Solutions to the Problems on Induction and Recursion

1: Let $a_0 = 0$ and $a_1 = 1$ and for $n \ge 2$ let $a_n = a_{n-1} + 6a_{n-2}$. Show that $a_n = \frac{1}{5}(3^n - (-2)^n)$ for all $n \ge 0$.

Solution: We claim that $a_n = \frac{1}{5} (3^n - (-2)^n)$ for all $n \ge 0$. When n = 0 we have $a_n = a_0 = 0$ and $\frac{1}{5} (3^n - (-2)^n) = \frac{1}{5} (3^0 - (-2)^0) = 0$, so the claim is true when n = 0. When n = 1 we have $a_n = a_1 = 1$ and $\frac{1}{5} (3^n - (-2)^n) = \frac{1}{5} (3 - (-2)) = 1$, so the claim is true when n = 1. Let $k \ge 2$ and suppose the claim is true for all n < k. In particular we suppose the claim is true when n = k - 1 and when n = k - 2, that is we suppose $a_{k-1} = \frac{1}{5} (3^{k-1} - (-2)^{k-1})$ and $a_{k-2} = \frac{1}{5} (3^{k-2} - (-2)^{k-2})$. Then when n = k we have

$$\begin{split} a_n &= a_k = a_{k-1} + 6a_{k-2} \\ &= \frac{1}{5} \left(3^{k-1} - (-2)^{k-1} \right) + \frac{6}{5} \left(3^{k-2} - (-2)^{k-2} \right) \\ &= \left(\frac{1}{5} \cdot 3^{k-1} + \frac{6}{5} \cdot 3^{k-2} \right) - \left(\frac{1}{5} (-2)^{k-1} + \frac{6}{5} (-2)^{k-2} \right) \\ &= \left(\frac{3}{5} \cdot 3^{k-2} + \frac{6}{5} \cdot 3^{k-2} \right) - \left(-\frac{2}{5} (-2)^{k-2} + \frac{6}{5} (-2)^{k-2} \right) \\ &= \frac{9}{5} \cdot 3^{k-2} - \frac{4}{5} (-2)^{k-2} = \frac{1}{5} \cdot 3^k - \frac{1}{5} (-2)^k \\ &= \frac{1}{5} \left(3^k - (-2)^k \right) = \frac{1}{5} \left(3^n - (-2)^n \right). \end{split}$$

Thus the claim is true when n = k. By Strong Mathematical Induction, the claim is true for all $n \ge 0$.

2: Let $n \in \mathbf{Z}^+$. Evaluate $\sum_{i=1}^{n} (-1)^i (2i-1)^2$.

Solution: Let $S_n = \sum_{i=1}^n (-1)^i (2i-1)^2$. Verify that $S_1 = -1$, $S_2 = 8 = 2 \cdot 4$, $S_3 = -17 = 1 - 2 \cdot 9$, $S_4 = 32 = 2 \cdot 16$, $S_5 = -49 = 1 - 2 \cdot 25$ and $S_6 = 72 = 2 \cdot 36$. It appears that for all $n \ge 1$, we have

$$S_n = \begin{cases} 2n^2 & \text{when } n \text{ is even,} \\ 1 - 2n^2 & \text{when } n \text{ is odd.} \end{cases}$$

In other words, it appears that $S_{2m}=2(2m)^2$ for all $m\geq 1$ and that $S_{2m-1}=1-2(2m-1)^2$ for all $m\geq 1$. We claim first that $S_{2m}=2(2m)^2$ for all $m\geq 1$. We have seen that this claim is true when m=1 (and when m=2,3). Let $k\geq 1$ and suppose that the claim is true when m=k, that is suppose that $S_{2k}=2(2k)^2$. Then when m=k+1 we have

$$S_{2m} = \sum_{i=1}^{2k+2} (-1)^i (2i-1)^2$$

$$= \left(\sum_{i=1}^{2k} (-1)^i (2i-1)^2\right) + (-1)^{2k+1} (4k+1)^2 + (-1)^{2k+2} (4k+3)^2$$

$$= 2(2k)^2 - (4k+1)^2 + (4k+3)^2 = 8k^2 - (16k^2 + 8k + 1) + (16k^2 + 24k + 8)$$

$$= 8k^2 + 16k + 8 = 8(k+1)^2 = 2(2m)^2.$$

Thus the claim is true when m = k+1. By Mathematical Induction, the claim is true for all $m \ge 1$. Finally, note that for all $m \ge 1$ we have $1 - 2(2m-1)^2 = 1 - 2(4m^2 - 4m + 1) = -8m^2 + 8m - 1$ and

$$S_{2m-1} = S_{2m} - (-1)^{2m} (4m-1)^2 = 2(2m)^2 - (4m-1)^2$$

= $8m^2 - (16m^2 - 8m + 1) = -8m^2 + 8m - 1 = 1 - 2(2m-1)^2$.

