − 1, we have on(a) = n − 1 but on(a) ≤ ϕ(n) ≤ n − 1. So ϕ(n) = n − 1.
Hence n is a prime. 2

Corollary 6.6 Let m ∈ N. Let a ∈ Z. Then any prime divisor of Φm(ma) is of the form mk + 1.

Proof: Let p be prime divisor of Φm(ma). Since the constant term of Φm(x) is±1, we see that gcd(m,Φm(ma)) =
1 and so p ∤ m. Hence op(ma) = q which implies that q | p− 1. 2

Theorem 6.7 Let m ∈ N. There are infinitely many primes of the form mk + 1.

Proof: Since Φm(x) is monic, we know that Φm(x) → ∞ as x goes to infinity. Let N be a large integer
such that Φm(x) > 1 for all x ≥ N . We now construct the sequence by taking a1 = N and

an+1 = Φm(Nma1a2 · · · an).

Then we have a sequence of pairwise coprime (because the constant term of Φm(x) is ±1) integers at least
2, each having only prime divisors of the form mk + 1. 2

Lecture 9 Mon 09/25

It makes one wonder for which coprime positive integers a and m does there exist a Euclid type
proof for the infinitude of primes congruent to a mod m. All of these proofs lead to the construction of an
Euclidean polynomial for a mod m, which is a polynomial h(x) with integer coefficients such that the
prime divisors of h(n) for integers n (either belong to a fixed finite set, or) are 1 mod m, or are a mod m;
and that infinitely many primes that are a mod m arise this way.

Theorem 6.8 A Euclidean polynomial for a mod m exists if and only if a2 ≡ 1 (mod m).

Schur (1912) proved the backwards direction and Murty (1988) proved the forwards direction. For
example, this implies that there are no Euclid type argument for the infinitude of primes of the form 5k+ 2.

Here are some Euclidean polynomials in small moduli:

(a) Primes dividing 5(2n)2 − 1 are congruent to 1 or 4 mod 5.
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(b) Primes dividing 2n2 + 1 are congruent to 1 or 3 mod 8.

(c) Primes dividing 2n2 − 1 are congruent to 1 or 7 mod 8.

(d) Primes dividing (7n)3 + (7n)2 − 2(7n)− 1 are congruent to 1 or 6 mod 7.

(e) Primes dividing (3n)3 − 3(3n)− 1 are congruent to 1 or 8 mod 9.

Statements (a) - (c) are results in Quadratic Reciprocity. Statement (d) and (e) use the theory of finite
fields. Schur’s result uses a bit more of the theory of fields and Galois theory. We will spend the remainder
of this semester working towards these theories. Murty’s result is about the splitting of primes and uses
Chebotarev’s density theorem, which is ironic because it is actually a generalization of Dirichlet’s result on
primes in arithmetic progression!

Exercises
6.1 Compute Φ9(x) and find a polynomial f(x) such that x3f(x+ x−1) = Φ9(x).

6.2 Prove that for any k ∈ N, we have Φ2k (x) = x2k−1 + 1.

6.3 Prove that for any k ∈ N, we have Φ3k (x) = x2·3k−1 + x3k−1 + 1.

6.4 Prove that for any h, k ∈ N, we have Φ2h3k (x) = x2h3k−1 − x2h−13k−1 + 1.

6.5 Suppose q ∈ N such that Φq(x) = x2s + cxs + 1 for some nonzero integer c, where s = ϕ(q)/2. Prove
that c = ±1.

6.6 Prove that if p is a prime at least 5, then there exists a polynomial h(x) with integer coefficients such
that x2p + xp + 1 = (x2 + x+ 1)h(x).

6.7 We will see later that the cyclotomic polynomials Φq(x) are all irreducible in the sense that they do not
admit a factorization into a product of polynomials with integer coefficients with smaller degrees. You
will prove in HW 3 that Φq(x) is reciprocal in the sense that Φq(x−1) = x−ϕ(q)Φq(x). Prove that if Φq(x)
is a trinomial, that is of the form xϕ(q) + cxs + 1 for some nonzero integers c, s, then q = 2h3k for some
non-negative integer h and positive integer k.

6.8 Using the fact that primes dividing 2n2 + 1 are congruent to 1 or 3 mod 8, prove that there are infinitely
many primes of the form 8k + 3.

7 Abstract Algebra
We have seen so many beautiful results about the integers and if you think about it, everything really just
boils down to addition and multiplication, and a notion of size. The sets Q, R, C or the sets of polynomials
with coefficients in them also have addition and multiplication and a notion of size. Can we try defining
primes and gcd and do all of the above? For example, what should a prime in R mean, what should a prime
in R[x] mean?

The key in defining a prime is the notion of divisibility. We say a | b in Z if b = ka for some k ∈ Z.
The natural extension to R would be that a | b in R if b = ka for some k ∈ R. This is a little silly because
we can divide in R so if a ̸= 0, then by taking k = b/a, we have b = ka. This is more meaningful in R[x]
where we say a | b in R[x] if b = ka for some k ∈ R[x]. Then we have non-divisions like x+ 1 ∤ x2 + 1. Note
that the definition of division only uses multiplication.

In abstract algebra, we step away from numbers and consider any set for which arithmetic operations
like addition and multiplication can be defined.
Definition: A commutative ring R is a set equipped with two binary operations:

(a, b) 7→ a+ b : R×R→ R, (a, b) 7→ ab : R×R→ R,
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one unary operation:
a 7→ −a : R→ R

and two nullary operations:
0 ∈ R, 1 ∈ R

such that the usual laws of arithmetic hold:
(1) (Commutative) a+ b = b+ a and ab = ba;

(2) (Associative) a+ (b+ c) = (a+ b) + c and a(bc) = (ab)c;

(3) (Distributive) a(b+ c) = ab+ ac;

(4) (Additive identity) a+ 0 = a and a+ (−a) = 0;

(5) (Multiplicative identity) a · 1 = a.
Remark: More generally, we do not assume multiplication to be commutative (for example matrix multi-
plication is not commutative) in which case we will add (b + c)a = ba + ca to (3) and 1 · a = a to (5). All
rings are assumed to be commutative in this class.

We do not assume that a multiplicative inverse a−1 always exist. We say a | b in R if there exists
k ∈ R such that b = ka. If a | 1, that is if ab = 1 for some b ∈ R, then we say a is a unit and write b = a−1.
We define the group of units as

R× = {a ∈ R : ∃b ∈ R, ab = 1}.
Examples:

1. The set Z of integers with the usual 0, 1,+,×,− is a commutative ring. An integer a ∈ Z is a unit if
and only if a | 1 if and only if a = ±1. So Z× = {1,−1}.

2. The sets Q, R, C with the usual operations are all commutative rings. Every nonzero element is a unit.
A commutative ring R is field if R× = R\{0}.

3. If R is a commutative ring, then the set R[x] of polynomials with coefficients in R is a commutative
ring. When R = Z,Q,R,C, we know that deg(fg) = deg(f) deg(g); so if fg = 1, then deg(f) = 0 and
deg(g) = 0. So they are constants in R. Hence when R = Z,Q,R,C, R[x]× = R×.

In general, we can still define the degree deg(f) of a polynomial f ∈ R[x] as the largest integer n such
that the coefficient of xn in f is nonzero. An essential step in proving deg(fg) = deg(f) deg(g) requires
knowing that if a, b ̸= 0, then ab ̸= 0.
A commutative ring is an integral domain if a ̸= 0 ∧ b ̸= 0⇒ ab ̸= 0.

Lemma 7.1 If R is an integral domain, then R[x] is also an integral domain and R[x]× = R×.
Moreover, for any f, g ∈ R[x] that are nonzero, deg(fg) = deg(f) + deg(g).

Lemma 7.2 If R is a field, then R is an integral domain.

4. Can we make R = {0} into a ring? Take 1 = 0 and 0 + 0 = 0 × 0 = −0 = 0. This is the trivial ring.
We will henceforth assume 0 ̸= 1 for rings.

5. Can we make R = {0, 1} (where 0 ̸= 1) into a ring? We must have

0 + 0 = 0, 0 + 1 = 1, 1× 1 = 1, −0 = 0.

The next two lemmas force

0× 1 = 0, 0× 0 = 0, 1 + 1 = 0, −1 = 1.

Since 1× 1 = 1, we see that {0, 1} is a field (and an integral domain). We denote this ring suggestively
by Z/2Z or F2. It is then a boring exercise to prove that × and + satisfy associativity and distributivity.
We will see a better way to check this next time.
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Lemma 7.3 Let R be a commutative ring. Then a · 0 = 0, a · (−1) = −a and −(−a) = a for any
a ∈ R.

Lemma 7.4 Let R be a commutative ring. Let a ∈ R. The map x 7→ x+a defines a bijection R→ R.
The map x 7→ xa is a bijection R→ R if and only if a ∈ R×.

Proof: The map x 7→ x+ (−a) is the inverse of x 7→ x+ a. If a ∈ R×, then x 7→ xa−1 is the inverse
of x 7→ xa. Conversely, if x 7→ xa is surjective, then ba = 1 for some b ∈ R and so a ∈ R×. 2

Corollary 7.5 Let R be an integral domain. Suppose R is finite. Then R is a field.

Proof: Let a be a nonzero element. Then for any x ̸= y, we have x − y ̸= 0 and so (x − y)a ̸= 0,
implying that xa ̸= ya. So the map x 7→ xa : R→ R is injective. An injective map between two finite
sets of the same size is surjective (by the Pigeonhole principle). 2

Lecture 10 Wed 09/27

The above arithmetic on {0, 1} looks just like the addition and multiplication property of even and
odd numbers. More precisely, consider a map f : Z→ {0, 1} sending all even numbers to 0 and all odd
numbers to 1. Then for any a, b ∈ Z, we have

f(a+ b) = f(a) + f(b), f(ab) = f(a)f(b), f(−a) = −f(a), f(0) = 0, f(1) = 1.

In other words, f respects the ring operations on Z and on {0, 1}. Since f is surjective and we know
the usual addition and multiplication on Z are associative and distributive, we can also use it to prove
that +,× on {0, 1} satisfy associativity and distributivity.
In general, a ring homomorphism is a map f : R1 → R2 between two rings R1, R2 such that for any
a, b ∈ R1,

f(a+ b) = f(a) + f(b), f(ab) = f(a)f(b), f(1) = 1.

Take a = b = 0, we get f(0) = f(0) + f(0) and so f(0) = 0. Then take b = −a to get f(−a) = −f(a).
The assumption f(1) = 1 is required to rule-out the 0 map.

6. What about a ring with 3 elements?
Suppose R is a ring with 3 elements, namely 0, 1, α. Let’s write down its addition and multiplication
table. Each row and column of the addition table should be a permutation of 0, 1, α by Lemma 7.4.
To find α2, we use αα = α(1 + 1) = α+ α = 1.

+ 0 1 α
0 0 1 α
1 1 α 0
α α 0 1

× 0 1 α
0 0 0 0
1 0 1 α
α 0 α 1

Since there is only one way to fill out the addition and multiplication tables, we know there is at most
“one” ring with 3 elements. More precisely, suppose R′ is another ring with 3 elements, namely 0, 1,
β. We can define a map f : R→ R′ by

f(0) = 0, f(1) = 1, f(α) = β.

Then f is a ring homomorphism that is also a bijection. An isomorphism is a ring homomorphism
that is a bijection. We say the two rings R and R′ are isomorphic if there is an isomorphism between
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them and we write R ∼= R′. Isomorphic rings are really the “same thing” but just with different labels.
Any two rings with 3 elements are isomorphic and they are fields.
Finally to prove that a ring with 3 elements exists, we can take the above addition and multiplication
and verify distributivity and associativity. Alternatively, we can use the surjective map f : Z→ {0, 1, α}
sending integers of the form 3k to 0, 3k+ 1 to 1, and 3k+ 2 to α. We denote this ring suggestively by
Z/3Z or F3.

7. When we go to 4 elements, we encounter the first ring that is not an integral domain (and so not a
field). We can use the surjective map f : Z→ {0, 1, α, β} sending integers of the form 4k to 0, 4k+1 to
1, 4k+2 to α, and 4k+3 to β, to define a ring structure on {0, 1, α, β}. The addition and multiplication
table look like

+ 0 1 α β
0 0 1 α β
1 1 α β 0
α α β 0 1
β β 0 1 α

× 0 1 α β
0 0 0 0 0
1 0 1 α β
α 0 α 0 α
β 0 β α 1

Note that we have α2 = 0 in this ring. So it is not an integral domain. We denote this ring suggestively
by Z/4Z.
In the above addition table, the key is that 1+1 /∈ {0, 1}. We may assume, by renaming, that 1+1 = α,
which then forces 1 + α = β and 1 + β = 0 and then the rest of the addition table will be identical
to the above. Note that since every element here is a sum of 1’s, the multiplication is also determined
because by distributivity,

(1 + · · ·+ 1)︸ ︷︷ ︸
n

· (1 + · · ·+ 1)︸ ︷︷ ︸
m

= (1 + · · ·+ 1)︸ ︷︷ ︸
nm

.

This also implies that there is a unique ring structure on Z if + is the usual addition.
There are three other (non-isomorphic) rings with 4 elements where 1 + 1 ∈ {0, 1}, that is 1 + 1 = 0.
Note that we must have α+ α = α(1 + 1) = 0. The addition table is now uniquely determined.

+ 0 1 α β
0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 1 0

×1 0 1 α β
0 0 0 0 0
1 0 1 α β
α 0 α 0 α
β 0 β α 1

×2 0 1 α β
0 0 0 0 0
1 0 1 α β
α 0 α α 0
β 0 β 0 β

×3 0 1 α β
0 0 0 0 0
1 0 1 α β
α 0 α β 1
β 0 β 1 α

There are now multiple options for the multiplication table. We note that it is determined by α2 as

αβ = α(α+ 1) = α2 + α, β2 = (α+ 1)2 = α2 + 1.

There are now three isomorphism classes. If α2 ∈ {0, 1}, then either α2 = 0 or β2 = 0 and so by
renaming, we may assume α2 = 0 and we get the ring F2[x]/(x2). If α2 = α, then we get the ring
F2[x]/(x2 − x). If α2 = β, then we get the ring F4. We list the special property that they each have to
show that they are all non-isomorphic.

(a) Z/4Z has an element a such that a+ a ̸= 0.
(b) F2[x]/(x2) has a nonzero element a such that a2 = 0.
(c) F2[x]/(x2 − x) has the property that every element a is idempotent, that is a2 = a.
(d) F4 is an integral domain (and also a field).
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Lemma 7.6 Let R be a commutative ring. There is a unique ring homomorphism f : Z → R (called
the canonical homomorphism).

If this map f is injective, then we say that the characteristic of R is 0. If f is not injective, then
there is some nonzero integer a such that f(a) = 0. Now f(−a) = −f(a) = 0, so we may assume a is
positive. The smallest positive integer d such that f(d) = 0 is the characteristic of R.

Lemma 7.7 If R is an integral domain, then its characteristic is either 0 or a prime.

Proof: Suppose the characteristic d of R is positive. Let q be a positive divisor of d so d = qk for
some k ∈ N. Then f(q)f(k) = f(d) = 0. Since R is an integral domain, either f(q) = 0 or f(k) = 0.
By minimality of d, we have q = d in the first case, and k = d so q = 1 in the second case. Hence we
have shown that the only positive divisors of d are 1 and d. In other words, d is a prime. 2

The ring Z/4Z has characteristic 4 while the other 3 has characteristic 2. In (b), (c), (d), the subset
{0, 1} with addition and multiplication in the respective rings forms a ring, isomorphic to F2. A
subring of a ring R is a subset R′ that is closed under all the operations of R: namely it contains 0
and 1, contains a+ b, ab and −a for any a, b ∈ R′.

8. If R1, R2 are two rings, then R1×R2 = {(a, b) : a ∈ R1, b ∈ R2} has a ring structure by coordinate-wise
operations. It is the unique ring structure on R1 × R2 so that the projection maps (a, b) 7→ a and
(a, b) 7→ b are ring homomorphisms. The ring F2×F2 has 4 elements (0, 0), (0, 1), (1, 0), (1, 1) and every
element is idempotent. Hence F2 × F2 ∼= F2[x]/(x2 − x).
Note that if R is a ring and f1 : R → R1 and f2 : R → R2 are ring homomorphisms, then the map
f : R→ R1 ×R2 defined by f(r) = (f1(r), f2(r)) is a ring homomorphism.

Exercises
7.1 Let R be a commutative ring with a, b, c ∈ R. Prove that if ab = 1 = ac, then b = c.

7.2 Prove Lemmas 7.1, 7.2, 7.3, 7.6.

7.3 Let R be a commutative ring and let S be a set with +,×,−, 0, 1. Let f : R → S be a surjective map
such that for any a, b ∈ R, we have

f(a+ b) = f(a) + f(b), f(ab) = f(a)f(b), f(−a) = −f(a), f(0) = 0, f(1) = 1.

Prove that S with +,×,−, 0, 1 is a commutative ring.

7.4 Let R1, R2, R3 be commutative rings and let f : R1 → R2 and g : R2 → R3 be ring homomorphisms.
Prove that g ◦ f : R1 → R3 defined by (g ◦ f)(a) = g(f(a)) is a ring homomorphism.

7.5 Let f : R→ R′ be an isomorphism between two commutative rings. Prove that its inverse f−1 : R′ → R
is a ring homomorphism, and so is also an isomorphism. (Recall that f−1 is defined so that for any
b ∈ R′, f−1(b) is the unique a ∈ R such that f(a) = b.)

7.6 Let R be a commutative ring with characteristic d. Let f : Z → R be the unique ring homomorphism.
Prove that if f(n) = 0 for some integer n, then d | n.

7.7 Let R be a commutative ring with characteristic d and let R′ be a commutative ring with characteristic
e. Let f : R→ R′ be a ring homomorphism. Prove that e | d.

7.8 Prove that a subring of a field is an integral domain.

7.9 Prove that R and C are not isomorphic.
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7.10 Let R = Z2 = Z× Z. Let r = (0, 1). Prove that:

(a) whenever r | ab for some a, b ∈ R, we have r | a and r | b;
(b) there exist a, b ∈ R\R× such that r = ab.

7.11 Let R = Q + xR[x] = {f(x) ∈ R[x] : f(0) ∈ Q}. Verify that R is a subring of R[x]. Prove that:

(a) there exist a, b ∈ R such that x | ab but x ∤ a and x ∤ b;
(b) there do not exist a, b ∈ R\R× such that x = ab.
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8 Quotients
It is time to stop beating around the bush and talk about what / means. Let R ba a commutative ring. An
ideal is a subset I ⊆ R such that

(a) for any a, b ∈ I, we have a+ b ∈ I;

(b) for any a ∈ I and any r ∈ R, we have ra ∈ I.

Suppose f : R→ R′ is a ring homomorphism between two rings R and R′. We define the kernel of f to be

ker(f) = {a ∈ R : f(a) = 0}.

Then for any a, b ∈ ker(f), we have a+ b ∈ ker(f) since

f(a+ b) = f(a) + f(b) = 0 + 0 = 0

and for any r ∈ R, we have ra ∈ ker(f) since

f(ra) = f(r)f(a) = f(r) · 0 = 0.

In other words, the kernel of a ring homomorphism is a proper ideal, that is an ideal not equal to R. The
punchline is that conversely, every proper ideal arises as the kernel of some ring homomorphism from R.
Examples:

1. Let R be a commutative ring. Let a ∈ R be any element. The set

aR = (a) = {ra : r ∈ R}

is the smallest ideal containing a. It is easy to check that r1a+ r2a = (r1 + r2)a and r(r0a) = (rr0)a.
For example, this gives the ideals (d) = dZ of Z for any integer d, and the ideals (f(x)) of R[x] for any
polynomial f(x) ∈ R[x]. When a = 0, we have the zero ideal (0) = {0} and when a = 1, we have the
full ring (1) = R.
Ideals of the form (a) are called principal ideals. Note that b ∈ (a) if and only if a | b. Then (a) = (b)
if and only if a | b and b | a. When R is an integral domain, the latter is equivalent to b = au for some
unit u ∈ R×.

2. If an ideal I contains a unit u ∈ R×, then I contains uu−1 = 1 and so I = R. If R is a field,
then any nonzero ideal contains a nonzero element, which we know is a unit. So then a field (e.g.
Q,R,C,F2,F3,F4) has only the zero ideal and the full ring as ideals.
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3. If I1 and I2 are ideals, then so are I1∩I2 and I1 +I2 = {a+b : a ∈ I1, b ∈ I2}. An arbitrary intersection
of ideals is also an ideal. Given any set S, we can define the ideal generated by S, denoted (S), as the
intersection of all the ideals containing S.
Suppose a, b ∈ Z. Then

aZ + bZ = {ax+ by : x, y ∈ Z} = gcd(a, b)Z
aZ ∩ bZ = {n ∈ Z : a | n, b | n} = lcm(a, b)Z.

The set {ab : a ∈ I1, b ∈ I2} is generally not an ideal since it may not be closed under addition. The
ideal generated by it is denoted I1I2 = {a1b1 + · · ·+ anbn : ai ∈ I1, bi ∈ I2}. Note each aibi ∈ I1 ∩ I2.
So I1I2 ⊆ I1 ∩ I2. In Z, we have (aZ)(bZ) = (ab)Z.

We now construct the quotient ring given a commutative ring R and a proper ideal I. A coset of I
is a subset of R of the form

a+ I = {a+ b : b ∈ I} = {c ∈ R : c− a ∈ I}.

Such a coset is called the coset of I containing a, since it literally contains a as a set. We see that two cosets
a1 + I and a2 + I are equal if and only if a1 − a2 ∈ I. Let R/I be the set of all cosets of I. So

R/I = {a+ I : a ∈ R}.

The assumption that I is a proper ideal instead of just an ideal ensures that R/I contains at least 2 elements.
When R = Z and I = mZ, a coset a+mZ is the set of integers congruent to a mod m, i.e. is what we know
to be a congruence class. The set Z/mZ is then the set of all congruence classes mod m.

There is now an obvious way to define arithmetic on R/I:

(a+ I) + (b+ I) = (a+ b) + I, (a+ I)(b+ I) = (ab) + I, −(a+ I) = (−a) + I

with 0 + I as 0 and 1 + I as 1. In other words, to add (resp. multiply, negate) two cosets, we simply pick
any element from them and add (resp. multiply, negate) them in R, and then take the coset containing
them. We need to check that this definition does not depend on the choice of the elements picked. Suppose
a+ I = a′ + I and b+ I = b′ + I. Then a− a′ ∈ I and b− b′ ∈ I. Now

(a+ b)− (a′ + b′) = (a− a′) + (b− b′) ∈ I, (−a′)− (−a) = a− a′ ∈ I,

and
ab− a′b′ = ab− ab′ + ab′ − a′b′ = a(b− b′) + (a− a′)b′ ∈ I.

When R = Z and I = mZ, these are just the usual laws on adding and multiplying numbers mod m.
There is natural surjective map π : R → R/I defined by a 7→ a+ I. It is a ring homomorphism by

construction of R/I and its kernel

ker(π) = {a ∈ R : a+ I = I} = {a ∈ R : a ∈ I} = I.

