
Week 9: Mock Putnam 3

1: Prove that there exist a sequence n1, n2, . . . of pairwise coprime integers such that n1 · · ·nk − 1 is
the product of two consecutive integers for every positive integer k.

2: Let A be an n × n matrix with integer entries. Suppose p, q, r are positive integers such that
p2 = q2 + r2 and p2Ap2 = q2Aq2 + r2In, where In denotes the n × n identity matrix. Prove that
| detA| = 1.

3: Let (an)
∞
n=1 be a decreasing sequence of positive real numbers such that

∑∞
n=1 an diverges. Prove

that
∞∑
n=1

an
1 + nan

also diverges.

4: Let A be a 4× 4 symmetric matrix with positive integer entries and det(A) = 1. Prove that there
exists a 4× 4 matrix B with integer entries such that A = BtB.

5: Let f : [0,∞) → R be twice differentiable with f ′′(x) > 0 for all x ∈ [0,∞) and limx→∞
f(x)
x

= ∞.

Prove that

∫ ∞

0

sin(f(x)) dx converges, but not absolutely.

6: Let A be an infinite subset of the set of positive integers. Let xn be the number of pairs (a, b) ∈ A×A
such that a < b and a+ b = n. Prove that the sequence xn is not eventually constant.



Week 9: Solutions

1: Prove that there exist a sequence n1, n2, . . . of pairwise coprime integers such that n1 · · ·nk − 1 is
the product of two consecutive integers for every positive integer k.

We construct it inductively. Suppose n1 · · ·nk − 1 = m(m + 1) has been given. So n1 · · ·nk =
m2 +m+ 1. Note that

(m2 +m+ 1)(m2 −m+ 1) = m4 +m2 + 1 = m2(m2 + 1) + 1.

Hence we take nk+1 = m2 −m+ 1. If q is a common divisor of nk+1 = m2 −m+ 1 and n1 · · ·nk =
m2 + m + 1, then q is odd and q | 2m. Hence q | m but then q | 1. Hence nk+1 is coprime to
n1 · · ·nk.

2: Let A be an n × n matrix with integer entries. Suppose p, q, r are positive integers such that
p2 = q2 + r2 and p2Ap2 = q2Aq2 + r2In, where In denotes the n × n identity matrix. Prove that
| detA| = 1.

Let λ ∈ C be an eigenvalue of A. Then p2λp2 = q2λq2 + r2. Note that λ ̸= 0. We prove that |λ| ≤ 1,
which would imply that | det(A)| is a nonzero integer at most 1, hence equals 1. Suppose |λ| > 1.
Then

|p2λp2| = p2|λ|q2|λ|r2 > (q2 + r2)|λ|q2 > q2|λ|q2 + r2 ≥ |q2λq2 + r2|.
Contradiction.

3: Let (an)
∞
n=1 be a decreasing sequence of positive real numbers such that

∞∑
n=1

an diverges. Prove that

∞∑
n=1

an
1 + nan

also diverges.

Let bn = an
1+nan

. If an < 1/n, then 1+nan < 2 and we have bn > an/2. If an ≥ 1/n, then 1+nan ≥ 2
and

bn =
1

n
− 1/n

1 + nan
≥ 1

2n
.

Hence, it suffices to prove that the series
∞∑
n=1

min{an,
1

n
}

diverges. Let cn = min{an, 1
n
}. Suppose for a contradiction that

∑∞
n=1 cn converges. Suppose

limn→∞ ncn ̸= 0. Then for some small δ > 0, there exists arbitrarily large m such that mcm > δ.
Then mam > δ. Since an is decreasing, we see that for m/2 ≤ k ≤ m, we have ak > δ/m and so
ck > min{δ/m, 1/m} = δ/m by choosing δ < 1. Now∑

m/2≤k≤m

ck >
δ

2
.



Since there are infinitely such m, we see that
∑∞

k=1 ck diverges. Contradiction. Hence we have
limn→∞ ncn = 0. This means that for n large enough, cn = an but the series

∑
an diverges.

