Week 8: Mock Putnam 2

1: Let p be a prime. Prove that for all $1 \le k < p^2$, we have

$$\binom{2p^2}{k} \equiv 2\binom{p^2}{k} \pmod{p^2}.$$

2: Prove that the system

$$\begin{aligned} x^6 + x^3 + x^3y + y &= 69^{420} \\ x^3 + x^3y + y^2 + y + z^9 &= 420^{69} \end{aligned}$$

has no integer solutions in x, y, z.

- **3:** Let m > 1 be an integer with at least two distinct prime divisors p and q. Prove that there does not exist a polynomial f(x) with integer coefficients such that
 - $f(n) \equiv 0 \pmod{m}$ for some integers n,
 - $f(n) \equiv 1 \pmod{m}$ for some integers n,
 - $f(n) \equiv 0$ or 1 (mod m) for all integers n.
- 4: Is it possible to partition the set of all nonnegative integers with at most 2023 digits into subsets of size 4 such that in each subset, the 4 numbers have the same digits in 2022 places and 4 consecutive digits in the remaining place?
- **5:** Let x_1, \ldots, x_5 be nonnegative real numbers. Prove that

$$(x_1 + x_2 + \dots + x_5)^3 \ge 25(x_1x_2x_3 + x_2x_3x_4 + x_3x_4x_5 + x_4x_5x_1 + x_5x_1x_2)$$

6: For any infinitely differentiable function $f : \mathbb{R} \to \mathbb{R}$, we write $f_n(x) = \frac{d}{dx} f_{n-1}(x)$ for $n \ge 1$ and $f_0(x) = f(x)$. Find all real numbers c such that there exists an differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that $f_n(x) > f_{n-1}(x) + c$ for all positive integers n and all $x \in \mathbb{R}$.

Week 8: Solutions

1: Let p be a prime. Prove that for all $1 \le k < p^2$, we have

$$\binom{2p^2}{k} \equiv 2\binom{p^2}{k} \pmod{p^2}.$$

The left-hand-side is the coefficient of x^k in $(1+x)^{2p^2}$. Since $(1+x)^{p^2} \equiv 1+x^{p^2} \pmod{p}$, there is a polynomial $A(x) \in \mathbb{Z}[x]$ such that

$$(1+x)^{p^2} = 1 + x^{p^2} + pA(x).$$

Squaring gives

$$(1+x)^{2p^2} \equiv 1 + 2pA(x) \pmod{x^{p^2}, p^2}.$$

The coefficient of x^k of pA(x) is the same as the coefficient of x^k of $(1+x)^{p^2}$, which is $\binom{p^2}{k}$. Hence we have desired congruence mod p^2 .

2: Prove that the system

$$\begin{array}{rcl} x^6 + x^3 + x^3 y + y &=& 69^{420} \\ x^3 + x^3 y + y^2 + y + z^9 &=& 420^{69} \end{array}$$

has no integer solutions in x, y, z.

Adding the two equations gives

$$x^{6} + 2x^{3} + 2x^{3}y + 2y + y^{2} + z^{9} = (x^{3} + y + 1)^{2} - 1 + z^{9} = 69^{420} + 420^{69}.$$

The z^9 suggests working mod 19 since it can only be $-1, 0, 1 \mod 19$.

We have $69 \equiv -7 \pmod{19}$ so $69^2 \equiv 49 \equiv -8 \equiv (-2)^3 \pmod{19}$. Since $19 \equiv 3 \pmod{8}$, we know $-2 \equiv \alpha^2 \pmod{19}$ for some α and so $69^2 \equiv \alpha^6 \pmod{19}$. Hence $69^6 \equiv 1 \pmod{19}$ and so $69^{420} \equiv 1 \pmod{19}$.

