Mock Putnam problems

- A1 Let $p(x) \in \mathbb{C}[x]$ be a polynomial of degree n > 0. Let $a \neq b$ be distinct complex numbers. Prove that (p(x) - a)(p(x) - b) has at least n + 1 distinct roots.
- A2 Find the number of non-constant $p(x) = a_n x^n + \cdots + a_0$ with a_0, \ldots, a_n a permutation of $0, 1, \ldots, n$ and that p(x) factors into linear polynomials in $\mathbb{Q}[x]$.
- A3 Evaluate the integral

$$\int_0^1 \frac{\ln|x^{69} - (1-x)^{69}|}{x} dx.$$

A4 Define the sequence (a_n) by $a_0 = 1$ and

$$a_{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} \frac{a_k}{n-k+2}.$$

Determine if $\sum_{n=0}^{\infty} a_n/2^n$ converges and if so, find its value.

- A5 Let p be a prime and let d be a positive integer such that $\{n^d + n^3 : n \in \mathbb{F}_p\} = \mathbb{F}_p$. Find possible values for $2^d \in \mathbb{F}_p$.
- A6 Let G be an abelian group with n elements, generated by k elements g_1, \ldots, g_k where $g_1 = e$ is the identity and k < n. Let X_1, X_2, \ldots be independent random variables uniform on $\{g_1, \ldots, g_k\}$. Prove that there exists $\lambda \in (0, 1)$ such that

$$\lim_{m \to \infty} \frac{1}{\lambda^{2m}} \sum_{g \in G} \left(\Pr(X_1 \cdots X_m = g) - \frac{1}{n} \right)^2$$

exists and is positive.