4: Let A be a 4× 4 symmetric matrix with positive integer entries and det(A) = 1. Prove that there
exists a 4× 4 matrix B with integer entries such that A = BtB.

We prove the general statement for all n× n positive definite matrices with n ≤ 4. The statement
is trivial for n = 1. Let fA(v) = vtAv denote the associated quadratic form. Since the entries of A
are positive, we see that fA is positive definite. We first prove that there exists a nonzero v1 ∈ Zn

such that fA(v1) = 1. The usual Gram-Schmidt gives a 4× 4 matrix M with real coefficients such
that A = M tM . For any w ∈ Rn, we have fA(w) = (Mw)t(Mw). Hence the linear transformation
M , which has determinant ±1, is a map

{w ∈ Rn : fA(w) < 2} → {(x1, . . . , xn) ∈ Rn : x2
1 + · · ·+ x2

n < 2}.

Hence

Vol{w ∈ Rn : fA(w) < 2} =


1
2
π2
√
2
4

if n = 4,
4
3
π
√
2
3

if n = 3,

2π
√
2
2

if n = 2.

It is easy to check it is always bigger than 2n. Hence by Minkowski’s Theorem, there exists a
nonzero lattice point v1 ∈ Zn such that fA(v) < 2, which forces fA(v1) = 1.

We now mimic the Gram-Schmidt process. Denote ⟨x, y⟩A = xtAy. Since fA(v1) = 1, we see
that no prime divides all the entries of v1. Hence we can complete v1 into a basis {v1, . . . , vn} of
Zn. For i = 2, . . . , n, we let wi = vi − ⟨vi, v1⟩Av1 so that ⟨wi, v1⟩A = 0. Let P be the n × n matrix
with columns w1 = v1, w2, . . . , wn. Then P has integer entries and det(P ) = ±1, implying that P−1

also has integer entries. Moreover,

P tAP =

(
1 0
0 A′

)
where A′ is a positive definite (n − 1) × (n − 1) matrix with det(A′) = 1. Applying induction A′

gives an (n− 1)× (n− 1) matrix C with

P tAP =

(
1 0
0 Ct

)(
1 0
0 C

)
.

Hence B = CP−1 does the job.

5: Let f : [0,∞) → R be twice differentiable with f ′′(x) > 0 for all x ∈ [0,∞) and limx→∞
f(x)
x

= ∞.

Prove that

∫ ∞

0

sin(f(x)) dx converges, but not absolutely.

First we note that f ′(x0) > 0 for some x0 ∈ [0,∞) and so will be positive for all x > x0. If f
′(x) < M

for some positive M for all x ∈ [0,∞), then f(x) < f(x0) +M(x − x0) and so limx→∞
f(x)
x

≤ M.
Hence we have f ′(x) → ∞ as x → ∞. By shifting x, we may assume f ′(x) > 0 for all x ≥ 0. Now
we apply integration by parts with u = 1

f ′(x)
and dv = f ′(x) sin(f(x))dx to get∫ b

a

sin(f(x))dx = −cos(f(x))

f ′(x)

∣∣∣∣b
a

−
∫ b

a

cos(f(x))
f ′′(x)

(f ′(x))2
dx.



Note that ∣∣∣∣∫ b

a

cos(f(x))
f ′′(x)

(f ′(x))2
dx

∣∣∣∣ ≤ ∫ b

a

f ′′(x)

(f ′(x))2
dx =

1

f ′(a)
− 1

f ′(b)
.

For a, b > N where N is large enough, we have∣∣∣∣∫ b

a

cos(f(x))
f ′′(x)

(f ′(x))2
dx

∣∣∣∣ ≤ 1

f ′(N)
→ 0.

So the improper integral ∫ ∞

0

cos(f(x))
f ′′(x)

(f ′(x))2
dx

converges. Moreover,

lim
b→∞

− cos(f(x))

f ′(x)

∣∣∣∣b
0

=
1

f ′(0)
.