We have $420 \equiv 2 \pmod{19}$ and $2^9 \equiv -1 \pmod{19}$. So $2^{69} \equiv -2^6 \equiv 12 \pmod{19}$. So

$$(x^3 + y + 1)^2 \equiv 69^{420} + 420^{69} + 1 - z^9 \equiv 13, 14 \text{ or } 15 \pmod{19}$$

We now compute Legendre symbols to show 13, 14, 15 are all quadratic nonresidues mod 19:

$$\left(\frac{13}{19}\right) = \left(\frac{19}{13}\right) = \left(\frac{6}{13}\right) = \left(\frac{2}{13}\right)\left(\frac{3}{13}\right) = -1,$$

since $13 \not\equiv \pm 1 \pmod{8}$ and $13 \equiv \pm 1 \pmod{12}$;

$$\left(\frac{14}{19}\right) = \left(\frac{2}{19}\right)\left(\frac{-12}{19}\right) = \left(\frac{2}{19}\right)\left(\frac{-1}{19}\right)\left(\frac{3}{19}\right) = -1.$$

since $19 \not\equiv \pm 1 \pmod{9}$ and $19 \not\equiv 1 \pmod{4}$ and $19 \not\equiv \pm 1 \pmod{12}$;

$$\left(\frac{15}{19}\right) = \left(\frac{-4}{19}\right) = \left(\frac{-1}{19}\right) = -1.$$

- **3:** Let m > 1 be an integer with at least two distinct prime divisors p and q. Prove that there does not exist a polynomial f(x) with integer coefficients such that
 - $f(n) \equiv 0 \pmod{m}$ for some integers n,
 - $f(n) \equiv 1 \pmod{m}$ for some integers n,
 - $f(n) \equiv 0$ or 1 (mod m) for all integers n.

Let $a \in \mathbb{Z}$ such that $f(a) \equiv 0 \pmod{m}$. Fix any integer k. We have

$$f(a+kp) \equiv f(a) \pmod{p}$$

and so we can't have $f(a + kp) \equiv 1 \pmod{m}$ as that would imply $p \mid 1$. Hence $f(a + kp) \equiv 0 \pmod{m}$. Now fix any integer ℓ . We have

$$f(a+kp+\ell q) \equiv f(a+kp) \pmod{q}$$

and so we can't have $f(a+kp+\ell q) \equiv 1 \pmod{m}$ as that would imply $q \mid 1$. Hence $f(a+kp+\ell q) \equiv 0 \pmod{m}$. (mod m). However, since p, q are distinct primes, every integer is of the form $a+kp+\ell q$ for some $k, \ell \in \mathbb{Z}$. This contradicts the assumption that $f(n) \equiv 1 \pmod{m}$ for some integer n.

4: Is it possible to partition the set of all nonnegative integers with at most 2023 digits into subsets of size 4 such that in each subset, the 4 numbers have the same digits in 2022 places and 4 consecutive digits in the remaining place?

Let S be the set of all positive integers with at most 2023 digits. For any $n \in S$, let s(n) denote the sum of the digits of n. Consider the generating function

$$F(X) = \sum_{n \in S} X^{s(n)} = (1 + X + \dots + X^9)^{2023}.$$

On the other hand, if T is a set of 4 numbers that have the same digits in 2022 places and 4 consecutive digits in the remaining place, then their digit sums are 4 consecutive integers and so

$$1 + X + X^2 + X^3 \mid \sum_{n \in T} X^{s(n)}.$$

Hence, if such a decomposition is possible, then

$$1 + X + X^{2} + X^{3} | (X^{10} - 1)^{2023}$$

which is not possible since i is not a root of $X^{10} - 1$ but is a root of $1 + X + X^2 + X^3$.

