Week 7: Mock Putnam 1

1: Suppose $f:[0,1] \rightarrow \mathbb{R}$ is continuous differentiable with $f(0)=0$ and $f(1)=1$. Prove that for any $n \in \mathbb{N}$, there exists distinct $x_{1}, \ldots, x_{n} \in(0,1)$ such that $\sum_{i=1}^{n} \frac{1}{\left(f^{\prime}\left(x_{i}\right)\right)^{2023}}=n$.

2: Prove that for any positive integer n,

$$
(n+1) \operatorname{lcm}\left(\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}\right)=\operatorname{lcm}(1,2, \ldots, n+1)
$$

3: Let $A \subseteq \mathbb{Z} / 2023 \mathbb{Z}$ be a subset with 289 elements. Prove that there exists a subset $B \subseteq \mathbb{Z} / 2023 \mathbb{Z}$ with 5 elements such that

$$
|A+B|=\mid\{a+b: a \in A, b \in B\} \geq 1000
$$

4: Let $P(x)$ be a polynomial of degree at most 6^{337} with coefficients in the set $\{-1,0,1\}$. Suppose that $(x-1)^{2023} \mid P(x)$ in $\mathbb{Z}[x]$. Prove that the polynomial $P(x)$ vanishes at all primitive 7 -th roots of unities.

5: Suppose $f(x)$ is a polynomial with integer coefficients such that

$$
f(0), f(1), \ldots, f(2024) \in\{0,1, \ldots, 2023\} .
$$

Prove that $f(0)=f(1)=\cdots=f(2024)$.

6: Let S be the set of all continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
\left|\int_{0}^{x} \frac{f(t)}{\sqrt{x-t}} d t\right| \leq 1, \quad \text { for all } x \in[0,1]
$$

Find $\sup _{f \in S} \int_{0}^{1} f(x) d x$.

Week 7: Solutions

1: Suppose $f:[0,1] \rightarrow \mathbb{R}$ is continuous differentiable with $f(0)=0$ and $f(1)=1$. Prove that for any $n \in \mathbb{N}$, there exists distinct $x_{1}, \ldots, x_{n} \in(0,1)$ such that $\sum_{i=1}^{n} \frac{1}{\left(f^{\prime}\left(x_{i}\right)\right)^{2023}}=n$.
By the Mean Value Theorem, there exists some $c_{1} \in(0,1)$ such that $f^{\prime}\left(c_{1}\right)=1$. If $f\left(c_{1}\right)=c_{1}$, then we can find $c_{2} \in\left(0, c_{1}\right)$ such that $f^{\prime}\left(c_{2}\right)=1$. If this process continues to find $c_{1}>c_{2}>\cdots>c_{n}$ such that $f\left(c_{i}\right)=c_{i}$ and $f^{\prime}\left(c_{i}\right)=1$ for $i=1, \ldots, n$, we are done by taking $x_{i}=c_{i}$. Otherwise, let k be the smallest positive integer such that $f\left(c_{k}\right) \neq c_{k}$. Since $f(0)=0$ and $f\left(c_{k-1}\right)=c_{k-1}$, where we set $c_{0}=1$, we can find $y, z \in(0,1)$ such that $f^{\prime}(y)>1$ and $f^{\prime}(z)<1$. Since $f^{\prime}(x)$ is continuous, we see that $f^{\prime}(x)$ takes every value in some open interval I containing 1 as x varies between y and z. There then exist an increasing sequence $\left(a_{m}\right)$ in $I \cap(0,1)$ and an decreasing sequence $\left(b_{m}\right)$ in $I \cap(1, \infty)$ such that

$$
\frac{1}{a_{m}^{2023}}+\frac{1}{b_{m}^{2023}}=2, \quad \text { for all } m \geq 1
$$

Let $y_{m}, z_{m} \in(0,1)$ such that $f^{\prime}\left(y_{m}\right)=a_{m}$ and $f^{\prime}\left(z_{m}\right)=b_{m}$. If $n=2 \ell$ is even, we take $x_{1}, \ldots, x_{n}=$ $y_{1}, z_{1} \ldots, y_{\ell}, z_{\ell}$. If $n=2 \ell+1$, we add $x_{1}, \ldots, x_{n}=c_{1}, y_{1}, z_{1} \ldots, y_{\ell}, z_{\ell}$.

