Week 7: Mock Putnam 1

- 1: Suppose $f : [0,1] \to \mathbb{R}$ is continuous differentiable with f(0) = 0 and f(1) = 1. Prove that for any $n \in \mathbb{N}$, there exists distinct $x_1, \ldots, x_n \in (0,1)$ such that $\sum_{i=1}^n \frac{1}{(f'(x_i))^{2023}} = n$.
- **2:** Prove that for any positive integer n,

$$(n+1)$$
 lcm $\left(\binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}\right) =$ lcm $(1, 2, \dots, n+1).$

3: Let $A \subseteq \mathbb{Z}/2023\mathbb{Z}$ be a subset with 289 elements. Prove that there exists a subset $B \subseteq \mathbb{Z}/2023\mathbb{Z}$ with 5 elements such that

$$|A + B| = |\{a + b \colon a \in A, b \in B\} \ge 1000.$$

- 4: Let P(x) be a polynomial of degree at most 6^{337} with coefficients in the set $\{-1, 0, 1\}$. Suppose that $(x-1)^{2023} | P(x)$ in $\mathbb{Z}[x]$. Prove that the polynomial P(x) vanishes at all primitive 7-th roots of unities.
- **5:** Suppose f(x) is a polynomial with integer coefficients such that

$$f(0), f(1), \dots, f(2024) \in \{0, 1, \dots, 2023\}.$$

Prove that $f(0) = f(1) = \cdots = f(2024)$.

6: Let S be the set of all continuous function $f: [0,1] \to \mathbb{R}$ such that

$$\left| \int_0^x \frac{f(t)}{\sqrt{x-t}} \, dt \right| \le 1, \qquad \text{for all } x \in [0,1].$$

Find $\sup_{f \in S} \int_0^1 f(x) \, dx$.

Week 7: Solutions

1: Suppose $f : [0,1] \to \mathbb{R}$ is continuous differentiable with f(0) = 0 and f(1) = 1. Prove that for any $n \in \mathbb{N}$, there exists distinct $x_1, \ldots, x_n \in (0,1)$ such that $\sum_{i=1}^n \frac{1}{(f'(x_i))^{2023}} = n$.

By the Mean Value Theorem, there exists some $c_1 \in (0,1)$ such that $f'(c_1) = 1$. If $f(c_1) = c_1$, then we can find $c_2 \in (0, c_1)$ such that $f'(c_2) = 1$. If this process continues to find $c_1 > c_2 > \cdots > c_n$ such that $f(c_i) = c_i$ and $f'(c_i) = 1$ for $i = 1, \ldots, n$, we are done by taking $x_i = c_i$. Otherwise, let kbe the smallest positive integer such that $f(c_k) \neq c_k$. Since f(0) = 0 and $f(c_{k-1}) = c_{k-1}$, where we set $c_0 = 1$, we can find $y, z \in (0, 1)$ such that f'(y) > 1 and f'(z) < 1. Since f'(x) is continuous, we see that f'(x) takes every value in some open interval I containing 1 as x varies between y and z. There then exist an increasing sequence (a_m) in $I \cap (0, 1)$ and an decreasing sequence (b_m) in $I \cap (1, \infty)$ such that

$$\frac{1}{a_m^{2023}} + \frac{1}{b_m^{2023}} = 2, \quad \text{for all } m \ge 1.$$

Let $y_m, z_m \in (0, 1)$ such that $f'(y_m) = a_m$ and $f'(z_m) = b_m$. If $n = 2\ell$ is even, we take $x_1, \ldots, x_n = y_1, z_1, \ldots, y_\ell, z_\ell$. If $n = 2\ell + 1$, we add $x_1, \ldots, x_n = c_1, y_1, z_1, \ldots, y_\ell, z_\ell$.

