Week 8: Mock Putnam 2

1: Let p be a prime. Prove that for all $1 \leq k<p^{2}$, we have

$$
\binom{2 p^{2}}{k} \equiv 2\binom{p^{2}}{k} \quad\left(\bmod p^{2}\right)
$$

2: Prove that the system

$$
\begin{aligned}
x^{6}+x^{3}+x^{3} y+y & =69^{420} \\
x^{3}+x^{3} y+y^{2}+y+z^{9} & =420^{69}
\end{aligned}
$$

has no integer solutions in x, y, z.

3: Let $m>1$ be an integer with at least two distinct prime divisors p and q. Prove that there does not exist a polynomial $f(x)$ with integer coefficients such that

- $f(n) \equiv 0(\bmod m)$ for some integers n,
- $f(n) \equiv 1(\bmod m)$ for some integers n,
- $f(n) \equiv 0$ or $1(\bmod m)$ for all integers n.

4: Is it possible to partition the set of all nonnegative integers with at most 2023 digits into subsets of size 4 such that in each subset, the 4 numbers have the same digits in 2022 places and 4 consecutive digits in the remaining place?

5: Let x_{1}, \ldots, x_{5} be nonnegative real numbers. Prove that

$$
\left(x_{1}+x_{2}+\cdots+x_{5}\right)^{3} \geq 25\left(x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+x_{3} x_{4} x_{5}+x_{4} x_{5} x_{1}+x_{5} x_{1} x_{2}\right)
$$

6: For any infinitely differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$, we write $f_{n}(x)=\frac{d}{d x} f_{n-1}(x)$ for $n \geq 1$ and $f_{0}(x)=f(x)$. Find all real numbers c such that there exists an differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f_{n}(x)>f_{n-1}(x)+c$ for all positive integers n and all $x \in \mathbb{R}$.

Week 8: Solutions

1: Let p be a prime. Prove that for all $1 \leq k<p^{2}$, we have

$$
\binom{2 p^{2}}{k} \equiv 2\binom{p^{2}}{k} \quad\left(\bmod p^{2}\right)
$$

The left-hand-side is the coefficient of x^{k} in $(1+x)^{2 p^{2}}$. Since $(1+x)^{p^{2}} \equiv 1+x^{p^{2}}(\bmod p)$, there is a polynomial $A(x) \in \mathbb{Z}[x]$ such that

$$
(1+x)^{p^{2}}=1+x^{p^{2}}+p A(x)
$$

Squaring gives

$$
(1+x)^{2 p^{2}} \equiv 1+2 p A(x) \quad\left(\bmod x^{p^{2}}, p^{2}\right)
$$

The coefficient of x^{k} of $p A(x)$ is the same as the coefficient of x^{k} of $(1+x)^{p^{2}}$, which is $\binom{p^{2}}{k}$. Hence we have desired congruence $\bmod p^{2}$.

2: Prove that the system

$$
\begin{aligned}
x^{6}+x^{3}+x^{3} y+y & =69^{420} \\
x^{3}+x^{3} y+y^{2}+y+z^{9} & =420^{69}
\end{aligned}
$$

has no integer solutions in x, y, z.
Adding the two equations gives

$$
x^{6}+2 x^{3}+2 x^{3} y+2 y+y^{2}+z^{9}=\left(x^{3}+y+1\right)^{2}-1+z^{9}=69^{420}+420^{69}
$$

The z^{9} suggests working mod 19 since it can only be $-1,0,1 \bmod 19$.
We have $69 \equiv-7(\bmod 19)$ so $69^{2} \equiv 49 \equiv-8 \equiv(-2)^{3}(\bmod 19)$. Since $19 \equiv 3(\bmod 8)$, we know $-2 \equiv \alpha^{2}(\bmod 19)$ for some α and so $69^{2} \equiv \alpha^{6}(\bmod 19)$. Hence $69^{6} \equiv 1(\bmod 19)$ and so $69^{420} \equiv 1(\bmod 19)$.

