Week 9: Mock Putnam 3

1: Prove that there exist a sequence n_{1}, n_{2}, \ldots of pairwise coprime integers such that $n_{1} \cdots n_{k}-1$ is the product of two consecutive integers for every positive integer k.

2: Let A be an $n \times n$ matrix with integer entries. Suppose p, q, r are positive integers such that $p^{2}=q^{2}+r^{2}$ and $p^{2} A^{p^{2}}=q^{2} A^{q^{2}}+r^{2} I_{n}$, where I_{n} denotes the $n \times n$ identity matrix. Prove that $|\operatorname{det} A|=1$.

3: Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a decreasing sequence of positive real numbers such that $\sum_{n=1}^{\infty} a_{n}$ diverges. Prove that

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{1+n a_{n}}
$$

also diverges.

4: Let A be a 4×4 symmetric matrix with positive integer entries and $\operatorname{det}(A)=1$. Prove that there exists a 4×4 matrix B with integer entries such that $A=B^{t} B$.

5: Let $f:[0, \infty) \rightarrow \mathbb{R}$ be twice differentiable with $f^{\prime \prime}(x)>0$ for all $x \in[0, \infty)$ and $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\infty$. Prove that $\int_{0}^{\infty} \sin (f(x)) d x$ converges, but not absolutely.

6: Let A be an infinite subset of the set of positive integers. Let x_{n} be the number of pairs $(a, b) \in A \times A$ such that $a<b$ and $a+b=n$. Prove that the sequence x_{n} is not eventually constant.

Week 9: Solutions

1: Prove that there exist a sequence n_{1}, n_{2}, \ldots of pairwise coprime integers such that $n_{1} \cdots n_{k}-1$ is the product of two consecutive integers for every positive integer k.
We construct it inductively. Suppose $n_{1} \cdots n_{k}-1=m(m+1)$ has been given. So $n_{1} \cdots n_{k}=$ $m^{2}+m+1$. Note that

$$
\left(m^{2}+m+1\right)\left(m^{2}-m+1\right)=m^{4}+m^{2}+1=m^{2}\left(m^{2}+1\right)+1 .
$$

Hence we take $n_{k+1}=m^{2}-m+1$. If q is a common divisor of $n_{k+1}=m^{2}-m+1$ and $n_{1} \cdots n_{k}=$ $m^{2}+m+1$, then q is odd and $q \mid 2 m$. Hence $q \mid m$ but then $q \mid 1$. Hence n_{k+1} is coprime to $n_{1} \cdots n_{k}$.

2: Let A be an $n \times n$ matrix with integer entries. Suppose p, q, r are positive integers such that $p^{2}=q^{2}+r^{2}$ and $p^{2} A^{p^{2}}=q^{2} A^{q^{2}}+r^{2} I_{n}$, where I_{n} denotes the $n \times n$ identity matrix. Prove that $|\operatorname{det} A|=1$.
Let $\lambda \in \mathbb{C}$ be an eigenvalue of A. Then $p^{2} \lambda^{p^{2}}=q^{2} \lambda^{q^{2}}+r^{2}$. Note that $\lambda \neq 0$. We prove that $|\lambda| \leq 1$, which would imply that $|\operatorname{det}(A)|$ is a nonzero integer at most 1 , hence equals 1 . Suppose $|\lambda|>1$. Then

$$
\left|p^{2} \lambda^{p^{2}}\right|=p^{2}|\lambda|^{q^{2}}|\lambda|^{r^{2}}>\left(q^{2}+r^{2}\right)|\lambda|^{q^{2}}>q^{2}|\lambda|^{q^{2}}+r^{2} \geq\left|q^{2} \lambda^{q^{2}}+r^{2}\right|
$$

Contradiction.
3: Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a decreasing sequence of positive real numbers such that $\sum_{n=1}^{\infty} a_{n}$ diverges. Prove that