This proves that every proper ideal arises as the kernel of some ring homomorphism. In fact, every ring
homomorphism is “basically” a quotient map.

Theorem 8.1 (First isomorphism theorem) Let f : R1 → R2 be a homomorphism of rings. Then the image
im(f) = {f(r) : r ∈ R1} is a subring of R2 and the map R1/ ker(f) → im(f) sending r + ker(f) to f(r) is
an isomorphism.

Proof: Exercise. Just check definitions. 2

Corollary 8.2 If R has characteristic m, then R has a subring isomorphic to Z/mZ. This subring is called
the prime subring of R, or prime subfield if m is prime.
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Proof: The unique homomorphism Z → R has kernel mZ (by Section 7 Exercise 6). Hence, its image is a
subring of R isomorphic to Z/mZ. 2

We may also view R/I as the set of equivalence classes. Recall that a relation ∼ is an equivalence
relation if:

(a) (Reflexive) a ∼ a;

(b) (Symmetric) a ∼ b⇒ b ∼ a;

(c) (Transitive) a ∼ b ∧ b ∼ c⇒ a ∼ c

An equivalence class containing a is the set [a] = {b ∈ R : b ∼ a}. Two distinct equivalence classes are disjoint
so that R is a disjoint union of equivalence classes. We then define the set R/∼ of equivalence classes as
{[a] : a ∈ R}. Now given an ideal I, we define a ∼ b by b− a ∈ I.

Lecture 12 Mon 10/02

We remark that the definition of cosets and R/I only uses the addition of R and the fact that I is
closed under addition. So if J is a subset of R that is closed under addition and subtraction, then we can
still define the set R/J of cosets of J and we can still define + on it. One example where this may be useful
is when J is the image of a ring homomorphism f : R1 → R2. The quotient R2/im(f) is called the cokernel
of f , denoted coker(f). It is not a ring.

Theorem 8.3 (Chinese remainder theorem) Let R be a commutative ring. Let I and J be two ideals of R
such that I + J = R. Then the natural map

φ : r 7→ (r + I, r + J) : R→ R/I ×R/J

is a surjective homomorphism with kernel IJ . In other words,

R/(IJ) ∼= R/I ×R/J.

Remark: When R = Z and I = m1Z, J = m2Z, we saw before that I+J = gcd(m1,m2)Z and IJ = m1m2Z.
So the condition that I + J = R is the same as gcd(m1,m2) = 1. The conclusion gives

Z/m1m2Z ∼= Z/m1Z× Z/m2Z.

An integer mod m1m2 is uniquely determined by what it is mod m1 and mod m2 and all combinations occur.
Proof: The assumption I + J = R means that there exist a ∈ I and b ∈ J such that a+ b = 1. We prove φ
is surjective. Take any s, t ∈ R. We need to find an r ∈ R such that r− s ∈ I and r− t ∈ J . Let r = ta+ sb.
Then

r − s = ta+ s(b− 1) = ta− sa ∈ I,
r − t = t(a− 1) + sb = −tb+ sb ∈ J.

The kernel of φ is clearly I ∩ J . We already know that IJ ⊆ I ∩ J , so it remains to prove I ∩ J ⊆ IJ . Let
r ∈ I ∩ J . Then r = r(a+ b) = ra+ rb ∈ IJ . 2

We consider the application to modular arithmetic. Suppose m ≥ 2 with prime factorization

m = pk1
1 · · · pkr

r .

Then

Z/mZ ∼= Z/pk1
1 Z× · · · × Z/pkr

r Z(
Z/mZ

)× ∼=
(
Z/pk1

1 Z
)×
× · · · ×

(
Z/pkr

r Z
)×
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Lemma 8.4 Let m ≥ 2. Then (Z/mZ)× = {a+mZ : gcd(a,m) = 1}. Its size is ϕ(m).

Proof: The coset a+mZ is a unit if and only if there exists b+mZ such that (a+mZ)(b+mZ) = 1 +mZ.
In other words, ab ≡ 1 (mod m). This is the same requiring ax+my = 1 to have an integer solution, which
is the same as gcd(a,m) = 1. 2

Corollary 8.5 Let m ≥ 2. Then Z/mZ is a field if and only if m = p is a prime. We write Fp for Z/pZ.

Corollary 8.6 Let m ∈ N. Then

ϕ(m) =
r∏

i=1

(
pki

i − p
ki−1
i

)
= m

∏
p|m

(
1− 1

p

)
.

Proof: We have ϕ(m) =
∏r

i=1 ϕ(pki
i ). It is easy to see that for any prime p and positive integer k, ϕ(pk) =

pk − pk−1 since there are pk−1 numbers in 1, 2, . . . , pk that are divisible by p. 2

Theorem 8.7 Let R be a finite commutative ring. Then for any a ∈ R, we have |R| · a = 0. For any
a ∈ R×, we have a|R×| = 1.

Proof: We prove the statement for R×. The statement for R follows by a similar argument. We note that
if b ∈ R×, then so it ab since ab(b−1a−1) = 1. Hence the map x 7→ xa defines a permutation on R×. Let
a1, . . . , an denote all the elements of R×. Then aa1, . . . , aan also are all the elements of R×. Multiplying
them together gives

a1 · · · an = (aa1) · · · (aan) = a|R×|(a1 · · · an).

Multiplying both sides by a−1
n · · · a−1

1 gives a|R×| = 1. 2

Corollary 8.8 (Euler’s Theorem, Fermat’s little Theorem) Let m ∈ N. Let a be an integer coprime to m.
Then aϕ(m) ≡ 1 (mod m). If m = p is a prime and p ∤ a, then ap−1 ≡ 1 (mod p).

We write o+(a), the additive order of a in R, for the smallest positive integer d such that da = 0.
Then by a standard division algorithm argument (see for example the proof of Proposition 5.3, we have
o+(a) | |R|. We write o(a), the order of a in R×, for the smallest positive integer d such that ad = 1 if
a ∈ R×. Then o(a) | |R×|.

Example: Let’s find the last 2 digits of 3333

= 3327 . This is the same finding what it is mod 100, which is
the same as finding what it is mod 25 and mod 4.

Lemma 8.9 Suppose n ∈ N and n ≡ 7 (mod 20). Then 3n ≡ 87 (mod 100).

Proof: Since n is odd, we see that 3n ≡ (−1)n ≡ −1 (mod 4). Since ϕ(25) = 20, we see that 320 ≡ 1
(mod 25). Then for any positive integer of the form 20k + 7, we have

320k+7 = (320)k37 ≡ 37 ≡ 27× 27× 3 ≡ 12 (mod 25).

Since 87 is 1 mod 4 and 12 mod 25, we have 3n ≡ 87 (mod 100). 2

Now 3n ≡ 87 (mod 100) implies 3n ≡ 7 (mod 20) and so 33n ≡ 87 (mod 100) and we may repeat
this forever. In other words, 333

, 3333

, 33333

, . . . all end in 87.
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Exercises
8.1 (Correspondence Theorem) Let R be a commutative ring and let I be an ideal of R. Prove that the

ideals of R/I are of the form
J/I := {a+ I : a ∈ J}

for some ideal J of R containing I.

8.2 (Second Isomorphism Theorem) Let R be a commutative ring and let I be an ideal of R. Let S be a
subring of R. Prove that:

(a) S + I = {s+ a : s ∈ S, a ∈ I} is a subring of R;
(b) S ∩ I is an ideal of S;
(c) (S + I)/I ∼= S/(S ∩ I).

8.3 (Third Isomorphism Theorem) Let R be a commutative ring and let I be an ideal of R. Let J be an
ideal of R containing I. Prove that

(R/I)/(J/I) ∼= R/J.

8.4 Let R be a commutative ring and let I be an ideal of R. Let

I[x] = {anx
n + · · ·+ a0 ∈ R[x] : ai ∈ I}.

Prove that R[x]/I[x] ∼= (R/I)[x].

8.5 Prove that the ideals of Z are all of the form dZ for some non-negative integer d. What are the subrings
of Z? For a general commutative ring R, which ideal can also be a subring?

8.6 Let R be the ring of continuous (real-valued) functions on [0, 3] with pointwise addition and multiplica-
tion, and the constant functions 0 and 1 as 0 and 1. Consider

a(x) =


1− x if 0 ≤ x ≤ 1
0 if 1 ≤ x ≤ 2
x− 2 if 2 ≤ x ≤ 3

, b(x) =


1− x if 0 ≤ x ≤ 1
0 if 1 ≤ x ≤ 2
2− x if 2 ≤ x ≤ 3

.

Prove that a(x)R = b(x)R but there does not exist a unit u(x) ∈ R× such that b(x) = a(x)u(x).

8.7 Let R be a commutative ring and let a ∈ R× with o(a) finite. Prove that for any k ∈ N, we have

o(ak) = o(a)
gcd(o(a), k) .

8.8 Let n = 2 · 11 · 43. Prove that n | 2n + 2.
It is a lot trickier to prove that if n is odd, then it is impossible for n | 2n + 2.

8.9 Let c,m be any positive integers. Prove that the sequence a1 = c, an+1 = can is eventually constant
mod m.

Lecture 13 Wed 10/04
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9 Polynomials over a field
In this section, we focus on the polynomial ring F [x] where F is a field. We saw before that the units of
F [x] are the nonzero constants F×. Recall that the degree of a polynomial anx

n + · · · + a0 is the largest
index n such that an ̸= 0. We follow the convention of deg(0) = −∞.

Proposition 9.1 (Division algorithm for polynomials) Let R be an integral domain. Let f(x) ∈ R[x] and let
g(x) ∈ R[x] such that the leading coefficient of g is a unit in R. Then there exist polynomials q(x), r(x) ∈ R[x]
such that

f(x) = g(x)q(x) + r(x), and deg(r) < deg(g).

Proof: Standard induction on the degree of f(x). Let a denote the leading coefficient of g(x). So a ∈ R×.
If g(x) = a has degree 0, then we take q(x) = a−1f(x) and r(x) = 0. Suppose now deg(g) > 0. We prove by
induction on deg(f). If deg(f) < deg(g), we simply take q = 0 and r = f . Suppose now deg(f) ≥ deg(g).
Let b ∈ R be the leading coefficient of f(x). Then

f(x)− ba−1xdeg(f)−deg(g)g(x)

is a polynomial with less degree than f . Apply induction. 2

When R = Z, the condition that the leading coefficient of g is unit means that it is ±1. When
R = F is a field, we just need g to be nonzero. In the language of HW 4 Problem 4, F [x] is a Euclidean
domain. All ideals are generated by one element. An integral domain where every ideal is generated by one
element is called a Principal ideal domain or PID. In a PID R, the ideal (a, b) generated by two elements
a, b is of the form (c). Since R is an integral domain, we know that (c) = (c′) if and only if c′ = uc for some
unit u ∈ R×. One can choose a generator of the ideal (c) (sometimes the ideal itself) as the gcd of a and b.
When R = Z, we can choose the generator to be positive. When R = F [x], we can choose the generator to
be monic.

A polynomial f(x) ∈ F [x] is irreducible if deg(f) ≥ 1 and there do not exist polynomials
a(x), b(x) ∈ F [x] of degree at least 1 such that a(x)b(x) = f(x). The analogue of Euclid’s lemma and
the fundamental theorem of arithmetic are left as HW 5 Problem 1.

Proposition 9.2 Let F be a field.

(a) Suppose f(x) ∈ F [x] is irreducible. If f(x) | a(x)b(x) in F [x], then f(x) | a(x) or f(x) | b(x).

(b) Every non-constant polynomial in F [x] can be factored into a product of irreducible polynomials in F [x].

Remark: In general, for a commutative ring R, we say a nonzero element r ∈ R is irreducible if it is not
a unit and there do not exist a, b ∈ R\R× such that r = ab. We say a nonzero element r ∈ R is prime if
whenever r | ab for some a, b ∈ R, we have r | a or r | b. In an integral domain, prime implies irreducible.
As Exercise 7.10 shows, this is not true if R is not an integral domain. Conversely, as Exercise 7.11 shows,
there are also integral domains where irreducible does not imply prime.

For any ring R and any α ∈ R, there is an evaluation homomorphism evα : R[x]→ R sending

anx
n + an−1x

n−1 + · · ·+ a0 7→ anα
n + an−1α

n−1 + · · ·+ a0.

We write f(α) ∈ R for the image of f under this map.

Proposition 9.3 Let R be an integral domain. Let f(x) ∈ R[x] and let c ∈ R. The remainder when f(x)
is divided by x− c is the constant polynomial f(c).

Proof: The remainder r(x) satisfies deg(r) < deg(x − c) = 1. So r(x) = r0 is a constant. Apply evc to
f(x) = (x− c)q(x) + r0 to get r0 = f(c). 2
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Corollary 9.4 Let R be an integral domain. Let f(x) ∈ R[x] and let c1, . . . , cn ∈ R be distinct. Then
c1, . . . , cn all are roots of f(x) if and only if (x− c1)(x− c2) · · · (x− cn) | f(x).

Proof: Only the forwards direction needs to be proved. We prove by induction on n. The case n = 1 follows
immediately from Proposition 9.3. Suppose now n ≥ 2. By induction using c1, . . . , cn−1, we see that there
exists g(x) ∈ R[x] such that f(x) = (x− c1) · · · (x− cn−1)g(x). Apply evcn

to get

0 = (cn − c1) · · · (cn − cn−1)g(cn).

Since each cn − ci ̸= 0 and R is an integral domain, we see that g(cn) = 0. Then g(x) = (x − cn)h(x) for
some h ∈ R[x]. So f(x) = (x− c1) · · · (x− cn)h(x). 2

Corollary 9.5 Let R be an integral domain. Let f(x) ∈ R[x] with degree d ≥ 0. Then f(x) has at most d
distinct roots in R.

Corollary 9.6 Let F be a field. Linear (degree 1) polynomials in F [x] are all irreducible. Quadratic (degree
2) and cubic (degree 3) polynomials in F [x] are irreducible if and only if they don’t have a root in F .

Proof: Any factorization of a polynomial of degree at most 3 into polynomials of smaller degrees must
involve a linear polynomial, which will produce a root of f in F . 2

We say c ∈ R is a repeated root of f(x) if (x− c)2 | f(x). Repeated roots can be checked using the
formal derivative of f(x) defined as

f ′(x) = nanx
n−1 + · · ·+ 2a2x+ a1.

The word “formal” is referring to the fact that this has nothing to do with taking limits. The same rules of
derivatives in calculus apply here:

(f + g)′(x) = f ′(x) + g′(x), (fg)′(x) = f(x)g′(x) + f ′(x)g(x), (f ◦ g)′(x) = f ′(g(x))g′(x).

Additivity is easy to check from the definition. Then one can use it to reduce the product rule and the chain
rule to the case f(x) = anx

n.

Proposition 9.7 Let R be an integral domain. Let f(x) ∈ R[x] and let c ∈ R. Then c is a repeated root of
f(x) if and only if f(c) = f ′(c) = 0.

Proof: For both directions, we may assume c is a root. So f(x) = (x − c)g(x) for some g(x) ∈ R[x].
Differentiate it to get f ′(x) = g(x) + (x− c)g′(x). Hence f ′(c) = g(c). So g(x) has another factor of x− c if
and only if f ′(c) = 0. 2

The moral of the story is that F [x] and Z are very similar, except we have an extra operation of
differentiation for F [x]. This differentiation allows one to prove versions of the abc conjecture (Mason’s
Theorem) and Fermat’s last theorem over F [x]. One can test for existence of repeated roots by applying the
Euclidean algorithm to find the gcd of f(x) and f ′(x). However, testing for squarefree integers is as difficult
as factorization.

The process of turning Z into Q is the process of taking the field of fraction. We have

Q = {a
b

: a, b ∈ Z, b ̸= 0}.

We can do the same thing with F [x] (in fact with any integral domains) to define the field F (x) of rational
functions:

F (x) =
{
a(x)
b(x) : a(x), b(x) ∈ F [x], b(x) ̸= 0

}
.
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Arithmetic works just as you expect with fractions. For example

a(x)
b(x) + c(x)

d(x) = a(x)d(x) + b(x)c(x)
b(x)d(x) .

Remark: To be more precise, we need the notion of localizations. Let R be a commutative ring. Let S be
a multiplicatively closed subset of R that does not contain 0. In other words, 1 ∈ S and ab ∈ S for any
a, b ∈ S. We denote an element (r, s) of R× S suggestively as r

s , and define a relation ∼ on R× S by

r1

s1
∼ r2

s2
⇐⇒ ∃s3 ∈ S, s3(r1s2 − r2s1) = 0.

When R is an integral domain, this is equivalent to simply r1s2 = r2s1. It is easy to check that ∼ defines an
equivalence relation on R×S. We define the localization S−1R as the set (R×S)/ ∼ of equivalence classes.
In other words, one may think of elements of S−1R as fractions r/s where r ∈ R and s ∈ S, keeping in mind
that multiple fractions could correspond to the same elements. We can then define the ring operations on
S−1R by

r1

s1
+ r2

s2
= r1s2 + r2s1

s1s2
,

r1

s1
· r2

s2
= r1r2

s1s2
, 0 = 0

1 , 1 = 1
1 .

It is easy to check that the above addition and multiplication do not depend on the choice of representatives.
In other words,

if r1

s1
∼ r′

1
s′

1
and r2

s2
∼ r′

2
s′

2
, then r1s2 + r2s1

s1s2
∼ r′

1s
′
2 + r′

2s
′
1

s′
1s

′
2

and r1r2

s1s2
∼ r′

1r
′
2

s′
1s

′
2
.

There is a ring homomorphism R → S−1R sending r to r/1. Note that elements of the form s/1 where
s ∈ S are units in S−1R since 1/s ∈ S−1R. In this sense, one can think of the localization S−1R is an
“extension” of R where we add inverses of elements of S, hence the notation. Since elements in S become
units, the proper ideals of S−1R correspond to ideals of R disjoint from S, i.e. contained in R\S, hence the
name “localization”.

When R is an integral domain, the set R\{0} of nonzero elements of R is multiplicatively closed. In
the localization (R\{0})−1R, we are adding inverses to every nonzero element of R. In this case, (R\{0})−1R
is a field, and is the proper definition for the field of fraction of an integral domain.
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We consider the quotient F [x]/(g(x)) for some fixed g(x) ∈ F [x] of degree d ≥ 1. By the division
algorithm, any f(x) ∈ F [x] is of the form g(x)q(x) + r(x) where deg(r) < d. So

f(x) + (g(x)) = r(x) + (g(x)).

Moreover, by considering degrees, we see that no two of such r(x) + (g(x)) are equal. Hence

F [x]/(g(x)) = {r(x) + (g(x)) : deg(r) ≤ d− 1}.

Proposition 9.8 Let F be a field and let g(x) ∈ F [x] with degree at least 1. Then the following are
equivalent:

(a) F [x]/(g(x)) is a field;

(b) F [x]/(g(x)) is an integral domain;

(c) g(x) is irreducible.
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Proof: Suppose first that g(x) is not irreducible. Then it factors as a(x)b(x) for some a(x), b(x) ∈ F [x] with
degrees between 1 and deg(g)− 1. Then a(x) + (g(x)) and b(x) + (g(x)) are nonzero in F [x]/(g(x)) but their
product is g(x) + (g(x)) which is zero. Hence F [x]/(g(x)) is not an integral domain. This proves (b)⇒ (c).

Suppose now g(x) is irreducible. Let f(x) + (g(x)) ∈ F [x]/(g(x)) be any nonzero element. The ideal
I = (f(x), g(x)) is of the form h(x) for some h(x) ∈ F [x]. We prove that I = F [x]. From g(x) ∈ (h(x)), we
have g(x) = h(x)j(x) for some j(x) ∈ F [x]. Since g(x) is irreducible, we have either h(x) or j(x) is a nonzero
constant. If j(x) is a nonzero constant j0, then it is a unit in F [x] and so (h(x)) = (g(x)) contradicting
f /∈ (g). So h(x) is a nonzero constant, implying that (f(x), g(x)) = F [x]. Hence there exist a(x), b(x) ∈ F [x]
such that a(x)f(x) + b(x)g(x) = 1. In other words, a(x)f(x) + (g(x)) = 1 + (g(x)). Hence F [x]/(g(x)) is a
field. This proves (c)⇒ (a). Finally (a)⇒ (b) is trivial. 2

We consider F = F2 = {0, 1}. There are 4 degree 2 polynomials: x2, x2 + 1, x2 + x and x2 + x+ 1.
The first three are reducible, note that x2 +1 = (x+1)2, and the last one is irreducible. The ring F2[x]/(g(x))
has size 4 and characteristic 2. It is easy to check that

f(x) + (x2) 7→ f(x+ 1) + ((x+ 1)2)

defines an isomorphism F2[x]/(x2) ∼= F2[x]/((x+ 1)2). Note also that x2 +x = x(x+ 1) with (x, x+ 1) = (1).
Hence by the Chinese Remainder Theorem,

F2[x]/(x2 + x) ∼= F2[x]/(x)× F2[x]/(x+ 1) ∼= F2 × F2.

This leaves F2[x]/(x2 + x+ 1) as the field F4. In degree 3, there are two irreducible polynomials x3 + x+ 1
and x3 + x2 + 1. Are the two fields F2[x]/(x3 + x+ 1) and F2[x]/(x3 + x2 + 1) of size 8 isomorphic?

Corollary 9.9 Let p be a prime. Let g(x) ∈ Fp[x] be an irreducible polynomial of degree d. Then Fp[x]/(g(x))
is field of pd elements.

In HW5, you will prove that any finite commutative ring has a decomposition of the form

R ∼= R1 ×R2 × · · ·Rr

where |Ri| = pdi
i and p1, . . . , pr are distinct primes. It follows then that any finite field F (i.e. integral

domain) has size pd for some prime p. We saw before that the characteristic of an integral domain is a
prime, and in HW4 that the characteristic divides the size of the ring. Hence the prime p is necessarily the
characteristic of F . Hence the prime subfield of F is Z/pZ = Fp.

Exercise
9.1 Prove that the ideal (2, x) in Z[x] is not principal.

9.2 What are the irreducible polynomials in C[x]? What are the irreducible polynomials in R[x]?

9.3 Let R be a commutative ring and let I be a proper ideal of R. We say I is a maximal ideal of R if
there does not exist a proper ideal J such that I is a proper subset of J . Prove that I is maximal if and
only if R/I is a field.
There is also a notion of a prime ideal. Can you guess what its definition is and how it relates to R/I?

9.4 Give an example of a commutative ring R, a maximal ideal I, and a subring S such that S ∩ I is not
maximal in S.

9.5 What are all the maximal ideals of Z[x]?

9.6 For any commutative ring R, we write R[x, y] for the ring (R[x])[y]. Prove that the maximal ideals of
C[x, y] are of the form (x− a, y − b) for some a, b ∈ C. (Hint: recall the similarity between C[x] and Z,
and mimic your solution for Exercise 4.)
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It is in fact true that the maximal ideals of C[x1, . . . , xn] are of the form (x1− a1, . . . , xn− an) for some
a1, . . . , an ∈ C. This result is known as Hilbert’s Nullstellensatz (theorem of zeros in German). The
rings C[x1, . . . , xn−1] for n ≥ 3 are no longer PID so your solutions for Exercise 5 and 6 above likely will
not generalize.

