Linear Algebra

- 1. (2019B3) Let Q be an n-by-n real orthogonal matrix, and let $u \in \mathbb{R}^n$ be a unit column vector (that is, $u^T u = 1$). Let $P = I 2uu^T$, where I is the n-by-n identity matrix. Show that if 1 is not an eigenvalue of Q, then 1 is an eigenvalue of PQ.
- 2. (2015A6) Let $A, B, M \in M_n(\mathbb{C})$ be $n \times n$ matrices with real coefficients. Suppose AM = MB and that A and B have the same characteristic polynomial. Prove that for any $X \in M_n(\mathbb{R})$, we have $\det(A MX) = \det(B XM)$.

Mock Putnam problems

- A1 Let R be a (not necessarily commutative) ring containing \mathbb{Q} as a subring. Let $a, b, c \in R$ be idempotents $(a^2 = a, b^2 = b, c^2 = c)$ such that a + b + c = 0. Prove that a = b = c = 0.
- A2 Let $A, B \in M_n(\mathbb{C})$ be $n \times n$ matrices with complex coordinates. Does there exist a polynomial $p(x) \in \mathbb{C}[x]$ such that p(AB) is nilpotent but p(BA) is not nilpotent? (Nilpotent means some power of it is 0.)
- A4 Let $n \in \mathbb{N}$. Prove that for any $f(x) \in \mathbb{Z}[x]$ of degree n, there exists $a \in \mathbb{R}$ with $0 \le a \le 1$ such that $|f(a)| \ge e^{-n}$.
- A6 Let $p \equiv 2 \pmod{3}$ be a prime. Let π be a permutation of \mathbb{F}_p^{\times} given by $r \mapsto r^3$. When is π an even permutation?

Linear Algebra

1. (2019B3) Let Q be an n-by-n real orthogonal matrix, and let $u \in \mathbb{R}^n$ be a unit column vector (that is, $u^T u = 1$). Let $P = I - 2uu^T$, where I is the n-by-n identity matrix. Show that if 1 is not an eigenvalue of Q, then 1 is an eigenvalue of PQ.

Since PQ and QP have the same eigenvalues, it suffices to find some nonzero vector w in the kernel of I - QP. We have

$$(I - QP)v = (I - Q)v$$
, if $v \in u^{\perp}$
 $(I - QP)u = (I + Q)u$.

Since 1 is not an eigenvalue of Q, we see that I-Q is invertible. Hence the only possible w (up to scaling) is u+v where (I-Q)v=-(I+Q)u. We need to check that $v=(I-Q)^{-1}(I+Q)u$ belongs to u^{\perp} . Let $A=(I-Q)^{-1}(I+Q)$. Then

$$A^{T} = (I + Q^{-1})(I - Q^{-1})^{-1} = -A.$$

Hence

$$\langle u, Au \rangle = \langle A^T u, u \rangle = -\langle Au, u \rangle.$$

Therefore, $\langle v, u \rangle = 0$.

Alternatively, one can prove by induction on n that an n-by-n orthogonal matrix is a product of r reflections where $r \leq n$. Its determinant is then $(-1)^r$. Since $\det(PQ) = -\det(Q)$, we see that either PQ or Q is a product of less than n reflections. Any product of less than n reflections fixes some vector.

2. (2015A6) Let $A, B, M \in M_n(\mathbb{C})$ be $n \times n$ matrices with real coefficients. Suppose AM = MB and that A and B have the same characteristic polynomial. Prove that for any $X \in M_n(\mathbb{R})$, we have $\det(A - MX) = \det(B - XM)$.

Solution 1: Let $A_t = A - tI$ and $B_t = B - tI$ be matrices in $M_n(\mathbb{C}[t])$. To prove

$$\det(A_t - MX) = \det(B_t - XM),$$

we may assume A_t, B_t, X are invertible, since both sides are polynomial in t and the coefficients of X. From AM = MB, we have $A_tM = MB_t$ so $M = A_tMB_t^{-1}$. Then

$$\det(A_t - MX) = \det(A_t - A_t M B_t^{-1} X)$$

$$= \det(A_t) \det(I_n - M B_t^{-1} X)$$

$$= \det(A_t) \det(I_n - X M B_t^{-1}) \quad \text{by conjugating by } X$$

$$= \det(A_t) \det(B_t^{-1}) \det(B_t - X M)$$

$$= \det(B_t - X M).$$

Solution 2: Note that the characteristic polynomial of a matrix A is determined by $\operatorname{tr}(A^k)$ for $k=1,\ldots,n$. We prove that

$$\operatorname{tr}((A - MX)^k) = \operatorname{tr}((B - XM)^k)$$

for every $k \in \mathbb{N}$. Expanding both sides, we see that it suffices to show that the corresponding terms have the same traces. That is, we show that for $k_1, \ldots, k_m \in \mathbb{Z}_{>0}$,

$$\operatorname{tr}(A^{k_1}MXA^{k_2}MX\cdots A^{k_{m-1}}MXA^{k_m}) = \operatorname{tr}(B^{k_1}XMB^{k_2}XM\cdots B^{k_{m-1}}XMB^{k_m}).$$

We have

$$\operatorname{tr}(A^{k_1}MXA^{k_2}MX\cdots A^{k_{m-1}}MXA^{k_m}) = \operatorname{tr}(A^{k_m+k_1}MXA^{k_2}MX\cdots A^{k_{m-1}}MX)$$

$$= \operatorname{tr}(MB^{k_m+k_1}XMB^{k_2}X\cdots MB^{k_{m-1}}X)$$

$$= \operatorname{tr}(B^{k_1}XMB^{k_2}XM\cdots B^{k_{m-1}}XMB^{k_m}).$$

Mock Putnam problems

A1 Let R be a (not necessarily commutative) ring containing \mathbb{Q} as a subring. Let $a, b, c \in R$ be idempotents $(a^2 = a, b^2 = b, c^2 = c)$ such that a + b + c = 0. Prove that a = b = c = 0.

