
Week 8: Mock Putnam 2

1: Let p be a prime. Prove that for all 1 ≤ k < p2, we have(
2p2

k

)
≡ 2

(
p2

k

)
(mod p2).

2: Prove that the system

x6 + x3 + x3y + y = 69420

x3 + x3y + y2 + y + z9 = 42069

has no integer solutions in x, y, z.

3: Let m > 1 be an integer with at least two distinct prime divisors p and q. Prove that there does
not exist a polynomial f(x) with integer coefficients such that

• f(n) ≡ 0 (mod m) for some integers n,

• f(n) ≡ 1 (mod m) for some integers n,

• f(n) ≡ 0 or 1 (mod m) for all integers n.

4: Is it possible to partition the set of all nonnegative integers with at most 2023 digits into subsets of
size 4 such that in each subset, the 4 numbers have the same digits in 2022 places and 4 consecutive
digits in the remaining place?

5: Let x1, . . . , x5 be nonnegative real numbers. Prove that

(x1 + x2 + · · ·+ x5)
3 ≥ 25(x1x2x3 + x2x3x4 + x3x4x5 + x4x5x1 + x5x1x2).

6: For any infinitely differentiable function f : R → R, we write fn(x) = d
dx
fn−1(x) for n ≥ 1 and

f0(x) = f(x). Find all real numbers c such that there exists an differentiable function f : R → R
such that fn(x) > fn−1(x) + c for all positive integers n and all x ∈ R.



Week 8: Solutions

1: Let p be a prime. Prove that for all 1 ≤ k < p2, we have(
2p2

k

)
≡ 2

(
p2

k

)
(mod p2).

The left-hand-side is the coefficient of xk in (1 + x)2p
2
. Since (1 + x)p

2 ≡ 1 + xp2 (mod p), there is
a polynomial A(x) ∈ Z[x] such that

(1 + x)p
2

= 1 + xp2 + pA(x).

Squaring gives
(1 + x)2p

2 ≡ 1 + 2pA(x) (mod xp2 , p2).

The coefficient of xk of pA(x) is the same as the coefficient of xk of (1 + x)p
2
, which is

(
p2

k

)
. Hence

we have desired congruence mod p2.

2: Prove that the system

x6 + x3 + x3y + y = 69420

x3 + x3y + y2 + y + z9 = 42069

has no integer solutions in x, y, z.

Adding the two equations gives

x6 + 2x3 + 2x3y + 2y + y2 + z9 = (x3 + y + 1)2 − 1 + z9 = 69420 + 42069.

The z9 suggests working mod 19 since it can only be −1, 0, 1 mod 19.

We have 69 ≡ −7 (mod 19) so 692 ≡ 49 ≡ −8 ≡ (−2)3 (mod 19). Since 19 ≡ 3 (mod 8), we
know −2 ≡ α2 (mod 19) for some α and so 692 ≡ α6 (mod 19). Hence 696 ≡ 1 (mod 19) and so
69420 ≡ 1 (mod 19).

We have 420 ≡ 2 (mod 19) and 29 ≡ −1 (mod 19). So 269 ≡ −26 ≡ 12 (mod 19). So

(x3 + y + 1)2 ≡ 69420 + 42069 + 1− z9 ≡ 13, 14 or 15 (mod 19).

We now compute Legendre symbols to show 13, 14, 15 are all quadratic nonresidues mod 19:(13
19

)
=

(19
13

)
=

( 6

13

)
=

( 2

13

)( 3

13

)
= −1,

since 13 ̸≡ ±1 (mod 8) and 13 ≡ ±1 (mod 12);(14
19

)
=

( 2

19

)(−12

19

)
=

( 2

19

)(−1

19

)( 3

19

)
= −1.



since 19 ̸≡ ±1 (mod 9) and 19 ̸≡ 1 (mod 4) and 19 ̸≡ ±1 (mod 12);(15
19

)
=

(−4

19

)
=

(−1

19

)
= −1.

3: Let m > 1 be an integer with at least two distinct prime divisors p and q. Prove that there does
not exist a polynomial f(x) with integer coefficients such that

• f(n) ≡ 0 (mod m) for some integers n,

• f(n) ≡ 1 (mod m) for some integers n,

• f(n) ≡ 0 or 1 (mod m) for all integers n.

Let a ∈ Z such that f(a) ≡ 0 (mod m). Fix any integer k. We have

f(a+ kp) ≡ f(a) (mod p)

and so we can’t have f(a + kp) ≡ 1 (mod m) as that would imply p | 1. Hence f(a + kp) ≡ 0
(mod m). Now fix any integer ℓ. We have

f(a+ kp+ ℓq) ≡ f(a+ kp) (mod q)

and so we can’t have f(a+kp+ℓq) ≡ 1 (mod m) as that would imply q | 1. Hence f(a+kp+ℓq) ≡ 0
(mod m). However, since p, q are distinct primes, every integer is of the form a+ kp+ ℓq for some
k, ℓ ∈ Z. This contradicts the assumption that f(n) ≡ 1 (mod m) for some integer n.