9.7 Find all irreducible polynomials of degree 4 in F2[x].

9.8 Let p be a prime. Prove that x2 + x+ 1 ∈ Fp[x] is irreducible if and only if p ̸≡ 1 (mod 3).

10 Finite fields
The main theorem in the theory of finite fields is:

Theorem 10.1 For every prime p and every positive integer d, there is a unique field of size pd up to
isomorphism, given by

Fpd
∼= Fp[x]/(g(x))

where g(x) ∈ Fp[x] is irreducible of degree d.

The key theorem is the existence of a primitive element.

Theorem 10.2 Let F be a finite field of size pn for some prime p and some positve integer n. Then there
exists a ∈ F× such that o(a) = pn − 1.

Such an element a is called a primitive element of F as every nonzero element is a power of a:

F× = {a, a2, . . . , apn−1}.

Proof: Write m = pn − 1. For any positive divisor d of m, let Nd denote the number of elements in F with
order exactly d. We prove that Nd ≤ ϕ(d). If Nd = 0, then this is obviously true. Suppose Nd > 0 and let
α be an element of order d. Any element of order d is a root of the degree d polynomial xd − 1 ∈ F [x] and
α, α2, . . . , αd already give d of them, which are all distinct since d = o(α). In other words, any element of
order d must be one of these d powers of α. Recall from Exercise 8.7 that for any integer k,

o(αk) = o(α)
gcd(k, o(α)) .

Hence we see that o(αk) = d if and only if gcd(k, o(α)) = 1. Therefore, Nd = ϕ(d).
Since every element in F× has order dividing m, we have

m =
∑
d|m

Nd ≤
∑
d|m

ϕ(d) = m,

by Corollary 6.2. Therefore, Nd = ϕ(d) for every d | m. In particular, Nm = ϕ(m) > 0. 2
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Corollary 10.3 Let F be a finite field of size pn for some prime p and some positive integer n. Then
F ∼= Fp[x]/(f(x)) for some irreducible polynomial f(x) ∈ Fp[x] of degree n.

Proof: Let a ∈ F× be an element of order pn − 1. Then every element of F× is a power of a. Hence
the evaluation map eva : Fp[x] → F is a surjective homomorphism. The kernel of eva is an ideal of Fp[x]
and so is of the form (f(x)) for some f(x) ∈ Fp[x]. By the first isomorphism theorem, F is isomorphic to
Fp[x]/(f(x)). In order for this quotient to be a field, f(x) must be irreducible by Proposition 9.8. 2

To see that an irreducible polynomial of degree n exists, we need the following result.
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Theorem 10.4 Let p be a prime and let n ∈ N. Then xpn − x is the product of all monic irreducible
polynomials in Fp[x] of degree dividing n.

For example, when p = 2, we have

x4 − x = x(x+ 1)(x2 + x+ 1)
x8 − x = x(x+ 1)(x3 + x2 + 1)(x3 + x+ 1)

Corollary 10.5 Let Sp(n) denote the number of monic irreducible polynomials in Fp[x] of degree n. Then
Sp(n) > 0 for any n ∈ N.

Proof: Since degree is additive, we have

pn =
∑
d|n

dSp(d) =⇒ nSp(n) =
∑
d|n

µ(d)pn/d,

by HW 3 Problem 3, where µ is the Mobius function. Note that if d > 1, then n/d ≤ n/2. Hence

|pn − nSp(n)| =

∣∣∣∣∣∣
∑

d|n,d>1

µ(d)pn/d

∣∣∣∣∣∣ ≤ p⌊n/2⌋ + p⌊n/2⌋−1 + · · ·+ 1 < p⌊n/2⌋+1 ≤ pn.

This implies that nSp(n) > 0. 2

For example
S2(6) = 1

6

(
26 − 23 − 22 + 21

)
= 9.

Corollary 10.6 Let p be a prime and let n ∈ N. Let f(x), g(x) ∈ Fp[x] be two irreducible polynomials of
degree n. Then Fp[x]/(f(x)) ∼= Fp[x]/(g(x)).

We need a straightforward lemma on how to define a homomorphism out of these quotients.

Lemma 10.7 Let p be a prime. Suppose f(x) is an irreducible polynomial in Fp[x]. Suppose R is a ring
of characteristic p, so that the prime subfield of R is Fp. Then any ring homomorphism Fp[x]/(f(x)) → R
is of the form j(x) + (f(x)) 7→ j(α) for any j(x) ∈ Fp[x] where α ∈ R is a root of f(x). Any such ring
homomorphism is automatically injective.

Proof: Easy exercise. Any ring homomorphism must be identity on the prime subfield Fp. If it sends
x+ (f(x)) to α, then it sends j(x) + (f(x)) to j(α) for any j(x) ∈ Fp[x]. Since f(x) + (f(x)) is 0, we must
have f(α) = 0. The kernel is a proper ideal of the field Fp[x]/(f(x)) and so must be {0}. 2

Proof of Corollary 10.6: Let F = Fp[x]/(g(x)). It suffices to find a root α of f(x) in F , since then we
would have an injective homomorphism Fp[x]/(f(x)) → Fp[x]/(g(x)), which is also surjective because they
have the same size.

We may assume f(x) and g(x) are monic. Every nonzero element α ∈ F× satisfies αpn−1 − 1 = 0.
Hence, every element of F is a root of xpn − x ∈ F [x]. Since xpn − x has at most pn roots in F , we see that
it splits completely in F [x] as

xpn

− x =
∏

α∈F

(x− α).

Hence f(x) as a factor of xpn − x in Fp[x], also splits completely in F [x]. We may then take any of its root
to define the desired isomorphism. 2

We collect two important results, which were proved in the above.

Corollary 10.8 Every irreducible polynomial in Fp of degree dividing n splits completely in Fpn .
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Corollary 10.9 Let F be a finite field and let q = |F |. Then

xq − x =
∏

α∈F

(x− α).

Example: The field F8 is given by F2[x]/(x3+x+1) and also by F2[x]/(x3+x2+1). Write α = x+(x3+x2+1)
in F = F2[x]/(x3 + x2 + 1). Then α3 + α2 + 1 = 0. The irreducible polynomials x3 + x2 + 1 and x3 + x+ 1
should split completely in F . Let’s find their roots. Note that

(α+ 1)3 + (α+ 1) + 1 = α3 + α2 + α+ 1 + α+ 1 + 1 = α3 + α2 + 1 = 0.

Hence, α + 1 is a root of x3 + x+ 1. The other two roots of x3 + x2 + 1 in F are α2 and α4 = α2 + α + 1.
One can check this via

(α2)3 + (α2)2 + 1 = α6 + α4 + 1 = (α3 + α2 + 1)2 = 0.

The other two roots of x3 + x+ 1 are (α+ 1)2 = α2 + 1 and (α+ 1)4 = α4 + 1 = α2 +α. In other words, we
have the factorizations

x3 + x2 + 1 = (x+ α)(x+ α2)(x+ α2 + α+ 1),
x3 + x+ 1 = (x+ α+ 1)(x+ α2 + 1)(x+ α2 + α).

We make a very important observation. From the binomial expansion, we have

(a+ b)pn

=
pn∑

r=0

(
pn

r

)
arbpn−r.

Moreover, we know that
νp

((pn

r

))
= n− νp(r) > 0 if 0 < r < pn

by Corollary 4.4. In other words, all the middle coefficients are divisible by p. Therefore, if we are in
characteristic p, then

(a+ b)pn

= apn

+ bpn

.

In particular, if f(x) = amx
m + · · ·+ a0 ∈ Fpn [x], then each apn

i = ai and

f(x)pn

= apn

m xmpn

+ · · ·+ apn

0 = am(xpn

)m + · · ·+ a0 = f(xpn

).
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Proof of Theorem 10.4: We recall a result proved in HW 1:

gcd(pk − 1, pℓ − 1) = pgcd(k,ℓ) − 1.

In particular,
pk − 1 | pℓ − 1 ⇐⇒ k | ℓ.

We first prove that if f(x) ∈ Fp[x] is a monic irreducible polynomial of degree d | n, then xpn − x ∈
(f(x)). If d = 1, then f(x) = x− a for some a ∈ Fp, in which case we know x− a | xpn − x because apn = a.
Suppose now d ≥ 2. Let F = Fp[x]/(f(x)). Let α = x+ (f(x)). Then α ̸= 0 and so αpd−1 = 1. Since d | n,
we know that pd − 1 | pn − 1. Hence αpn−1 = 1. So αpn = α. This means that xpn − x ∈ (f(x)).

Conversely, suppose xpn − x ∈ (f(x)) for some irreducible polynomial f(x) ∈ Fp[x] of degree d. We
prove d | n. Again let F = Fp[x]/(f(x)). Let α = a(x) + (f(x)) be a primitive element so that o(α) = pd−1.

38



We would be done if we can prove that αpn = α, which implies that αpn−1 = 1 and so pd − 1 | pn − 1. We
note from last time that if a(x) = amx

m + · · ·+ a0 ∈ Fp[x], we have

a(x)pn

= amx
mpn

+ am−1x
(m−1)pn

+ · · ·+ a0.

Now each
xjpn

− xj = ((xpn

− x) + x)j − xj ∈ (xpn

− x)
and so also in (f(x)). Hence we see that

a(x)pn

− a(x) =
m∑

j=0
aj(xjpn

− xj) ∈ (f(x)).

In other words, αpn = α in F .
Finally, we need to prove that xpn − x has no repeated factors, so that every monic irreducible

polynomial of degree dividing n appears exactly once in the factorization of xpn−x. This follows easily from

(xpn

− x)′ = pnxpn−1 − x = −1

which shares no common divisor with xpn − x. 2

Proposition 10.10 The field Fpn has a subring isomorphic to Fpd if and only if d | n, in which case, the
subring is unique and we say Fpd is a subfield of Fpn .

Proof: Consider the subset
R = {α ∈ Fpn : αpd

= α}.

Then R has size at most pd since it is the set of roots of a polynomial of degree pd. Suppose a homomorphism
φ : Fpd → Fpn (which is the same as an isomorphism from Fpd to a subring of Fpn) exists. Then since every
element β in Fpd satisfies βpd = β, we have (φ(β))pd = φ(β) and so φ(β) ∈ R. Comparing sizes gives that
the image of φ is R. This proves uniqueness. Let β be an element of Fpd of order pd − 1. Then φ(β) also
has order pd − 1 in Fpn since φ is injective. Hence pd − 1 | pn − 1, implying that d | n.

Suppose conversely that d | n. Then any monic irreducible polynomial of degree dividing d also has
degree dividing n. Hence xpd − x, which is a product of monic irreducible polynomials of degree dividing d,
splits completely in Fpn by Corollary 10.8. So the subset

R = {α ∈ Fpn : αpd

= α}

has size pd. Suppose α, β ∈ R. Then

(α+ β)pd

= αpd

+ βpd

= α+ β,

(αβ)pd

= αpd

βpd

= αβ,

(α−1)pd

= (αpd

)−1 = α−1.

This proves that R is a subfield of Fpn . It has size pd and so is isomorphic to Fpd . 2

For n = 1, we have the factorization

xp − x = x(x− 1) · · · (x− (p− 1)).

Canceling the x gives
xp−1 − 1 = (x− 1)(x− 2) · · · (x− (p− 1)),

which we already knew from Fermat’s little theorem. Setting x = 0 gives

−1 = (−1)p−1(p− 1)! in Fp.
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Translating it to integer congruences gives Wilson’s Theorem

(p− 1)! ≡ −1 (mod p).

There is of course a more direct proof by pairing a and b if ab ≡ 1 (mod p). Then only 1 and −1 are left
over.

When n = 2, we note that every quadratic polynomial over Fp has a root in Fp2 .

Theorem 10.11 Let p be a prime divisor of n3 + n2 − 2n − 1 for some integer n. Then p = 7 or p ≡ ±1
(mod 7).

Proof: We have some n ∈ Fp such that n3 + n2 − 2n− 1 = 0. Let α ∈ Fp2 be a root of x2 − nx+ 1. Then
α ̸= 0 and n = α+ α−1. Now

0 = (α+ α−1)3 + (α+ α−1)2 − 2(α+ α−1)− 1
= α3 + 3α+ 3α−1 + α−3 + α2 + 2 + α−2 − 2(α+ α−1)− 1
= α3 + α2 + α+ 1 + α−1 + α−2 + α−3.

Multiplying by α3(α− 1) gives
α7 − 1 = 0.

So the order o(α) of α in Fp2 divides 7. If o(α) = 1, then α = 1, and we get 0 = 7 and so p = 7. Suppose
now o(α) > 1. Then o(α) = 7. Since o(α) | |F×

p2 |, we get 7 | p2 − 1. So 7 | (p − 1)(p + 1) and hence p ≡ ±1
(mod 7). 2

The key to this cute result is that for the polynomial f(x) = x3 + x2 − 2x− 1, we have

f(x+ x−1) = x−3 Φ7(x).

It follows from the fact that Φm(x) is reciprocal that for any m ≥ 2, there exists f(x) ∈ Z[x] such that

f(x+ x−1) = x−ϕ(m)/2 Φm(x).

With a little more work (to calculate f(0) which involves calculating Φm(i)), one can use this to give a
Euclidean proof for the infinitude of primes of the form qk − 1 where q is a prime. If m is not a prime, we
won’t be able to conclude from m | p2− 1 that p ≡ ±1 (mod m). In HW6, you will work this out for m = 9.

Exercise
10.1 Let p be a prime. Prove that there exists a ∈ Z such that p | Φp−1(a).

10.2 Let F be a finite field and let k ∈ N such that gcd(k, |F | − 1) = 1. Prove that every element in F is
the k-th power of some element in F .

10.3 Let F be a finite field and let k ∈ N. Let S be the subset of F consists of sums of k-th powers. (Note
that an empty sum is 0.) Prove that S is a subfield of F .

10.4 Prove that for any positive integer n ̸= 2, every element in F2n is a sum of cubes. Note that the cubes
in F4 are precisely 0 and 1 and so the subfield of sums of cubes in F4 is F2.

10.5 Let F be a finite field with 3 | |F | − 1. Suppose there exist u, v ∈ F× such that u3 + v3 = 1. Let w be
an arbitrary element of F . Let

A = {a3 : a ∈ F}, B = {w + b3 : b ∈ F}, C = {u3w + c3 : c ∈ F}.

(a) Prove that A, B, C are not pairwise disjoint.
(b) Prove that w is a sum of two cubes. In other words, every element of F is a sum of two cubes.
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10.6 Let F be a finite field with 3 | |F | − 1 and |F | > 7. Suppose there does not exist u, v ∈ F× such that
u3 + v3 = 1. Let α ∈ F× be a primitive element. Let

A = {α3k : k ∈ Z}, D = {α3k+1 : k ∈ Z}, E = {α3k+2 : k ∈ Z}.

(a) Prove that at least one of α3 − 1, α3 + 1, α6 − 1 belongs to D, and at least one of them belongs
to E.

(b) Prove that every element of F is a sum of two cubes.

10.7 Exercises 10.2, 10.5, 10.6 imply that for any finite field except F4 and F7, every element is a sum of
two cubes. Prove that for F = F7, every element is a sum of three cubes, and not every element is a
sum of two cubes.

10.8 Prove that for any α ∈ F7, the polynomial x4 − α ∈ F7[x] is reducible.

10.9 Let q = pn be a power of a prime. Let α ∈ Fq be a primitive element. Suppose q ≡ 1 (mod d) for some
positive integer d. Prove that xd − α ∈ Fq[x] is irreducible.
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11 Quadratic reciprocity
We say an integer a is a quadratic residue mod m (or in Z/mZ) if the equation x2 ≡ a (mod m) has an
integer solution. Otherwise, we say it is a quadratic non-residue. We consider the case where m = p is a
prime first. When p = 2, every integer is a quadratic residue. So we assume p is odd.

Stated in terms of the finite field Fp, we are just studying the set {b2 : b ∈ Fp}. For example in F7,
the set of quadratic residues are {0, 1, 2, 4} and the set of quadratic non-residues are {3, 5, 6}. Let α be a
primitive element in F×

p so that we may write

Fp = {0, α, α2, . . . , αp−1}.

Moreover, we know that αk = αℓ if and only if p− 1 | k − ℓ.

Lemma 11.1 Let p be an odd prime and let α be primitive in F×
p . For k = 1, . . . , p− 1, the element αk is

a quadratic residue if and only if k is even.

Proof: If k = 2ℓ is even, then αk = (αℓ)2. Conversely, if αk = (αℓ)2 for some ℓ ∈ Z, then p− 1 | k − 2ℓ and
so k is even since p is odd. 2

Corollary 11.2 Let p be an odd prime. Let a ∈ Fp, then

a(p−1)/2 =


1 if a is a nonzero quadratic residue
−1 if a is a quadratic non-residue
0 if a = 0.

Proof: Let α be a primitive element. Then (α(p−1)/2)2 = αp−1 = 1. Hence α(p−1)/2 = −1 since it can’t be
1. Now write a = αk for some k = 0, . . . , p− 2. If k = 2ℓ is even, then a(p−1)/2 = α(p−1)ℓ = 1. If k = 2ℓ+ 1
is odd, then a(p−1)/2 = α(p−1)ℓ+(p−1)/2 = −1. 2

We define the Legendre symbol
(a
p

)
to be the integer 1, −1 or 0 depending on if a is a nonzero

quadratic residue, quadratic non-residue, or 0 in Fp. In other words,(a
p

)
≡ a(p−1)/2 (mod p),
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from which we see that it is multiplicative: (ab
p

)
=
(a
p

)( b
p

)
so that the product of two quadratic non-residues is a quadratic residue.

Corollary 11.3 We have that −1 is a quadratic residue mod p if and only if p = 2 or p ≡ 1 (mod 4). In
other words, for p ̸= 2, (−1

p

)
= (−1)(p−1)/2.

Proposition 11.4 We have that 2 is a quadratic residue mod p if and only if p = 2 or p ≡ ±1 (mod 8). In
other words, for p ̸= 2, (2

p

)
= (−1)(p2−1)/8.

Corollary 11.5 We have that −2 is a quadratic residue mod p if and only if p = 2 or p ≡ 1 or 3 mod 8.

Proof: Suppose p ̸= 2. We know that −2 is a quadratic residue precisely when both −1 and 2 are quadratic
residues or when they are both non-residues. The first case corresponds to p ≡ 1 (mod 8) and the second
case corresponds to p ≡ 3 (mod 8). 2

To prove Proposition 11.4, we use the following lemma, which will also be used a few times later.

Lemma 11.6 Let p be a prime and let m be a positive integer coprime to p. Then there exists a ∈ F×
pϕ(m)

such that o(a) = m. In fact, such an element exists in F×
pom(p) . We call such an element a primitive m-th

root of unity.

Proof: Let d = om(p). Then m | pd − 1 and d | ϕ(m) so Fpd ⊆ Fpϕ(m) . Let α be a primitive element of F×
pd .

Then o(α) = pd − 1. Hence a = α(pd−1)/m has order m. 2

Proof of Proposition 11.4: Suppose p is an odd prime. Let α ∈ F×
p4 be a primitive 8-th root of unity.

The key idea is to find some β ∈ Fp4 such that β2 = 2. Then 2 is a quadratic residue mod p if and only if
β ∈ Fp and we can check if β ∈ Fp by comparing βp with β. Take β = α+ α−1. Then

β2 = α2 + 2 + α−2.

Since α8 = 1 and α4 ̸= 1, we have α4 = −1, and so α2 = −α−2. Hence β2 = 2. Since we are in characteristic
p, we have βp = αp +α−p. Since α8 = 1, we see that βp depends only on what p is mod 8. It is now easy to
check that if p ≡ ±1 (mod 8), then

βp = α1 + α−1 = β

and when p ≡ ±3 (mod 8),
βp = α3 + α−3 = −α−1 − α = −β.

Therefore, β ∈ Fp if and only if p ≡ ±1 (mod 8). 2

Theorem 11.7 (Quadratic reciprocity) Suppose p, q are two distinct odd primes. Then(p
q

)(q
p

)
= (−1)

p−1
2

q−1
2 .

In particular (p
q

)
= −

(q
p

)
, if both p, q ≡ 3 (mod 4);(p

q

)
=

(q
p

)
, otherwise.
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For example, suppose we want to compute
(11

29

)
. Then we have

(11
29

)
=
(29

11

)
=
( 7

11

)
= −

(11
7

)
= −

(4
7

)
= −1.

As another example, we can work out when 3 is a quadratic residue mod p. If p ≡ 1 (mod 4), then(
3
p

)
=
(

p
3

)
= 1 ⇔ p ≡ 1 (mod 3). If p ≡ 3 (mod 4), then

(
3
p

)
= −

(
p
3

)
= 1 ⇔ p ≡ 2 (mod 3).

Hence
(

3
p

)
= 1 if and only if p ≡ ±1 (mod 12). The case for 5 is easier because 5 ≡ 1 (mod 4) and so(

5
p

)
=
(

p
5

)
= 1 ⇔ p ≡ ±1 (mod 5). The case for 7 is similar: if p ≡ 1 (mod 4), we need

(
p
7

)
= 1 so

p ≡ 1, 2, 4 (mod 7); if p ≡ 3 (mod 4), we need
(

p
7

)
= −1 so p ≡ 3, 5, 6 (mod 7).

Corollary 11.8 We have

(a) 3 is a quadratic residue mod p if and only if p = 3 or p ≡ ±1 (mod 12).

(b) 5 is a quadratic residue mod p if and only if p = 5 or p ≡ ±1 (mod 5).

(c) 7 is a quadratic residue mod p if and only if p = 7 or p ≡ ±1,±9,±25 (mod 28).

Note that for a prime to be ±1 mod 5, it is equivalent to be ±1 or ±9 mod 20. It is then natural to expect
the following result, which is actually equivalent to quadratic reciprocity.

Proposition 11.9 Suppose p, q are distinct odd primes. Then q is a quadratic residue mod p if and only if
p ≡ ±a2 (mod 4q) for some odd integer a.

Proof of equivalence: Let
p∗ = (−1)(p−1)/2p =

(−1
p

)
p.

It is an easy exercise to prove that p∗ is a quadratic residue mod q if and only if p ≡ ±a2 (mod 4q) for some
odd integer a.

If p ≡ 1 (mod 4), then p∗ = p. If p is a square mod q, then p ≡ b2 (mod q) for some integer b. By
the Chinese remainder theorem, there exists an integer a that is 1 mod 4 and b mod q. So p ≡ a2 (mod 4q).
Since p is odd and 4q is even, we have a is odd. Conversely, if p ≡ ±a2 (mod 4q) for some odd integer
a. If p ≡ −a2 (mod 4q), then p ≡ −a2 (mod 4) but a2 ≡ p ≡ 1 (mod 4), which is impossible. So p ≡ a2

(mod 4q) and thus p ≡ a2 (mod q). The case for p ≡ 3 (mod 4) is similar.
By multiplicativity, we have(p∗

q

)
=
( (−1)(p−1)/2

q

)(p
q

)
= (−1)

p−1
2

q−1
2

(p
q

)
.