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{1+n a_{n}}
$$

also diverges.
Let $b_{n}=\frac{a_{n}}{1+n a_{n}}$. If $a_{n}<1 / n$, then $1+n a_{n}<2$ and we have $b_{n}>a_{n} / 2$. If $a_{n} \geq 1 / n$, then $1+n a_{n} \geq 2$ and

$$
b_{n}=\frac{1}{n}-\frac{1 / n}{1+n a_{n}} \geq \frac{1}{2 n} .
$$

Hence, it suffices to prove that the series

$$
\sum_{n=1}^{\infty} \min \left\{a_{n}, \frac{1}{n}\right\}
$$

diverges. Let $c_{n}=\min \left\{a_{n}, \frac{1}{n}\right\}$. Suppose for a contradiction that $\sum_{n=1}^{\infty} c_{n}$ converges. Suppose $\lim _{n \rightarrow \infty} n c_{n} \neq 0$. Then for some small $\delta>0$, there exists arbitrarily large m such that $m c_{m}>\delta$. Then $m a_{m}>\delta$. Since a_{n} is decreasing, we see that for $m / 2 \leq k \leq m$, we have $a_{k}>\delta / m$ and so $c_{k}>\min \{\delta / m, 1 / m\}=\delta / m$ by choosing $\delta<1$. Now

$$
\sum_{m / 2 \leq k \leq m} c_{k}>\frac{\delta}{2}
$$

Since there are infinitely such m, we see that $\sum_{k=1}^{\infty} c_{k}$ diverges. Contradiction. Hence we have $\lim _{n \rightarrow \infty} n c_{n}=0$. This means that for n large enough, $c_{n}=a_{n}$ but the series $\sum a_{n}$ diverges.

4: Let A be a 4×4 symmetric matrix with positive integer entries and $\operatorname{det}(A)=1$. Prove that there exists a 4×4 matrix B with integer entries such that $A=B^{t} B$.

We prove the general statement for all $n \times n$ positive definite matrices with $n \leq 4$. The statement is trivial for $n=1$. Let $f_{A}(v)=v^{t} A v$ denote the associated quadratic form. Since the entries of A are positive, we see that f_{A} is positive definite. We first prove that there exists a nonzero $v_{1} \in \mathbb{Z}^{n}$ such that $f_{A}\left(v_{1}\right)=1$. The usual Gram-Schmidt gives a 4×4 matrix M with real coefficients such that $A=M^{t} M$. For any $w \in \mathbb{R}^{n}$, we have $f_{A}(w)=(M w)^{t}(M w)$. Hence the linear transformation M, which has determinant ± 1, is a map

$$
\left\{w \in \mathbb{R}^{n}: f_{A}(w)<2\right\} \rightarrow\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}^{2}+\cdots+x_{n}^{2}<2\right\}
$$

Hence

$$
\operatorname{Vol}\left\{w \in \mathbb{R}^{n}: f_{A}(w)<2\right\}= \begin{cases}\frac{1}{2} \pi^{2} \sqrt{2}^{4} & \text { if } n=4 \\ \frac{4}{3} \pi \sqrt{2}^{3} & \text { if } n=3 \\ 2 \pi \sqrt{2}^{2} & \text { if } n=2\end{cases}
$$

It is easy to check it is always bigger than 2^{n}. Hence by Minkowski's Theorem, there exists a nonzero lattice point $v_{1} \in \mathbb{Z}^{n}$ such that $f_{A}(v)<2$, which forces $f_{A}\left(v_{1}\right)=1$.

We now mimic the Gram-Schmidt process. Denote $\langle x, y\rangle_{A}=x^{t} A y$. Since $f_{A}\left(v_{1}\right)=1$, we see that no prime divides all the entries of v_{1}. Hence we can complete v_{1} into a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbb{Z}^{n}. For $i=2, \ldots, n$, we let $w_{i}=v_{i}-\left\langle v_{i}, v_{1}\right\rangle_{A} v_{1}$ so that $\left\langle w_{i}, v_{1}\right\rangle_{A}=0$. Let P be the $n \times n$ matrix with columns $w_{1}=v_{1}, w_{2}, \ldots, w_{n}$. Then P has integer entries and $\operatorname{det}(P)= \pm 1$, implying that P^{-1} also has integer entries. Moreover,

$$
P^{t} A P=\left(\begin{array}{cc}
1 & 0 \\
0 & A^{\prime}
\end{array}\right)
$$

where A^{\prime} is a positive definite $(n-1) \times(n-1)$ matrix with $\operatorname{det}\left(A^{\prime}\right)=1$. Applying induction A^{\prime} gives an $(n-1) \times(n-1)$ matrix C with

$$
P^{t} A P=\left(\begin{array}{cc}
1 & 0 \\
0 & C^{t}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & C
\end{array}\right)
$$