3: Let $c, p, q \in \mathbf{R}$ with $p \neq 0$. Let $a_0 = c$ and for $n \geq 1$ let $a_n = p a_{n-1} + q$. Find a_n .

Solution: We have

$$a_0 = c$$

$$a_1 = pc + q$$

$$a_2 = p(pc + q) + q = p^2c + pq + q$$

$$a_3 = p(p^2c + pq + q) + q = p^3c + p^2q + pq + q$$

$$a_4 = p(p^3c + p^2q + pq + q) + q = p^4c + p^3q + p^2q + pq + q$$

and in general

$$a_n = p^n c + p^{n-1} q + p^{n-2} q + \dots + p^2 q + pq + q = p^n c + (p^{n-1} + p^{n-2} + \dots + p^2 + p + 1)q$$

We can obtain a (non-recursive) formula for the geometric sum $p^{n-1}+p^{n-2}+\cdots+p^2+p+1$ as follows. Let $S=p^{n-1}+p^{n-2}+\cdots+p^2+p+1$ (1). Note that $pS=p^n+p^{n-1}+p^{n-2}+\cdots+p^2+p$ (2). Subtracting (1) from (2) gives $S(p-1)=p^n-1$ and so $S=\frac{p^n-1}{p-1}$. Thus we have

$$a_n = p^n c + \frac{p^n - 1}{p - 1} q.$$

4: Let $n \in \mathbb{N}$. Evaluate $\sum_{i=0}^{n} \binom{n+i}{i} \frac{1}{2^i}$.

Solution: Let $S_n = \sum_{i=0}^n \binom{n+i}{i} \frac{1}{2^i}$. Verify that $S_0 = 1$, $S_1 = 2$, $S_2 = 4$ and $S_3 = 8$. We claim that $S_n = 2^n$

for all $n \ge 0$. When n = 0 (and also when n = 1, 2 and 3) we have seen that the claim is true. Let $k \ge 0$ and suppose that the claim is true when n = k, that is suppose $S_k = 2^k$. Let n = k + 1. Then we have

$$\begin{split} S_n &= S_{k+1} = \binom{k+1}{0} + \binom{k+2}{1} \frac{1}{2} + \binom{k+3}{2} \frac{1}{2^2} + \binom{k+4}{3} \frac{1}{2^3} + \dots + \binom{2k+1}{k} \frac{1}{2^k} + \binom{2k+2}{k+1} \frac{1}{2^{k+1}} \\ &= 1 + \binom{k+1}{0} + \binom{k+1}{1} \frac{1}{2} + \binom{k+2}{1} + \binom{k+2}{2} \frac{1}{2^2} + \binom{k+3}{2} + \binom{k+3}{3} \frac{1}{2^2} \\ &\quad + \dots + \binom{2k}{k-1} + \binom{2k}{k} \frac{1}{2^k} + \binom{2k+1}{k} + \binom{2k+1}{k} \frac{1}{2^{k+1}} \\ &= \binom{k+1}{0} \frac{1}{2} + \binom{k+2}{1} \frac{1}{2^2} + \binom{k+3}{2} \frac{1}{2^3} + \dots + \binom{2k}{k-1} \frac{1}{2^k} + \binom{2k+1}{k} \frac{1}{2^{k+1}} \\ &\quad + \binom{1}{1} + \binom{k+1}{1} \frac{1}{2} + \binom{k+2}{2} \frac{1}{2^2} + \binom{k+3}{3} \frac{1}{2^3} + \dots + \binom{2k}{k} \frac{1}{2^k} + \binom{2k+1}{k+1} \frac{1}{2^{k+1}} \\ &= \left(\frac{1}{2} S_n - \binom{2k+2}{k+1} \frac{1}{2^{k+2}} \right) + \left(\sum_{i=0}^k \binom{k+i}{i} \frac{1}{2^i} + \binom{2k+1}{k+1} \frac{1}{2^{k+1}} \right). \end{split}$$