Hence quadratic reciprocity is equivalent to (q
p

)
=
(p∗

q

)
.

Lecture 18 Mon 10/23

Proof of Quadratic Reciprocity
Similar to the proof of Proposition 11.4, we let α ∈ Fpq−1 be a primitive q-th root of unity and try to write
down a square root of q∗. Then we check whether it is in Fp by raising it to the power p. We will see in
about a month why it is more natural to find

√
q∗ in Fpq−1 than √q, even though they both are contained

in Fpq−1 (in fact in Fp2).
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We first note that since αq = 1, it makes sense to write αm for any m ∈ Fq. In other words, the
value αk is independent of the choice of the integer k in the congruence class of m mod q. We define

β =
∑

m∈Fq

(m
q

)
αm.

As a running example, we take p = 7 and q = 3. Then α ∈ F49 is a primitive cube root of unity. In fact, we
may take α = x+ (x2 + x+ 1) in F7[x]/(x2 + x+ 1). Then

β =
(0

3

)
α0 +

(1
3

)
α1 +

(2
3

)
α2 = α− α2 = α− (−α− 1) = 2α+ 1.

We can now compute
β2 = 4α2 + 4α+ 1 = 4(−α− 1) + 4α+ 1 = −3 = 3∗.

Back to the general case, we square β to get

β2 =
∑

m∈Fq

∑
n∈Fq

(m
q

)(n
q

)
αm+n =

∑
m∈Fq

∑
n∈Fq

(mn
q

)
αm+n.

Now we collect terms with the same power of α. Note that t = m+ n takes arbitrary values in Fq:

β2 =
∑
t∈Fq

∑
m∈Fq

(m(t−m)
q

)αt =
∑
t∈Fq

 ∑
m∈F×

q

(m(t−m)
q

)αt

where we removed the m = 0 term because the legendre symbol
(

m(t−m)
q

)
is 0. Let’s see what the inner

sum is equal to in our example:

t = 0 :
(1(−1)

3

)
+
(2(−2)

3

)
=
(−1

3

)
· 2

t = 1 :
(1(0)

3

)
+
(2(−1)

3

)
=
(−1

3

)
· (−1)

t = 2 :
(1(1)

3

)
+
(2(0)

3

)
=
(−1

3

)
· (−1)

If we then factor out the
(

−1
3

)
, we get

2− α− α2 = 3− (1 + α+ α2) = 3.

In general, as a primitive q-th root of unity, α satisfies

1 + α+ · · ·+ αq−1 = 0.

This suggests that we should prove

t = 0 :
∑

m∈F×
q

(m(t−m)
q

)
=
(−1
q

)
· (q − 1),

t ̸= 0 :
∑

m∈F×
q

(m(t−m)
q

)
=
(−1
q

)
· (−1),

which would imply that

β2 =
(−1
q

) (
(q − 1)− α− α2 − · · · − αq−1) =

(−1
q

)
q = q∗.
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Since m ̸= 0, we have(m(t−m)
q

)
=
(−m2(1− tm−1)

q

)
=
(−m2

q

)(1− tm−1

q

)
=
(−1
q

)(1− tm−1

q

)
.

If t = 0, then we get
(

−1
q

)
for each m ∈ F×

q . There are q − 1 of them, so we get the desired formula for
t = 0. When t ̸= 0, tm−1 runs through every element in F×

q and so 1− tm−1 runs through every element in
Fq that is not 1. Hence

∑
m∈F×

q

(1− tm−1

q

)
=
∑
s∈Fq

(s
q

)
−
(1
q

)
=
∑

s∈F×
q

(s
q

)
+
(0
q

)
−
(1
q

)
= −1.

Here the first sum is 0 because half the elements of F×
q are quadratic residues and the other halfs are quadratic

nonresidues. We have therefore proved that
β2 = q∗.

We next compare βp with β to see if β lies in Fp. Since we are in characteristic p and since
(

m
q

)
only takes value in 0, 1,−1, all of which are fixed by raising to the power p, we have

βp =
∑

m∈Fq

(m
q

)p

αmp =
∑

m∈Fq

(m
q

)
αmp.

Since p ̸= q, as m varies in Fq, mp runs through all values of Fq. Setting t = mp, we get

βp =
∑
t∈Fq

( tp−1

q

)
αt =

(p−1

q

)∑
t∈Fq

( t
q

)
αt =

(p
q

)
β.

Therefore, we conclude that q∗ is a quadratic residue in Fp if and only if
(

p
q

)
= 1. In other words,

(q∗

p

)
=
(p
q

)
.

We now consider x2 ≡ a (mod m) in general. By the Chinese Remainder Theorem, it suffices to
consider the case when m = pk is the power of a prime p. It is an easy exercise to reduce to the case p ∤ a.

Lemma 11.10 Suppose p | a. Then x2 ≡ a (mod pk) has a solution if and only if νp(a) ≥ k or if νp(a) is
even and

x2 ≡ a/pνp(a) (mod pk−νp(a))

has a solution.

We now assume that p ∤ a. The punchline is that the question can be reduced to m = p for p odd,
or to m = 8 when p = 2.

Lecture 19 Wed 10/25

Theorem 11.11 (Hensel’s lemma) Suppose f(x) ∈ Z[x]. Let p be a prime and let α ∈ Z. Suppose

νp(f(α)) > 2νp(f ′(α)).

Then for any n ∈ N, there exists αn ∈ Z such that αn ≡ α (mod p),

νp(f ′(αn)) = νp(f ′(α)) and νp(f(αn)) ≥ νp(f(α)) + n− 1.
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Corollary 11.12 Suppose f(x) ∈ Z[x]. Let p be a prime and let α ∈ Z. Suppose f(α) ≡ 0 (mod p) and
p ∤ f ′(α). Then for any n ∈ N, there exists αn ∈ Z such that αn ≡ α (mod p) and f(αn) ≡ 0 (mod pn).

Corollary 11.13 Let p be an odd prime and let a ∈ Z such that p ∤ a. Suppose x2 ≡ a (mod p) has a
solution. Then x2 ≡ a (mod pn) has a solution for any n ∈ N.

Proof: Consider f(x) = x2 − a ∈ Z[x]. Let α ∈ Z be a solution to x2 ≡ a (mod p). Then we have f(α) = 0
(mod p). Now f ′(α) = 2α. Since p ∤ a, we have p ∤ α. Since p is odd, we have p ∤ 2. So p ∤ f ′(α). Hence for
any n ∈ N, there exists αn ∈ Z such that f(αn) ≡ 0 (mod pn), which is the same as α2

n ≡ a (mod pn). 2

Corollary 11.14 Let a be an odd integer. Suppose x2 ≡ a (mod 8) has a solution. Then x2 ≡ a (mod 2n)
has a solution for any integer n ≥ 3.

Proof: Consider f(x) = x2 − a ∈ Z[x]. Let α ∈ Z be a solution to x2 ≡ a (mod 8). Then we have
ν2(f(α)) ≥ 3. Now f ′(α) = 2α. Since a is odd, we have α is odd. So ν2(f ′(α)) = 1 which satisfies
ν2(f(α)) > 2ν2(f ′(α)). Hence by Theorem 11.11, for any integer n ≥ 3, we have n− 2 ≥ 1 and there exists
αn−2 ∈ Z such that

ν2(f(αn−2)) = ν2(f(α)) + (n− 2)− 1 ≥ n.
In other words, α2

n−2 ≡ a (mod 2n). 2

It is easy to check that the only odd quadratic residue mod 4 is 1, and the only odd quadratic residue
mod 8 is also 1. Note that x2 ≡ 5 (mod 8) has no solution but x2 ≡ 5 (mod 4) does.
Proof of Theorem 11.11: The important observation is that for any integers a,m, we have

f(a+m) ≡ f(a) + f ′(a)m (mod m2).

Since both sides are linear in f(x), it is enough to check it for f(x) = xn, in which case f(a) + f ′(a)m =
an + nan−1m are just the first two terms in the binomial expansion for (a + m)n. All the remaining terms
are divisible by m2.

We construct αn by induction on n. When n = 1, we take α1 = α. Suppose now n ≥ 2 and that
αn−1 has been constructed with

νp(f ′(αn−1)) = νp(f ′(α)) and νp(f(αn−1)) ≥ νp(f(α)) + n− 2 > 2νp(f ′(αn−1)).

We want to define αn to be αn−1 + cpk for some integer c not divisible by p and some k ∈ N, so that

νp(f(αn−1 + cpk)) ≥ νp(f(αn−1)) + 1.

Write
f(αn−1) = apt, f ′(αn−1) = bps, where p ∤ ab, t > 2s.

Then
f(αn−1 + cpk) ≡ apt + bpscpk (mod p2k).

We take k = t− s. Then 2k = 2t− 2s > t, so 2k ≥ t+ 1. We take c ∈ Z so that bc ≡ −a (mod p), which is
possible because p ∤ b. So now

f(αn−1 + cpk) ≡ apt + bpscpk = (a+ bc)pt (mod pt+1)

is divisible by pt+1 as desired. Moreover,

f ′(αn−1 + cpk) ≡ f ′(αn−1) + cpkf ′′(αn−1) (mod p2k).

Since k = t− s > s, we see that

νp(cpkf ′′(an−1)) > s = νp(f ′(αn−1)), and 2k > s.
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So νp(f ′(αn−1 + cpk)) = νp(f ′(αn−1)). Therefore, αn = αn−1 + cpk satisfies all the desired conditions. 2

Example: Consider f(x) = (x2−2)(x2−17)(x2−34) ∈ Z[x]. Then f(x) = 0 has no solution in Z. We claim
that it has a solution in Z/mZ for any m ∈ N. By the Chinese Remainder Theorem, it suffices to consider
when m = pk is a power of p. If p ̸= 2, 17, then at least one of 2, 17, 34 is a quadratic residue mod p as(34

p

)(2
p

)(17
p

)
=
(2
p

)2(17
p

)2
= 1

and by Corollary 11.13 is a quadratic residue mod pk. If p = 17, then 2 = 62 is a quadratic residue mod 17
and also mod 17k. Finally, since 17 ≡ 1 (mod 8), it is a quadratic residue mod 8 and so is also mod 2k.
Remark: It is a fairly nontrivial fact that if f(x) ∈ Z[x] is irreducible (in Q[x]), then there are infinitely
many primes p for which f(x) has no roots mod p. Theorem 11.15 gives a proof of this in the degree 2
case. An irreducible polynomial in Z[x] can be reducible mod p for all primes p. As we will learn soon, most
cyclotomic polynomials satisfy this.

Theorem 11.15 Let a ∈ N. If x2 ≡ a (mod m) has a solution for every m ∈ N, then a is a perfect square.

Proof: Suppose for a contradiction that a is not a perfect square. We find (infinitely many) prime q such
that

(
a
q

)
= −1. We may assume without loss of generality that a is squarefree. If a = 2, we just take

q = 3. Suppose a = 2ep1 · · · pr where e = 0, 1 and p1, . . . , pr are distinct odd primes with r ≥ 1. Let s be a
quadratic non-residue mod pr. By the Chinese Remainder Theorem, there exists b ∈ N such that

b ≡ 1 (mod 8)
b ≡ 1 (mod p1 · · · pr−1)
b ≡ s (mod pr)

By Dirichlet’s theorem on primes in arithmetic progressions, there exist (infinitely many) primes q ≡ b
(mod 8p1 · · · pr). Then q also satisfies the above congruences. So

(2
q

)
= 1,

(pi

q

)
=
( q
pi

)
=
{

1 if i = 1, . . . , r − 1
−1 if i = r.

⇒
(a
q

)
= −1.

Hence x2 ≡ a (mod q) has no solution. 2

Lecture 20 Fri 10/27

If we don’t use Dirichlet’s theorem, we could factor b as q1 · · · qt into a product of possibly equal odd primes.
Then we can generalize the Legendre symbol into the Jacobi symbol

(a
b

)
:=

t∏
j=1

( a
qj

)
.

In HW7, you will prove the same quadratic reciprocity laws for the Jacobi symbol and so the same calculation
above shows (a

b

)
= −1,

which implies that a is not a quadratic residue mod b.
Remark: Using the quadratic reciprocity law(a

b

)( b
a

)
= (−1)

a−1
2

b−1
2 ,

one can give a very beautiful proof of the following problem (IMO 2022 shortlist N8):
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• For any positive integer n, prove that 2n + 65 ∤ 5n − 3n.

Suppose for a contradiction that 2n + 65 | 5n − 3n. Since 3 ∤ 5n − 3n and 2n + 65 ≡ (−1)n + 2 (mod 3), we
see that n is odd and so 2n + 65 ≡ 1 (mod 3). Then since 5n ≡ 3n (mod 2n + 65), we have( 5

2n + 65

)
=
( 5n

2n + 65

)
=
( 3n

2n + 65

)
=
( 3

2n + 65

)
.

Since n is odd and the statement is immediate when n = 1, we may assume n ≥ 3 and so 2n + 65 ≡ 1
(mod 4). Then, we have ( 5

2n + 65

)
=
(2n + 65

5

)
=
(2n

5

)
=
(2

5

)
= −1

but ( 3
2n + 65

)
=
(2n + 65

3

)
=
(1

3

)
= 1.

Contradiction. 2

In our proof of the quadratic reciprocity, the value of the sum∑
m∈Fq

(m(t−m)
q

)
was very important. What about sums of the form∑

m∈Fq

(am2 + bm+ c

q

)
in general, where a, b, c ∈ Z?

Theorem 11.16 Let q be an odd prime. Let a, b, c ∈ Z. Then

∑
x∈Fq

(ax2 + bx+ c

q

)
=


−
(a
q

)
if q ∤ b2 − 4ac

(q − 1)
(a
q

)
if q | b2 − 4ac, q ∤ a.

q
( c
q

)
if q | b2 − 4ac, q | a.

As a consequence, if q ∤ b2 − 4ac, then ax2 + bx + c can be a quadratic residue in Fq for at most (q + 3)/2
values of x, which happens when ax2 + bx+ c is reducible.

Proof: If q ∤ a, then we can complete the square to get

ax2 + bx+ c = a
(
x+ b

2a

)2
− b2 − 4ac

4a2 .

If further q | b2 − 4ac, then
(ax2 + bx+ c

q

)
=
(a
q

)
when x ̸= −b/2a and is 0 when x = −b/2a.

If q | a, then we note that bx + c takes all values in Fq if b ̸= 0 and is constant equaling c if b = 0.
In the first case, the sum is 0 and in the second case, the sum is q

(
c
q

)
.

The only interesting case is when q ∤ a and q ∤ b2 − 4ac. We have the following equality in Fq:

∑
x∈Fq

(ax2 + bx+ c

q

)
=
∑
x∈Fq

(ax2 + bx+ c)(q−1)/2.
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In HW 6, you proved that ∑
x∈Fq

xk =
{

0 if k = 1, . . . , q − 2
−1 if k = q − 1.

It is also clear that
∑

x∈Fq
1 = q = 0. Hence when we expand (ax2 + bx+ c)(q−1)/2 and sum over x, only the

sum of a(q−1)/2xq−1 survives to give −a(q−1)/2. Hence in Fq, we have

∑
x∈Fq

(ax2 + bx+ c

q

)
= −a(q−1)/2 = −

(a
q

)
.

In other words, as integers, they are congruent mod q. Note that the left hand side is a sum of q numbers
of the form 0,−1, 1 and the right hand side is ±1. So the only way for them to be not equal is for the left
hand side to be q − 1 or −(q − 1). This can only happen when ax2 + bx+ c = 0 for exactly one x ∈ Fq, and
is a quadratic residue/non-residue for all other x ∈ Fq. This is impossible because a quadratic has exactly
one root if and only if its discriminant b2 − 4ac = 0, contradicting the assumption that q ∤ b2 − 4ac. 2

Corollary 11.17 Let q ≥ 5 be a prime. Let a, b, c ∈ Z such that q ∤ b2 − 4ac. Then ax2 + bx+ c cannot be
square for (q + 5)/2 consecutive integers x.

The weaker result where (q+5)/2 is replaced by 2q−1 is on the 1991 IMO shortlist. The IMO problem
is also true for q = 3, while the polynomial 2(x− 1)(x− 2) takes square value for (q + 5)/2 = 4 consecutive
integers x = 0, 1, 2, 3. It is not hard to give a proof in the q = 3 case directly. Let f(x) = ax2 + bx + c
with 3 ∤ b2 − 4ac. Suppose f(x) takes five consecutive square values. Then we can find r, s ∈ Z that are not
congruent mod 3 and a quadratic non-residue α such that

f(x) = α(x− r)(x− s) + 3g(x)

and f(r) and f(r + 3) are squares, for some g(x) ∈ Z[x]. Then 3g(r) is a square implying that 3 | g(r) and
so 3 | g(r + 3). Then

ν3(f(r + 3)) = ν3(3α(r + 3− s) + 3g(r + 3)) = 1.

Hence f(r + 3) is not a square.
One may ask what happens in the case of a cubic sum. It is a theorem in algebraic geometry that∣∣∣∣∣∣

∑
x∈Fq

(ax3 + bx2 + cx+ d

q

)∣∣∣∣∣∣ ≤ 2√q,

when ax3 + bx2 + cx+d has no repeated roots in Fq. The connection to algebraic geometry is in the relation
of this sum to the number of Fq-solutions to

y2 = ax3 + bx2 + cx+ d

which you might recognize as an elliptic curve!

Exercises
11.1 Use Exercise 9.8 to prove that for an odd prime p, we have −3 is a quadratic residue mod p if and only

if p ≡ 1 (mod 3).

11.2 Is 91 a quadratic residue mod 253?

11.3 Prove that the polynomial x8 − 16 has a root mod p for all primes p.
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11.4 Prove the following more explicit version of Hensel’s lemma. Suppose f(x) ∈ Z[x] and p is a prime.
Suppose a1 ∈ Z such that f(a1) ≡ 0 (mod p) and p ∤ f ′(a1). Then the sequence defined by

ak+1 ≡ ak − f(ak)/f ′(ak) (mod pk+1), for k ≥ 1

satisfies f(ak) ≡ 0 (mod pk) for all k ≥ 1.

11.5 Find all solutions to x4 + x3 + 2x2 + x ≡ 13 (mod 343).

11.6 Find all solutions to x3 − 2x− 1 ≡ 0 (mod 125).

11.7 Suppose a, b ∈ N are positive integers, neither of which is a perfect square. Prove that there exists a
prime q such that a and b are both quadratic non-residues mod q. Conclude that there does not exist
a degree 4 reducible polynomial in Z[x] that has roots mod m for every positive integer m but has no
roots in Z.

11.8 Let p be a prime such that the polynomial x3 + x+ 1 is irreducible in Fp[x]. Then by HW6 Problem 1,
the roots of x3 + x+ 1 in Fp3 are of the form α, αp, αp2 for some α ∈ Fp3 . Let

β = (α− αp)(α− αp2
)(αp − αp2

).

(a) Prove that β2 = −31.
(b) Prove that β ∈ Fp.
(c) Prove that the polynomial (x3 + x+ 1)(x2 + 31) has a root mod m for every positive integer m.

11.9 Let q be an odd prime and let a, b, c ∈ Z with q ∤ b2 − 4ac. Compute

∑
x∈Fq

∑
y∈Fq

(ax2 + bxy + cy2

q

)
.

Lecture 21 Mon 10/30

12 Schur’s Theorem on mk + a

We saw in HW 3 Problem 2 that for any non-constant polynomial f(x) ∈ Z[x], there are infinitely many
primes that divide f(n) for some n ∈ Z. That was a theorem of Schur, who also proved in the same work:

Theorem 12.1 Suppose a,m ∈ N such that a2 ≡ 1 (mod m). Then there exists f(x) ∈ Z[x] such that there
infinitely many primes congruent to a mod m that divide f(n) for some n ∈ Z.

More precisely:

Theorem 12.2 Suppose a,m ∈ N such that a2 ≡ 1 (mod m). Then there exists f(x) ∈ Z[x] with positive
leading coefficient and a nonzero integer N such that

(a) If p is a prime divisor of f(n) for some integer n, then p | N or p ≡ 1 or a mod m.

(b) If p is a prime congruent to a mod m and coprime to N , then there exists b ∈ Z such that νp(f(b)) = 1.

(c) All prime divisors of f(0) are congruent to 1 mod m.

In other words, Schur proved that there is a Euclidean polynomial for a mod m if a2 ≡ 1 (mod m).
From such a polynomial, we can prove the infinitude of primes congruent to a mod m, assuming that there
is at least one coprime to N .
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Theorem 12.3 Suppose a2 ≡ 1 (mod m) and a ̸≡ 1 (mod m). Suppose there exists a prime q congruent to
a mod m that is coprime to the integer N in Theorem 12.2. Then there are infinitely many such primes.

It is worth noting that Schur’s result does not prove the infinitude of primes of the form mk + a.
We first give a proof of Theorem 12.3 from Theorem 12.2. We recall the following nice property about
polynomials with integer coefficients.

Lemma 12.4 Suppose f(x) ∈ Z[x] and c1, c2, k ∈ Z. If c1 ≡ c2 (mod k), then f(c1) ≡ f(c2) (mod k)

Proof: This is simply the statement f(c+ kZ) = f(c) + kZ in Z/kZ for any c ∈ Z. 2

Proof of Theorem 12.3 from Theorem 12.2: We construct our infinite sequence of pairwise coprime
integers each having a prime divisor of the form a mod m. Let k be large even integer such that f(n) > q
for all n ≥ mNk. This is possible because f(x) has positive leading coefficient. Let b ∈ Z with νq(f(b)) = 1.

Let a1 = 1. Since q is coprime with a1, m and N , we see that q is coprime to mNka1 and so q2 is
also coprime to mNka1. Let c1 be a positive integer such that c1mN

ka1 ≡ b (mod q2). Then

f(c1mN
ka1) ≡ f(b) (mod q2).

Since νq(f(b)) = 1, we also have νq(f(c1mN
ka1)) = 1. We let a2 = f(c1mN

ka1)/q so that a2 is coprime with
q. We now repeat this process. More generally for any n ≥ 1, suppose we have already defined a1, . . . , an

inductively to all be coprime with q, then q2 is coprime with mNka1 · · · an. Let cn be a positive integer such
that

cnmN
ka1 · · · an ≡ b (mod q2)

and we define
an+1 = f(cnmN

ka1 · · · an)
q

.

Note that f(cnmN
ka1 · · · an) ≡ f(0) ≡ 1 (mod m) and so an+1 ≡ q−1 ≡ a (mod m). Suppose now p is a

prime divisor of an+1. Then p | f(cnmN
ka1 · · · an). If p | N , then from f(cnmN

ka1 · · · an) ≡ f(0) (mod N),
we get p | f(0) and so p is congruent to 1 or a mod m. If p ∤ N , then we know automatically that p is
congruent to 1 or a mod m. Hence all the primes divisors of an+1 are congruent to 1 or a mod m. Since
an+1 ̸≡ 1 (mod m), we see that not all of the prime divisors of an+1 are 1 mod m. Hence an+1 has a prime
divisor of the form a mod m. (Note that an+1 has a prime divisor because an+1 ≥ 2. This is the purpose of
the integer k.)