4: Is it possible to partition the set of all nonnegative integers with at most 2023 digits into subsets of
size 4 such that in each subset, the 4 numbers have the same digits in 2022 places and 4 consecutive
digits in the remaining place?

Let S be the set of all positive integers with at most 2023 digits. For any n ∈ S, let s(n) denote
the sum of the digits of n. Consider the generating function

F (X) =
∑
n∈S

Xs(n) = (1 +X + · · ·+X9)2023.

On the other hand, if T is a set of 4 numbers that have the same digits in 2022 places and 4
consecutive digits in the remaining place, then their digit sums are 4 consecutive integers and so

1 +X +X2 +X3 |
∑
n∈T

Xs(n).

Hence, if such a decomposition is possible, then

1 +X +X2 +X3 | (X10 − 1)2023

which is not possible since i is not a root of X10 − 1 but is a root of 1 +X +X2 +X3.



5: Let x1, . . . , x5 be nonnegative real numbers. Prove that

(x1 + x2 + · · ·+ x5)
3 ≥ 25(x1x2x3 + x2x3x4 + x3x4x5 + x4x5x1 + x5x1x2).

By cyclicity, we may assume x5 is the smallest. We have x1 + x4 − x5 ≥ 0 and so

RHS = x5(x1 + x3)(x2 + x4) + x2x3(x1 + x4 − x5)

≤ 1

4
x5(x1 + x2 + x3 + x4)

2 +
1

27
(x1 + x2 + x3 + x4 − x5)

3.

If x5 = 0, then it is less than or equal to (x1 + x2 + x3 + x4)
3/25 as desired. Suppose now x5 ̸= 0.

By scaling, we may assume x5 = 1. Let t = x1 + x2 + x3 + x4. It remains to prove that

1

25
(t+ 1)3 − 1

4
t2 − 1

27
(t− 1)3 ≥ 0

for t ≥ 4. It takes the value 0 when t = 4 and has derivative

3

25
(t+ 1)2 − 1

2
t− 1

9
(t− 1)2 =

1

450
(54t2 + 108t+ 54− 225t− 50t2 + 100t− 50)

=
1

450
(4t2 − 17t+ 4)

=
1

450
(4t− 1)(t− 4)

is positive for t > 4. Hence the cubic above is non-negative for t ≥ 4.

6: For any infinitely differentiable function f : R → R, we write fn(x) = d
dx
fn−1(x) for n ≥ 1 and

f0(x) = f(x). Find all real numbers c such that there exists an differentiable function f : R → R
such that fn(x) > fn−1(x) + c for all positive integers n and all x ∈ R.
By taking f(x) = e2x, we see that fn(x) = 2ne2x > 2n−1e2x for all x ∈ R. Hence every c ≤ 0 works.
Suppose c > 0 and such a function f(x) exists.

Solution 1: Let g(x) = f ′(x)− f(x). Then g(x) > c and g′(x) > c for all x ∈ R. The condition
g′(x) > c implies that limx→−∞ g(x) = −∞, which contradicts g(x) > c for all x.

Solution 2: Note that for any a ∈ R, if f(a) > −c/2, then f ′(a) > c/2. This implies that for
any b ∈ R, if f(a) > −c/2 for all a ≤ b, then f ′(a) > c/2 for all c ≤ b and so limx→−∞ f(x) = −∞,
which is a contradiction. Hence, for any b ∈ R, there exists some a ≤ b such that f(a) ≤ −c/2.

Moreover, since the function is strictly increasing whenever f(x) > −c/2, we see that if f(b) >
−c/2 for some b ∈ R, then f(x) > −c/2 for all x > b. To prove this rigorously, suppose f(a) ≤ −c/2
for some a > b. Let a0 = inf{a > b : f(a) ≤ −c/2}. By continuity, f(a0) ≤ −c/2. By MVT,
there exists some a1 ∈ (b, a0) such that f(a0) − f(b) = f ′(a1)(b − a0), but f(a0) − f(b) < 0 and
f ′(a1)(b− a0) > 0. Note this also implies that if f(b) ≤ −c/2 for some b ∈ R, then f(x) ≤ −c/2 for
all x ≤ b.

From the above two paragraphs, we have some b0 ∈ R such that f(x) ≤ −c/2 for all x ≤ b0.
The trick now is to note that f ′(x) also satisfies the given condition. Hence applying the above to
f ′(x), we see that there exists some b1 ≤ b0 such that f ′(x) ≤ −c/2 for all x ≤ b1. This implies
that limx→−∞ f(x) = ∞ which contradicts f(x) ≤ −c/2 for all x ≤ b1.