2: Prove that for any positive integer n,

$$
(n+1) \operatorname{lcm}\left(\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}\right)=\operatorname{lcm}(1,2, \ldots, n+1) .
$$

We note that for $i \leq n$,

$$
(n+1)\binom{n}{i}=\frac{(n+1)!}{i!(n-i)!}=(i+1)\binom{n+1}{i+1}
$$

Let $p \leq n+1$ be any prime and let k be the unique positive integer such that $p^{k} \leq n+1<p^{k+1}$. Then $\nu_{p}(\operatorname{lcm}(1,2, \ldots, n+1))=k$. Let $i=p^{k}-1 \leq n$. Then

$$
\nu_{p}\left((i+1)\binom{n+1}{i+1}\right) \geq \nu_{p}(i+1)=k
$$

Next fix any $m=1, \ldots, n+1$. Suppose $\ell=\nu_{p}(m) \leq k$. Then the remainders when m is divided by $p, p^{2}, \ldots, p^{\ell}$ are all 0 . Hence, we have

$$
\left\lfloor\frac{n+1}{p^{j}}\right\rfloor-\left\lfloor\frac{m}{p^{j}}\right\rfloor-\left\lfloor\frac{n+1-m}{p^{j}}\right\rfloor=0 \quad \text { if } j \leq \ell ;
$$

is at most 1 for $j=\ell+1, \ldots, k$; and is 0 for $j \geq k+1$. Hence

$$
\nu_{p}\left(m\binom{n+1}{m}\right) \leq \ell+(k-\ell)=k .
$$

This proves that the two sides have the same p-adic valuation for every prime p that appears. Hence they are equal.

3: Let $A \subseteq \mathbb{Z} / 2023 \mathbb{Z}$ be a subset with 289 elements. Prove that there exists a subset $B \subseteq \mathbb{Z} / 2023 \mathbb{Z}$ with 5 elements such that

$$
|A+B|=\mid\{a+b: a \in A, b \in B\} \geq 1000
$$

Let S be the set of all 5 -elements subsets of $\mathbb{Z} / 2023 \mathbb{Z}$. Then

$$
\sum_{B \in S}|A+B|=\sum_{n=0}^{2023}|\{B \in S: n \in A+B\}|=\sum_{n=0}^{2023}\binom{2023}{5}-\binom{2023-289}{5}
$$

Hence, it suffices to prove that

$$
2023\binom{2023-289}{5} \leq(2023-1000)\binom{2023}{5}
$$

which follows from

$$
\frac{\binom{2023-289}{5}}{\binom{2023}{5}}=\prod_{k=0}^{4} \frac{2023-289-k}{2023-k} \leq\left(\frac{2023-289}{2023}\right)^{5}=\left(\frac{6}{7}\right)^{5}=\frac{7776}{16807} \leq \frac{1}{2} \leq \frac{1013}{2023}
$$

4: Let $P(x)$ be a polynomial of degree at most 6^{337} with coefficients in the set $\{-1,0,1\}$. Suppose that $(x-1)^{2023} \mid P(x)$ in $\mathbb{Z}[x]$. Prove that the polynomial $P(x)$ vanishes at all primitive 7 -th roots of unities.
Let $Q(x) \in \mathbb{Z}[x]$ such that $P(x)=(x-1)^{2023} Q(x)$. Suppose $P\left(\zeta_{7}\right) \neq 0$. Then $Q\left(\zeta_{7}\right) \neq 0$. Since $Q(x) \in \mathbb{Q}[x]$, we know that $Q\left(\zeta_{7}^{j}\right) \neq 0$ for $j=1, \ldots, 6$. Hence

$$
\left|\prod_{j=1}^{6} Q\left(\zeta_{7}^{j}\right)\right| \geq 1
$$

since it is a nonzero integer. Moreover,

$$
\prod_{j=1}^{6}\left(\zeta_{7}^{j}-1\right)=\Phi_{7}(1)=7
$$

where $\Phi_{7}(x)=x^{6}+x^{5}+\cdots+1$ is the 7 -th cyclotomic polynomial. Hence

$$
\left|\prod_{j=1}^{6} P\left(\zeta_{7}^{j}\right)\right|=\left|\prod_{j=1}^{6}\left(\zeta_{7}^{j}-1\right)\right|^{2023}\left|\prod_{j=1}^{6} Q\left(\zeta_{7}^{j}\right)\right| \geq 7^{2023}
$$

On the other hand, since the coefficients of $P(x)$ have absolute value at 1 and $\left|\zeta_{7}^{j}\right|=1$, we have by triangle inequality that

$$
\left|P\left(\zeta_{7}^{j}\right)\right| \leq 6^{337}+1 \leq 7^{337}
$$

Hence

$$
\left|\prod_{j=1}^{6} P\left(\zeta_{7}^{j}\right)\right| \leq\left(7^{337}\right)^{6}=7^{2022}<7^{2023}
$$

Contradiction.