2: Prove that for any positive integer n,

$$(n+1)$$
 lcm $\left(\binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}\right) =$ lcm $(1, 2, \dots, n+1).$

We note that for $i \leq n$,

$$(n+1)\binom{n}{i} = \frac{(n+1)!}{i!(n-i)!} = (i+1)\binom{n+1}{i+1}$$

Let $p \leq n+1$ be any prime and let k be the unique positive integer such that $p^k \leq n+1 < p^{k+1}$. Then $\nu_p(\operatorname{lcm}(1, 2, \ldots, n+1)) = k$. Let $i = p^k - 1 \leq n$. Then

$$\nu_p\left((i+1)\binom{n+1}{i+1}\right) \ge \nu_p(i+1) = k.$$

Next fix any m = 1, ..., n + 1. Suppose $\ell = \nu_p(m) \leq k$. Then the remainders when m is divided by $p, p^2, ..., p^{\ell}$ are all 0. Hence, we have

$$\left\lfloor \frac{n+1}{p^j} \right\rfloor - \left\lfloor \frac{m}{p^j} \right\rfloor - \left\lfloor \frac{n+1-m}{p^j} \right\rfloor = 0 \quad \text{if } j \le \ell;$$

is at most 1 for $j = \ell + 1, \ldots, k$; and is 0 for $j \ge k + 1$. Hence

$$\nu_p\left(m\binom{n+1}{m}\right) \leq \ell + (k-\ell) = k.$$

This proves that the two sides have the same p-adic valuation for every prime p that appears. Hence they are equal.

3: Let $A \subseteq \mathbb{Z}/2023\mathbb{Z}$ be a subset with 289 elements. Prove that there exists a subset $B \subseteq \mathbb{Z}/2023\mathbb{Z}$ with 5 elements such that

$$|A + B| = |\{a + b \colon a \in A, b \in B\} \ge 1000.$$

Let S be the set of all 5-elements subsets of $\mathbb{Z}/2023\mathbb{Z}$. Then

$$\sum_{B \in S} |A + B| = \sum_{n=0}^{2023} |\{B \in S \colon n \in A + B\}| = \sum_{n=0}^{2023} \binom{2023}{5} - \binom{2023 - 289}{5}.$$

Hence, it suffices to prove that

$$2023\binom{2023-289}{5} \le (2023-1000)\binom{2023}{5}$$

which follows from

$$\frac{\binom{2023-289}{5}}{\binom{2023}{5}} = \prod_{k=0}^{4} \frac{2023-289-k}{2023-k} \le \left(\frac{2023-289}{2023}\right)^5 = \left(\frac{6}{7}\right)^5 = \frac{7776}{16807} \le \frac{1}{2} \le \frac{1013}{2023}$$

4: Let P(x) be a polynomial of degree at most 6^{337} with coefficients in the set $\{-1, 0, 1\}$. Suppose that $(x - 1)^{2023} | P(x)$ in $\mathbb{Z}[x]$. Prove that the polynomial P(x) vanishes at all primitive 7-th roots of unities.

Let $Q(x) \in \mathbb{Z}[x]$ such that $P(x) = (x-1)^{2023}Q(x)$. Suppose $P(\zeta_7) \neq 0$. Then $Q(\zeta_7) \neq 0$. Since $Q(x) \in \mathbb{Q}[x]$, we know that $Q(\zeta_7^j) \neq 0$ for $j = 1, \ldots, 6$. Hence

$$\left|\prod_{j=1}^{6} Q(\zeta_7^j)\right| \ge 1$$

since it is a nonzero integer. Moreover,

$$\prod_{j=1}^{6} (\zeta_7^j - 1) = \Phi_7(1) = 7$$

where $\Phi_7(x) = x^6 + x^5 + \dots + 1$ is the 7-th cyclotomic polynomial. Hence

$$\left|\prod_{j=1}^{6} P(\zeta_{7}^{j})\right| = \left|\prod_{j=1}^{6} (\zeta_{7}^{j} - 1)\right|^{2023} \left|\prod_{j=1}^{6} Q(\zeta_{7}^{j})\right| \ge 7^{2023}$$

On the other hand, since the coefficients of P(x) have absolute value at 1 and $|\zeta_7^j| = 1$, we have by triangle inequality that

$$|P(\zeta_7^j)| \le 6^{337} + 1 \le 7^{337}.$$

Hence

$$\left|\prod_{j=1}^{6} P(\zeta_7^j)\right| \le (7^{337})^6 = 7^{2022} < 7^{2023}.$$

Contradiction.