Finally for i < j, we have ai | cj−1ma1 · · · aj−1 and since gcd(ai, q) = 1, we have

gcd(ai, aj) = gcd(ai, qaj) = gcd(ai, f(cj−1ma1 · · · aj−1)) = gcd(ai, f(0)).

Since all the prime divisors of f(0) are congruent to 1 mod m, we see that ai and aj do not share a prime
divisor that is congruent to a mod m. 2

We give the construction of f(x) first. Recall that when we considered the polynomial f(x) =
x3 + x2 − 2x − 1 and proved that if p is a prime divisor of f(n), then p = 7 or p ≡ ±1 (mod 7), we are
essentially taking the polynomial in Q[x] of the smallest degree that has ζ7 + ζ−1

7 as a root. In fact, we have
the factorization

f(x) = (x− (ζ7 + ζ−1
7 ))(x− (ζ2

7 + ζ−2
7 ))(x− (ζ4

7 + ζ−4
7 )).

Note that we don’t “need” ζj
7 + ζ−j

7 for j = 3, 5, 6 because they are the same as when j = 4, 2, 1 respectively.
To say p | f(n) is similarly to say that one of ζj

7 + ζ−j
7 , which a priori lies in Fp6 if p ̸= 7, actually lies in Fp

for some j = 1, 2, 4. We can check whether it lies in Fp by comparing

(ζj
7 + ζ−j

7 )p = ζpj
7 + ζ−pj

7 with ζj
7 + ζ−j

7 .

As complex numbers, it is easy to see that they are equal if and only if p ≡ ±1 (mod 7). One then expects
the same is true in Fp, at least for all but finitely many primes p. In the general case of a mod m, it is then
natural to take the polynomial in Q[x] of the smallest degree that has ζm +ζa

m as a root, by taking a product
of (x− (ζj

m + ζja
m )) for half of the j ∈ (Z/mZ)×, since the other half will just produce the same numbers.
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Lemma 12.5 There exists a subset S ⊆ (Z/mZ)× such that (Z/mZ)× is the disjoint union of S with
Sa = {ja : j ∈ S}.

Proof: (Exercise) Define a relation on elements of (Z/mZ)× by j ∼ k if j = k or j = ak. Check this is
an equivalence relation so that (Z/mZ)× is a disjoint union of equivalence classes of the form [j] = {j, ja}.
Pick one element from each equivalence class and form S. We will give a more intrinsic meaning to S using
the notion of quotient groups next time. 2

Unlike the case of −1, it is hard to check when ζj
m + ζja

m = ζk
m + ζka

m even in C, but it is easy to
check when

ζj
m + ζja

m = ζk
m + ζka

m and ζk
mζ

ka
m = ζj

mζ
ja
m

since this implies that
(x− ζk

m)(x− ζka
m ) = (x− ζj

m)(x− ζja
m ) ∈ C[x].

Setting x = ζk
m then gives k = j or k = ja.

Lemma 12.6 There exists an integer u such that the numbers

ηj = (mu− ζj
m)(mu− ζja

m ) ∈ C

for j ∈ S, are all distinct.

Proof: In order for ηj = ηk when j ̸= k, we have

mu(ζj
m + ζja

m − ζk
m − ζka

m ) = ζk
mζ

ka
m − ζj

mζ
ja
m .

When viewed as an equation in u, this has at most 1 solution unless

ζj
m + ζja

m = ζk
m + ζka

m and ζk
mζ

ka
m = ζj

mζ
ja
m ,

in which case we have either k = j or k = ja. Since j, k ∈ S, we have k = j. Contradiction. Hence, we have
the desired u by removing finitely many solutions from infinitely many integers. 2

We define
f(x) =

∏
j∈S

(x− ηj) =
∏
j∈S

(
x− (mu− ζj

m)(mu− ζja
m )
)
.

Note that

f(0) = (−1)|S|
∏
j∈S

(mu− ζj
m)(mu− ζja

m ) = (−1)|S|
∏

j∈(Z/mZ)×

(mu− ζj
m) = (−1)|S|Φm(mu),

all of whose prime divisors are 1 mod m. To prove that f(x) ∈ Z[x] and the divisibility properties, we need
to learn more about groups and fields.

Exercises
12.1 Let m be a positive integer. Give a formula for the number of solutions (mod m) to x2 ≡ 1 (mod m).

12.2 Factor x3 − 3x − 1 in C[x]. (Recall that this polynomial is used to prove the infinitude of primes
congruent to 8 mod 9.)

12.3 How many ways are there to pick the set S in Lemma 12.5?

Lecture 22 Wed 11/01
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13 Group Theory
A group is a set G equipped with one binary operation, one unary operation and one nullary operation:

(a, b) 7→ ab : G×G→ G a 7→ a−1 : G→ G, e ∈ G

such that for any a, b, c ∈ G,

(a) (Associative) a(bc) = (ab)c;

(b) (Multiplicative identity) a · e = a and a · a−1 = e.

With a little bit of work, one can prove that e · a = a and a−1 · a = e. If ab = ba for all a, b ∈ G, we say G is
an abelian group. All the groups that we will encounter in this class are abelian groups.
Examples:

1. The group of units R× of a commutative ring R is an abelian group with the multiplication, inversion
and 1 from the ring R.

2. The additive group of a ring R, where we forget about multiplication and use addition as the binary
operation, negation as inversion, and 0 as e, is an abelian group.

3. The additive group of the ring Z/mZ for m ∈ N, is called the cyclic group of order m, sometimes
denoted Cm.
The order of the group G is the size of G. The order o(g) of an element g ∈ G is the smallest positive
integer d such that gd = e. The cyclic group of order m is the group with an element g of order m, so
that G = {e, g, g2, . . . , gm−1}. The group of units F×

pn of a finite field is cyclic of order pn − 1.

The same argument used to prove that a|R×| = 1 and o(a) | |R×| can be used to prove the following
result in the case of abelian groups.

Proposition 13.1 Let G be a finite group of order m. Then for any g ∈ G, g|G| = e and so o(g) | |G|.
As a consequence, every finite group of prime order is cyclic.

To prove this for non-abelian groups, we introduce the notion of a subgroup of G, which is a subset
H of G closed under the operations of G. That is, it is closed under multiplication, inversion, and
contains the identity element. The subgroup generated by an element g is ⟨g⟩ = {gn : n ∈ Z}. If g has
order d, then this is just {e, g, . . . , gd−1}.
In the example of (Z/mZ)×, the coset a+mZ where a2 ≡ 1 (mod m) and a ̸≡ 1 (mod m) is an element
of order 2. It then generates a subgroup, ⟨a⟩, of order 2. In HW 9, you will discover when (Z/mZ)×

is cyclic. In this class, we will only focus on Cm and (Z/mZ)×.
Given any subgroup H of G and an element g ∈ G, we can define the left coset of H containing g as
gH = {gh : h ∈ H}. Two left cosets g1H = g2H if and only if g1 ∈ g2H if and only if g−1

2 g1 ∈ H. It
is easy to check that this defines an equivalence relation. Hence G is a disjoint union of left cosets of
H. If G (and H) is finite, then all the left cosets of H have the same size and we have proved that |H|
divides |G|. Taking H = ⟨g⟩ proves that o(g) | |G|.
We can define the quotient G/H as the set of left cosets of H. To define a group structure on G/H by
g1H · g2H = (g1g2)H, we need H to be a normal subgroup: for any g ∈ G and any h ∈ H, we have
ghg−1 ∈ H. When G is abelian, ghg−1 = h and so every subgroup is normal. The set S we saw in
Lemma 12.5 is basically (Z/mZ)×/⟨a⟩.
Group homomorphisms are defined just like ring homomorphisms. Kernels of group homomorphisms
are normal subgroups and we have the first isomorphism theorem for groups as well.
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4. Traditionally, groups arise as the group of symmetries of certain objects. For example, the symmetric
group Sn is the set of bijections from {1, 2, . . . , n} to itself, with composition as the binary operation,
inverse as inversion, and the identity map as e. This is an non-abelian group when n ≥ 3.
We are more interested in the group Aut(E) of ring isomorphisms from a field E to itself. These kinds
of isomorphisms are called automorphisms. If E is a field of containing another field F , we write
AutF (E) for the subgroup of Aut(E) consisting of automorphisms that act as identity on F .
For example, what is AutR(C)? We know that every complex number is of the form a + bi for some
a, b ∈ R. If σ ∈ AutR(C), then

σ(a+ bi) = σ(a) + σ(b)σ(i) = a+ bσ(i).

Now since i2 + 1 = 0, we can apply σ to both sides to get

σ(i)2 + 1 = 0.

Hence σ(i) = i or σ(i) = −i. In other words, AutR(C) consists of at most two elements, the identity
map and complex conjugation. It is easy to check that complex conjugation is in fact an automorphism
of C fixing R. Composing complex conjugation with itself gives the identity map. Therefore,

AutRC ∼= C2.

Theorem 13.2 Let p be a prime and n ∈ N. Then

Aut(Fpn) = AutFp
(Fpn) ∼= Cn

generated by the Frobenius map τ(x) = xp.

Proof: Any automorphism of Fpn sends 1 to 1 and so acts as identity on Fp. So Aut(Fpn) = AutFp(Fpn).
From (a+ b)p = ap + bp and (ab)p = apbp, we know that the Frobenius map τ defines a ring homomorphism
Fpn → Fpn . It is automatically injectively and it is then surjective because an injective map between two
finite sets of the same size is surjective. More explicitly, we have for any a ∈ Fpn ,

a = apn

= (apn−1
)p = τ(apn−1

).

Any positive power τm : x 7→ xpm of τ is also in Aut(Fpn). Since every element in Fpn satisfies apn = a, we
see that τn is the identity map. Since there is an element in F×

pn of order pn − 1, we see that no smaller
power of τ is the identity map. Hence ⟨τ⟩ ∼= Cn. It remains to prove that any σ ∈ Aut(Fpn) is a power of τ .

Lecture 23 Fri 11/03

Let f(x) ∈ Fp[x] be an irreducible polynomial of degree n. Then we may identify Fpn with
Fp[x]/(f(x)). Let α = x + (f(x)). Then any σ ∈ AutFp

(Fp[x]/(f(x))) is determined by σ(α), which
also must be a root of f(x) by Lemma 10.7. Indeed, since σ fixes the coefficients of f(x), we have

σ(f(α)) = f(σ(α)).

By HW 6 Problem 1, we know that the roots of f(x) in F are exactly α, αp, . . . , αpn−1
. Hence there is some

m = 0, . . . , n− 1 such that σ(α) = αpm = τm(α), which implies that σ = τm. 2

What are the subgroups of Cn? Let g be a generator of Cn so that

Cn = ⟨g⟩ = {e, g, . . . , gn−1}.

Let H be a subgroup of Cn. Let d be the smallest positive integer such that gd ∈ H. Then the usual division
algorithm argument implies that if gk ∈ H, then d | k. Hence H = ⟨gd⟩. Since gn = e ∈ H, we have d | n
and

|H| = o(gd) = o(g)
gcd(d, o(g)) = n

d
.
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In other words, all the subgroups of Cn are cyclic, and there is a unique subgroup of order d for any positive
divisor d of n.

What are the subfields of Fpn? We saw before that Fpn has a (unique) subfield isomorphic to Fpd if
and only if d | n, in which case this subfield is given by

{a ∈ Fpn : apd

= a} = {a ∈ Fpn : τd(a) = a} = {a ∈ Fpn : σ(a) = a,∀σ ∈ ⟨τd⟩}.

On the other hand, by taking a primitive element of Fpd , we know that no smaller positive power of τ fixes
Fpd . So we have

AutF
pd

(Fpn) = ⟨τd⟩.

In other words, there is a natural bijection between subgroups of AutFp(Fpn) and subfields of Fpn (containing
Fp). That is, the following two maps are inverses of each other.

H 7→ FH
pn := {a ∈ Fpn : h(a) = a,∀h ∈ H}

AutF (Fpn) ← [ F.

The correspondence between subgroups of the automorphism group AutF (E) and subfields of E containing
F is the heart of Galois theory. We will not develop Galois theory but will note an important consequence:

EAutF (E) = F.

In other words, assuming certain conditions on the field extension E/F , elements of E that are fixed by
every automorphism of E fixing F , actually lie in F . We will not use this fact but will point out where this
property is reflected. In HW 8, you will consider the notion of normal extensions and separable extensions,
which are assumptions the field extension E over F needs to satisfy for Galois theory to work.

Exercises
13.1 Let G be a group and let g ∈ G with o(g) finite. Prove that for any positive integer k, we have

o(gk) = o(g)
gcd(o(g), k) .

13.2 Let F be any field and let f(x) ∈ F [x] be a degree 2 irreducible polynomial. Let E = F [x]/(f(x)).
Prove that AutF (E) ∼= C2.

13.3 Prove that AutQ(R) = {1}.

The following result is beyond our scope: the automorphism group AutQ(C) has cardinality 22ℵ0
.

13.4 Let E = Q[x]/(x3 − 2). Prove that E is a field and AutQ(E) = {1}.

13.5 Let E = Q[x]/(x4 + 1). Prove that E is a field and AutQ(E) ∼= C2 × C2.

14 Field extensions
We now expand on some very important ideas illustrated by the examples in the previous section. We say
E is a field extension of F if F is a subfield of E. We usually write E/F for the field extension. (Not to
be confused with ring quotients. After all, fields don’t have interesting quotients.)

In both the examples of C/R and Fpn/Fp, there is an isomorphism E ∼= F [x]/(f(x)) for some
irreducible polynomial f(x). Let α ∈ E corresponds to x+ (f(x)). Then every element of E is of the form
j(α) for some polynomial j(x) ∈ F [x].
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In general, given a field extension E/F and an element α ∈ E, we write F [α] for the smallest subring
of E containing F and α. In other words,

F [α] = {j(α) : j(x) ∈ F [x]}.

We write F (α) for the smallest subfield of E containing F and α. In other words,

F (α) =
{ j(α)
k(α) : j(x), k(x) ∈ F [x], k(α) ̸= 0

}
.

The evaluation map
evα : F [x]→ F [α]

is a surjective homomorphism. Its kernel is an ideal I of F [x], which is necessarily of the form (f(x)). If
f(x) = 0, then we say α is transcendental over F , in which case

F [α] ∼= F [x] and F (α) ∼= F (x),

the field of rational functions in x.
If f(x) is nonzero, then we may assume it is monic and F [x]/(f(x)) ∼= F [α] is an integral domain

since it is a subring of a field. Therefore, f(x) is irreducible and F [x]/(f(x)) is a field, which also implies
that

F (α) ∼= F [α] ∼= F [x]/(f(x)).
In this case, we say α is algebraic and we call the monic generator of the kernel of evα the minimal
polynomial of α over F . Equivalently, it is easy to see that the the minimal polynomial of α is the monic
irreducible polynomial in F [x] that has α as a root. Moreover, using our usual division algorithm argument,
we see that the minimal polynomial f(x) of α is the monic polynomial in F[x] of the smallest degree that
has α has a root; and so if h(x) ∈ F [x] has α as a root, then f(x) | h(x) in F [x].

Proposition 14.1 Suppose α is algebraic over F with minimal polynomial f(x). Then there is a bijection
between AutF (F (α)) and the set of distinct roots of f(x) in F (α).

Proof: Any automorphism σ of F (α) fixing F is determined by σ(α), which must also be a root of f(x).
Conversely, suppose β ∈ F (α) is a root of f(x). Then there is a homomorphism F [x]/(f(x))→ F (α) sending
j(x)+(f(x)) to j(β). Composing it with the inverse of the natural isomorphism F [x]/(f(x))→ F (α) sending
x+(f(x)) to α, we get a homomorphism F (α)→ F (α) sending α to β. Such a homomorphism is necessarily
injective since the domain is a field. To prove that it is surjective, we need to talk about vector spaces. 2

It is then fairly natural to imagine that in the framework of Galois theory, we assume that F (α)
contains all the roots of f(x) (normal extension), and that f(x) has no repeated roots (separable extension).
You will explore these in HW 8.

Lecture 24 Mon 11/06

Given α1, . . . , αn in E, we write

SpanF {α1, . . . , αn} = {c1α1 + · · ·+ cnαn : c1, . . . , cn ∈ F}

for the F -span of α1, . . . , αn. It is an F -vector space: closed under addition and closed under multiplication
by F . If SpanF {α1, . . . , αn} = E, then we call {α1, . . . , αn} a spanning set and we say E is a finite
extension of F .
Example: Suppose

E = F (α) = F [α] ∼= F [x]/(f(x))
and f(x) has degree d. Then every element of E is of the form g(α) for some polynomial g(x) ∈ F [x] of
degree less than d. In other words, every element of E is of the form

c0 + c1α+ · · ·+ cd−1α
d−1.
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So the set {1, α, . . . , αd−1} is a spanning set of E. Note also that if such an expression is 0, then α is a root
of c0 + c1x+ · · ·+ cd−1x

d−1, which must then be divisible by the degree d polynomial f(x); hence we have
c0 = · · · = cd−1 = 0.

A set {α1, . . . , αn} ⊆ E is said to be linearly independent over F if whenever c1α1+· · ·+cnαn = 0
for some c1, . . . , cn ∈ F , we have c1 = · · · = cn = 0. A linearly independent spanning set is called a basis.

Lemma 14.2 If E has a spanning set {α1, . . . , αn} of size n, then E has no linearly independent set of size
more than n.

Proof: Suppose for a contradiction that {β1, . . . , βn+1} is a linearly independent set of size n+ 1. For each
i = 1, . . . , n+ 1, there exist ci1, . . . , cin ∈ F such that

βi = ci1α1 + · · ·+ cinαn.

We look for x1, . . . , xn+1 ∈ F that are not all 0 such that

x1β1 + · · ·+ xn+1βn+1 = 0.

In terms of the coefficients in α1, . . . , αn, we see that it suffices to prove that

x1c11 + · · ·+ xn+1cn+1 1 = 0
...

x1c1 n + · · ·+ xn+1cn+1 n = 0

has a nonzero solution. Note we have n linear equations and n + 1 unknowns. So we may use standard
elimination method for solving systems of linear equations. More precisely, at least one of the cij is nonzero,
for if otherwise all the βi are 0 and so can’t be linearly independent. By renaming, suppose c11 ̸= 0. Then
we use the first equation to express

x1 = −c−1
11 c21x2 − · · · − c−1

11 cn+1 1xn+1

and plug it into the other equations. Now we have n− 1 linear equations and n unknowns, which must have
a nonzero solution in (x2, . . . , xn) by induction. We then use the above formula to find x1. The base case of
1 equation and 2 unknowns is obvious. 2

We list some immediate consequences of Lemma 14.2.

Corollary 14.3 If E has a spanning set of size n, then any linearly independent set of size n is a basis.

Proof: Suppose {β1, . . . , βn} is linearly independent over F . If it doesn’t span E, then there exists some
γ ∈ E\SpanF {β1, . . . , βn}. Then it is easy to see that {β1, . . . , βn, γ} is linearly independent over F of size
n+ 1. Contradiction. 2

Corollary 14.4 Suppose E/F is finite. Then:

(a) Any linearly independent set over F can be enlarged into a basis over F .

(b) Any spanning set contains a basis over F .

(c) Any homomorphism σ : E → E fixing F is an isomorphism.

Proof: Let d denote the size of a smallest spanning set of E. A linearly independent set that is not a
spanning set can be enlarged by the same procedure as in the proof of the previous corollary. This process
terminates when we reach a linearly independent set of size d, which is then a basis.
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Suppose {α1, . . . , αn} is a spanning set of E that is not linearly independent over F . Then there
exists c1, . . . , cn not all 0 such that c1α1 + · · ·+ cnαn = 0. By renaming, we may assume c1 ̸= 0. Then

α1 = −c−1
1 c2α2 − · · · − c−1

1 cnαn.

Hence {α2, . . . , αn} is a spanning set of E. This process terminates when we reach a linearly independent
set that is also a spanning set.

Finally, any field homomorphism is injective. Let {α1, . . . , αd} be a basis of E over F . We claim
that {σ(α1), . . . , σ(αd)} is linearly independent over F , which then implies that it is a basis and so the image
of σ is all of E. Suppose c1, . . . , cd ∈ F such that

c1σ(α1) + · · ·+ cdσ(αd) = 0.

Since σ fixes F , we have

σ(c1α1 + · · ·+ cdαd) = c1σ(α1) + · · ·+ cdσ(αd) = 0.

Since σ is injective, we see that c1α1 + · · ·+ cdαd = 0 and so c1 = · · · = cd = 0 by the linear independence
of {α1, . . . , αd}. 2

From Lemma 14.2, we see that any two bases of E have the same size: If one has size n and the
other has size m, then using the size n spanning set and size m linearly independent set, we get m ≤ n
and similarly we have n ≤ m. This common size is the degree of the extension, denoted [E : F ], or the
dimension of E as an F -vector space.

Corollary 14.5 Suppose the minimal polynomial of α has degree d. Then [F (α) : F ] = d.

Proposition 14.6 Suppose L is a finite extension of E and E is a finite extension of F . Then L is a finite
extension of F and [L : F ] = [L : E][E : F ].

Proof: Let {α1, . . . , αn} be a basis of L over E and let {β1, . . . , βm} be a basis of E over F . Then it is easy
to check that

{αiβj : i = 1, . . . , n, j = 1, . . . ,m}

is a basis of L over F . 2

Proposition 14.7 If E/F is finite, then every α ∈ E is algebraic.

Proof: Suppose d = [E : F ] and α ̸= 0. Then {1, α, . . . , αd} is a set of size d + 1 and so is not linearly
independent. Then c0 + c1α + · · · + cdα

d = 0 for some c0, . . . , cd ∈ F not all 0. Then α is a root of the
nonzero polynomial c0 + c1x+ · · ·+ cdx

d. 2

Exercises
14.1 Suppose E/F is finite of degree d. Suppose |F | is finite. Prove that |E| = |F |d, without using the

classification theorem of finite fields.
This gives another proof that any finite field has size pd for some prime p. It also proves that if Fpd is
a subfield of Fpn , then d | n.

14.2 Find [Q(
√

2 +
√

3) : Q].

14.3 Suppose E/F is a field extension. Let α, β be elements of E. We write F (α, β) = F (α)(β) for the
smallest subfield of E containing α, β and F . Prove that Q(

√
2,
√

3) = Q(
√

2 +
√

3) (as subfields of C,
or R).
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14.4 Prove that AutQ(Q(
√

2 +
√

3)) ∼= C2 × C2.

14.5 Let F be a field and consider E = F (α) where α is algebraic over F . For any intermediate field L in
the extension E/F , i.e F ⊆ L ⊆ E, we let fL(x) ∈ L[x] be the minimal polynomial of α over L.

(a) Prove that for any intermediate fields L and K, we have L ⊆ K if and only if fL(x) ∈ K[x].
(b) Prove that for any intermediate fields L and K, we have L = K if and only if fL(x) = fK(x).
(c) Prove that there are only finitely many intermediate fields in the extension E/F .

14.6 Suppose E/F is a finite extension where F is infinite. Suppose there are finitely many intermediate
fields in the extension E/F . Prove that there exists α ∈ E such that E = F (α).
Galois theory implies that if F is a finite field or a field of characteristic 0, then a finite extension E/F
has finitely many intermediate fields. In other words, they are all of the form F (α)/F . Extensions of
this form are known as simple extensions.