5: Let x_1, \ldots, x_5 be nonnegative real numbers. Prove that

$$(x_1 + x_2 + \dots + x_5)^3 \ge 25(x_1x_2x_3 + x_2x_3x_4 + x_3x_4x_5 + x_4x_5x_1 + x_5x_1x_2).$$

By cyclicity, we may assume x_5 is the smallest. We have $x_1 + x_4 - x_5 \ge 0$ and so

RHS =
$$x_5(x_1 + x_3)(x_2 + x_4) + x_2x_3(x_1 + x_4 - x_5)$$

 $\leq \frac{1}{4}x_5(x_1 + x_2 + x_3 + x_4)^2 + \frac{1}{27}(x_1 + x_2 + x_3 + x_4 - x_5)^3.$

If $x_5 = 0$, then it is less than or equal to $(x_1 + x_2 + x_3 + x_4)^3/25$ as desired. Suppose now $x_5 \neq 0$. By scaling, we may assume $x_5 = 1$. Let $t = x_1 + x_2 + x_3 + x_4$. It remains to prove that

$$\frac{1}{25}(t+1)^3 - \frac{1}{4}t^2 - \frac{1}{27}(t-1)^3 \ge 0$$

for $t \ge 4$. It takes the value 0 when t = 4 and has derivative

$$\frac{3}{25}(t+1)^2 - \frac{1}{2}t - \frac{1}{9}(t-1)^2 = \frac{1}{450}(54t^2 + 108t + 54 - 225t - 50t^2 + 100t - 50)$$
$$= \frac{1}{450}(4t^2 - 17t + 4)$$
$$= \frac{1}{450}(4t - 1)(t - 4)$$

is positive for t > 4. Hence the cubic above is non-negative for $t \ge 4$.

6: For any infinitely differentiable function $f : \mathbb{R} \to \mathbb{R}$, we write $f_n(x) = \frac{d}{dx} f_{n-1}(x)$ for $n \ge 1$ and $f_0(x) = f(x)$. Find all real numbers c such that there exists an differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that $f_n(x) > f_{n-1}(x) + c$ for all positive integers n and all $x \in \mathbb{R}$.

By taking $f(x) = e^{2x}$, we see that $f_n(x) = 2^n e^{2x} > 2^{n-1} e^{2x}$ for all $x \in \mathbb{R}$. Hence every $c \leq 0$ works. Suppose c > 0 and such a function f(x) exists.

Solution 1: Let g(x) = f'(x) - f(x). Then g(x) > c and g'(x) > c for all $x \in \mathbb{R}$. The condition g'(x) > c implies that $\lim_{x \to -\infty} g(x) = -\infty$, which contradicts g(x) > c for all x.

Solution 2: Note that for any $a \in \mathbb{R}$, if f(a) > -c/2, then f'(a) > c/2. This implies that for any $b \in \mathbb{R}$, if f(a) > -c/2 for all $a \leq b$, then f'(a) > c/2 for all $c \leq b$ and so $\lim_{x\to-\infty} f(x) = -\infty$, which is a contradiction. Hence, for any $b \in \mathbb{R}$, there exists some $a \leq b$ such that $f(a) \leq -c/2$.

Moreover, since the function is strictly increasing whenever f(x) > -c/2, we see that if f(b) > -c/2 for some $b \in \mathbb{R}$, then f(x) > -c/2 for all x > b. To prove this rigorously, suppose $f(a) \leq -c/2$ for some a > b. Let $a_0 = \inf\{a > b: f(a) \leq -c/2\}$. By continuity, $f(a_0) \leq -c/2$. By MVT, there exists some $a_1 \in (b, a_0)$ such that $f(a_0) - f(b) = f'(a_1)(b - a_0)$, but $f(a_0) - f(b) < 0$ and $f'(a_1)(b - a_0) > 0$. Note this also implies that if $f(b) \leq -c/2$ for some $b \in \mathbb{R}$, then $f(x) \leq -c/2$ for all $x \leq b$.

From the above two paragraphs, we have some $b_0 \in \mathbb{R}$ such that $f(x) \leq -c/2$ for all $x \leq b_0$. The trick now is to note that f'(x) also satisfies the given condition. Hence applying the above to f'(x), we see that there exists some $b_1 \leq b_0$ such that $f'(x) \leq -c/2$ for all $x \leq b_1$. This implies that $\lim_{x\to-\infty} f(x) = \infty$ which contradicts $f(x) \leq -c/2$ for all $x \leq b_1$.