5: Suppose f(x) is a polynomial with integer coefficients such that

$$f(0), f(1), \dots, f(2024) \in \{0, 1, \dots, 2023\}.$$

Prove that $f(0) = f(1) = \cdots = f(2024)$.

Since $f(0) \equiv f(2024) \pmod{2024}$, we see that f(0) = f(2024). Let g(x) = f(x) - f(0). Then

$$g(x) = x(x - 2024)h(x)$$

for some $h(x) \in \mathbb{Z}[x]$. For x = 2, ..., 2022, we have |x(x - 2024)| > 2023 while $|g(x)| \le 2023$, implying that h(x) = 0. So

$$g(x) = x(x-2)(x-3)\cdots(x-2021)(x-2022)(x-2024)j(x)$$

for some $h(x) \in \mathbb{Z}[x]$. We can now set x = 1 or x = 2023 like above to get j(x) = 0 in these cases. So

$$f(x) - f(0) = x(x - 1) \cdots (x - 2023)(x - 2024)k(x)$$

for some $k(x) \in \mathbb{Z}[x]$, which implies that $f(0) = f(1) = \cdots = f(2024)$.

6: Let S be the set of all continuous function $f:[0,1] \to \mathbb{R}$ such that

$$\left| \int_0^x \frac{f(t)}{\sqrt{x-t}} \, dt \right| \le 1, \qquad \text{for all } x \in [0,1].$$

Find $\sup_{f \in S} \int_0^1 f(x) \, dx$.

The key trick is that the following integral

$$\int_{t}^{u} \frac{1}{\sqrt{(x-t)(u-x)}} \, dx$$

where t < u does not depend on t and u, by taking v = u - x and then w = v/(u - t). By taking t = -1 and u = 1, we have

$$\int_{t}^{u} \frac{1}{\sqrt{(x-t)(u-x)}} \, dx = \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} \, dx = \arcsin x \big|_{-1}^{1} = \pi.$$

In particular, we have

$$\int_{t}^{1} \frac{1}{\sqrt{(x-t)(1-x)}} \, dx = \int_{0}^{x} \frac{1}{\sqrt{(x-t)(t-0)}} \, dt = \pi.$$

Returning to the problem, we find that

$$\int_0^1 \left(\int_0^x \frac{f(t)}{\sqrt{x-t}} \, dt \right) \frac{1}{\sqrt{1-x}} \, dx = \int_0^1 \left(\int_t^1 \frac{1}{\sqrt{(x-t)(1-x)}} \, dx \right) f(t) \, dt$$
$$= \pi \int_0^1 f(t) \, dt.$$

Hence

$$\int_0^1 f(t) \, dt \le \frac{1}{\pi} \int_0^1 \frac{1}{\sqrt{1-x}} \, dx = \frac{2}{\pi}.$$

Equality is achieved when $f(x) = \frac{1}{\pi\sqrt{x}}$ in which case

$$\int_0^x \frac{f(t)}{\sqrt{x-t}} \, dt = \frac{1}{\pi} \int_0^x \frac{1}{\sqrt{(x-t)(t-0)}} \, dt = 1.$$

There is one slight subtlety here as the function $\frac{1}{\pi\sqrt{x}}$ is not continuous on [0, 1]. For any positive integer n, we let

$$f_n(x) = \frac{1}{\pi\sqrt{x+1/n}}.$$

Then we have

$$0 \le f_n(x) \le \frac{1}{\pi\sqrt{x}}$$
, and so $f_n(x) \in S$.

Since $f_n(x) \to \frac{1}{\pi\sqrt{x}}$ pointwise, we have by Lebesgue Dominated Convergence Theorem,

$$\int_0^1 f_n(x) \, dx \to \int_0^1 \frac{1}{\pi \sqrt{x}} \, dx = \frac{2}{\pi}.$$

Therefore, $2/\pi$ is the desired supremum.