We have $420 \equiv 2(\bmod 19)$ and $2^{9} \equiv-1(\bmod 19)$. So $2^{69} \equiv-2^{6} \equiv 12(\bmod 19)$. So

$$
\left(x^{3}+y+1\right)^{2} \equiv 69^{420}+420^{69}+1-z^{9} \equiv 13,14 \text { or } 15 \quad(\bmod 19) .
$$

We now compute Legendre symbols to show 13, 14, 15 are all quadratic nonresidues mod 19:

$$
\left(\frac{13}{19}\right)=\left(\frac{19}{13}\right)=\left(\frac{6}{13}\right)=\left(\frac{2}{13}\right)\left(\frac{3}{13}\right)=-1
$$

since $13 \not \equiv \pm 1(\bmod 8)$ and $13 \equiv \pm 1(\bmod 12)$;

$$
\left(\frac{14}{19}\right)=\left(\frac{2}{19}\right)\left(\frac{-12}{19}\right)=\left(\frac{2}{19}\right)\left(\frac{-1}{19}\right)\left(\frac{3}{19}\right)=-1 .
$$

since $19 \not \equiv \pm 1(\bmod 9)$ and $19 \not \equiv 1(\bmod 4)$ and $19 \not \equiv \pm 1(\bmod 12)$;

$$
\left(\frac{15}{19}\right)=\left(\frac{-4}{19}\right)=\left(\frac{-1}{19}\right)=-1 .
$$

3: Let $m>1$ be an integer with at least two distinct prime divisors p and q. Prove that there does not exist a polynomial $f(x)$ with integer coefficients such that

- $f(n) \equiv 0(\bmod m)$ for some integers n,
- $f(n) \equiv 1(\bmod m)$ for some integers n,
- $f(n) \equiv 0$ or $1(\bmod m)$ for all integers n.

Let $a \in \mathbb{Z}$ such that $f(a) \equiv 0(\bmod m)$. Fix any integer k. We have

$$
f(a+k p) \equiv f(a) \quad(\bmod p)
$$

and so we can't have $f(a+k p) \equiv 1(\bmod m)$ as that would imply $p \mid 1$. Hence $f(a+k p) \equiv 0$ $(\bmod m)$. Now fix any integer ℓ. We have

$$
f(a+k p+\ell q) \equiv f(a+k p) \quad(\bmod q)
$$

and so we can't have $f(a+k p+\ell q) \equiv 1(\bmod m)$ as that would imply $q \mid 1$. Hence $f(a+k p+\ell q) \equiv 0$ $(\bmod m)$. However, since p, q are distinct primes, every integer is of the form $a+k p+\ell q$ for some $k, \ell \in \mathbb{Z}$. This contradicts the assumption that $f(n) \equiv 1(\bmod m)$ for some integer n.

4: Is it possible to partition the set of all nonnegative integers with at most 2023 digits into subsets of size 4 such that in each subset, the 4 numbers have the same digits in 2022 places and 4 consecutive digits in the remaining place?
Let S be the set of all positive integers with at most 2023 digits. For any $n \in S$, let $s(n)$ denote the sum of the digits of n. Consider the generating function

$$
F(X)=\sum_{n \in S} X^{s(n)}=\left(1+X+\cdots+X^{9}\right)^{2023}
$$

On the other hand, if T is a set of 4 numbers that have the same digits in 2022 places and 4 consecutive digits in the remaining place, then their digit sums are 4 consecutive integers and so

$$
1+X+X^{2}+X^{3} \mid \sum_{n \in T} X^{s(n)}
$$

Hence, if such a decomposition is possible, then

$$
1+X+X^{2}+X^{3} \mid\left(X^{10}-1\right)^{2023}
$$

which is not possible since i is not a root of $X^{10}-1$ but is a root of $1+X+X^{2}+X^{3}$.

5: Let x_{1}, \ldots, x_{5} be nonnegative real numbers. Prove that

$$
\left(x_{1}+x_{2}+\cdots+x_{5}\right)^{3} \geq 25\left(x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+x_{3} x_{4} x_{5}+x_{4} x_{5} x_{1}+x_{5} x_{1} x_{2}\right) .
$$

By cyclicity, we may assume x_{5} is the smallest. We have $x_{1}+x_{4}-x_{5} \geq 0$ and so

$$
\begin{aligned}
\text { RHS } & =x_{5}\left(x_{1}+x_{3}\right)\left(x_{2}+x_{4}\right)+x_{2} x_{3}\left(x_{1}+x_{4}-x_{5}\right) \\
& \leq \frac{1}{4} x_{5}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}+\frac{1}{27}\left(x_{1}+x_{2}+x_{3}+x_{4}-x_{5}\right)^{3} .
\end{aligned}
$$