14.7 Consider F = Fp(x, y), the field of rational functions in two variables x, y over Fp. Let E = Fp(t, s)
with tp = x and sp = y. In other words, E = F [T, S]/(T p − x, Sp − y). Prove that E/F is a finite
extension and there does not exist α ∈ E such that E = F (α).

14.8 Let E/F be a field extension. Let

L = {α ∈ E : α is algebraic over F}.

Prove that L is a field. Such a field is called the algebraic closure of F in E.

Lecture 25 Wed 11/08

15 Cyclotomic extension
In this section, we consider the Cyclotomic extension Q(ζm) over Q. Since ζm is a root of Φm(x) ∈ Z[x], we
see that it is algebraic and Q(ζm) = Q[ζm]. We begin with the irreducibility of Φm(x).

Theorem 15.1 For any m ∈ N, Φm(x) is irreducible in Q[x].

Since Φm(x) is also monic, we see that it is then the minimal polynomial of ζm. The roots of Φm(x)
are of the form ζk

m where k ∈ (Z/mZ)×, all of which lie in Q(ζm), and so there is a bijection between
AutQ(Q(ζm)) and (Z/mZ)×. We write σk for the automorphism sending ζm to ζk

m. For j, k ∈ (Z/mZ)×, we
see that

σj(σk(ζm)) = σj(ζk
m) = ζjk

m = σjk(ζm).
Hence the bijection j 7→ σj is also a group isomorphism.

Corollary 15.2 For any integer m ≥ 2, we have [Q(ζm) : Q] = ϕ(m) and AutQ(Q(ζm)) ∼= (Z/mZ)×.

We now work towards the irreducibility of Φm(x). Let f(x) ∈ Q[x] be the minimal polynomial of ζm.
Then f(x) is a monic irreducible polynomial dividing Φm(x). Write Φm(x) = f(x)g(x) for some g(x) ∈ Q[x].
We prove first that f(x) and g(x) are in Z[x].

Given any polynomial a(x) ∈ Z[x], we define its content to be the gcd of all of its coefficients. We
say a(x) is primitive if its content is 1. For example, 2x − 3 is primitive. Any monic polynomial in Z[x],
for example Φm(x), is primitive. For any prime p, let πp denote the natural homomorphism

πp : Z[x]→ Fp[x] : anx
n + · · ·+ a0 7→ anx

n + · · ·+ a0.

Note that a(x) is primitive if and only if πp(a(x)) ̸= 0 for all primes p.

Lemma 15.3 (Gauss) If a(x) and b(x) are primitive, then so is a(x)b(x).
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Proof: Let p be any prime. Since Fp is a field, Fp[x] is an integral domain. Hence from πp(a(x)) ̸= 0 and
πp(b(x)) ̸= 0, we have πp(a(x)b(x)) = πp(a(x))πp(b(x)) ̸= 0. 2

Corollary 15.4 Suppose h(x) ∈ Z[x] is primitive and j(x), k(x) ∈ Q[x] are monic polynomials such that
h(x) = j(x)k(x). Then j(x), k(x) ∈ Z[x].

Proof: Let cj and ck be the smallest positive integers such that cjj(x) ∈ Z[x] and ckk(x) ∈ Z[x]. Let d ∈ N
be the content of cjj(x). Then d divides the leading coefficient cj . So now cj/d ∈ N and (cj/d)j(x) ∈ Z[x].
By minimality of cj , we have d = 1. So cjj(x) and similarly ckk(x) are primitive. By Gauss’ Lemma, their
product

cjckj(x)k(x) = cfcgH(x)

is primitive. Since h(x) ∈ Z[x] is primitive, we have cjck = 1. Hence cj = ck = 1. 2

Corollary 15.5 If α ∈ C is the root of a monic polynomial in Z[x], then the minimal polynomial of α over
Q is in Z[x]. They are called algebraic integers.

Proof: Let h(x) ∈ Z[x] be a monic polynomial having α as a root. Then h(x) is primitive. Let j(x) ∈ Q[x]
be the minimal polynomial of α over Q. Since j(x) and h(x) are both monic and j | h in Q[x], there exists
a monic polnyomial k(x) ∈ Q[x] such that j(x)k(x) = h(x). By Corollary 15.4, we have j(x) ∈ Z[x]. 2

Applying Corollary 15.5 to ζm, we find that f(x) and g(x) are in Z[x] and are monic.

Proposition 15.6 Suppose ζ is a root of f(x). Then for any prime p ∤ m, ζp is also a root of f(x).

Note that for any positive integer j coprime to m, it can be written as a product of primes p1 · · · pr,
none of which divides m. Then by repeatedly applying this result, starting from the root ζm, we find that
ζj

m = ζp1···pr
m is a root of f(x). Hence all the roots of Φm(x), which are all distinct, are roots of f(x). So

Φm(x) | f(x). Since f(x) is irreducible and they are both monic, we have Φm(x) = f(x) is irreducible.
Proof: Since f(x) is monic irreducible, we see that it is also the minimal polynomial of ζ. Since ζ is a root
of Φm, we know that it is of the form ζk

m for some integer k coprime to m. Since p ∤ m, we have that pk is
also coprime to m and so ζp = ζpk

m is a root of Φm(x). Suppose for a contradiction that ζp is not a root of
f(x). Then it is a root of g(x). Hence ζ is a root of g(xp), which implies that g(xp) is divisible by f(x) in
Q[x]. Since f(x) is monic and and g(xp) is a monic polynomial in Z[x], we have g(xp) = f(x)h(x) for some
h(x) ∈ Z[x] by Corollary 15.4. Recall that Φm(x)j(x) = xm − 1, where j(x) ∈ Z[x] is the product of Φd(x)
over all positive divisors d | m such that d ̸= m. In other words, we have

xm − 1 = f(x)g(x)j(x),
g(xp) = f(x)k(x).

The trick now is to apply πp to work in Fp[x]. In Fp[x], we have

πp(g(x))p = πp(g(xp)) = πp(f(x))πp(k(x)).

Let ℓ(x) ∈ Fp[x] be a monic irreducible divisor of πp(f(x)). Then we have ℓ(x) | πp(g(x))p and so ℓ(x) |
πp(g(x)). However, this implies that ℓ(x)2 | πp(Φm(x)) | xm − 1 in Fp[x]. So ℓ(x) divides the derivative
mxm−1. Since p ∤ m, we have ℓ(x) = x, but it can’t divide xm − 1. Contradiction. 2

There is a very nice irreducibility criterion that can be used to prove that Φp(x) is irreducible when
p is prime.

Proposition 15.7 (Eisenstein’s criterion) Suppose f(x) ∈ Z[x] of degree n and p is a prime. Suppose
πp(f(x)) = αxn for some α ∈ F×

p and νp(f(0)) = 1. Then f(x) is irreducible in Q[x].
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Proof: Suppose for a contradiction that f(x) = g(x)h(x) where g(x) ∈ Q[x] has degree d ≥ 1 and h(x) ∈ Q[x]
has degree e ≥ 1. The same argument as in the proof of Corollary 15.4 implies that we may assume that
g(x), h(x) ∈ Z[x]. Now

πp(g(x))πp(h(x)) = πp(f(x)) = αxn.

So we must have πp(g(x)) = βxd and πp(h(x)) = γxe for some β, γ ∈ F×
p . Since d, e ≥ 1, we have p | g(0)

and p | h(0). Then νp(g(0)h(0)) ≥ 2 contradicting νp(f(0)) = 1. 2

Note that

Φp(x+ 1) = (x+ 1)p − 1
x

= xp−1 + pxp−2 +
(
p

2

)
xp−3 + · · ·+ p

satisfies the conditions of Eisenstein’s criterion. Hence Φp(x+ 1) is irreducible, and so is Φp(x).

Lecture 26 Fri 11/10

Let’s recall the construction of the polynomial in the proof of Schur’s theorem. Let m be a positive integer
and let a ∈ (Z/mZ)× be an element of order 2. Fix a subset S ⊆ (Z/mZ)× such that (Z/mZ)× is a disjoint
union of S and Sa. Suppose without loss of generatlity that 1 ∈ S. Choose an integer u such that

ηj = (mu− ζj
m)(mu− ζja

m ) ∈ Q(ζm)

for j ∈ S are all distinct. Note that each ηj is algebraic. We defined

f(x) =
∏
j∈S

(x− ηj) =
∏
j∈S

(
x− (mu− ζj

m)(mu− ζja
m )
)
.

Lemma 15.8 The minimal polynomial of η1 over Q is f(x). In other words, f(x) ∈ Q[x] and is irreducible.

Proof: Recall that we have a group isomorphism (Z/mZ)× → AutQ(Q(ζm)) sending j to the automorphism
σj where σj(ζm) = ζj

m. Let g(x) ∈ Q[x] denote the minimal polynomial of η1 over Q. Then every element of
the form σj(η1) is a root of g(x). Note that for any j ∈ S,

σj(η1) = (mu− ζj
m)(mu− ζja

m ) = ηj ,

σja(η1) = (mu− ζja
m )(mu− ζj

m) = ηj .

Then ηj , for j ∈ S, are all roots of g(x) in Q(ζm) and we have f(x) | g(x) in Q(ζm)[x]. It remains to prove
that they have the same degree. Note that

[Q(η1) : Q] = deg(g) ≥ |S| = 1
2ϕ(m).

Moreover, since Q(η1) ⊆ Q(ζm), we have

ϕ(m) = [Q(ζm) : Q] = [Q(ζm) : Q(η1)][Q(η1) : Q].

We now prove that Q(η1) ̸= Q(ζm). We use σa :

σa(η1) = η1, and σa(ζm) = ζa
m ̸= ζm.

So σa fixes Q(η1), but not Q(ζm). Hence [Q(ζm) : Q(η1)] ≥ 2 and so [Q(η1) : Q] ≤ ϕ(m)/2. Combining this
with the above lower bound gives deg(g) = deg(f) = ϕ(m)/2. 2

Remark: In fact, we have
Q(η1) = Q(ζm)⟨σa⟩.
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Since f(x) is fixed by every element in AutQ(Q(ζm)), Galois theory would also imply immediately that
f(x) ∈ Q[x].

We prove next that f(x) ∈ Z[x]. Consider the ring

Z[ζm] = {j(ζm) : j(x) ∈ Z[x]}.

In other words, Z[ζm] is the smallest subring of Q(ζm) containing (Z and) ζm. Then we see that ηj ∈ Z[ζm]
for all j ∈ S. Hence f(x) ∈ Z[ζm][x].

Lemma 15.9 We have Z[ζm] ∩Q = Z. In particular, f(x) ∈ Z[x].

Proof: Since the minimal polynomial Φm(x) of ζm is monic and has integer coefficients, we know that every
element in Z[ζm] is of the form j(ζm) for some polynomial j(x) ∈ Z[x] of degree less than ϕ(m). Suppose
that there exists some j(x) ∈ Z[x] with deg(j) < ϕ(m) and r, s ∈ Z with s ̸= 0 such that

j(ζm) = r

s
.

Then sj(ζm) − r = 0. Hence sj(x) − r ∈ Z[x] is divisible by Φm(x) in Q[x] but it has degree less than
deg(Φm(x)). So sj(x)− r = 0. Setting x = 0 gives r = sj(0) and so j(ζm) = j(0) ∈ Z. 2

We now consider the divisibility statements: there exists a nonzero integer N such that
(a) If p is a prime divisor of f(n) for some integer n, then p | N or p ≡ 1 or a mod m.

(b) If p is a prime congruent to a mod m and p ∤ N , then there exists b ∈ Z such that νp(f(b)) = 1.
We give a sketch of the idea first. Suppose p | f(n) for some n ∈ Z. Then we have

p |
∏
j∈S

(n− ηj).

We would like to say that p | n− ηj for some j ∈ S, which is “like saying” that

ηj = n ∈ Fp and so ηp
j = ηj .

Since we are now in characteristic p, we have

ηp
j = (mu− ζjp

m )(mu− ζjap
m ) = ηjp.

We know that

ηj = ηjp ∈ C⇐⇒ jp = j or jp = ja ∈ (Z/mZ)× ⇐⇒ p ≡ 1 or a (mod m).

We need this to also be true in Fp, except for p | N for some nonzero integer N .
To make the first step rigorous, we are looking at a property of the form

p | ab⇒ p | a or p | b.

This is exactly Euclid’s lemma for primes, but its proof requires the notion of gcd. However, most Z[ζm] are
not Euclidean domains (we will see that they are for m = 3, 4), as most of them are not PIDs. In fact, it is
a theorem that Z[ζm] is a Euclidean domain if and only if it is a PID, and there are only finitely many of
them. The way to get around it is to work with prime ideals instead.

Let R be a commutative ring. An ideal I of R is a prime ideal if it is a proper ideal and whenever
ab ∈ I for some a, b ∈ R, we have a ∈ I or b ∈ I. In terms of the quotient R/I, this means that if
(ab) + I = 0 + I, then a+ I = 0 + I or b+ I = 0 + I. In other words, I is a prime ideal if and only if R/I is
an integral domain.

When R = Z, the prime ideals are pZ and (0). When R = F [x] for some field F , the prime ideals
are (f(x)) where f(x) is irreducible or 0. We note that in there two examples, if the prime ideal I is not (0),
then R/I is actually a field. When R = Z[x] and I = (x), we have R/I ∼= Z is an integral domain but not a
field.
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Lecture 27 Mon 11/13

When R = Z[ζm] and p is a prime, the ideal pR is not necessarily a prime ideal of R. Recall the
natural map πp : Z[x]→ Fp[x]. Then

R/pR ∼= Fp[x]/(πp(Φm(x)))

which is not an integral domain if πp(Φm(x)) is not irreducible. As you will prove in HW10, πp(Φm(x)) is
very often reducible.
Theorem 15.10 Suppose p ∤ m. Then πp(Φm(x)) factors into a product of ϕ(m)/om(p) irreducible polyno-
mials in Fp[x], where om(p) is the order of p mod m.

Note if om(p) = ϕ(m), then the group G = (Z/mZ)× has an element p whose order equals |G|,
which implies that (Z/mZ)× is cyclic. You proved in HW9 that this happens only when m = 2, 4, qk, 2qk

for some odd prime q.
Example: Consider Φ8(x) = x4 + 1. Let’s prove that x4 + 1 is reducible in Fp[x] for every prime p. When
p = 2, we have x4 + 1 = (x + 1)4. Suppose p is an odd prime. Then p2 ≡ 1 (mod 8). So Fp2 contains a
primitive 8-th root of unity α. The minimal polynomial of α over Fp then has degree at most 2 and it divides
x4 + 1.

We fix an irreducible factor g0(x) of πp(Φm(x)) and let g(x) ∈ Z[x] so that πp(g(x)) = g0(x). Let

Ip = (p, g(ζm))

be the ideal of R generated by p and g(ζm). Since p ∈ Ip, we see that Ip does not depend on the choice of
the lift g(x). From the isomorphisms

R/Ip
∼= Z[x]/(p, g(x),Φm(x)) ∼= Fp[x]/(g0(x), πp(Φm(x))) = Fp[x]/(g0(x)),

we see that R/Ip is a finite field of characteristic p and so Ip is a prime ideal. We can now redo the argument
from last time using Ip.

Suppose p is a prime and p | f(n) for some integer n. Then∏
j∈S

(n− ηj) ∈ pZ ⊆ pR ⊆ Ip.

Since Ip is a prime ideal, we see that there exists j ∈ S such that n − ηj ∈ Ip. Write r̄ for the coset
r + Ip ∈ R/Ip. In other words, r̄ is the image of r under the natural map R→ R/Ip. Then we have ηj = n̄.
Since n is an integer, we have n̄ ∈ Fp. Hence

ηj ∈ Fp =⇒ ηj
p = ηj .

On the other hand,

ηj
p = (mup − ζm

jp)(mup − ζm
jap) = (mu− ζjp

m )(mu− ζjap
m ) = ηjp,

where the first equality holds because R/Ip is a field of characteristic p. Hence we have ηj − ηjp ∈ Ip.

Proposition 15.11 There exists a nonzero integer N such that if p ∤ N , then for distinct j, k ∈ S, we have
ηj − ηk /∈ Ip.

We remark that this result is also similar to the statement that every nonzero integer is divisible by
only finitely many primes.

Let’s see how everything follows from this result. From ηj − ηjp ∈ Ip, we see that: if jp ∈ S, then
jp = j and so p ≡ 1 (mod m); if jp ∈ Sa, then jpa ∈ S and so jpa = j, implying that p ≡ a−1 ≡ a
(mod m). In other words, if p ∤ N is a prime divisor of some f(n), then p is congruent to 1 or a mod m.

Suppose conversely that p ≡ 1 or a (mod m) and p ∤ N . From p = 1 or p = a in (Z/mZ)×, we have

η1 = ηp = η1
p.

Hence η1 ∈ Fp. Let n be an integer such that n̄ = η1. Then we have n− η1 ∈ Ip and so f(n) ∈ Ip.
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Lemma 15.12 Suppose I is a prime ideal of a commutative ring R1. Let R2 be a subring of R1. Then
I ∩R2 is a prime ideal of R2. (Compare this with Exercise 9.4 about maximal ideals.)
Proof: It is easy to check that I ∩ R2 is a proper (because it doesn’t contain 1) ideal of R2. Suppose
a, b ∈ R2 with ab ∈ I ∩R2. Then from ab ∈ I, we have a ∈ I or b ∈ I. So a ∈ I ∩R2 or b ∈ I ∩R2. 2

As an immediate corollary, we have Ip∩Z = pZ since it is a prime ideal of Z containing p. Therefore,
we have p | f(n).

What about p2 ∤ f(n)? Suppose we have p2 | f(n) instead. Then
f(n+ p) ≡ f(n) + pf ′(n) ≡ pf ′(n) (mod p2).

So if we have p ∤ f ′(n), then p2 ∤ f(n+ p) and we can take n+ p instead. Using the product rule, we have

f ′(x) = d

dx

∏
j∈S

(x− ηj) =
∑
j∈S

∏
k∈S,k ̸=j

(x− ηk) =
∏

k∈S,k ̸=1
(x− ηk) + (x− η1)(· · · ).

We set x = n. We know that n− η1 ∈ Ip and n− ηk /∈ Ip for any k ∈ S different from 1 since η1 − ηk /∈ Ip.
Then we have f ′(n) /∈ Ip and so p ∤ f ′(n).

Lecture 28 Wed 11/15
It now remains to prove Proposition 15.11. Since Ip is a prime ideal, we see that in order for each

ηj − ηk /∈ Ip, it is equivalent to require that ∏
j,k∈S
j ̸=k

(ηj − ηk) /∈ Ip.

The punchline is that this product is an integer N . By construction, the ηj are distinct complex numbers,
so N ̸= 0. If a prime p doesn’t divide N , then N /∈ pZ = Ip ∩ Z. So N /∈ Ip and we are done!

We remark that since every element of AutQ(Q(ζm)) permutes ηj for j ∈ S, their product is fixed
by every element of AutQ(Q(ζm)). Hence using Galois theory, we immediately obtain this product is in Q
and since it is also in Z[ζm], we see that it is an integer.

Without Galois theory, we will use the theory of symmetric polynomials. We note that any permu-
tation of the ηj ’s leaves the above product unchanged.

Exercise
15.1 Prove that if r ∈ Q is an algebraic integer. Then r ∈ Z.

15.2 Prove that Q(ζ8) = Q(
√

2, i).

15.3 Prove that (Z/8Z)× ∼= C2 × C2 as groups.

15.4 For which primes p is x6 +x3 + 1 irreducible in Fp[x]? For which primes p does x6 +x3 + 1 have a root
in Fp?

15.5 What are all the prime ideals of Z[ζm] for some fixed m ≥ 2?

15.6 Let m ≥ 2 be an integer. Prove that∏
1≤i<j≤m

(ζi
m − ζj

m)2 = (−1)(m−1)(m+2)/2mm.

15.7 Suppose f(x) ∈ Z[x] is a monic polynomial dividing xm − 1 for some m ≥ 2. Let p be a prime not
dividing m and let ζ be a root of f(x). Let R = Z[ζm] and let Ip be a prime ideal of R containig p.

(a) Prove that f(ζp) ∈ Ip.

(b) Prove that if f(ζp) ̸= 0, then f(ζp) | mm in R. Conclude that f(ζp) = 0.

This gives another proof of Proposition 15.6.
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16 Symmetric polynomials
Let R be a commutative ring. Then we have the polynomial ring R[x1, . . . .xn] in n-variables with coefficients
in R. One can also view this as formed from R inductively via

R[x1, . . . .xn] = R[x1, . . . , xn−1][xn].

Given any bijection σ : {1, . . . , n} → {1, . . . , n} and any f ∈ R[x1, . . . , xn], we define

σ(f)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

We say f(x1, . . . , xn) is symmetric in x1, . . . , xn if

σ(f) = f

for any such σ. Here are some examples of symmetric polynomials in 3 variables:

1, x1 + x2 + x3, x2
1 + x2

2 + x2
3, x1x2 + x1x3 + x2x3

x3
1 + x3

2 + x3
3, x2

1x2 + x2
2x1 + x2

2x3 + x2
3x2 + x2

1x3 + x2
3x1, x1x2x3.

The elementary symmetric polynomials are defined as

sk(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik
.

For example,

s1(x1, x2, x3) = x1 + x2 + x3

s2(x1, x2, x3) = x1x2 + x1x3 + x2x3

s3(x1, x2, x3) = x1x2x3

Alternatively, we let
P (t) = (t− x1) · · · (t− xn) ∈ R[x1, . . . , xn][t].

Then sk(x1, . . . , xn) is the coefficient of (−1)ktk in P (t).

Theorem 16.1 If f(x1, . . . , xn) ∈ R[x1, . . . , xn] is symmetric in x1, . . . , xn, then there exists a polynomial
g ∈ R[x1, . . . , xn] such that f(x1, . . . , xn) = g(s1, . . . , sn).

For example, we have

x2
1 + x2

2 + x2
3 = (x1 + x2 + x3)2 − 2(x1x2 + x1x3 + x2x3) = s2

1 − 2s2.

Proof: We induct on n and the degree of f viewed as a polynomial in x1 with coefficient in R[x2, . . . , xn].
The base case f(x1) = cx1 is trivial. Suppose we are in the general case. Then f(x1, . . . , xn−1, 0) is symmetric
in x1, . . . , xn−1 and so by induction, there exists j ∈ R[x1, . . . , xn−1] such that

f(x1, . . . , xn−1, 0) = j(s1(x1, . . . , xn−1), . . . , sn−1(x1, . . . , xn−1)).

We observe that
sk(x1, . . . , xn−1) = sk(x1, . . . , xn−1, 0).

