Week 8: Mock Putnam 2

: Let p be a prime. Prove that for all 1 < k < p?, we have

() =+(7)

: Prove that the system

P+t a2ty +y = 69"
P4yt +y+ 2 = 4209

has no integer solutions in z,v, 2.

: Let m > 1 be an integer with at least two distinct prime divisors p and ¢q. Prove that there does
not exist a polynomial f(x) with integer coefficients such that

o f(n)

e f(n) =1 (mod m) for some integers n,

0 (mod m) for some integers n,

e f(n)=0or1 (mod m) for all integers n.

: Is it possible to partition the set of all nonnegative integers with at most 2023 digits into subsets of
size 4 such that in each subset, the 4 numbers have the same digits in 2022 places and 4 consecutive
digits in the remaining place?

: Let x1,..., x5 be nonnegative real numbers. Prove that

(1 + 20+ -+ + 25)% > 25(21 2073 + ToT3Ty + T3T4T5 + T4T5T1 + TT1To).

: For any infinitely differentiable function f : R — R, we write f,(z) = % fa—1(z) for n > 1 and
fo(x) = f(z). Find all real numbers ¢ such that there exists an differentiable function f: R — R
such that f,(x) > f,_1(z) + ¢ for all positive integers n and all z € R.



Week &: Solutions

: Let p be a prime. Prove that for all 1 < k < p?, we have

() =+(7)

The left-hand-side is the coefficient of ¥ in (1 4 z)%°. Since (14 z)?" =1+ 27" (mod p), there is
a polynomial A(x) € Z[x] such that

(1+2)" =14 2" + pA(x).
Squaring gives

(1+2)% =14 2pA(z) (mod z¥°,p?).

The coefficient of ¥ of pA(x) is the same as the coefficient of z* of (1 + )", which is (pg). Hence

k
we have desired congruence mod p?.

: Prove that the system

P+t a2ty +y = 69"
Pyt +y+ 2 = 4209

has no integer solutions in x,y, 2.

Adding the two equations gives
20 203 2ty 2y oyt 2 = (2P oy 4+ 1)2 -1+ 2 = 690 44209,

The 2° suggests working mod 19 since it can only be —1,0, 1 mod 19.

We have 69 = —7 (mod 19) so 69? = 49 = —8 = (—2)® (mod 19). Since 19 = 3 (mod 8), we
know —2 = a? (mod 19) for some a and so 692 = a® (mod 19). Hence 69° = 1 (mod 19) and so
69*2° =1 (mod 19).

We have 420 = 2 (mod 19) and 2° = —1 (mod 19). So 2% = —2° =12 (mod 19). So
(2* +y+1)2 =692 +420 +1—2=13,14 or 15 (mod 19).
We now compute Legendre symbols to show 13,14, 15 are all quadratic nonresidues mod 19:
()~ (- (5)-(3)E) -~
19 13 13 13/\13 ’

since 13 # +1 (mod 8) and 13 = £1 (mod 12);

(1) = () (55 = () (55) (ig) =



since 19 # +1 (mod 9) and 19 # 1 (mod 4) and 19 # +1 (mod 12);

(1) - () = () =+

: Let m > 1 be an integer with at least two distinct prime divisors p and ¢q. Prove that there does
not exist a polynomial f(x) with integer coefficients such that

e f(n) =0 (mod m) for some integers n,
e f(n) =1 (mod m) for some integers n,
e f(n)=0or1 (mod m) for all integers n.

Let a € Z such that f(a) =0 (mod m). Fix any integer k. We have

fla+kp) = f(a) (mod p)

and so we can’t have f(a + kp) = 1 (mod m) as that would imply p | 1. Hence f(a + kp) = 0
(mod m). Now fix any integer £. We have

fla+kp+Lq) = fla+kp) (mod q)

and so we can’t have f(a+kp+£¢q) =1 (mod m) as that would imply ¢ | 1. Hence f(a+kp-+£q) =0
(mod m). However, since p, g are distinct primes, every integer is of the form a + kp + ¢q for some
k,0 € Z. This contradicts the assumption that f(n) =1 (mod m) for some integer n.