If $x_{5}=0$, then it is less than or equal to $\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{3} / 25$ as desired. Suppose now $x_{5} \neq 0$. By scaling, we may assume $x_{5}=1$. Let $t=x_{1}+x_{2}+x_{3}+x_{4}$. It remains to prove that

$$
\frac{1}{25}(t+1)^{3}-\frac{1}{4} t^{2}-\frac{1}{27}(t-1)^{3} \geq 0
$$

for $t \geq 4$. It takes the value 0 when $t=4$ and has derivative

$$
\begin{aligned}
\frac{3}{25}(t+1)^{2}-\frac{1}{2} t-\frac{1}{9}(t-1)^{2} & =\frac{1}{450}\left(54 t^{2}+108 t+54-225 t-50 t^{2}+100 t-50\right) \\
& =\frac{1}{450}\left(4 t^{2}-17 t+4\right) \\
& =\frac{1}{450}(4 t-1)(t-4)
\end{aligned}
$$

is positive for $t>4$. Hence the cubic above is non-negative for $t \geq 4$.

6: For any infinitely differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$, we write $f_{n}(x)=\frac{d}{d x} f_{n-1}(x)$ for $n \geq 1$ and $f_{0}(x)=f(x)$. Find all real numbers c such that there exists an differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f_{n}(x)>f_{n-1}(x)+c$ for all positive integers n and all $x \in \mathbb{R}$.

By taking $f(x)=e^{2 x}$, we see that $f_{n}(x)=2^{n} e^{2 x}>2^{n-1} e^{2 x}$ for all $x \in \mathbb{R}$. Hence every $c \leq 0$ works. Suppose $c>0$ and such a function $f(x)$ exists.

Solution 1: Let $g(x)=f^{\prime}(x)-f(x)$. Then $g(x)>c$ and $g^{\prime}(x)>c$ for all $x \in \mathbb{R}$. The condition $g^{\prime}(x)>c$ implies that $\lim _{x \rightarrow-\infty} g(x)=-\infty$, which contradicts $g(x)>c$ for all x.

Solution 2: Note that for any $a \in \mathbb{R}$, if $f(a)>-c / 2$, then $f^{\prime}(a)>c / 2$. This implies that for any $b \in \mathbb{R}$, if $f(a)>-c / 2$ for all $a \leq b$, then $f^{\prime}(a)>c / 2$ for all $c \leq b$ and so $\lim _{x \rightarrow-\infty} f(x)=-\infty$, which is a contradiction. Hence, for any $b \in \mathbb{R}$, there exists some $a \leq b$ such that $f(a) \leq-c / 2$.

Moreover, since the function is strictly increasing whenever $f(x)>-c / 2$, we see that if $f(b)>$ $-c / 2$ for some $b \in \mathbb{R}$, then $f(x)>-c / 2$ for all $x>b$. To prove this rigorously, suppose $f(a) \leq-c / 2$ for some $a>b$. Let $a_{0}=\inf \{a>b: f(a) \leq-c / 2\}$. By continuity, $f\left(a_{0}\right) \leq-c / 2$. By MVT, there exists some $a_{1} \in\left(b, a_{0}\right)$ such that $f\left(a_{0}\right)-f(b)=f^{\prime}\left(a_{1}\right)\left(b-a_{0}\right)$, but $f\left(a_{0}\right)-f(b)<0$ and $f^{\prime}\left(a_{1}\right)\left(b-a_{0}\right)>0$. Note this also implies that if $f(b) \leq-c / 2$ for some $b \in \mathbb{R}$, then $f(x) \leq-c / 2$ for all $x \leq b$.

From the above two paragraphs, we have some $b_{0} \in \mathbb{R}$ such that $f(x) \leq-c / 2$ for all $x \leq b_{0}$. The trick now is to note that $f^{\prime}(x)$ also satisfies the given condition. Hence applying the above to $f^{\prime}(x)$, we see that there exists some $b_{1} \leq b_{0}$ such that $f^{\prime}(x) \leq-c / 2$ for all $x \leq b_{1}$. This implies that $\lim _{x \rightarrow-\infty} f(x)=\infty$ which contradicts $f(x) \leq-c / 2$ for all $x \leq b_{1}$.