Hence the improper integral

∫ ∞

0

sin(f(x))dx converges.

For absolute convergence, for every integer k > f(0)/π, let uk ∈ [0,∞) such that f(uk) = kπ.
We break up the integral into the intervals [uk, uk+1]:∫ uk+1

uk

| sin(f(x))|dx =
1

f ′(uk)
+

1

f ′(uk+1)
±

∫ uk+1

uk

cos(f(x))
f ′′(x)

(f ′(x))2
dx ≥ 2

f ′(uk+1)
.

It suffices to prove that ∑
k>f(0)/π+1

1

f ′(uk)
= ∞.

Let g(x) = f−1(x) be the inverse of f(x). Then g′(x) = 1/f ′(f−1(x)). So∑
k>f(0)/π+1

1

f ′(uk)
=

∑
k>f(0)/π+1

g′(kπ).

Since f ′′(x) > 0, we have g′′(x) < 0. So the derivative g′(x) is decreasing. Hence∑
k>f(0)/π+1

g′(kπ) ≥
∫ ∞

f(0)/π

g′(πx) dx =
1

π

(
lim
u→∞

g(u)− g(f(0))
)
→ ∞.

6: Let A be an infinite subset of the set of positive integers. Let xn be the number of pairs (a, b) ∈ A×A
such that a < b and a+ b = n. Prove that the sequence xn is not eventually constant.

Let f(X) =
∑

a∈AXa. Then we see that

f(X)2 − f(X2) =
∞∑
n=1

2xnX
n.



Suppose the sequence xn is eventually constant. Then

f(X)2 − f(X2) =
c

1−X
+ P (X)

for some integer c and polynomial P (X) ∈ Z[X]. For X close to 1, we then have

f(X) ≫ 1√
1−X

.

We now integrate

|f(X)|2 ≤ |f(X2)|+ c

|1−X|
+ |P (X)|

on the circle of radius r centered at the origin for r < 1 to get

1

2π

∫ 2π

0

|f(reiθ)|2 dθ ≤ 1

2π

∫ 2π

0

|f(r2e2iθ)| dθ + 1

2π

∫ 2π

0

c

|1− reiθ|
dθ +O(1).

We can evaluate the LHS precisely via

1

2π

∫ 2π

0

|f(reiθ)|2 dθ =
1

2π

∫ 2π

0

∑
a,b∈A

ra+bei(a−b)θ dθ = f(r2)

using the fact that

1

2π

∫ 2π

0

eiαθ dθ =

{
0 if α ̸= 0

1 if α = 0.

By Cauchy-Schwartz, we have

1

2π

∫ 2π

0

|f(r2e2iθ)| dθ ≤ 1

2π

(
2π

∫ 2π

0

|f(r2e2iθ)|2 dθ
)1/2

=
√
f(r4) ≤

√
f(r2).

Hence, we have

f(r2) ≤
√
f(r2) +O

(∫ 2π

0

1

|1− reiθ|
dθ
)
+O(1)

which implies that
1√
1− r

≪ 1√
1− r2

≪ f(r2) ≪
∫ 2π

0

1

|1− reiθ|
dθ.

Note that
1

|1− reiθ|
=

1√
1− 2r cos θ + r2

=
1√

(1− r)2 + 4r sin2(θ/2)
.

For 0 ≤ α ≤ 1, we have sinα ≥ α− α3/6 ≥ (5/6)α. Then∫ 2π

0

1

|1− reiθ|
dθ ≤ 2

∫ π

0

1√
(1− r)2 + (25/36)rθ2

dθ

= 2 · 6

5
√
r
ln
(√

(1− r)2 + (25/36)rθ2 +
5

6

√
rθ
)∣∣∣∣π

0

≪ ln(1− r), as r → 1−.

We now have a contradiction because

lim
r→1−

√
1− r ln(1− r) = 0.