: Is it possible to partition the set of all nonnegative integers with at most 2023 digits into subsets of
size 4 such that in each subset, the 4 numbers have the same digits in 2022 places and 4 consecutive
digits in the remaining place?

Let S be the set of all positive integers with at most 2023 digits. For any n € S, let s(n) denote
the sum of the digits of n. Consider the generating function

F(X):ZXS(n):(1+X—|—'--—|—X9)2023.

nes

On the other hand, if 7" is a set of 4 numbers that have the same digits in 2022 places and 4
consecutive digits in the remaining place, then their digit sums are 4 consecutive integers and so

T+ X+ X2+ X5 X0,

neTl

Hence, if such a decomposition is possible, then
1+X+X2+X3 | (X10_1)2023

which is not possible since 7 is not a root of X'® — 1 but is a root of 1 + X + X? + X?3.



5: Let x1,..., x5 be nonnegative real numbers. Prove that

(1 + 29+ -+ + 25)% > 25(21 2973 + D37y + T3T4T5 + T4T5T + T5T1To).

By cyclicity, we may assume x5 is the smallest. We have x1 + x4 — x5 > 0 and so

RHS = 375(1'1 + 273)(1'2 + 1’4) + 1'21'3(1‘1 + x4 — $5)
1 2, 1 3
< Z$5($1 + 29 + x5+ 24)" + 2—7@1 + 29 + 23+ T4 — 25)°.
If 25 = 0, then it is less than or equal to (z1 + x5 + 3 + 24)%/25 as desired. Suppose now x5 # 0.

By scaling, we may assume x5 = 1. Let t = 1 + x5 + 23 + x4. It remains to prove that

2—15(t—|— 1)% — iﬁ - 2—17(75 -1)%>0
for ¢t > 4. It takes the value 0 when ¢t = 4 and has derivative
235(75 +1)? — %t — é(t -1 = ﬁ(w? + 108t + 54 — 225t — 50¢* + 100t — 50)
= ﬁ(uz — 17t 4+ 4)
1
= E(475 —1)(t—4)

is positive for ¢ > 4. Hence the cubic above is non-negative for ¢ > 4.

6: For any infinitely differentiable function f : R — R, we write f,(z) = < f,_(z) for n > 1 and
fo(x) = f(z). Find all real numbers ¢ such that there exists an differentiable function f: R — R
such that f,(x) > f._1(x) + ¢ for all positive integers n and all z € R.

By taking f(x) = €?*, we see that f,(z) = 2"e?*® > 271 for all x € R. Hence every ¢ < 0 works.
Suppose ¢ > 0 and such a function f(x) exists.

Solution 1: Let g(z) = f'(x) — f(x). Then g(z) > ¢ and ¢'(x) > ¢ for all x € R. The condition
¢'(z) > ¢ implies that lim, , . g(x) = —oo, which contradicts g(z) > ¢ for all x.

Solution 2: Note that for any a € R, if f(a) > —c/2, then f’(a) > ¢/2. This implies that for
any b € R, if f(a) > —¢/2 for all @ < b, then f'(a) > ¢/2 for all ¢ < b and so lim, ,_ f(z) = —o0,
which is a contradiction. Hence, for any b € R, there exists some a < b such that f(a) < —c/2.

Moreover, since the function is strictly increasing whenever f(x) > —c/2, we see that if f(b) >
—c/2 for some b € R, then f(z) > —c¢/2 for all z > b. To prove this rigorously, suppose f(a) < —c¢/2
for some a > b. Let ay = inf{a > b: f(a) < —c¢/2}. By continuity, f(ag) < —c¢/2. By MVT,
there exists some a; € (b,ag) such that f(ag) — f(b) = f'(a1)(b — ap), but f(ag) — f(b) < 0 and
f'(a1)(b—ag) > 0. Note this also implies that if f(b) < —c/2 for some b € R, then f(x) < —¢/2 for
all x <b.

From the above two paragraphs, we have some by € R such that f(z) < —c¢/2 for all x < by.
The trick now is to note that f’(x) also satisfies the given condition. Hence applying the above to
f'(x), we see that there exists some b; < by such that f'(z) < —c¢/2 for all < by. This implies
that lim, ,  f(z) = oo which contradicts f(z) < —c¢/2 for all z < b;.