Hence
f(x1, . . . , xn)− j(s1(x1, . . . , xn), . . . , sn−1(x1, . . . , xn))

is a polynomial that vanishes when xn = 0. Hence every term has an xn in it. Since it is symmetric in
x1, . . . , xn, every term has x1 · · ·xn in it. Let h ∈ R[x1, . . . , xn] be a polynomial such that

f(x1, . . . , xn)− j(s1(x1, . . . , xn), . . . , sn−1(x1, . . . , xn)) = x1 · · ·xnh(x1, . . . , xn).
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Then h is symmetric in x1, . . . , xn of degree than less than deg(f). So by induction, there exists k ∈
R[x1, . . . , xn] such that

h(x1, . . . , xn) = k(s1(x1, . . . , xn), . . . , sn(x1, . . . , xn)).

Then we have
f(x1, . . . , xn) = j(s1, . . . , sn−1) + snk(s1, . . . , sn)

is a polynomial in s1, . . . , sn. 2

An important example is the polynomial

∆(x1, . . . , xn) =
∏

1≤i<j≤n

(xi − xj)2 = (−1)n(n−1)/2
∏
i ̸=j

(xi − xj) ∈ Z[x1, . . . , xn].

of the product of the difference of the variables, when n ≥ 2. For example,

∆(x1, x2) = (x1 − x2)2 = (x1 + x2)2 − 4x1x2.

Since ∆(x1, . . . , xn) is symmetric in x1, . . . , xn, there is a unique polynomial G ∈ Z[x1, . . . , xn] such that

∆(x1, . . . , xn) = G(s1, . . . , sn).

Now given any polynomial f(x) = xn + c1x
n−1 + · · ·+ cn ∈ R[x], we define its discriminant

∆(f) = G(−c1, c2, . . . , (−1)ncn) ∈ R.

Lecture 29 Fri 11/17

Suppose now R = F is a field. Let E/F be a splitting field of f(x). In other words, there exist α1, . . . , αn ∈ E
such that

f(x) = (x− α1) · · · (x− αn).

Then we have for k = 1, . . . , n,
ck = (−1)ksk(α1, . . . , αn).

Then
∆(f) = G(s1(α1, . . . , αn), . . . , sn(α1, . . . , αn)) =

∏
1≤i<j≤n

(αi − αj)2.

Hence ∆(f) = 0 if and only if f(x) has repeated roots in some extension of F . We note that the polynomial
G has integer coefficients. This means that if f(x) ∈ Z[x] with ∆(f) ∈ Z, then πp(f(x)) ∈ Fp[x] and

∆(πp(f)) = πp(∆(f)).

So f(x) has repeated roots in some extension of Fp if and only if p | ∆(f).
Recall that xm−1, and its divisor Φm(x), have no repeated factors mod p for any prime p ∤ m. This

means that discriminants can only be divisible by the primes divisors of m. In fact,

∆(xm − 1) = (−1)(m−1)(m+2)/2mm,

∆(Φm(x)) = (−1)ϕ(m)/2
∏
p|m

pϕ(m)(νp(m)− 1
p−1 ), if m ≥ 3.

The computation of ∆(xm − 1) is Exercise 15.6. The computation of ∆(Φm(x)) when m = p is a prime
follows similarly. The more general case is beyond the scope of this course. Note that when m = p is an odd
prime, we have

∆(Φp(x)) = (−1)(p−1)/2pp−2 = p∗(p(p−3)/2)2.
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From the definition of ∆, we see that

∆(Φp(x)) =

 ∏
1≤i<j≤p−1

(ζi
p − ζj

p)

2

is a square in Q(ζp). In other words, p∗ is a square in Q(ζp). This explains why it was more natural to try
to find a square root of p∗ when we proved quadratic reciprocity.

In terms of Galois theory, we see that Q(ζp) contains the quadratic field Q(
√
p∗) of Q. The auto-

morphism group AutQ(Q(ζp)) ∼= (Z/pZ)× = F×
p is cyclic of order p − 1. It has a unique subgroup of order

(p− 1)/2, whose fixed field is a quadratic extension of Q contained in Q(ζp). In other words, Q(
√
p∗) is the

unique quadratic extension of Q contained in Q(ζp).

Exercise
16.1 Express x3

1 + x3
2 + x3

3 and x4
1 + x4

2 + x4
3 in terms of the elementary symmetric polynomials in x1, x2, x3.

16.2 Prove that the polynomial g in Theorem 16.1 is unique.

16.3 Find the formula for ∆(x2 + bx+ c) and ∆(x3 + ax2 + bx+ c).

16.4 Prove that ∆(xn + c1x
n−1 + · · ·+ cn−1x) = c2

n−1∆(xn−1 + c1x
n−2 + · · ·+ cn−1).

16.5 Let f(x) = xn + c1x
n−1 + · · ·+ cn−1x+ cn ∈ Z[x] be a polynomial of degree n ≥ 2. Let p be a prime.

Suppose that p2 | cn and p | cn−1. Prove that p2 | ∆(f).

16.6 Prove that for any monic polynomial f(x) = xn + c1x
n−1 + · · · + cn ∈ C[x] with roots α1, . . . , αn, we

have
∆(f) =

n∏
i=1

(−1)n(n−1)/2f ′(αi).

16.7 Consider the polynomial f(x) = xn + ax+ b ∈ C[x]. Prove that

∆(xn + ax+ b) = (−1)n(n−1)/2(nnbn−1 − (n− 1)n−1(−a)n).

17 RSA and Shor’s algorithm
One does not teach a first year intro to number theory course without mentioning RSA. RSA (Rivest-Shamir-
Adleman) is a public-key cryptosystem, one of the oldest, that is widely used for secure data transmission.
Let’s discuss its setup:

1. Pick two large distinct primes p and q, say on the order of 21024 or approximately 300 digits.

2. Let n = pq so that ϕ(n) = (p− 1)(q − 1).
Then for any integer M coprime to n, we have Mϕ(n) ≡ 1 (mod n). Now if N ≡ 1 (mod ϕ(n)), then
N = 1 + ϕ(n)k for some k ∈ Z so

MN = M ·Mϕ(n)k ≡M (mod n).

3. Pick an integer d coprime to ϕ(n).
Then there exist integers e, t such that de + tϕ(n) = 1. The integer e can be easily found using the
(Extended) Euclidean algorithm. Note that for any integer M coprime to n,

de ≡ 1 (mod ϕ(n)) =⇒ Mde ≡M (mod n).
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4. Publish (e, n) as the public key. Keep (d, n) (and p, q) hidden as the private key. It is also customary
to replace e and d by their remainders mod ϕ(n).

Now when someone wants to send a message M to me, they would take my (e, n) and compute

C ≡Me (mod n)

and send C to me. When we receive C, we can recover M mod n via

Cd ≡Mde ≡M (mod n).

If we further require that M = 1, . . . , n, for example by restricting the size of the message or by breaking it
up into multiple messages, we would recover M exactly.

The security of RSA relies on the following:

1. Given the public key (e, n), it is practically impossible to find the private key (d, n).
Note that we can find d by solving ex ≡ 1 (mod ϕ(n)) but this requires finding p and q so we can
compute ϕ(n) = (p− 1)(q − 1). In other words, factorization should be hard.

2. Given the message M and the encrypted C, it is practically impossible to find d such that M ≡ Cd

(mod n).
This problem is known as discrete logarithm.

In the above, practically impossible means that the current best algorithm would take longer than the
lifetime of the universe to complete. These algorithms’ runtime are exponential in logn, which is basically
the number of bits that n has. Even something like e100 is already more than 1043.

The efficiency of RSA on the other hand requires the following procedures to have a runtime that is
polynomial in logn:

1. Easy to compute Me mod n. This is also known as discrete exponentiation.
This can be done using the Square and Multiply method. For example, suppose we want to calculate
4521563 mod 2023. Then we first express the exponent 1563 as a sum of powers of 2, which it already
was when working with a computer:

1563 = 1024 + 512 + 16 + 8 + 2 + 1.

Then we square 452 repeatedly to find

452, 4522, 4524, 4528, . . . , 4521024 (mod 2023).

Note that before computing the next square, we first reduce mod 2023, so that every step is simply
the square of a number at most 2023. Finally we multiply the ones that show up in the binary
representation of 1563.

2. Easy to generate primes.
The traditional sieve of Eratosthenes produces all the primes, but is too slow to generate 300 digit
primes. From the prime number theorem, we know that roughtly 1 out of logn numbers up to n are
primes. So it is much more efficient to take a bunch of random large numbers and test for primality.

For the rest of the semester, we will discuss:

1. Shor’s algorithm for factorization and how quantum computing destroys RSA’s security.

2. Fermat and Miller-Rabin primality tests. These are polynomial in runtime but probabilistic. However,
the chance of them failing is lower than the chance of computation error.
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3. AKS primality test. This is deterministic and polynomial in runtime.

4. Lucas-Lehmer primality test. This only works for Mersenne primes 2p − 1.

5. The cyclotomic fields Q(ζ3) and Q(ζ4) and x3 + y3 = z3.

Lecture 30 Mon 11/20

It turns out that factorization can be reduced to the discrete logarithm problem! First we note that
it is easy to check if a positive integer is a perfect power. If n = ak for some a, k ≥ 2, then k ≤ log2 n. For
each k ≤ log2 n, we can do a binary search to see if n = ak for some integer a. Here is the algorithm:

1. Set aL = 2 and aH = n− 1. So any solution will lie in [aL, aH ].

2. Let c = (aL + aH)/2.

3. If ck = n, then we are done. If ck > n, then c is too big and we replace aH by c. If ck < n, then c is
too small and we replace aL by c. Go back to step 2.

Suppose we have tested that n is not a prime power. The key idea is to consider the congruence equation
x2 ≡ 1 (mod n). It always has ±1 as solutions. A nontrivial solution is an integer a such that a2 ≡ 1
(mod n) but a ̸≡ ±1 (mod n).

Lemma 17.1 Let n > 1 be an odd integer with at least 2 prime divisors. The equation x2 ≡ 1 (mod n) has
a nontrivial solution. Let a be one such solution. Then gcd(a + 1, n) and gcd(a − 1, n) are divisors of n
different from 1 or n.

Proof: There is a factorization of n as dk where gcd(d, k) = 1 and d, k > 2. By the Chinese Remainder
Theorem, there exists an integer a such that a ≡ −1 (mod d) and a ≡ 1 (mod k). Since d, k > 2, we see
that a ̸≡ 1 (mod d) and a ̸≡ −1 (mod k). Hence a ̸≡ ±1 (mod n). However, a2 ≡ 1 (mod d) and a2 ≡ 1
(mod k) and so a2 ≡ 1 (mod n).

The second statement is clear from n | (a − 1)(a + 1) and n ∤ a − 1 and n ∤ a + 1 using prime
factorization. In fact, we have n = gcd(a+ 1, n) gcd(a− 1, n). The proof is left as an exercise. 2

How to find a nontrivial solution?

1. Pick b = 1, . . . , n− 1 at random.

2. Compute gcd(b, n). If gcd(b, n) > 1, then it is a nontrivial divisor of n.

3. Suppose gcd(b, n) = 1. Compute d = on(b). Note this is basically solving the discrete logarithm
problem bd ≡ 1 (mod n).

4. If d is odd, go back to step 1. If d is even, then bd/2 is a solution to x2 ≡ 1 (mod n). If bd/2 ≡ ±1
(mod n), then go back to step 1. If bd/2 ̸≡ ±1 (mod n), then we have found a nontrivial solution.
(Note that bd/2 ≡ 1 (mod n) is not possible since d = on(b).)

You will prove in HW11 that when n has at least 2 odd prime divisors, there are at most 1
2ϕ(n) elements

b ∈ (Z/nZ)× such that on(b) is odd or bon(b)/2 ≡ −1 (mod n). This means that for a randomly chosen b,
there is at least a 50% probability that it produces a nontrivial divisor of n. Hence the probability that no
answer is found after k iterations is at most 1/2k. For k ≥ 80, this is less than 10−24 which is roughly the
probability that a cosmic ray flipping a bit in the computer causing a calculation error. So as long as each
iteration is polynomial in the number of digits of n, then we are in good shape.

What can a quantum computer do?
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1. It can compute bm mod n for all non-negative integers m < n at the same time.
However, it will be a superposition of states |m, bm mod n⟩. Measuring the first registry gives a random
m0 and the value bm0 mod n. Measuring the second registry gives a random c0 and a superposition of
states |m⟩ such that bm ≡ c0 (mod n).
The key is that there is a hidden period in this. In other words, the integers m such that bm ≡ c0
(mod n) are of the form

m0,m0 + on(b),m0 + 2on(b), . . .

2. Quantum Fourier Transform can be used to find this hidden period.

A similar method can be used for the general discrete logarithm problem: given M , C and n, find
d such that M ≡ Cd (mod n). We use a two variable version of the above.

1. Compute MαC−β mod n for all non-negative integers α, β < on(C) at the same time.
We get a superposition of |α, β,MαC−β mod n⟩. Measuring the third registry gives a random c0 and
superposition of states |α, β⟩ such that MαC−β ≡ c0 (mod n). These pairs of integers (α, β) are of the
form

(α0, β0), (α0 + 1, β0 + d), (α0 + 2, β0 + 2d), . . .

2. Apply QFT.

Exercises
17.1 Prove that if n is an odd prime power, then x2 ≡ 1 (mod n) if and only if x ≡ ±1 (mod n).

17.2 Suppose n = pq is a product of two distinct odd primes. Find the number of b ∈ (Z/nZ)× such that
on(b) is odd or bon(b)/2 ≡ −1 (mod n).
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18 Probabilistic primality test
In this section, we consider two probabilistic primality tests, the Fermat test and the Miller-Rabin test. They
both build upon Fermat’s little theorem: ap−1 ≡ 1 (mod p) if p is a prime and a = 1, . . . , p− 1.

Lemma 18.1 If an−1 ≡ 1 (mod n) for every a = 1, . . . , n− 1, then n is a prime.

Proof: Every a = 1, . . . , n− 1 is invertible in Z/nZ. 2

It is not practical to test all integers less than n (we might as well just check for division in this
case). So we use the same probabilistic idea as in Shor’s algorithm:

1. Pick a = 1, . . . , n− 1 at random.

2. Compute gcd(a, n). If it is bigger than 1, then n is not a prime.

3. Compute an−1 mod n. If it is not 1, then n is not a prime. Otherwise, return to step 1.

Let
Fn = {a ∈ (Z/nZ)× : an−1 = 1}.

We need to know how big Fn is in order to know the probability that a randomly chosen a can be used to
prove that n is not a prime.

Lemma 18.2 The set Fn is a subgroup of (Z/nZ)×.
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Proof: Clearly 1 ∈ Fn. If a, b ∈ Fn, then (ab)n−1 = an−1bn−1 = 1 and (a−1)n−1 = (an−1)−1 = 1. 2

Since the order of a subgroup divides the order of the group, we see that if Fn ̸= (Z/nZ)×, then
|Fn| ≤ 1

2ϕ(n) and we have a probability of at least 1/2 that a randomly chosen a can be used to prove that n
is not a prime. Unfortunately, there exists (infinitely many) odd composite numbers n where Fn = (Z/nZ)×.
These numbers are called Carmichael numbers. The smallest Carmichael number is 561 = 3 · 11 · 17. If we
attempt to run the Fermat test on a Carmichael number, then we are just hoping to hit integers a that share
a prime factor with n. If n is a product of very few large primes, we are in trouble. Carmichael numbers are
all squarefree and so have at least 2 distinct prime divisors. In HW11, you will show that they have at least
3 distinct prime divisors.

Proposition 18.3 If p2 | n for some prime p ≥ 3, then n is not a Carmichael number.

Proof: The key observation is that

(1 + p)n−1 = 1 + (n− 1)p+
n−1∑
r=2

(
n− 1
r

)
pr ≡ 1 + (n− 1)p (mod p2).

Since p | n, we have p ∤ n− 1 and so (1 + p)n−1 ̸≡ 1 (mod p2). Hence (1 + p)n−1 ̸≡ 1 (mod n). 2

The Miller-Rabin test builds upon this idea and the earlier idea of nontrivial solutions of x2 ≡ 1
(mod n). Since n is assumed to be odd, we write n− 1 = u · 2k where u is odd and k ∈ N. Let

b0 ≡ au (mod n), bi ≡ b2
i−1 ≡ au·2i

(mod n) for i = 1, . . . , k.

Here is the algorithm for the Miller-Rabin test
1. Pick a = 1, . . . , n− 1 at random.

2. Compute gcd(a, n). If it is bigger than 1, then n is not a prime.

3. Compute b0 ≡ au mod n. If b0 ≡ 1 mod n, return to step 1.

4. Repeatedly compute bi+1 ≡ b2
i mod n. If −1 mod n is reached before 1 mod n, return to step 1. If

1 mod n is reached before −1 mod n, then n is not prime because we have a nontrivial solution to
x2 ≡ 1 (mod n). If none of b0, . . . , bk−1 equals −1 mod n, then n is not a prime.

We now consider the bad set for the Miller-Rabin test. Let

Mn = {a ∈ (Z/nZ)× : au = 1 or au2i

= −1 for some i = 0, . . . , k − 1}.

For any a ∈ Mn, if au = 1, we set i(a) = −1; otherwise, we set i(a) to be the integer i = 0, . . . , k − 1 such
that au2i = −1. Note that (−1)u = −1 and (−1)2u = 1 and so i(−1) = 0. Let j ≤ k − 1 be the largest i(a)
over a ∈Mn. Then j ≥ i(−1) = 0. For any a ∈Mn, since i(a) ≤ j, we have au2j = ±1. In other words, Mn

is a subset of
En = {a ∈ (Z/nZ)× : au·2j

= ±1}.
It is easy to see that En is a subgroup of (Z/nZ)×.

Proposition 18.4 Suppose n is a positive odd number with at least two distinct prime divisors (for example
if n is a Carmichael number). Then En is a proper subgroup of (Z/nZ)×. As a result, |Mn|/ϕ(n) ≤ 1

2 .

Proof: We write n = m1m2 where m1 and m2 are coprime odd integers. Let a0 ∈Mn with i(a0) = j. Then
au2j

0 = −1 in (Z/nZ)×. By the Chinese Remainder Theorem, there exists an integer a such that

a ≡ a0 (mod m1)
a ≡ 1 (mod m2).

Then au·2j is −1 mod m1 and 1 mod m2. So it can’t be ±1 mod m1m2. Hence a /∈ En. 2
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Exercises
1. Let G be a finite group and let H be a non-empty subset. Prove that if ∀a, b ∈ H, ab ∈ H, then H is

a subgroup.

2. Let n be an odd positive integer. Let

Fn = {a ∈ (Z/nZ)× : a(n−1)/2 =
(a
n

)
}

where
(

a
n

)
is the Jacobi symbol. Prove that Fn is a subgroup of (Z/nZ)×, and that it is a proper

subgroup when n is composite.
Since the Jacobi symbols can be quickly computed using quadratic reciprocity (see HW 7 Problem 2),
this gives another probabilistic primality test (Solovay-Strassen) with polynomial runtime.

3. Let n > 1 be an integer. Let a ∈ N and let p be a prime number such that:

• an−1 ≡ 1 (mod n);
• p | n− 1 and p >

√
n− 1;

• gcd(a(n−1)/p − 1, n) = 1.

Prove that n is a prime.
This result can be used to recursively generate candidates for primes with deterministic proofs: given
a large prime p, consider n = 2pq + 1 where q is some large random natural number less than p/2.

19 Agrawal-Kayal-Saxena primality test
The AKS primality test is a deterministic primality test whose run time is polynomial in logn.

For any commutative ring R and any a, b,m1, . . . ,mr ∈ R, we write

a ≡ b (mod m1, . . . ,mr) ⇐⇒ a− b ∈ (m1, . . . ,mr).

Recall that when n = p is a prime, we have for any a ∈ Z, the following congruence in Z[x],

(x+ a)p ≡ xp + ap ≡ xp + a (mod p).

Lecture 32 Fri 11/24

Lemma 19.1 Let n ≥ 2 be an integer such that for some a ∈ Z coprime to n,

(x+ a)n ≡ xn + a (mod n).

Then n is a prime.

Proof: Suppose for a contradiction that n is not a prime. Let p < n be a prime divisor of n. Let k be a
positive integer such that pk ≤ n < pk+1. Then by Corollary 4.3, we have p ∤

(
n
pk

)
. Since a is coprime to n,

we have p ∤
(

n
pk

)
an−pk . This gives a nonzero middle term if pk < n. If pk = n, then by Corollary 4.4, we

have νp(
(

n
p

)
) = k − 1 < νp(n) and so n ∤

(
n
p

)
an−p. 2

The key idea of the AKS test is to check the congruence

(x+ a)n ≡ xn + a (mod xr − 1, n)

for a suitably chosen r ≤ (log2 n)5 and for positive integers a ≤
√
ϕ(r) log2 n ≤ (log2 n)3.5. We can use the

usual square and multiply method to compute (x+a)n mod (xr−1, n) in polynomial time for each a. Hence
the full algorithm is in polynomial time. In what follows, we write logn for log2 n.
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Lemma 19.2 For n ≥ 3, there exists a positive integer r ≤ (logn)5 such that either gcd(r, n) > 1 or
or(n) > (logn)2.

Proof: Suppose for a contradiction that for all positve integer r ≤ (logn)5, we have gcd(r, n) = 1 and
r | nd − 1 for some d ≤ (logn)2. Let m = ⌊(logn)5⌋. Then Lm = lcm(1, 2, . . . ,m) divides∏

1≤d≤(log n)2

(nd − 1) ≤ n
∑

1≤d≤(log n)2 d ≤ n(log n)4−1 = 2(log n)5−(log n).

Recall from HW 2 that Lm ≥ 2m for any integer m ≥ 7. From n ≥ 3, we have m ≥ 10, so

Lm ≥ 2m ≥ 2(log n)5−1.

We now have a contradiction because (logn)5 − 1 > (logn)5 − (logn) for n ≥ 4. 2

Remark: The bound ∑
1≤d≤(log n)2

d ≤ (logn)4 − 1

can be improved to about 1
2 (logn)4for large n and we can improve the bound on r to about 1

2 (logn)5.

Step 1 of AKS: Find the smallest positive integer r such that gcd(r, n) > 1 or or(n) > (logn)2.
We know we only need to test at most (logn)5 different r. For each r, we simply compute

r, r2, r3, . . . r⌊(log n)2⌋ mod n to see if any of them is 1. Hence this step can be done in polynomial time.
If n < (logn)5 is small (only happens when n < 107) so that this step does not terminate before r ≥ n,
then we have checked that gcd(r, n) = 1 for all r < n and so n is prime. If this step terminates at an r with
gcd(r, n) > 1, then n is composite. Suppose now we have found a positive integer r ≤ (logn)5 coprime with
n with or(n) > (logn)2. Note this also implies that ϕ(r) > (logn)2. Since n ̸≡ 1 (mod r), we see that n has
a prime divisor p ̸≡ 1 (mod r) so that or(p) > 1.
Step 2 of AKS: For every positive integer a ≤ r, check if gcd(a, n) = 1.

Suppose Step 2 is passed. Then that means we may assume p > r. So we have√
ϕ(r) logn < ϕ(r) < r < p.

Step 3 of AKS: For every positive integer a ≤
√
ϕ(r) logn, check if gcd(a, n) = 1 and if so, check the

congruence
(x+ a)n ≡ xn + a (mod xr − 1, n).