Subtract $\frac{1}{2}S_n$ from each side to get

$$\frac{1}{2}S_n = \sum_{i=0}^k \binom{k+i}{i} \frac{1}{2^i} + \binom{2k+1}{k+1} \frac{1}{2^{k+1}} - \binom{2k+2}{k+1} \frac{1}{2^{k+2}}.$$

Notice that

$$\binom{2k+2}{k+1} = \frac{(2k+2)!}{(k+1)!(k+1)!} = \frac{(2k+2)(2k+1)!}{(k+1)k!(k+1)!} = \frac{2(2k+1)!}{k!(k+1)!} = 2\binom{2k+1}{k+1}$$

and so we have $\frac{1}{2}S_n = \sum_{i=0}^k \binom{k+i}{i} \frac{1}{2^i} = S_k = 2^k$, that is $S_n = 2^{k+1} = 2^n$. Thus the claim holds when n = k+1, and so by Mathematical Induction, the claim holds for all $n \geq 0$.

5: Let $a_0 = 9$ and for $n \ge 0$ let $a_{n+1} = 3a_n^4 + 4a_n^3$. Show that for all $n \ge 0$, the number a_n has (at least) 2^n nines in its decimal expansion.

Solution: Note first that a positive integer m ends with (at least) l nines $\iff m+1$ ends with l zeros $\iff m+1=10^l q$ for some positive integer $q \iff m=10^l q-1$ for some positive integer q.

We claim that for all $n \ge 0$, a_n ends with (at lest) 2^n nines. When n = 0, the claim is true since $a_0 = 9$ which ends with $2^0 = 1$ nine(s). Let $k \ge 0$ and suppose (inductively) that a_k ends with 2^k nines, say $a_k = 10^{2^k} q - 1$. Then when n = k + 1 we have

$$\begin{aligned} a_n &= a_{k+1} = 3a_k^4 + 4a_k^3 \\ &= 3\left(10^{2^k}q - 1\right)^4 + 4\left(10^{2^k}q - 1\right)^3 \\ &= 3\left(10^{4\cdot 2^k}q^4 - 4\cdot 10^{3\cdot 2^k}q^3 + 6\cdot 10^{2\cdot 2^k}q^2 - 4\cdot 10^{2^k}q + 1\right) \\ &+ 4\left(10^{3\cdot 2^k}q^3 - 3\cdot 10^{2\cdot 2^k}q^2 + 3\cdot 10^{2^k}q - 1\right) \\ &= 3\cdot 10^{4\cdot 2^k}q^4 - 8\cdot 10^{3\cdot 2^k}q^3 + 6\cdot 10^{2\cdot 2^k}q^2 - 1 \\ &= 10^{2\cdot 2^k}\left(3\cdot 10^{2\cdot 2^k}q^4 - 8\cdot 10^{2^k}q^3 + 6q^2\right) - 1 \\ &= 10^{2^{k+1}}r - 1 \text{, where } r = 3\cdot 10^{2\cdot 2^k}q^4 - 8\cdot 10^{2^k}q^3 + 6q^2 \text{,} \end{aligned}$$

which ends with 2^{k+1} nines. Thus for all $n \geq 0$, a_n ends with 2^n nines, by mathematical induction.

Solution 2: Note that $a_{n+1} + 1 = 3a_n^4 + 4a_n^3 + 1 = (a_n + 1)^2(3a_n^2 - 2a_n + 1)$. Hence if a_n ends with 2^n 0's, then $a_{n+1} + 1$ ends with 2^{n+1} 0's.

6: Let $n \in \mathbf{Z}^+$. Evaluate $\sum_{(k,l)\in A} \frac{1}{kl}$ where A is the set of ordered pairs of integers (k,l) with $1 \le k \le n$, $1 \le l \le n, k+l > n$ and $\gcd(k,l) = 1$.