Hence $B=C P^{-1}$ does the job.
5: Let $f:[0, \infty) \rightarrow \mathbb{R}$ be twice differentiable with $f^{\prime \prime}(x)>0$ for all $x \in[0, \infty)$ and $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\infty$. Prove that $\int_{0}^{\infty} \sin (f(x)) d x$ converges, but not absolutely.
First we note that $f^{\prime}\left(x_{0}\right)>0$ for some $x_{0} \in[0, \infty)$ and so will be positive for all $x>x_{0}$. If $f^{\prime}(x)<M$ for some positive M for all $x \in[0, \infty)$, then $f(x)<f\left(x_{0}\right)+M\left(x-x_{0}\right)$ and so $\lim _{x \rightarrow \infty} \frac{f(x)}{x} \leq M$. Hence we have $f^{\prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$. By shifting x, we may assume $f^{\prime}(x)>0$ for all $x \geq 0$. Now we apply integration by parts with $u=\frac{1}{f^{\prime}(x)}$ and $d v=f^{\prime}(x) \sin (f(x)) d x$ to get

$$
\int_{a}^{b} \sin (f(x)) d x=-\left.\frac{\cos (f(x))}{f^{\prime}(x)}\right|_{a} ^{b}-\int_{a}^{b} \cos (f(x)) \frac{f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} d x .
$$

Note that

$$
\left|\int_{a}^{b} \cos (f(x)) \frac{f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} d x\right| \leq \int_{a}^{b} \frac{f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} d x=\frac{1}{f^{\prime}(a)}-\frac{1}{f^{\prime}(b)}
$$

For $a, b>N$ where N is large enough, we have

$$
\left|\int_{a}^{b} \cos (f(x)) \frac{f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} d x\right| \leq \frac{1}{f^{\prime}(N)} \rightarrow 0
$$

So the improper integral

$$
\int_{0}^{\infty} \cos (f(x)) \frac{f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} d x
$$

converges. Moreover,

$$
\lim _{b \rightarrow \infty}-\left.\frac{\cos (f(x))}{f^{\prime}(x)}\right|_{0} ^{b}=\frac{1}{f^{\prime}(0)}
$$

Hence the improper integral $\int_{0}^{\infty} \sin (f(x)) d x$ converges.
For absolute convergence, for every integer $k>f(0) / \pi$, let $u_{k} \in[0, \infty)$ such that $f\left(u_{k}\right)=k \pi$. We break up the integral into the intervals $\left[u_{k}, u_{k+1}\right]$:

$$
\int_{u_{k}}^{u_{k+1}}|\sin (f(x))| d x=\frac{1}{f^{\prime}\left(u_{k}\right)}+\frac{1}{f^{\prime}\left(u_{k+1}\right)} \pm \int_{u_{k}}^{u_{k+1}} \cos (f(x)) \frac{f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} d x \geq \frac{2}{f^{\prime}\left(u_{k+1}\right)}
$$

It suffices to prove that

$$
\sum_{k>f(0) / \pi+1} \frac{1}{f^{\prime}\left(u_{k}\right)}=\infty
$$

Let $g(x)=f^{-1}(x)$ be the inverse of $f(x)$. Then $g^{\prime}(x)=1 / f^{\prime}\left(f^{-1}(x)\right)$. So

$$
\sum_{k>f(0) / \pi+1} \frac{1}{f^{\prime}\left(u_{k}\right)}=\sum_{k>f(0) / \pi+1} g^{\prime}(k \pi)
$$