Theorem 19.3 Suppose positive integers n, r and prime p satisfy:

• or(n) > (logn)2

• p | n, p > r and or(p) > 1

• For all positive integers a <
√
ϕ(r) logn, the congruence (x+ a)n ≡ xn + a (mod xr − 1, p).

Then n is a power of p.

Step 0 of AKS: Check if n is a perfect power.
It remains now to prove Theorem 19.3. We may assume that n ≥ 4. The congruence mod (xr−1, p)

suggests to look inside Fp[x] and consider r-th roots of unities. Let d = or(p) > 1. We know that the finite
field Fpd is the smallest field that contains a primitive r-th root of unity α0, and thus all the r-th roots of
unities as powers of α0. Let

µr = ⟨α0⟩ = {αk
0 : k ∈ Z/rZ}

73



be the subgroup of all r-th roots of unities. Let ℓ = ⌊
√
ϕ(r) logn⌋ < p. The congruence

(x+ a)n ≡ xn + a (mod xr − 1, p)

translates to: for every f(x) ∈ S := {x, x+ 1, . . . , x+ ℓ} ⊆ Fp[x],

f(x)n − f(xn) = j(x)(xr − 1)

for some j(x) ∈ Fp[x]. In other words, we have for every f(x) ∈ S,

f(α)n = f(αn) ∈ Fpd , for every α ∈ µr.

Note since ℓ < p, the set S contains ℓ+ 1 distinct linear polynomials.
We say a polynomial g(x) ∈ Fp[x] commutes with a positive integer m if

g(α)m = g(αm) ∈ Fpd , for every α ∈ µr.

Hence, every element in S commutes with n. The following lemmas are immediate:

Lemma 19.4 Any g ∈ Fp[x] commutes with p and 1.

Lemma 19.5 If g1, g2 ∈ Fp[x] both commute with m, then g1g2 commutes with m

Lecture 33 Mon 11/27

The next two are less immediate.

Lemma 19.6 If g ∈ Fp[x] commutes with m1 and m2, then g commutes with m1m2.

Proof: For any α ∈ µr, we have

g(α)m1m2 = (g(αm1))m2 = g(αm1m2)

since αm1 ∈ µr. 2

Lemma 19.7 If g ∈ Fp[x] commutes with m and p | m, then g commutes with m/p.

Proof: For any α ∈ µr, we have(
g(α)m/p

)p = g(α)m = g(αm) = g(αm/p)p.

Hence g(α)m/p = g(αm/p) because raising to the power p is an automorphism and thus injective on Fpd . 2

Let S̄ denote the set of polynomials in Fp[x] that are products of elements in S. So

S̄ = {xn0(x+ 1)n1 · · · (x+ ℓ)nℓ : n0, . . . , nℓ ≥ 0}.

Then every element in S̄ commutes with every positive integer of the form (n/p)ipj . Suppose for a contradic-
tion that n is not a power of p. Then the integers (n/p)ipj are all distinct for distinct pairs (i, j). However,
αm

0 only takes r possible values. In other words, the set

T = {α(n/p)ipj

0 : i, j ≥ 0} ⊆ µr

is finite. Let m1 > m2 to two integers of the form (n/p)ipj such that αm1
0 = αm2

0 . Note that this condition
is equivalent to m1 ≡ m2 (mod r). Then for any g ∈ S̄, we have

g(α0)m1 = g(αm1
0 ) = g(αm2

0 ) = g(α0)m2 .
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Recall that Fpd is the smallest field that contains a primitive r-th root of unity and any g ∈ S̄ splits in Fp.
Hence all the roots of g(x) are in Fp while α0 /∈ Fp. So g(α0) ̸= 0 and we have

g(α0)m1−m2 = 1.

On the other hand, when can g(α0) = h(α0) for g, h ∈ S̄? We know that for every integer m of the
form (n/p)ipj , we have

g(αm
0 ) = g(α0)m = h(α0)m = h(αm

0 ).

In other words, every α ∈ T is a root of g(x)− h(x). Hence if we further require that deg(g) and deg(h) are
less than |T |, then g = h. Let N = |T | and let C(ℓ+ 1, N − 1) be the number of elements in S̄ of degree at
most N − 1. Then we have

|{g(α0) : g ∈ S̄}| ≥ C(ℓ+ 1, N − 1).

Hence, if we can find m1 and m2 so that

m1 −m2 < C(ℓ+ 1, N − 1),

then we would have too many solutions to xm1−m2 = 1, which is a contradiction!
We note that

N = |{α(n/p)ipj

0 : i, j ≥ 0}| = |{(n/p)ipj mod r : i, j ≥ 0}|.

For i, j = 0, . . . , ⌊
√
N⌋, we have (⌊

√
N⌋+ 1)2 > N distinct integers of the form (n/p)ipj . There are only N

possible congruence classes mod r that they can take. Hence, by the Pigeonhole principle, there exist two
distinct integers m1 > m2 among them that are congruent mod r. Moreover,

m1 −m2 < m1 ≤ (n/p)⌊
√

N⌋p⌊
√

N⌋ = n⌊
√

N⌋.

Therefore, it remains to prove that
n⌊

√
N⌋ ≤ C(ℓ+ 1, N − 1).

Let’s estimate the sizes of the variables involved. By taking i = j, we see that (n/p)ipj = ni. So we have

{ni mod r : i ≥ 0} ⊆ {(n/p)ipj mod r : i, j ≥ 0} ⊆ (Z/rZ)×.

In other words,
(logn)2 < or(n) ≤ N ≤ ϕ(r).

Let M = ⌊⌊
√
N⌋ logn⌋. Then

n⌊
√

N⌋ = 2⌊
√

N⌋ log n ≤ 2M+1,

ℓ+ 1 = ⌊
√
ϕ(r) logn⌋+ 1 ≥ ⌊

√
N logn⌋+ 1 ≥M + 1,

N − 1 >
√
N logn− 1 ≥M − 1,

C(ℓ+ 1, N − 1) ≥ C(M + 1,M).

Hence, it is enough to prove that
C(M + 1,M) ≥ 2M+1.

Since x, x + 1, . . . , x + M are all distinct linear polynomials in Fp[x], C(M + 1,M) is the same as
the number of monomials of the form xa1

1 · · ·x
aM+1
M+1 in M + 1 variables of degree a1 + · · ·+ aM+1 at most M .

By adding in one more variable x0 and setting a0 = M − (a1 + · · ·+ aM+1), this is the same as the number
of monomials of the form xa0

0 xa1
1 · · ·x

aM+1
M+1 in M + 2 variables of degree exactly M .

Theorem 19.8 The number of monomials of the form xa1
1 · · ·x

ak

k in k variables of degree d = a1 + · · ·+ ak

is
(

d+k−1
k−1

)
.
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In particular, we have

C(M + 1,M) =
(

2M + 1
M + 1

)
=
(

2M + 1
M

)
>

4M

M + 1 ≥ 2M+1

when 2M ≥ 2(M + 1), which is true for M ≥ 3. Since n ≥ 4, we have logn ≥ 2 and M ≥ 4.
The standard proof of Theorem 19.8 is the stars and bars method. Imagining placing d stars and

k− 1 bars in d+ k− 1 slots. The number of ways to do this is
(

d+k−1
k−1

)
. The number of stars before the first

bar is the exponent of x1. The number of stars between the i-th bar and the (i+ 1)-st bar is the exponent
of xi+1 for i = 1, . . . , k − 2. The number of stars after the last bar is the exponent of xk.
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20 Lucas-Lehmer primality test
A Mersenne number is a number of the form Mn = 2n − 1 for some n ∈ N. Note since 2d − 1 | 2n − 1
whenever d | n, in order for 2n− 1 to be a prime, n itself must be a prime. However, when n = p is a prime,
Mp = 2p − 1 is not necessarily a prime. For example, M11 = 2047 = 23× 89.

A Sophie Germain prime is a prime p such that 2p+ 1 is also prime. The above p = 11 is one such
example with 2p+ 1 = 23 appearing in the factorization of Mp. The infinitude of Sophie Germain primes is
an open conjecture. The heuristic count for the number of them less than x is about 1.32032x/(ln x)2.

Proposition 20.1 Suppose p ≡ 3 (mod 4) is a Sophie Germain prime. Then 2p+ 1 |Mp and so Mp is not
prime for p > 3.

Proof: From p ≡ 3 (mod 4), we get 2p+ 1 ≡ 7 (mod 8). Hence 2 is a quadratic residue mod 2p+ 1. Let a
be an integer such that 2 ≡ a2 (mod 2p+ 1). Then

2p ≡ a2p ≡ 1 (mod 2p+ 1)

by Fermat’s little theorem. Then 2p+ 1 | 2p − 1. 2

The Lucas-Lehmer primality test is used in general to see whether a Mersenne number Mp = 2p− 1
is prime. The current record for the largest proved prime number is

282589933 − 1.

In the Lucas-Lehmer test, we define the sequence

a0 = 4, an+1 = a2
n − 2 for n ≥ 0.

We let ω = 2 +
√

3. Then ω−1 = 2−
√

3. In other words, ω is a unit in the ring

R = Z[
√

3] = {j(
√

3) : j(x) ∈ Z[x]} = {a+ b
√

3: a, b ∈ Z} ∼= Z[x]/(x2 − 3).

It is easy to check via induction that

an = ω2n

+ ω−2n

= ω−2n

(ω2n+1
+ 1).

Consider
ap−2 = ω−2p−2

(ω2p−1
+ 1).

Theorem 20.2 Let p be an odd prime. The Mersenne number Mp = 2p−1 is prime if and only if ap−2 ≡ 0
(mod Mp).
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Proof: Let q = Mp. Then qR = {qa+ qb
√

3: a, b ∈ Z}. Hence we see that

ap−2 ∈ qZ⇐⇒ ap−2 ∈ qR⇐⇒ ω2p−1
= −1 in R/qR⇐⇒ ω

q+1
2 = −1 in R/qR.

Suppose first that ap−2 ∈ qZ and suppose for a contradiction that q is not a prime. Let r ≤ √q be a
prime divisor of q. Then we also have ap−2 ∈ rZ and so ω2p−1 = −1 in R/rR. Then ω2p = 1 in R/rR. The
order o(ω) of ω in (R/rR)× is then a divisor of 2p that doesn’t divide 2p−1. Hence it equals 2p, which then
must divide |(R/rR)×|. However, we have a contradiction now because

|(R/rR)×| ≤ |R/rR| − 1 = r2 − 1 ≤ q − 1 = 2p − 2.

Suppose conversely that q is a prime. Since p is odd, we see that

2p − 1 ≡ 7 (mod 12), 2p − 1 ≡ 7 (mod 8).

So by quadratic reciprocity, (3
q

)
= −1,

(2
q

)
= 1.

This means that the polynomial x2 − 3 is irreducible in Fq[x] and so

R/qR ∼= Fq[x]/(x2 − 3) ∼= Fq2 .

The Frobenius map a 7→ aq sends
√

3 to −
√

3. This can also be seen from
√

3q−1 = 3(q−1)/2 = −1 ∈ R/qR.

For any a+ b
√

3 in R/qR, we then have

(a+ b
√

3)q = aq + bq
√

3q = a− b
√

3

and so
(a+ b

√
3)q+1 = (a+ b

√
3)q(a+ b

√
3) = (a− b

√
3)(a+ b

√
3) = a2 − 3b2.

We note that (3 +
√

3)2 = 12 + 6
√

3 = 6ω. Hence

ω(q+1)/2 = (3 +
√

3)q+1

6(q−1)/2 · 6 = 32 − 3 · 12

2(q−1)/23(q−1)/2 · 6 = 6
−6 = −1,

as desired. 2

In the above proof, the fact that (a+ b
√

3)q+1 ∈ Fq is a consequence of a more general construction.
We note that AutFq

(Fq2) = {id, τ} where τ denotes the Frobenius map and

(a+ b
√

3)q+1 = id(a+ b
√

3) · τ(a+ b
√

3) =
∏

σ∈AutFq (Fq2 )

σ(a+ b
√

3).

It is then not surprising that it is fixed by every element in AutFq
(Fq2) and so it must lie in Fq. In general,

given a Galois extension E/F , we have the norm

NE/F (α) =
∏

σ∈AutF (E)

σ(α) ∈ F.

For C/R, this is simply
NC/R(z) = z · z̄ = |z|2.

We next consider Q(ζ4) and Q(ζ3), which both have degree 2 over Q, and where the non-identity automor-
phism is complex conjugation. So their norm maps are also just the complex modulus squared.
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21 Q(ζ4) and Q(ζ3)
In this section, we consider the two cyclotomic extensions of degree 2. We have

Q[x]/(x2 + 1) ∼= Q(ζ4) = {a+ bi : a, b ∈ Q} = Q(i)

Q[x]/(x2 + x+ 1) ∼= Q(ζ3) = {a+ bζ3 : a, b ∈ Q} = Q(−1
2 +
√

3
2 i)

Note that ϕ(6) = 2 so Q(ζ6) also has degree 2, but ζ6 = 1
2 +

√
3

2 i = ζ3 + 1. So Q(ζ6) = Q(ζ3). Let τ denote
the non-identity element of the automorphism groups AutQ(Q(ζ4)) and AutQ(Q(ζ3)). For Q(ζ4), we have for
any a, b ∈ Q,

τ(i) = i3 = −i =⇒ τ(a+ bi) = a− bi,

and for Q(ζ3), we have

τ(ζ3) = ζ2
3 = −1− ζ3 = −1

2 −
√

3
2 i = ζ3 =⇒ τ(a+ bζ3) = a− b− bζ3.

In other words, τ is complex conjugation for both of them. Define the norm of an element in either field as

N(α) = τ(α)α = |α|2 : N(a+ bi) = a2 + b2, N(a+ bζ3) = (a− b

2)2 + 3
4b

2 = a2 − ab+ b2.

Note that the norm function is multiplicative: N(αβ) = N(α)N(β). So from

(a+ bi)(c+ di) = ac− bd+ (ad+ bc)i

we have the well-known formula

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2;

and from
(a+ bζ3)(c+ dζ3) = ac+ (bc+ ad)ζ3 + bd(−1− ζ3) = ac− bd+ (bc+ ad− bd)ζ3

we have the less-known formula

(a2 − ab+ b2)(c2 − cd+ d2) = (ac− bd)2 − (ac− bd)(bc+ ad− bd) + (bc+ ad− bd)2.

If we use the above formula with a, b, c, d ∈ Z, we see that the sets

S4 = {a2 + b2 : a, b ∈ Z}
S3 = {a2 − ab+ b2 : a, b ∈ Z}

are closed under multiplication. Hence to understand what they are, it remains to understand which prime
powers do S4 and S3 contain. They clearly contain p2 for every prime p by taking a = p and b = 0. It is
easy to check that 2 ∈ S4, 2 /∈ S3 and 3 ∈ S3.

Suppose p > 2 is a prime and p = a2 + b2 for some a, b ∈ Z. Then a2 ≡ −b2 (mod p). If p | b, then
p | a2 implying that p | a and so p2 | a2 + b2 which is not possible. So p ∤ b and we have (ab−1)2 ≡ −1
(mod p). Hence p ≡ 1 (mod 4). Similarly, if p = a2 − ab + b2 for a, b ∈ Z and p > 2 prime. We have p ∤ b
and (2ab−1 − 1)2 ≡ −3 (mod p). It then follows from quadratic reciprocity that p = 3 or p ≡ 1 (mod 3).
The converse is also true.

Theorem 21.1 If p is a prime congruent to 1 mod 4, then there exist a, b ∈ Z such that p = a2 + b2.

Theorem 21.2 If p is a prime congruent to 1 mod 3, then there exist a, b ∈ Z such that p = a2 − ab+ b2.
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We give a ring-theoretic proof of these results. There is also a “descent”-type proof. We note that
if p ≡ 1 (mod m), then m | p− 1 so Fp contains a primitive m-th root of unity. In other words, πp(Φm(x))
splits completely in Fp[x]. Let x−n be an irreducible factor of it. Then we have a prime ideal Ip = (p, ζm−n)
in Z[ζm].

Proposition 21.3 The rings Z[ζ4] and Z[ζ3] are Euclidean domains with respect to the norm function.

As a consequence, we see that Z[ζm] is a PID for m = 3 and 4. There then exists some α ∈ Z[ζm]
such that Ip = (α). We write p = αβ for some β ∈ Z[ζm]. Taking norm gives p2 = N(α)N(β). Next we
note that if N(γ) = 1 for some γ ∈ Z[ζm], then γ · τ(γ) = 1 and so γ is a unit. (Exercise: Conversely, if
γ is a unit, then N(γ) = 1.) Since Ip is a proper ideal, we see that α can’t be a unit. If β is a unit, then
Ip = (p) but p ∤ ζm − n. So neither N(α) nor N(β) can be 1 but they multiply to p2 and p is a prime. So
N(α) = N(β) = p. Upon writing α = a+ bζm for a, b ∈ Z, we have

p = a2 + b2 for m = 4, and p = a2 − ab+ b2 for m = 3.

Proof of Proposition 21.3: Let α, β ∈ Z[ζm] where m = 3 or 4 and α ̸= 0. We divide β by α in the field
Q(ζm) = Q[ζm] to get

β

α
= t+ sζm, r, s ∈ Q.

Let a ∈ Z be an integer that is the closest to t and let b ∈ Z be an integer that is the closest to s. (In other
words, either the floor or ceiling of t and s.) Hence

β

α
= (a+ bζm) +

(
(t− a) + (s− b)ζm

)
, |t− a| ≤ 1

2 , |s− b| ≤ 1
2 .

Then
N
(
(t− a) + (s− b)ζm

)
≤ |t− a|2 + |t− a||s− b|+ |s− b|2 ≤ 3

4 < 1.

We let q = a+ bζm ∈ Z[ζm] and r = β − αq = α
(
(t− a) + (s− b)ζm

)
∈ Z[ζm]. Then N(r) < N(α). 2

Remark: When t = 1/2 for example, there are two choices for a. Hence the “quotient” and “remainder”
are not unique in this division algorithm. The same argument also works for Z[

√
2i], Z[

√
2] and Z[

√
3].
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The units in Z[ζm] for m = 3, 4 are elements of the form a + bζm with norm dividing 1, and so equaling 1
since it is non-negative. It is easy to check that

Z[i]× = {1,−1, i,−i} = µ4,

Z[ζ3]× = {1,−1, ζ3,−ζ3, 1 + ζ3,−1− ζ3} = µ6.

There is an intrinsic reason for this. The roots of unities are clearly units. The norms for these rings are
sums of squares and so there are only finitely many integer solutions to N = 1, implying that the group of
units is finite. Every element of a finite group has a finite order, and is thus a root of unity.

Since Z[i] and Z[ζ3] are PIDs, we can define prime elements (generate a prime ideal), gcds and we
have unique factorization into primes up to units. We use this property of Z[ζ3] to prove that there are no
integer solutions to x3 + y3 = z3 with xyz ̸= 0. We write ζ for ζ3 and write gcd(α, β) for some element that
generates the ideal (α, β) in Z[ζ].

Theorem 21.4 There do not exist nonzero α, β, γ ∈ Z[ζ] and a unit ϵ ∈ Z[ζ]× such that

α3 + β3 + ϵγ3 = 0.
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Suppose a solution (α, β, γ, ϵ) exists. We take one so that N(αβγ) is the smallest. If there is a
prime π ∈ Z[ζ] dividing two of α, β, γ, then it divides the cube of the third and so also the third, but then
(α/π, β/π, γ/π, ϵ) is a smaller solution. Hence α, β, γ are pairwise coprime. We use a descent argument: we
construct another solution (α′, β′, γ′, ϵ′) with N(α′β′γ′) < N(αβγ).

Let π =
√

3 i = 1 + 2ζ. Then N(π) = 1− 2 + 22 = 3 and π2 = −3. Hence π is a prime and we have
an isomorphism

Z[ζ]/(π) ∼= F3

sending a+ bζ + (π) to b− 2a.

Lemma 21.5 If δ ≡ e (mod π) where e = ±1, then δ3 ≡ e (mod 9).

Proof: Suppose δ = e+ πη for some η ∈ Z[ζ]. Using e2 = 1 and e3 = e, we have

δ3 = e+ 3πη + 3e(−3)η2 − 3πη3 ≡ e+ 3π(η − η3) (mod 9).

Since Z[ζ]/(π) ∼= F3, we have η3 ≡ η (mod π) and so 3π2 | 3π(η − η3) but 3π2 = −9. 2

Lemma 21.6 If ϵ ∈ Z[ζ]×, then ±1 ± 1 ± ϵ ̸≡ 0 (mod 9). Moreover, if ±1 + ϵ(±1) ≡ 0 (mod 3), then
ϵ = ±1 = ϵ3.

As a result, we see that π divides exactly one of α, β, γ. If π | α so that 3 | α3, then we have ϵ = ϵ3

so that (β, ϵγ, α, 1) is a solution where π divides the third argument. Hence, we may assume without loss
of generality that π | γ. Now from π | α3 + β3, we have π | α + β since (α3 + β)3 ≡ (α + β)3 (mod π). So
we may assume α ≡ 1 (mod π) and β ≡ −1 (mod π). This then gives α3 + β3 ≡ 0 (mod 9) and so we must
have π2 | γ. In other words, we have

α ≡ 1 (mod π), β ≡ −1 (mod π), π2 | γ.

We now factor
−ϵγ3 = (α+ β)(α2 − αβ + β2) = (α+ β)(α+ βζ)(α− β(1 + ζ)).

Note that since ζ ≡ 1 (mod π), we see that all three factors are divisible by π. Hence we have

(π) ⊇ (α+ β, α+ βζ) ⊇ (α(ζ − 1), β(ζ − 1)) = (ζ − 1) = (π).

The same is true for any two terms in the product. In other words, once we remove one factor of π from
each of them, we have three pairwise coprime elements that multiply to a cube, up to a unit. Hence they
must each be a cube, up to a unit. In other words, we have the following factorization:

α+ β = ϵ1πδ
3

α+ βζ = ϵ2πη
3

α− β(1 + ζ) = ϵ3πρ
3

γ = πδηρ

where δ, η, ρ ∈ Z[ζ] are pairwise coprime and ϵ1, ϵ2, ϵ3 are units. Note since π2 | γ, axactly one of δ, η, ρ is
divisible by π. Multiplying the second equation by ζ and the third by ζ2, which are both units, we have

α+ β = ϵ1πδ
3

αζ + βζ2 = ϵ4πη
3

αζ2 + βζ = ϵ5πρ
3

for some units ϵ4, ϵ5. Adding them gives

ϵ1πδ
3 + ϵ4πη

3 + ϵ5πρ
3 = 0
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which looks very much like the original equation! Suppose without loss of generality that π | ρ and π ∤ δ, η.
We divide the above equation by ϵ1π to get

δ3 + ϵ6η
3 + ϵ7ρ

3 = 0,

for some units ϵ6, ϵ7. From π | ρ, we get ±1 + ϵ6(±1) ≡ 0 (mod 3) and so ϵ6 = ±1 = ϵ36. Then (δ, ϵ6η, ρ, ϵ7)
is another but smaller solution:

N(δ · ϵ6η · ρ) = N(δηρ) = N(γ/π) < N(γ) ≤ N(αβγ).
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