Solution: Let $A_n = \{(k,l) | 1 \le k \le n, 1 \le l \le n, k+l > n, \gcd(k,l) = 1\}$ and let $S_n = \sum_{(k,l) \in A_n} \frac{1}{kl}$. Note that $A_1 = \{(1,1)\}$ so that $S_1 = 1$. Fix $n \in \mathbf{Z}^+$ and suppose, inductively, that $S_n = 1$. We have

$$\begin{split} A_n &= \Big\{ (k,l) \Big| 1 \leq k \leq n, 1 \leq l \leq n, k+l > n, \gcd(k,l) = 1 \Big\}, \\ A_{n+1} &= \Big\{ (k,l) \Big| 1 \leq k \leq n+1, 1 \leq l \leq n+1, k+l > n+1, \gcd(k,l) = 1 \Big\}, \\ A_n \setminus A_{n+1} &= \Big\{ (k,l) \Big| 1 \leq k \leq n, 1 \leq l \leq n, k+l = n+1, \gcd(k,l) = 1 \Big\}, \\ &= \Big\{ (k,n+1-k) \Big| 1 \leq k \leq n, \gcd(k,n+1) = 1 \Big\}, \\ A_{n+1} \setminus A_n &= \Big\{ (k,l) \Big| 1 \leq k \leq n+1, 1 \leq l \leq n+1, \text{ either } k = n+1 \text{ or } l = n+1, \gcd(k,l) = 1 \Big\}, \\ &= \Big\{ (n+1,l) \Big| 1 \leq l \leq n, \gcd(n+1,l) = 1 \Big\} \cup \Big\{ (k,n+1) \Big| 1 \leq k \leq n, \gcd(k,n+1) = 1 \Big\}, \text{ and } \\ &= \Big\{ (n+1,n+1-j) \Big| 1 \leq j \leq n, \gcd(n+1,j) = 1 \Big\} \cup \Big\{ (k,n+1) \Big| 1 \leq k \leq n, \gcd(k,n+1) = 1 \Big\}, \end{split}$$

and so

$$\sum_{\substack{(k,l) \in A_{n+1} \setminus A_n}} \frac{1}{kl} = \sum_{\substack{1 \le j \le n \\ \gcd(k,n+1) = 1}} \frac{1}{(n+1)(n+1-j)} + \sum_{\substack{1 \le k \le n \\ \gcd(k,n+1) = 1}} \frac{1}{k(n+1)}$$

$$= \sum_{\substack{1 \le k \le n \\ \gcd(k,n+1) = 1}} \left(\frac{1}{(n+1)(n+1-k)} + \frac{1}{k(n+1)} \right)$$

$$= \sum_{\substack{1 \le k \le n \\ \gcd(k,n+1) = 1}} \frac{1}{k(n+1-k)} = \sum_{(k,l) \in A_n \setminus A_{n+1}} \frac{1}{kl}.$$

Thus
$$S_{n+1} = \sum_{(k,l) \in A_{n+1}} \frac{1}{kl} = \sum_{(k,l) \in A_n} \frac{1}{kl} + \sum_{(k,l) \in A_{n+1} \setminus A_n} \frac{1}{kl} - \sum_{(k,l) \in A_n \setminus A_{n+1}} \frac{1}{kl} = \sum_{(k,l) \in A_{n+1}} \frac{1}{kl} = S_n = 1$$
. By induction, $S_n = 1$ for all $n \in \mathbf{Z}^+$.

7: Let $f: \mathbf{Z}^+ \to \mathbf{Z}^+$ be strictly increasing with f(2) = 2 and f(kl) = f(k)f(l) for all $k, l \in \mathbf{Z}^+$ with gcd(k, l) = 1. Show that f(n) = n for all $n \in \mathbf{Z}^+$.

Solution: Since $f(1) \in \mathbf{Z}^+$ and f(1) < f(2) = 2 we must have f(1) = 1. Since f(3) > f(2) = 2 and since $f(3)f(5) = f(15) < f(18) = f(2)f(9) < f(2)f(10) = f(2)^2f(5) = 4f(5)$ so that f(3) < 4 we have f(3) = 3. Since $f(6) = f(2)f(3) = 2 \cdot 3 = 6$ and since $1 = f(1) < f(2) < \cdots < f(6) = 6$ it follows that f(k) = k for all $k \le 6$. Let $k \ge 2$ and suppose, inductively, that f(k) = k for all $k \le 2(2l - 1)$. Note that $k \le 2(2l - 1)$ and $k \le 2(2l - 1)$ and so we have $k \le 2(2l - 1)$ since $k \le 2(2l - 1)$ and $k \le 2(2l - 1)$ it follows that $k \le 2(2l - 1)$. By induction, we have $k \le 2(2l + 1)$ for all $k \le 2(2l + 1)$. By induction, we have $k \le 2(2l + 1)$ for all $k \le 2(2l + 1)$.