Since $f^{\prime \prime}(x)>0$, we have $g^{\prime \prime}(x)<0$. So the derivative $g^{\prime}(x)$ is decreasing. Hence

$$
\sum_{k>f(0) / \pi+1} g^{\prime}(k \pi) \geq \int_{f(0) / \pi}^{\infty} g^{\prime}(\pi x) d x=\frac{1}{\pi}\left(\lim _{u \rightarrow \infty} g(u)-g(f(0))\right) \rightarrow \infty
$$

6: Let A be an infinite subset of the set of positive integers. Let x_{n} be the number of pairs $(a, b) \in A \times A$ such that $a<b$ and $a+b=n$. Prove that the sequence x_{n} is not eventually constant.
Let $f(X)=\sum_{a \in A} X^{a}$. Then we see that

$$
f(X)^{2}-f\left(X^{2}\right)=\sum_{n=1}^{\infty} 2 x_{n} X^{n}
$$

Suppose the sequence x_{n} is eventually constant. Then

$$
f(X)^{2}-f\left(X^{2}\right)=\frac{c}{1-X}+P(X)
$$

for some integer c and polynomial $P(X) \in \mathbb{Z}[X]$. For X close to 1 , we then have

$$
f(X) \gg \frac{1}{\sqrt{1-X}}
$$

We now integrate

$$
|f(X)|^{2} \leq\left|f\left(X^{2}\right)\right|+\frac{c}{|1-X|}+|P(X)|
$$

on the circle of radius r centered at the origin for $r<1$ to get

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r^{2} e^{2 i \theta}\right)\right| d \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{c}{\left|1-r e^{i \theta}\right|} d \theta+O(1)
$$

We can evaluate the LHS precisely via

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{a, b \in A} r^{a+b} e^{i(a-b) \theta} d \theta=f\left(r^{2}\right)
$$

using the fact that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i \alpha \theta} d \theta= \begin{cases}0 & \text { if } \alpha \neq 0 \\ 1 & \text { if } \alpha=0\end{cases}
$$

By Cauchy-Schwartz, we have

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r^{2} e^{2 i \theta}\right)\right| d \theta \leq \frac{1}{2 \pi}\left(2 \pi \int_{0}^{2 \pi}\left|f\left(r^{2} e^{2 i \theta}\right)\right|^{2} d \theta\right)^{1 / 2}=\sqrt{f\left(r^{4}\right)} \leq \sqrt{f\left(r^{2}\right)}
$$

Hence, we have

$$
f\left(r^{2}\right) \leq \sqrt{f\left(r^{2}\right)}+O\left(\int_{0}^{2 \pi} \frac{1}{\left|1-r e^{i \theta}\right|} d \theta\right)+O(1)
$$

which implies that

$$
\frac{1}{\sqrt{1-r}} \ll \frac{1}{\sqrt{1-r^{2}}} \ll f\left(r^{2}\right) \ll \int_{0}^{2 \pi} \frac{1}{\left|1-r e^{i \theta \mid}\right|} d \theta
$$

Note that

$$
\frac{1}{\left|1-r e^{i \theta}\right|}=\frac{1}{\sqrt{1-2 r \cos \theta+r^{2}}}=\frac{1}{\sqrt{(1-r)^{2}+4 r \sin ^{2}(\theta / 2)}}
$$

For $0 \leq \alpha \leq 1$, we have $\sin \alpha \geq \alpha-\alpha^{3} / 6 \geq(5 / 6) \alpha$. Then

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{1}{\mid 1-r e^{i \theta \mid}} d \theta & \leq 2 \int_{0}^{\pi} \frac{1}{\sqrt{(1-r)^{2}+(25 / 36) r \theta^{2}}} d \theta \\
& =\left.2 \cdot \frac{6}{5 \sqrt{r}} \ln \left(\sqrt{(1-r)^{2}+(25 / 36) r \theta^{2}}+\frac{5}{6} \sqrt{r} \theta\right)\right|_{0} ^{\pi} \\
& \ll \ln (1-r), \quad \text { as } r \rightarrow 1^{-}
\end{aligned}
$$

We now have a contradiction because

$$
\lim _{r \rightarrow 1^{-}} \sqrt{1-r} \ln (1-r)=0
$$