5: Suppose $f(x)$ is a polynomial with integer coefficients such that

$$
f(0), f(1), \ldots, f(2024) \in\{0,1, \ldots, 2023\} .
$$

Prove that $f(0)=f(1)=\cdots=f(2024)$.
Since $f(0) \equiv f(2024)(\bmod 2024)$, we see that $f(0)=f(2024)$. Let $g(x)=f(x)-f(0)$. Then

$$
g(x)=x(x-2024) h(x)
$$

for some $h(x) \in \mathbb{Z}[x]$. For $x=2, \ldots, 2022$, we have $|x(x-2024)|>2023$ while $|g(x)| \leq 2023$, implying that $h(x)=0$. So

$$
g(x)=x(x-2)(x-3) \cdots(x-2021)(x-2022)(x-2024) j(x)
$$

for some $h(x) \in \mathbb{Z}[x]$. We can now set $x=1$ or $x=2023$ like above to get $j(x)=0$ in these cases. So

$$
f(x)-f(0)=x(x-1) \cdots(x-2023)(x-2024) k(x)
$$

for some $k(x) \in \mathbb{Z}[x]$, which implies that $f(0)=f(1)=\cdots=f(2024)$.

6: Let S be the set of all continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
\left|\int_{0}^{x} \frac{f(t)}{\sqrt{x-t}} d t\right| \leq 1, \quad \text { for all } x \in[0,1]
$$

Find $\sup _{f \in S} \int_{0}^{1} f(x) d x$.
The key trick is that the following integral

$$
\int_{t}^{u} \frac{1}{\sqrt{(x-t)(u-x)}} d x
$$

where $t<u$ does not depend on t and u, by taking $v=u-x$ and then $w=v /(u-t)$. By taling $t=-1$ and $u=1$, we have

$$
\int_{t}^{u} \frac{1}{\sqrt{(x-t)(u-x)}} d x=\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=\left.\arcsin x\right|_{-1} ^{1}=\pi
$$

In particular, we have

$$
\int_{t}^{1} \frac{1}{\sqrt{(x-t)(1-x)}} d x=\int_{0}^{x} \frac{1}{\sqrt{(x-t)(t-0)}} d t=\pi
$$

Returning to the problem, we find that

$$
\begin{aligned}
\int_{0}^{1}\left(\int_{0}^{x} \frac{f(t)}{\sqrt{x-t}} d t\right) \frac{1}{\sqrt{1-x}} d x & =\int_{0}^{1}\left(\int_{t}^{1} \frac{1}{\sqrt{(x-t)(1-x)}} d x\right) f(t) d t \\
& =\pi \int_{0}^{1} f(t) d t
\end{aligned}
$$

Hence

$$
\int_{0}^{1} f(t) d t \leq \frac{1}{\pi} \int_{0}^{1} \frac{1}{\sqrt{1-x}} d x=\frac{2}{\pi}
$$

Equality is achieved when $f(x)=\frac{1}{\pi \sqrt{x}}$ in which case

$$
\int_{0}^{x} \frac{f(t)}{\sqrt{x-t}} d t=\frac{1}{\pi} \int_{0}^{x} \frac{1}{\sqrt{(x-t)(t-0)}} d t=1
$$

There is one slight subtlety here as the function $\frac{1}{\pi \sqrt{x}}$ is not continuous on $[0,1]$. For any positive integer n, we let

$$
f_{n}(x)=\frac{1}{\pi \sqrt{x+1 / n}}
$$

Then we have

$$
0 \leq f_{n}(x) \leq \frac{1}{\pi \sqrt{x}}, \quad \text { and so } \quad f_{n}(x) \in S
$$

Since $f_{n}(x) \rightarrow \frac{1}{\pi \sqrt{x}}$ pointwise, we have by Lebesgue Dominated Convergence Theorem,

$$
\int_{0}^{1} f_{n}(x) d x \rightarrow \int_{0}^{1} \frac{1}{\pi \sqrt{x}} d x=\frac{2}{\pi}
$$

Therefore, $2 / \pi$ is the desired supremum.