8: Let a_n be the n^{th} Fibonacci number (so $a_0 = 0$, $a_1 = 1$ and $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$). Show that $a_n^2 + a_{n+1}^2 = a_{2n+1}$ for all $n \ge 0$.

Solution: We begin by trying (and failing) to use induction to prove that $a_n^2 + a_{n+1}^2 = a_{2n+1}$ for all $n \ge 1$. When n = 1, we have $LS = a_1^2 + a_2^2 = 1^2 + 1^2 = 2$ and $RS = a_3 = a_2 + a_1 = 1 + 1 = 2 = LS$, so the equality holds. Let $k \ge 1$ and suppose (inductively) that $a_k^2 + a_{k+1}^2 = a_{2k+1}$. Then when n = k+1 we have

$$LS = a_{k+1}^{2} + a_{k+2}^{2}$$

$$= a_{k+1}^{2} + (a_{k+1} + a_{k})^{2}$$

$$= a_{k+1}^{2} + a_{k+1}^{2} + 2a_{k}a_{k+1} + a_{k}^{2}$$

$$= (a_{k+1}^{2} + 2a_{k}a_{k+1}) + (a_{k}^{2} + a_{k+1}^{2})$$

$$= (a_{k+1}^{2} + 2a_{k}a_{k+1}) + a_{2k+1}^{2}$$

(where the last inequality follows from the induction hypothesis), and we have

$$RS = a_{2k+3} = a_{2k+2} + a_{2k+1}$$
.

If we could show that $(a_{k+1}^2 + 2a_k a_{k+1}) = a_{2k+2}$ then we would have LS = RS and our induction proof would work. We shall modify this abortive proof by proving two equalities at once.

We claim that $a_n^2 + a_{n+1}^2 = a_{2n+1}$ and $a_{n+1}^2 + 2a_n a_{n+1} = a_{2n+2}$ for all $n \ge 1$. When n = 1 we have $a_n^2 + a_{n+1}^2 = a_1^2 + a_2^2 = 1^2 + 1^2 = 2$ and $a_{2n+1} = a_3 = 2$ so the first equality holds, and we also have $a_{n+1}^2 + 2a_n a_{n+1} = a_2^2 + 2a_1 a_2 = 1^2 + 2 \cdot 1 \cdot 1 = 3$ and $a_{2n+2} = a_4 = 3$ so the second equality holds.

Let $k \ge 1$ and suppose (inductively) that both equalities hold when n = k, that is $a_k^2 + a_{k+1}^2 = a_{2k+1}$ and $a_{k+1}^2 + 2f_k a_{k+1} = a_{2k+2}$.

When n = k + 1 we have

$$a_n^2 + a_{n+1}^2 = a_{k+1}^2 + a_{k+2}^2$$

$$= a_{k+1}^2 + (a_{k+1} + a_k)^2$$

$$= a_{k+1}^2 + a_{k+1}^2 + 2a_k a_{k+1} + a_k^2$$

$$= (a_{k+1}^2 + 2a_k a_{k+1}) + (a_k^2 + a_{k+1}^2)$$

$$= a_{2k+2} + a_{2k+1}$$

$$= a_{2k+3} = a_{2n+1}$$

and we have

$$a_{n+1}^{2} + 2a_{n}a_{n+1} = a_{k+2}^{2} + 2a_{k+1}a_{k+2}$$

$$= a_{k+2}^{2} + 2a_{k+1}(a_{k+1} + a_{k})$$

$$= a_{k+2}^{2} + 2a_{k+1}^{2} + 2a_{k}a_{k+1}$$

$$= (a_{k+1}^{2} + 2a_{k}a_{k+1}) + (a_{k+1}^{2} + a_{k+2}^{2})$$

$$= a_{2k+2} + a_{2k+3}$$

$$= a_{2k+4} = a_{2n+2}.$$

Thus both equalities hold when n = k + 1, and hence both equalities hold for all $n \ge 1$ by mathematical induction.

9: (a) Show that every positive integer is equal to a sum of distinct Fibonacci numbers.

Solution: We omit a solution for Part (a) as it follows from Part (b).