Squaring a + b = -c gives ab + ba = 2c = -2a - 2b. Then

$$ab + aba = a(ab + ba) = -2a - 2ab,$$

 $aba + ba = (ab + ba)a = -2a - 2ba.$

Subtracting gives 3(ab - ba) = 0 and so ab = ba = c. From a + b + ab = 0, we obtain

$$a + 2ab = 0$$
 and $b + 2ab = 0$ so $ab = c = 4ab$.

Hence ab = 0 = a = b = c.

A2 Let $A, B \in M_n(\mathbb{C})$ be $n \times n$ matrices with complex coordinates. Does there exist a polynomial $p(x) \in \mathbb{C}[x]$ such that p(AB) is nilpotent but p(BA) is not nilpotent? (Nilpotent means some power of it is 0.)

The two matrices p(AB) and p(BA) are similar if A is invertible. Hence they have the same characteristic polynomial. From an algebraic geometry point of view, the characteristic polynomials of p(AB) and p(BA) are polynomials in the coordinates of A and agree on a Zariski open subset (where $\det(A) \neq 0$) and so are equal as polynomials. Being nilpotent is equivalent to the characteristic polynomial being x^n .

A4 Let $n \in \mathbb{N}$. Prove that for any $f(x) \in \mathbb{Z}[x]$ of degree n, there exists $a \in \mathbb{R}$ with $0 \le a \le 1$ such that $|f(a)| \ge e^{-n}$.

Let $M = \max_{a \in [0,1]} |f(a)|$. For any $k \in \mathbb{N}$, we have

$$M^{2k} \ge \int_0^1 f(x)^{2k} dx = \int_0^1 \sum_{j=0}^{2kn} a_j x^j dx = \sum_{j=0}^{2kn} \frac{a_j}{j+1} \ge \frac{1}{\operatorname{lcm}(1, 2, \dots, 2kn + 1)}.$$

For any $\epsilon > 0$, we know that for k large enough, we have

$$lcm(1, 2, \dots, 2kn + 1) < e^{(1+\epsilon)(2kn)}$$
.

Hence $M > e^{-(1+\epsilon)n}$. Letting $\epsilon \to 0$ does the job.

A6 Let $p \equiv 2 \pmod{3}$ be a prime. Let π be a permutation of \mathbb{F}_p^{\times} given by $r \mapsto r^3$. When is π an even permutation?

(2012 B6) Recall that \mathbb{F}_p^{\times} is a cyclic group of order p-1. Since p-1 is coprime to 3, there is a group homomorphism $\mathbb{F}_p^{\times} \to \overline{\mathbb{F}}_3^{\times}$ sending a primitive element to a primitive p-1-th root of unity. The image of \mathbb{F}_p^{\times} is the set of roots of $x^{p-1}-1$ in $\overline{\mathbb{F}}_3^{\times}$, and π acts as the Frobenius map σ_3 on $\overline{\mathbb{F}}_3^{\times}$.

For a monic polynomial $g(x) \in \mathbb{F}_3[x]$, its discriminant is defined by

$$\Delta(g) = \prod (\text{root}_i \text{ of } g - \text{root}_j \text{ of } g)^2.$$

Viewing σ_3 as a permutation on the roots of g, we have

$$\sigma_3\left(\prod(\operatorname{root}_i \text{ of } g - \operatorname{root}_j \text{ of } g)\right) = \operatorname{sgn}(\sigma_3)\prod(\operatorname{root}_i \text{ of } g - \operatorname{root}_j \text{ of } g).$$

In other words, σ_3 is an even permutation on the roots of g if and only if $\Delta(g)$ is a square in \mathbb{F}_3 . So it remains to compute $\Delta(x^{p-1}-1)$. Let r_1,\ldots,r_{p-1} be the roots of $f(x)=x^{p-1}-1$. Then

$$\Delta(f) = (-1)^{\binom{p-1}{2}} \prod_{i \neq j} (r_i - r_j) = (-1)^{\frac{p-1}{2}} \prod_{i=1}^{p-1} f'(r_i) = (-1)^{\frac{p-1}{2}} p^{p-1} \left(\prod_{i=1}^{p-1} r_i \right)^{p-2} = (-1)^{\frac{p+1}{2}} p^{p-1}.$$

Hence we see that $\Delta(f)$ is a square if and only if $(-1)^{(p+1)/2}$ is a square in \mathbb{F}_3 . Since -1 is not square, we see that $(-1)^{(p+1)/2}$ is a square in \mathbb{F}_3 if and only if (p+1)/2 is even if and only if $p \equiv 3 \pmod{4}$.