(b) Show that every positive integer can be expressed uniquely as a sum of distinct non-consecutive Fibonacci numbers.

Solution: Let a_n denote the n^{th} Fibonacci number (so $a_1 = a_2 = 1$ and $a_n = a_{n-1} + a_{n-2}$ for $n \geq 3$). We interpret the statement of the problem to mean that every $n \in \mathbf{Z}^+$ can be represented uniquely in the form $n = a_{j_1} + a_{j_2} + \cdots + a_{j_m}$ for some $m \in \mathbf{Z}^+$ and some j_i with

$$2 \le j_1$$
, $j_1 + 2 \le j_2$, $j_2 + 2 \le j_3$, \cdots , $j_{m-1} + 2 \le j_m$.

First we claim that if $n \in \mathbb{Z}^+$ can be represented in this form then we must have $j_m = l$ where l is the index for which $a_l \le n < a_{l+1}$. Suppose, for a contradiction that $j_m < l$. Then we have $j_m \le l - 1$, $j_{m-1} \le l - 3$, $j_{m-2} \le l - 5$ and so on, and so

$$n = a_{j_m} + a_{j_{m-1}} + a_{j_{m-2}} + \dots + a_{j_1} \le a_{l-1} + a_{l-3} + a_{j-5} + \dots + a_{\epsilon}$$

where $\epsilon = 2$ when l is odd and $\epsilon = 3$ when n is even. Using induction, it is easy to show that

$$a_2 + a_4 + \dots + a_{2k} = a_{2k+1} - 1$$

 $a_3 + a_5 + \dots + a_{2k-1} = a_{2k} - 1$

and so we have $a_l \leq n \leq a_{l-1} + a_{l-3} + \cdots + a_{\epsilon} = a_l - 1$, giving the desired contradiction.

Now let $n \in \mathbf{Z}^+$ and let l be the index for which $a_l \le n < a_{l+1}$. If $n = a_l$ then we take m = 1 and $j_1 = l$ to get the unique representation $n = a_{j_1} = a_l$. Suppose that $n > a_l$. Then we have $n = a_l + (n - a_l)$ with $1 \le (n - a_l) < a_{l+1} - a_l = a_{l-1}$. We may suppose, inductively, that $n - a_l$ has a unique representation as a sum of distinct non-consecutive Fibonacci numbers, say

$$n - a_l = a_{j_1} + a_{j_2} + \dots + a_{j_r}$$
.

Note that by our above claim, since $n - a_l < a_{l-1}$ we must have $j_j < l - 1$. Thus the unique representation for n as a sum of distinct non-consecutive Fibonacci numbers is

$$n = a_{j_1} + a_{j_2} + \dots + a_{j_r} + a_l.$$

10: Let $(a_1, a_2, \dots, a_n) \in \mathbf{Z}^n$ with $\sum_{i=1}^n a_i = 1$. For $k, l \in \{1, 2, \dots, n\}$, let

$$S_{kl} = \sum_{i=k}^{l} a_i = \begin{cases} a_k + a_{k+1} + \dots + a_l & \text{if } k \le l \le n, \\ a_k + \dots + a_n + a_1 + \dots + a_l & \text{if } 1 \le l < k. \end{cases}$$

Show that there exists a unique k such that $S_{kl} > 0$ for every l.

Solution: We introduce some terminology. A unit-sum n-tuple is an n-tuple $a=(a_1,a_2,\cdots,a_n)\in \mathbf{Z}^n$ with $\sum a_i=1$. For $k\in\{1,2,\cdots,n\}$ we write $k*a=(a_k,a_{k+1},\cdots,a_n,a_1,\cdots,a_{k-1})$. The sums S_{kl} are called the partial sums for k*a. A positive shift for a is an element $k\in\{1,2,\cdots,n\}$ such that $S_{kl}>0$ for all l. Note that there is only one unit-sum 1-tuple, namely a=(1), and it has a unique positive shift in $\{1\}$, namely k=1. Fix $n\geq 1$ and suppose, inductively, that every unit-sum n-tuple has a unique positive shift. Let $b=(b_1,b_2,\cdots,b_{n+1})$ be a unit-sum (n+1)-tuple. Note that since each $b_i\in\mathbf{Z}$ and $\sum b_i=1$, we can choose an index m so that $b_m>0$ and $b_{m+1}\leq 0$ (where we treat indices modulo n+1 so that if m=n+1 then m+1=1). By cyclicly permuting the terms b_i , we may suppose that m=n so we have $b_n>0$ and $b_{n+1}\leq 0$. Construct a unit-sum n-tuple $a=(a_1,a_2,\cdots,a_n)$ be defining $a_i=b_i$ for $1\leq i< n$ and $a_n=b_n+b_{n+1}$. Note that k=n+1 is not a good shift for b because we have $b_n>0$. For b=0 for b=0

- 11: Let $n \in \mathbf{Z}^+$. Suppose that n distinct points are chosen on the unit circle and a line segment is drawn between each of the $\binom{n}{2}$ pairs of points and suppose that no three of the line segments are coincident. Let a_n be the number of regions into which the unit disc is divided by these line segments.
 - (a) Find a_1, a_2, \dots, a_5 and conjecture a formula for a_n .

Solution: By drawing some pictures, you can check that $a_1 = 1$, $a_2 = 2$, $a_3 = 4$ and $a_4 = 8$ and $a_5 = 16$. You will then no doubt be tempted to guess that $a_n = 2^{n-1}$ for all $n \ge 1$, but this is not the case! Indeed you can draw one more picture to see that $a_6 = 31$.

(b) The obvious conjecture from Part (a) is incorrect. Find the correct formula for a_n .

Solution: We claim first that that when a disc is divided into regions by l line segments (no 3 of which intersect) which have p points of intersection inside the circle (not counting the points of intersection that are on the boundary circle), the number of regions is l+p+1. We prove this by induction on l. When l=0, we must have p=0 (when there are no line segments, there are certainly no intersection points) so we have l+p+1=0+0+1=1, and indeed when there are no line segments the circle has not been divided so there is 1 region. Thus the claim is true when l=0. Let $k\geq 0$ and suppose (inductively) that the claim is true whenever l=k (that is, whenever there are k line segments). Suppose that we had k line segments with q intersection points in the circle, and then we add one more line segment (so that now there are l=k+1 line segments), and suppose that there are r new intersection points which lie along this line (so there are now p=q+r intersection points). By the induction hypothesis, there used to be k+q+1 regions before we added the final line. Notice that the r intersection points on the final line segment divide into r+1 smaller segments, and each of these segments divides one of the previous regions into two new regions. Thus the number of regions increases by r+1. The old number of regions was k+q+1, so the new number of regions is (k+q+1)+(r+1)=(k+1)+(q+r)+1=l+p+1, so the claim is still true now that l=k+1. By mathematical induction, the claim is true for all $l\geq 1$.

When n=1, so there is one point on the circle, there are no line segments and no points of intersection, and so we have $a_1=0+0+1=1$. When n=2 there is one line segment and no intersection points, so we have $a_2=1+0+1=2$. When n=3, there are 3 line segments and no intersection points (inside the circle) so $a_3=3+0+1=4$. When $n\geq 4$, the number of line segments is $l=\binom{n}{2}$ (since each line segment is determined by its two endpoints, and there are $\binom{n}{2}$ ways to choose the 2 endpoints), and the number of intersection points in the circle is $\binom{n}{4}$ (since each intersection point is determined by the 4 endpoints of the two line segments that contain the point). Thus we have

$$a_n = \binom{n}{2} + \binom{n}{4} + 1$$
.

If you expand and simplify, you will find that

$$a_n = \frac{n^4 - 6n^3 + 23n^2 - 18n + 24}{24} \,.$$

As you can check, this formula also works when n = 1, 2 and 3 (it even works in the case that n = 0, that is when there are no points on the circle, and it is not divided, so there is 1 region).

12: Let p be an odd prime and suppose that $U_{p^2} = \langle a \rangle$. Show that $U_{p^k} = \langle a \rangle$ for all $k \geq 2$.

Solution: Since a is a primitive root mod p^2 , we have $a^{p-1}=1+pb$ for some integer b coprime to p. Since a is also a primitive root mod p, it suffices to check that if $a^{p^j(p-1)}\equiv 1\pmod{p^k}$ for some integer $j=1,\ldots,k-1$, then j=k-1. Now $a^{p^j(p-1)}=(1+pb)^{p^j}\equiv 1+p^{j+1}b\pmod{p^{2j}}$. We are now done since b is coprime to p.